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ABSTRACT

As a modern ensemble technique, Deep Forest (DF) employs
a cascading structure to construct deep models, providing
stronger representational power compared to traditional deci-
sion forests. However, its greedy multi-layer learning proce-
dure is prone to overfitting, limiting model effectiveness and
generalizability. This paper presents AugDF, an optimized
Deep Forest featuring learnable, layerwise data augmentation
policy schedules. Specifically, We introduce the Cut Mix
for Tabular data (CMT) augmentation technique to mitigate
overfitting and develop a population-based search algorithm
to tailor augmentation intensity for each layer. Additionally,
we propose to incorporate outputs from intermediate layers
into a checkpoint ensemble for more stable performance.
Experimental results show that AugDF sets new state-of-
the-art (SOTA) benchmarks in various tabular classification
tasks, outperforming shallow tree ensembles, deep forests,
deep neural network, and AutoML competitors. The learned
policies also transfer effectively to Deep Forest variants, un-
derscoring its potential for enhancing non-differentiable deep
learning modules in tabular signal processing.

Index Terms— Deep Forest, Data Augmentation, Tabular
Signal Classification

1. INTRODUCTION
In recent years, deep neural networks (DNNs) have achieved
remarkable success in perception tasks such as vision, speech,
and language [1]. However, heterogeneous tabular data in in-
dustrial scenarios still poses significant challenges, making it
the ”last unconquered castle” for DNNs [2]. In tabular model-
ing tasks, shallow decision tree ensembles like random forests
and gradient boosting trees remain the preferred tools for data
mining specialists [3]. However, these methods lack the abil-
ity to learn deep representations, which limits their potential
to benefit from larger models and more training data [4, 5, 6].

Drawing on the core principles of deep learning—layer-
by-layer processing, intra-model feature transformations, and
sufficient capacity—Zhou et al. introduced Deep Forest (DF),
a tree-based deep learning approach [7]. Deep Forest con-
structs a cascading structure by training random forests layer

†Equal contribution.

by layer. In classification tasks, each layer’s forests generate
class probability distributions, which are then merged with
original features for the subsequent layer. Upon reaching
the maximum layer depth, optimal layer selected by cross-
validation is used to produce final output. When sufficiently
deep, Deep Forest aims to achieve robust and powerful feature
representations through this iterative refinement [8, 9, 10].

However, due to its supervised greedy multi-layer archi-
tecture, Deep Forest is prone to overfitting [11], and such is-
sue in one lay can propagate to subsequent layers [12]. While
increased depth should theoretically enhance representational
power [11], it frequently leads to severe overfitting in prac-
tice, undermining generalizability [13]. Moreover, the simi-
lar learning objectives across layers diminish the benefits of
building deeper models.

Overfitting in Deep Forest stems from its intrinsic learn-
ing procedure, which is difficult to suppress through hyperpa-
rameter tuning [12]. Reducing the model size, on the other
hand, would compromise its primary design principle. Data
augmentation offers an alternative for regularization without
limiting model capacity [14]. However, tabular data augmen-
tation remains underexplored due to the absence of invari-
ances in heterogeneous features [15]. Furthermore, uniform
augmentation intensity across layers result in similar feature
representations and introduce high variance, complicating se-
lection of the optimal layer based on validation error.

In this work, we propose to improve Deep Forest with
learnable data augmentation policy schedules. Firstly, we
introduce a simple yet potent data augmentation technique
called CMT (Cut Mix for Tabular data) to regularize Deep
Forest. Furthermore, a population-based algorithm is pro-
posed to globally search for augmentation policy schedules,
enabling layer-specific adjustments in augmentation intensity.
Finally, we utilize outputs from intermediate layers to con-
struct a checkpoint ensemble, serving as a variance reducer to
ensure more stable and robust results.

Our contributions are summarized as follows:
• We introduce tabular data augmentation, specifically

CMT, to mitigate overfitting in Deep Forest.
• We optimize augmentation policy schedules through

population-based algorithm, with moderate overhead.
• We improve Deep Forest by integrating outputs from
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Fig. 1: AugDF architecture with learned policy schedule.

each layer to form a stable checkpoint ensemble.
• Our method sets SOTA benchmarks in tabular classifi-

cation and enables policy transfer to DF variants.

2. METHODOLOGY

2.1. Cut Mix for Tabular Data (CMT)
Data Augmentation, guided by the Vicinal Risk Minimiza-
tion principle [16], has significantly advanced regularization
of DNNs in fields like vision and language [14]. However,
the tabular domain still lacks effective augmentation tech-
niques [15]. The mixup method [17], widely used across data
modalities, generate new samples through linear combination
of original instances. However, mix-up has two primary limi-
tations in this context. First, convex combination of categori-
cal variables can lead to semantic ambiguity. Second, tabular
data exhibits irregular patterns [3], and samples constructed
through simple linear interpolation may introduce bias.

We thus design Cut Mix for Tabular data (CMT) to ad-
dress these issues. The new samples are formulated as:

x̃ = w ⊙ xi + (1−w)⊙ xj

ỹ = c · yi + (1− c) · yj
(1)

Here, xi, xj ∈ Rd are original samples, and yi,yj are
their one-hot encoded labels. w ∈ {0, 1}d is a random mask
vector with ∥w∥1 = λ·d, λ ∼ Beta(α, α). The coefficient c is
calculated by the Feature Importance (FI) vector derived from
decision forests in the preceding layer, where FI(k) indicates
importance of the kth feature:

c =

∑d
k=1 wk · FI(k)∑d

k=1 FI(k)
(2)

The blending strategy of CMT swaps partial features between
samples[18], drawing all values from the original dataset to
avoid semantic ambiguity in categorical variables. Moreover,
this method extends beyond linear combinations, better ac-
commodating diverse patterns in heterogeneous tabular data.
2.2. Augmentation Policy Schedule Learning
The intensity of data augmentation is a pivotal factor affecting
model performance, as excessive or inappropriate augmenta-
tion can introduce biases [19, 20]. To regulate this, an aug-
mentation policy θ is optimized as follows:

θ∗ = argmax
θ∈Θ

eval(θ) (3)

where θ consists of hyperparameters prob and mag, rep-
resenting the likelihood of sample selection for augmenta-
tion and the perturbation magnitude for each selected sample
(α in CMT). prob and mag are respectively taken from lists
P = [p1, p2 . . . pQ] and M = [m1,m2 . . .mN ], resulting in a
searching space of size Q×N . eval(θ) represents the objec-
tive to optimize, i.e. accuracy score on the validation set.

While a static policy provides certain regularization ben-
efits, it is limited in mitigating inter-layer convergence. We
thus reformulate the problem to identify an optimal sequence
of policy combinations, establishing a layerwise policy sched-
ule for Deep Forest. The policy for the kth layer is denoted
by θk = (probk,magk). In a DF with K layers, the complete
policy schedule is represented as Θ = (θ1, θ2, . . . , θK). This
approach enlarges the search space to (Q × N)K , offering
much greater flexibility for augmentation.

However, navigating through such a vast search space
is computationally intractable. Therefore, we propose a
population-based search algorithm optimized for the unique
attributes of DF while ensuring low computational overhead.
Initially, we formulate two single-layer search strategies:

Grid Search: This method scans all hyperparameter com-
binations to maximize current layer’s validation accuracy, but
is feasible only for a single layer due to complexity.

Neighbour Search: Given a selected policy θi,j =
(pi,mj) from the set P ×M , a neighboring policy θx,y =
(px,my) is chosen with probability of 1

|i−x|+|j−y|+1 . After
normalizing these probabilities, multiple sampling rounds are
performed to obtain the required number of different policies.

In the population, 2k DFs are considered, each acting as
an individual. We initialize the best policy θ0 for the first
layer with grid search and acquire 2k−1 neighboring policies
via neighbour search. These 2k policies are used to train the
first layer of each DF. For subsequent layers, the procedure
iteratively continues as follows:

Explore: Leveraging the policies of the current half top-
performing individuals, an exploration by neighbour search is
conducted to generate a set of k new policies. These new poli-
cies replace the existing k inferior ones, and each individual
is then trained with this updated policy set.

Exploit: The current validation accuracy of each individ-
ual is assessed and ranked. The upper half of top-performing
individuals, along with their associated policies, are pre-
served, while the lower-performing half is substituted by the
current best individual with explored policies.

Upon iterating through each layer, a complete policy
schedule is finalized. See Algorithm 1 for pseudocode.

2.3. Checkpoint Ensemble (CE)
The concept of using ”historical” information in deep learn-
ing is well-established [21]. Averaging snapshots from the
SGD trajectory often improves generalization [22, 23, 24].
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Algorithm 1: The process of Augmentation Pol-
icy Schedule Learning. Functions grid search and
neighbour search are detailed in section 2.2. Explore
and exploit phases are outlined in the same section.

Input : list of policies p, list of models m, number
of models (policies) L, max layer K

Output: Optimal model m∗

1 p[0]← grid search(); // initialize
2 p[1 : L− 1]← neigh search(p[0],L - 1);
3 m, p← eval(m,p);
4 for i = 1 to K − 1 do
5 m[L/2 : L− 1]← [m[0]] ∗ L/2; // exploit
6 p[L/2 : L− 1]← neigh search(p[0],L / 2);
7 m, p← eval(m,p); // explore

8 return m[0];
9 Function grid search():

10 find the best policy bp using grid search;
Result: bp

11 Function neigh search(bp, X):
12 generate X new policies [new policies] nearby

current best policy bp;
Result: [new policies]

13 Function eval(m, p):
14 Train each model in m corresponding to p,

evaluate the accuracy of each model, and sort m
and p by accuracy in descending order;

Result: m,p

While snapshot ensemble enhances performance, it increases
storage and inference latency due to multiple weight sets and
evaluations. In AugDF, we harness the hierarchical diversity
introduced by the augmentation policy schedule to construct a
checkpoint ensemble, as illustrated in Figure 1, which incurs
neither additional training cost nor significant inference over-
head. This strategy serves as a variance reducer, while further
boosting the representational capability of the model, thereby
achieving ensemble benefits (almost) for free.

The processing procedure of a test sample x in Deep For-
est can be recursively defined as follows:

Fi (x) =

{
hi (x) , i = 1
hi (x;Fi−1 (x)) , 1 < i ≤ K

(4)

where hi represents the ith layer of the Deep Forest, and Fi

denotes the model up to the ith layer. K is the maximum
number of layers in DF. Unlike the conventional approach
where the final output layer o is determined through cross-
validation, resulting in Fo (x) as the output, the checkpoint
ensemble can be represented as:

FCE(x) =
1

K

∑K−1

i=0
FK−i (x) (5)

Note that intermediate layers in Deep Forest already re-
quire computation; thus, adding a checkpoint ensemble incurs

no extra training overhead. While early-stopping is possible
through cross-validation, deeper models can be more power-
ful [11]. Therefore, DF in practice often approach maximum
depth [25]. Accordingly, the inference overhead of a check-
point ensemble is essentially the same as a vanilla DF.

3. EXPERIMENTS
Dataset. Experiments are conducted on eight benchmark

datasets for binary and multi-class classification tasks from
the UCI Machine Learning Repository [26]. These datasets
vary significantly in size, ranging from 452 to 1,516,948 in-
stances, and span multiple application domains such as ECG
signals for cardiac arrhythmia diagnosis, remote sensing sig-
nals for covertype recognition, air production unit signals
for failure prediction, and mobile phone signals for activity
recognition. These datasets feature tabular data with a mix
of categorical and continuous variables. Detailed statistical
characteristics are presented in Table 1.

Table 1: Statistics of the datasets in terms of number of ex-
amples, number of features, number of classes.

Datasets # of examples # of features # of classes

adult 48842 14 2
arrhythmia 452 279 16
crowdsourced 10546 29 6
nsl-kdd 148517 42 5
academic 4424 36 3
accelerometer 31991 8 2
metro 1516948 15 2
diabetes 101766 47 3

Settings. For comparison, we widely choose 10 mod-
els from diverse families, including Random Forest (RF)
[27], prevalent gradient boosting trees such as XGBoost [28],
LightGBM [29], and CatBoost [30]. We also compare with
DANET [31], a state-of-the-art neural network model for tab-
ular modeling, as well as AutoGluon [32], which constructs
crazy ensembles with thousands of base learners across model
families with AutoML technique. Additionally, we evaluated
the vanilla Deep Forest alongside improved variants csDF
[33], mdDF [25], and hiDF [13].

Furthermore, due to the limited support for multi-output
training in RF, which is essential for CMT module, we re-
placed RF with the SketchBoost [34] in AugDF, which is a
fast implemention for multioutput GBDT. To isolate the ef-
fect, we introduced a variant named skDF, which simply re-
places the RF in DF with SketchBoost.

For all experiments, same train-test splits are maintained,
ensuring consistency in evaluation. We conduct each exper-
iment five times with different random seeds and report the
average performance along with the standard deviation. All
DFs have a max layer of 15, and the number of individuals is
set to 8 during the Augmentation Policy Schedule Learning.

For the sake of reproducibility, we have made the source
code and parameter settings for this work publicly available
at https://github.com/dbsxfz/AugDF.
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Table 2: Comparison of test accuracy of each models across datasets. The best accuracy is highlighted in Bold type. • indicates
the second-best. The average rank is listed at the bottom.

Datasets DANET RF LightGBM XGboost DF mdDF hiDF skDF csDF Catboost AutoGluon AugDF

adult 85.11±0.15 85.60±0.03 87.26±0.05 86.82±0.08 86.08±0.07 86.87±0.09 86.18±0.07 87.17±0.06 86.20±0.13 87.29±0.00 87.42±0.04• 87.58±0.02
arrhythmia 65.54±1.57 72.07±0.57 71.17±1.61 74.59±0.67 75.50±0.36 71.71±1.22 74.77±0.57 74.95±1.75 75.50±1.20 75.14±0.72 77.48±0.00• 77.66±0.88
crowd 61.33±1.80 64.27±0.44 65.27±0.80 62.53±1.07 62.87±0.62 65.47±0.62 63.13±0.62 63.53±1.75 63.67±0.87 66.27±0.98• 65.73±0.49 67.20±0.58
kdd 76.11±0.53 74.32±0.16 75.01±0.22 77.09±0.08 77.11±0.52 76.88±0.21 76.73±0.54 76.13±0.16 77.10±0.31 77.33±0.13 77.41±0.07• 78.89±0.12
academic 74.12±0.78 77.20±0.37 76.43±0.15 76.36±0.34 76.61±0.34 76.47±0.19 76.97±0.55 77.04±0.39 76.50±0.10 76.41±0.50 77.20±0.24• 77.92±0.18
accelero 98.36±0.08 98.52±0.02 98.49±0.02 98.45±0.05 98.54±0.02 98.54±0.03 98.55±0.02 98.51±0.06 98.54±0.04 98.55±0.05• 98.54±0.01 98.57±0.01
metro 98.23±0.37 98.73±0.01 98.51±0.04 98.74±0.05 98.41±0.29 98.42±0.01 98.68±0.14 98.56±0.21 98.62±0.13 98.78±0.02• 98.60±0.04 99.15±0.14
diabetes 58.11±0.14 58.59±0.05 59.31±0.05 59.20±0.09 58.64±0.09 58.95±0.06 58.73±0.05 59.28±0.10 58.75±0.13 59.10±0.07 59.54±0.05• 59.70±0.07

Avg.Rank 11.75 7.94 7.75 7.75 7.31 7.06 6.88 6.63 6.38 4.125 3.44• 1.00

3.1. Test Accuracy on Benchmark Datasets
Results in Table 2 demonstrate that AugDF consistently out-
performs other models in terms of classification accuracy
across all eight datasets. The performance gap between
AugDF and the vanilla DF is particularly noteworthy. While
skDF, which replaces the base learners, outperforms vanilla
DF, it does not surpass csDF and Catboost due to overfit-
ting and the challenge to determine the optimal output layer.
AugDF demonstrates a robust performance uplift, irrespec-
tive of base learner replacement, achieving an average im-
provement of approximately 2% over skDF on most datasets.
Interestingly, even the extensive AutoML ensemble, Auto-
Gluon, fails to match AugDF’s performance, underscoring
the efficacy of AugDF’s deep representation and the benefits
derived from its learnable data augmentation policy schedule.
3.2. Comparison of Model Training and Inference Time
In this section, we juxtapose the training and inference laten-
cies of all considered models and employ scatter plots to vi-
sualize average performance metrics across the eight datasets.
As depicted in Figure 2, it is evident that AugDF achieves op-
timal performance with a moderate computational cost. Au-
toGluon, while achieving suboptimal performance compared
to AugDF, incurs over five times the training cost and expo-
nentially higher inference latency. When compared to skDF,
which utilizes the same base learners, AugDF’s training cost
is only about tenfold higher within an expansive search space
of 1030. Considering that the search process is highly par-
allelizable, the time complexity may only slightly increase
when executed on efficient parallel computing frameworks
[35]. It is worth noting that AugDF demonstrates superior in-
ference efficiency compared to DF and its variants, primarily
due to the shallower trees used by SketchBoost in AugDF.
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Fig. 2: Scatter Plot of Model Accuracy and Latency (Log-
arithmic Scale). The values displayed represent averages
across these eight datasets.

3.3. Transferring Policy Schedule to Variants of DF
Tree-based models are inherently non-parametric, posing
challenges for transfer learning [36]. In this section, we di-
rectly apply the policy schedules discovered by AugDF to
three variants of DF to further demonstrate the effectiveness
and generalizability of our approach. As illustrated in Fig-
ure 3, the policy schedules are universally beneficial, with
all DF variants exhibiting positive improvements across all
datasets, albeit less so than the gains seen with AugDF over
DF due to AugDF’s exhaustive policy search. The transfer
of augmentation policy schedules introduces a novel facet
of transfer learning, which is especially advantageous for
high-cost training models like hiDF.
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Fig. 3: Comparative Analysis of Accuracy Improvement with
Transferred Augmentation Policy Schedules.

4. CONCLUSION
In conclusion, this paper introduces an improved Deep For-
est specifically designed for tabular signal classification.
Through the integration of CMT data augmentation tech-
nique, population-based augmentation policy schedule learn-
ing and checkpoint ensemble, we successfully mitigate over-
fitting and elevate model performance. These advancements
yield SOTA results across a variety of benchmarks. Notably,
the learned augmentation policy schedules are not only ef-
fective but also transferable, allowing application to variants
of Deep Forest. This demonstrates its potential for broader
impact in the field of non-differentiable deep learning.
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