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Abstract

Recent studies have demonstrated the feasibility of modeling single-cell data as
natural languages and the potential of leveraging powerful large language models
(LLM:s) for understanding cell biology. However, a comprehensive evaluation of
LLMs’ performance on language-driven single-cell analysis tasks remains unex-
plored. Motivated by this challenge, we introduce CELLVERSE, a unified language-
centric question-answering benchmark that integrates four types of single-cell
multi-omics data and encompasses three hierarchical levels of single-cell analysis
tasks: cell type annotation (cell-level), drug response prediction (drug-level), and
perturbation analysis (gene-level). Going beyond this, we systematically evaluate
the performance across 14 open-source and closed-source LLMs ranging 160M —
671B on CELLVERSE. Remarkably, the experimental results reveal: @ Existing
specialist models (e.g., C2S-Pythia) fail to make reasonable decisions across
all sub-tasks within CELLVERSE, while generalist models such as Qwen, L1lama,
GPT, and DeepSeek family models exhibit preliminary understanding capabil-
ities within the realm of cell biology. @ The performance of current LLMs falls
short of expectations and has substantial room for improvement. Notably, in the
widely studied drug response prediction task, none of the evaluated LLMs demon-
strate significant performance improvement over random guessing. CELLVERSE
offers the first large-scale empirical demonstration that significant challenges still
remain in applying LLMs to cell biology. By introducing CELLVERSE, we lay
the foundation for advancing cell biology through natural languages and hope this
paradigm could facilitate next-generation single-cell analysis.

1 Introduction

Single-cell analysis [37, 32, 23, 60] has received growing attention in recent years due to its powerful
capabilities across a wide range of healthcare applications, including disease diagnosis [9], drug
discovery [21], and immunotherapy [27]. With the rapid progress in artificial intelligence and deep
learning [31, 54], methodological advances in single-cell analysis have undergone a notable shift
from traditional statistical techniques [29, 6] to specialized deep learning models [35, 41], and
more recently, to approaches based on large-scale pre-trained foundation models [14, 20]. While
these developments have led to significant improvements in performance and scalability, several
inherent limitations remain unresolved (Figure 1): (1) Lack of Unification. For different types of
omics data and downstream tasks, existing paradigms typically require separately designed models,
lacking a unified approach capable of simultaneously handling multi-omics and multi-task scenarios.
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Figure 1: An illustration of traditional single-cell analysis and language-centric single-cell analysis.

(2) Limited User-Friendliness. Effective application of these methods to single-cell analysis often
necessitates domain expertise in biology as well as proficiency in programming. Furthermore, the
lack of user-centric interaction design in current models poses a significant barrier to adoption by
non-expert users. (3) Poor Interpretability. Most of the existing data-driven black-box models directly
learn the mapping from input (e.g., gene expression) to output (e.g., cell type information), without
incorporating interpretable intermediate steps. As a result, users are often unable to understand the
rationale behind the model’s decisions. To this end, we seek to establish a unified, user-friendly,
and interpretable paradigm for single-cell analysis. Leveraging the advanced techniques, such as
cell2sentence [34] and gene regulatory network [28, 16], we can convert single-cell data into natural
language formats. This transformation allows us to reformulate single-cell analysis tasks as question-
answering (QA) problems—an interface that aligns with the capabilities of large language models
(LLMs) and facilitates end-to-end reasoning over domain-specific knowledge in cell biology. With the
reasoning capabilities and easy deployment of advanced LLMs, even non-expert users can efficiently
analyze single-cell data, with interpretability supported via explicit querying of reasoning trajectories.

Specifically, we introduce CELLVERSE, a unified language-centric benchmark dataset for evaluating
the capabilities of LLMs in single-cell analysis. We begin by curating five sub-datasets spanning
four types of single-cell multi-omics data (scRNA-seq [51], CITE-seq [43], ASAP-seq [43], and
scATAC-seq data [3]) and translate them into natural languages. Subsequently, we select three
most representative single-cell analysis tasks—cell type annotation [48] (cell-level), drug response
prediction [2] (drug-level), and perturbation analysis [25] (gene-level)—and reformulate them as QA
problems by integrating each with the natural language-formatted single-cell data. Next, we conduct
a comprehensive and systematic evaluation of 14 advanced LLMs on the proposed CELLVERSE
benchmark. The evaluated models include open-source LLMs such as C2S-Pythia (160M,
410M, and 1B) [34,50],0wen-2.5 (7B, 32B, and 72B) [58],Llama-3.3-70B[18],
and DeepSeek (V3 and R1) [38, 19], as well as closed-source models including GPT—-4 [1],
GPT-4o-mini [44], GPT-40 [45], GPT-4.1-mini [46], and GPT-4.1 [46].

Through a comprehensive analysis of the experimental results, we observe the following key findings:
(1) Specialist models (C2S-Pythia), despite being trained specifically on single-cell analysis
tasks, consistently exhibit hallucination issues across all tasks. Due to limited model capacity and



insufficient training data, they fail to make accurate decisions. In contrast, generalist models, though
not fine-tuned for single-cell analysis, display initial reasoning capabilities and perform reasonably
across various tasks. More importantly, some models not only produce task-specific predictions
but also generate complete reasoning paths [56], demonstrating the potential of advanced LLMs for
understanding cell biology. (2) However, generalist models still fall short of expectations. For the cell
type annotation task, the state-of-the-art (SOTA) model achieves accuracies of 42.38% on scRNA-seq
data, 61.43% on CITE-seq data, and 29.33% on ASAP-seq data, indicating considerable room for
improvement. On the more challenging tasks of drug response prediction and perturbation analysis
(significance and direction), SOTA accuracies reach 55%, 76.67%, and 62.96%, respectively—most
of them do not significantly outperform random guessing.

In summary, the main contributions of this paper are as follows:

* We identify key limitations in unification, user-friendliness, and interpretability of existing single-
cell analysis paradigms. To address these issues, we propose a novel perspective: transforming
single-cell data into natural languages and leveraging advanced LLMs for language-driven analysis.

* We propose CELLVERSE, a unified language-centric benchmark dataset for single-cell analysis that
covers four types of single-cell multi-omics data and three representative sub-tasks. To the best of
our knowledge, CELLVERSE is the first dataset designed to evaluate the understanding capabilities
of LLMs in the domain of cell biology, and serves as a foundation for future research in this area.

* We conduct a comprehensive and systematic evaluation of 14 open-source and closed-source
advanced LLMs on CELLVERSE, accompanied by in-depth analysis. Our analyses and findings
offer insights and potential directions for future research in applying LLMs to cell biology.

2 Related Work

2.1 Large Language Models for Scientific Problems

Recent advances in large language models (LLMs) have spurred interest in applying them to scientific
domains, including mathematics [24, 4], chemistry [47, 61], and biology [59, 42, 39]. For example,
SciBERT [8] and BioBERT [33] leverage domain-specific pretraining on biomedical corpora to
enhance their performance in biomedical text mining tasks, such as named entity recognition and
relation extraction. Galactica [53] strives to unify scientific knowledge representation and generation,
whereas AlphaCode [36] expands LLMs into program synthesis for scientific computation. These
models exhibit promising early achievements in various tasks, including summarizing scientific
literature, symbolic reasoning, and tackling textbook-style problems. However, most applications
focus on general-purpose scientific texts [12] or structured symbolic inputs [57]. In contrast, the
utilization of LLMs for domain-specific and data-intensive tasks, such as single-cell analysis, remains
relatively unexplored. Our work contributes to this emerging field by connecting LLMs with scientific
biological data, aiming to evaluate and improve LLM capabilities in real-world biological contexts.

2.2 Benchmark Datasets for Science QA

A variety of question-answering (QA) benchmark datasets have been proposed to evaluate the perfor-
mance of advanced LLMs in scientific domains [52, 13]. Notable examples include SciBench [55],
MathVista [40], and PubMedQA [26], which cover college-level scientific problems, multimodal
mathematical reasoning problems, and biomedical literature, respectively. These benchmarks pri-
marily focus on evaluating the capability of textual understanding and reasoning with easy-to-handle
scientific contexts. However, none of the existing benchmarks are applicable to cell biology or
account for the high-dimensional and sparse nature of single-cell data. Our work fills this gap by
introducing a benchmark tailored to evaluating LLMs on biological QA tasks at the single-cell level.

3 The CELLVERSE Dataset

In this section, we will introduce the proposed CELLVERSE dataset. Firstly, in Section 3.1, we
provide relevant preliminaries and background information. Then, in Section 3.2, we detail the
dataset curation process. Finally, in Section 3.3, we present some key statistics of the dataset.



Cell Type Annotation

Question: Below is a list of {gene_names} ordered by descending
expression level in a single-cell CITE-seq sample. Your task is to select one
cell type to which this cell most likely belongs from the following candidate
cell types: {cell_types}.

Dataset Composition

ScRNA-seq CITE-seq
Drug Response Prediction
18 Cell Types | 7 Cell Types

ASAP-seq SCATAC-seq

Cell Type Annotation Perturbation Analysis

{gene_names}: MALAT1 RPLP1 TPT1 RPL10 RPL13 RPS27 RPL13A RPL18A
RPS12 RPL28 PTMA RPS3A RPS19 RPL11 RPS14 RPS23 RPS3 RPL37 ......

{cell_types}: Naive CD4+ T, Effector CD4+ T, Naive CD8+ T,
NK, Effector CD8+ T, B, Monocytes.

9 Cell Types Significance | Direction
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Drug Response Prediction
Question: Below is a list of {gene_names} ordered by descending
expression level in a cell. Your task is to predict its response to the drug
Erlotinib.

Perturbation Analysis

Question (Significance): Does perturbing HARS in K562 cells cause
significant changes in the expression of SAMD9?

{answer}: Yes, No.
{gene_names}: MALSU1 MT-TD MT-CYB MT-CO2 RBM4 MT-ND4L MT-
CO3 KRT77 RPL24P2 HSP9OAA4P MT-ATP8 NEBL LAMB3 H2AFZ
ITGB1BP1 PSMD4 MRPS16 CDC42EP4 ASAHT MT-ND2.......

Question (Direction): Does perturbing CCND3 in K562 cells cause the
expression of SDE2 to upregulate or downregulate?

{answer}: Up, Down. E%

Figure 2: An overview of CELLVERSE. The top-left panel illustrates the composition of CELLVERSE,
while the remaining three panels provide concrete data examples within CELLVERSE.

@
{response}: Resistant, Sensitive. .

3.1 Preliminaries and Background

Single-cell data are characterized by long sequences [49], high sparsity [7], substantial noise [10],
and strong heterogeneity [11]. Given a single-cell dataset X € RV X% where N denotes the number
of cells and G represents the number of features (typically corresponding to genes), the data structure
varies across sequencing technologies and omics types. Depending on the modality, single-cell data
may capture gene expression (scCRNA-seq data), chromatin accessibility (scATAC-seq data), protein
abundance (CITE-seq data), or DNA peak signals (ASAP-seq data). Due to the inherent input format
and context length limitations of LLMs, efficiently transforming raw single-cell data into natural
languages that retain key information with minimal loss remains a significant challenge. In the
following sections, we introduce two feasible approaches to address this problem: (1) cell2sentence
(C2S), which encodes cell-level information into natural language, and (2) gene regulatory network
(GRN), which converts gene-level interactions into interpretable texts.

Cell2sentence. To transform single-cell data into natural languages, cell2sentence (C2S) [34] offers
an intuitive perspective: it connects normalized expression profiles to natural languages by leveraging
gene names and their ranked expression levels. Specifically, C2S treats gene names as tokens and
represents each cell as a sentence composed of the top n most highly expressed genes in descending
order. This process can be formulated as:

Cell Sentence; = [ggl),gl@), e 79§n)] ) M
where gl(j ) denotes the gene name ranked j-th in expression level for cell z; € R'*¢_ This translation

preserves essential cellular characteristics in a compact and interpretable form with controllable
context length, facilitating the application of LLMs to high-dimensional single-cell data.

Gene Regulatory Network. To further enable natural language understanding of cell biology at
the gene level, we leverage the gene regulatory network (GRN) [28, 16], which offers structured
information of gene—gene interactions. A GRN is typically modeled as a directed graph G = (V, ),
where nodes )V represent genes and edges £ represent regulatory relationships inferred from expression
data or external databases. Each edge (g%, g°) € € with an associated weight is then translated into a
natural language statement. Specifically, a nonzero edge weight implies that perturbing gene g“ leads
to a change in the expression of gene ¢°. Conversely, if no edge exists or the weight is negligible, it
suggests that perturbing g does not significantly affect ¢g°. This process can be formulated as:

5(g*) — Change(g?), ifwe > 7

5(g®) - Change(g®), ifwe <7’ 2)

(gaagbvwab) Eg/ = {

where w,; is the edge weight indicating the regulatory strength from g® to g°, § is the perturbation
operator, and 7 is a predefined threshold to determine biological significance. This transformation



offers an interpretable summary of gene regulatory mechanisms, allowing LLMs to reason about
biological pathways and perturbations. By expressing these regulatory dependencies in natural
language, we effectively bridge graph-based biological knowledge and language-driven inference.

3.2 Data Curation

With the help of C2S and GRN, we can transform various single-cell analysis tasks into a unified QA
format. Next, we detail the data curation process for CELLVERSE, which encompasses three core
tasks: cell type annotation, drug response prediction, and perturbation analysis.

Cell Type Annotation. For the cell type annotation task, we first use C2S to convert raw single-cell
data into cell sentences, and then directly query the corresponding cell type for each sentence. After
generating the initial QA pairs, we perform two post-processing steps. First, we filter out low-quality
samples with excessive redundancy based on sentence similarity. Second, we apply a resampling
strategy to promote a more balanced data distribution across all cell types. An example of the resulting
data for the cell type annotation task is shown in the top-right part of Figure 2.

Drug Response Prediction. For the drug response prediction task, we similarly use C2S to
convert single-cell data into cell sentences, then query each sentence’s response to a specific drug.
After generating the QA pairs, we perform the same two post-processing steps as in the previous
task: filtering out low-quality samples with high redundancy and promoting a more balanced data
distribution. An example for drug response prediction is shown in the bottom-left panel of Figure 2.

Perturbation Analysis. For the perturbation analysis task, we leverage the GRN to identify
interactions between genes. Specifically, for each candidate gene pair, we perform a non-parametric
Wilcoxon test [17, 15] between the perturbed and control groups. An interaction is considered
significant if the p-value is below 0.05 and the logs fold change (logoFC) exceeds 0.5, indicating that
perturbing gene ¢¢ induces a statistically significant change in the expression of gene ¢°. Based on
this criterion, we define two sub-tasks: (1) perturbation significance analysis, which asks whether
perturbing gene ¢° significantly affects gene ¢°; and (2) perturbation direction analysis, which further
queries whether the expression of gene ¢® increases or decreases following the perturbation of gene
g®. To ensure data quality and coverage, we retain only samples with more than 10 cells in both
perturbed and control groups and limit each source gene to a maximum of three QA examples. An
example for the above two tasks is presented in the bottom-right panel of Figure 2.

3.3 Data Statistics

After completing the data curation pro-
cess, we construct the CELLVERSE dataset,
which integrates four types of single-cell
multi-omics data and spans three sub-
tasks (as illustrated in Figure 3). Cell
Type Annotation (CTA). We include data
from three different omics modalities: (1)
scRNA-seq Multiple Sclerosis data [51]: =~/
This dataset contains 3,000 gene expres-  7celiTypes |
sion profiles and 18 annotated cell types:
phagocyte, cortical layer 2-3 excitatory
neuron A, cortical layer 4 excitatory neu-
ron, mixed glial cell, SV2C-expressing in-
terneuron, microglial cell, cortical layer
5-6 excitatory neuron, oligodendrocyte
A, cortical layer 2-3 excitatory neuron
B, mixed excitatory neuron, endothelial
cell, VIP-expressing interneuron, PVALB-
expressing interneuron, oligodendrocyte
precursor cell, pyramidal neuron, SST-
expressing interneuron, astrocyte, and oligodendrocyte C. (2) CITE-seq PBMC data [43]: This
dataset includes 17,441 genes, annotated with 7 cell types: Naive CD4+ T, Effector CD4+ T, Naive

5060 Genes
2 Classes

Figure 3: Data statistics information of CELLVERSE.



Rank | Model | Score Rank | Model | Score Rank | Model | Score
3 DeepSeek-R1 42.38 b4 GPT-4.1 61.43 b4 GPT-4.1-mini 29.33
° GPT-4.1-mini 40.51 ° GPT-4.1-mini 59.14 ° Qwen-2.5-72B 28.44
b4 GPT-4.1 37.83 P4 GPT-40 58.29 b4 GPT-4.1 28.22
4 DeepSeek-V3 37.57 g DeepSeek-R1 58.29 4 GPT-40 28.00
5 GPT-40 35.70 5 DeepSeek-V3 57.14 4 DeepSeek-R1 28.00
6 GPT-4 35.16 6 GPT-4 53.43 6 DeepSeek-V3 27.11
7 Llama-3.3-70B 32.75 7 Llama-3.3-708 52.57 7 Qwen-2.5-328 23.11
8 Qwen-2.5-728 24.73 8 Qwen-2.5-728 50.29 8 Llama-3.3-708 22.00
9 GPT-40-mini 23.93 9 Qwen-2.5-328 48.86 9 GPT-4 21.56
10 Qwen-2.5-328 22.46 10 GPT-4o-mini 48.57 10 GPT-40-mini 16.89
11 Qwen-2.5-78 13.77 11 Qwen-2.5-78 30.86 11 Qwen-2.5-78 10.67
12 C25-Pythia 0 12 C25-Pythia 0 12 C25-Pythia 0

Cell Type Annotation Cell Type Annotation Cell Type Annotation
(scRNA-seq) (CITE-seq) (ASAP-seq)

Rank | Model | Score Rank | Model | Score Rank | Model | Score
3 GPT-4.1-mini 55.00 3 DeepSeek-R1 76.67 4 DeepSeek-R1 62.96
° DeepSeek-V3 50.63 4 DeepSeek-V3 76.67 ° GPT-4.1-mini 61.11
g DeepSeek-R1 50.00 I Qwen-2.5-32B 76.67 g Llama-3.3-70B 57.41
b4 Qwen-2.5-728 50.00 : Qwen-2.5-78 76.67 4 GPT-40 55.56
5 Qwen-2.5-78 49.38 5 Qwen-2.5-728 73.33 5 GPT-4.1 46.30
5 GPT-4.1 49.38 5 GPT-4.1 73.33 6 Qwen-2.5-728 35.19
7 GPT-40 47.50 7 GPT-40 71.67 7 GPT-40-mini 31.48
8 Qwen-2.5-328 45.63 8 GPT-4.1-mini 68.33 8 Qwen-2.5-7B 29.63
9 GPT-4o-mini 43.75 9 Llama-3.3-708 66.67 9 DeepSeek-V3 24.07
9 Llama-3.3-708 43.75 10 GPT-4o-mini 41.67 10 Qwen-2.5-328 11.11
11 GPT-4 1.25 11 GPT-4 0 11 GPT-4 0
12 C2S-Pythia 0 12 C2S-Pythia 0 12 C2S-Pythia 0

Drug Response Prediction Perturbation Significance Analysis Perturbation Significance Analysis
(scRNA-seq) (scATAC-seq) (scATAC-seq)

Figure 4: Leaderboard results on our CELLVERSE benchmark. The scores represent the prediction
accuracy of LLMs. We include both open-source and closed-source LLMs in the evaluation.

CD8+ T, NK, Effector CD8+ T, B, and Monocytes. (3) ASAP-seq PBMC data [43]: This dataset
also includes 17,441 genes and 9 cell types: DC, Naive CD4+ T, Effector CD4+ T, Naive CD8+ T,
NK, Effector CD8+ T, B, Monocytes, and unknown. Drug Response Prediction (DRP). We utilize
a scRNA-seq dataset [5] measuring cellular responses to the drug erlotinib. This dataset contains
18,380 genes and two drug responses: sensitive and resistant. Perturbation Analysis (PA). For
this task, we utilize scATAC-seq data from K562 cells [3], encompassing 5,060 genes, to define
two sub-tasks: Perturbation Significance Analysis (PSA). A binary classification task that asks
whether perturbing gene ¢¢ significantly affects gene g°, with answer choices yes or no. Perturbation
Direction Analysis (PDA). Another binary classification task that determines the direction of change
for gene g after perturbation of gene g¢, with answer choices up or down.

4 Experiments

4.1 Evaluation Protocols and Implementation Details

To evaluate the performance of current advanced LLMs on the proposed CELLVERSE, we conduct
a fair comparison across 9 open-source models (C2S-Pythia-160M [34], C2S-Pythia-410M
[34],c2S5-Pythia-1B[50], Qwen—-2.5-7B [58], Qwen—2.5-32B [58], Qwen-2.5-72B [58],
Llama-3.3-70B[18], DeepSeek-V3 [38], and DeepSeek~-R1 [19]) and 5 closed-source mod-
els (GPT-4 [1], GPT-40-mini [44], GPT—-40 [45], GPT-4.1-mini [46], and GPT-4.1 [46]).
Among these, only the C2S-Pythia series models were trained specifically on single-cell analysis
tasks and thus considered specialist models, while all others are generalist models. We perform
inference using the vLLM framework [30] for open-source models and official APIs for closed-source
models. During preliminary testing, we observed that all models struggle to make reasonable deci-
sions under open-ended question settings. Therefore, we convert all questions into multiple-choice
format by including a list of candidate answers directly in the prompt. The experiments are conducted



Table 1: Performance comparison (%) of cell type annotation on single-cell multi-omics data.

Data | scRNA-seq | CITE-seq | ASAP-seq
Metric \ Precision  Recall F1 Accuracy \ Precision  Recall F1 Accuracy \ Precision  Recall F1 Accuracy
Open-source LLMs
Qwen-2.5-7B 36.31 14.54 11.53 13.77 41.42 27.00  28.08 30.86 15.47 9.60 7.37 10.67
Qwen-2.5-32B 28.81 20.60 18.76 22.46 45.58 4275 3857 48.86 25.87 20.80 19.87 23.11
Qwen-2.5-72B 30.94 22.39 19.32 24.73 43.60 44.00 40.50 50.29 25.04 25.60 22.61 28.44
Llama-3.3-70B 33.60 30.25 24.99 32.75 61.30 52.57 50.02 52.57 26.95 22.00 19.30 22.00
DeepSeek-V3 38.69 34.99 30.60 37.57 66.44 57.14 54.65 57.14 26.52 24.40 21.18 27.11
DeepSeek-R1 39.95 38.81 33.40 4238 57.57 51.00  50.76 58.29 32.69 2520 2081 28.00
Closed-source LLMs
GPT-4 40.81 3241 29.89 35.16 47.21 46.75 4344 5343 26.48 19.40 17.16 21.56
GPT-40-mini 31.86 22.64 15.77 23.93 63.94 48.57  47.89 48.57 33.27 16.89 13.52 16.89
GPT-40 40.24 3152 29.03 35.70 60.07 5829 5576 58.29 3247 28.00  25.00 28.00
GPT-4.1-mini 41.14 36.46 34.55 40.51 66.13 59.14 58.47 59.14 36.86 29.33 27.47 29.33
GPT-4.1 42.46 35.19 3094 37.83 68.32 6143  59.26 61.43 4253 2822 2399 28.22

Table 2: Performance comparison (%) of drug response prediction on scRNA-seq data.

Setting | Overall | Sensitive | Resistant

Metric | Precision Recall F1 Accuracy | Precision Recall F1 | Precision  Recall F1

Open-source LLMs

Qwen-2.5-7B 33.82 32.92 32.38 49.38 49.52 65.00 56.22 51.92 33.75 40.91
Qwen-2.5-32B 44.85 45.63 43.50 45.63 42.86 26.25 32.56 46.85 65.00 54.45
Qwen-2.5-72B 34.02 33.33 30.84 50.00 50.00 21.25 29.82 52.07 78.75 62.69
Llama—-3.3-70B 43.71 43.75 43.67 43.75 44.19 47.50 45.78 43.24 40.00 41.56
DeepSeek-V3 52.44 50.63 39.34 50.63 54.55 7.50 13.19 50.34 93.75 65.50
DeepSeek-R1 25.00 50.00 33.33 50.00 0.00 0.00 0.00 50.00 100.00 66.67
Closed-source LLMs
GPT-4 13.33 0.83 1.57 1.25 0.00 0.00 0.00 40.00 0.25 4.71
GPT-40-mini 36.82 43.75 35.24 43.75 27.27 7.50 11.76 46.38 80.00 58.72
GPT-40 24.78 31.67 22.96 47.50 25.00 2.50 4.55 49.33 92.50 64.35
GPT-4.1l-mini 60.54 55.00  48.19 55.00 68.18 18.75 29.41 52.90 91.25 66.97
GPT-4.1 44.84 49.38 35.12 49.38 40.00 2.50 4.71 49.68 96.25 65.53

under both zero-shot and few-shot settings. Model performance is then evaluated using standard
metrics: precision score, recall score, F1 score, and overall accuracy.

4.2 Experimental Results and In-depth Analysis

In Figure 4, we present the leaderboard results for all sub-tasks. Since C2S-Pythia-160M,
C2S-Pythia-410M, and C2S-Pythia-1B perform similarly across all tasks, we aggregate their
results and refer to them collectively as C2S-Pythia. Detailed results for each sub-task—cell type
annotation, drug response prediction, perturbation significance analysis, and perturbation direction
analysis—are provided in Table 1, Table 2, Table 3 3, and Table 4, respectively. The best and

second-best results in the tables are marked in red and blue , respectively. More results and analysis
can be found in Appendix B, C, and D. From the results, we can derive the following observations.

Obs. 1: Generalist Models Perform Better than Specialist Models. Although the specialist
models have been trained on language-centric single-cell analysis tasks, experimental results in Figure
4 show that C2S-Pythia fails to produce reliable predictions across all sub-tasks on CELLVERSE.
This suggests that, due to limitations in model capacity and training data, the specialist models may
be overfitting rather than learning to generalize to unseen questions. In contrast, despite lacking
task-specific training, larger-capacity generalist models exhibit emerging capabilities in reasoning
about cell biology. These findings highlight the potential of leveraging strong generalist models as
base architectures for future research in language-driven single-cell analysis.

Obs. 2: LLM Performance Scales with Model Size. We observe that GPT-4 and DeepSeek
family models generally outperform the L1ama and Qwen series across all tasks. This trend suggests
a positive correlation between model capacity and performance in cell biology understanding. Notably,
across the six task-specific leaderboards, all top-performing models belong to either the DeepSeek
or GPT—-4 families—securing four and two first-place rankings, respectively. These results indicate
that the scaling laws of LLMs also hold in the context of cell biology.



Table 3: Performance comparison (%) of perturbation significance analysis on scATAC-seq data.

Setting | Overall | Yes | No

Metric | Precision Recall F1 Accuracy | Precision Recall F1 | Precision  Recall F1

Open-source LLMs

Qwen-2.5-7B 38.33 50.00  43.40 76.67 0.00 0.00 0.00 76.67 100.00  86.79
Qwen-2.5-32B 38.33 50.00  43.40 76.67 0.00 0.00 0.00 76.67 100.00  86.79
Qwen-2.5-72B 37.93 4783 4231 73.33 0.00 0.00 0.00 75.86 95.65 84.62
Llama-3.3-70B 58.75 60.87  58.96 66.67 35.00 50.00 41.18 82.50 71.74 76.74
DeepSeek-V3 63.79 52.48  49.52 76.67 50.00 7.14 12.50 77.59 97.83 86.54
DeepSeek-R1 64.81 5745  58.00 76.67 50.00 21.43 30.00 79.63 93.48 86.00
Closed-source LLMs
GPT-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GPT-40o-mini 53.97 5450  41.52 41.67 25.58 78.57 38.60 82.35 30.43 44.44
GPT-40 61.11 61.65 6135 71.67 40.00 4286  41.38 82.22 80.43 81.32
GPT-4.1-mini 25.79 29.71 27.61 68.33 0.00 0.00 0.00 77.36 89.13 82.83
GPT-4.1 58.17 5528 5547 73.33 37.50 2143 27.27 78.85 89.13 83.67

Table 4: Performance comparison (%) of perturbation direction analysis on scATAC-seq data.

Setting | Overall | Up | Down

Metric | Precision Recall F1 Accuracy | Precision Recall F1 | Precision Recall F1

Open-source LLMs

Qwen-2.5-7B 60.78 17.06 2436 29.63 82.35 41.18  54.90 100.00 10.00  18.18
Qwen-2.5-32B 27.08 9.31 11.11 11.11 50.00 2.94 5.56 31.25 25.00  27.78
Qwen-2.5-72B 38.10 2549  29.17 35.19 64.29 2647 3750 50.00 50.00  50.00
Llama-3.3-70B 55.61 55.88 5556 57.41 67.74 6176  64.62 43.48 50.00  46.51
DeepSeek-V3 35.95 16.86  22.94 24.07 41.18 2059 2745 66.67 30.00  41.38
DeepSeek-R1 58.75 5721  57.07 62.96 67.50 7941 7297 50.00 35.00 41.18
Closed-source LLMs
GPT-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GPT-4o0-mini 22.82 2490 2043 31.48 38.46 1471 21.28 30.00 60.00  40.00
GPT-40 55.08 5544  54.56 55.56 67.86 5588  61.29 4231 55.00  47.83
GPT-4.1-mini 43.18 40.59  41.63 61.11 75.00 6176  67.74 54.55 60.00  57.14
GPT-4.1 49.13 49.12 46.28 46.30 61.90 38.24 47.27 36.36 60.00 45.28

Obs. 3: Current LLMs Demonstrate Limited Understanding of Cell Biology. While LLMs
exhibit preliminary capabilities for cell biology, their overall performance remains far from satis-
factory. On the cell type annotation task, the top-performing models achieved accuracies of only
42.38%, 61.43%, and 29.33% on scRNA-seq, CITE-seq, and ASAP-seq data, respectively. For the
binary drug response prediction task, the best model achieved only 55% accuracy, indicating no
substantial improvement over random guessing. In the perturbation analysis tasks, we observe that
LLMs perform better in assessing perturbation significance than in predicting perturbation direction,
which aligns with intuitive expectations. Most models also fail to outperform random guessing in
the direction prediction task. GPT-4 often refuses to answer for both drug response prediction and
perturbation analysis tasks, while Qwen family models tend to answer "No" to all questions in the
perturbation significance analysis task. Overall, these results highlight that current LLMs are far from
satisfactory and there remains substantial room for improvement in LLMs for cell biology.

Obs. 4: Scaling Context Lengths May Not Consistently Improve Performance. Figure 5
presents the cell type annotation results of four advanced LLMs on CITE-seq data as the context
length increases. We scale the context length by including more gene names in the cell sentences. For
the GPT—4 family, performance generally improves with longer context lengths, suggesting these
models benefit from richer input information. In contrast, for the DeepSeek family, increasing
context length does not consistently lead to performance gains. We hypothesize that this is because
DeepSeek models already demonstrate strong reasoning capabilities with relatively short contexts,
and adding more genes with low expressions may introduce noise that hinders model performance.

Obs. 5: Few-shot In-context Learning Does Not Always Boost Performance. Unlike general
tasks, few-shot in-context learning yields limited gains and often even degrades performance in
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Figure 6: Performance comparison under few-shot settings across various tasks.
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Figure 7: Distribution of DeepSeek—R1’s errors within distinct types across various tasks.

single-cell analysis. Results in Figure 6 exhibit no consistent improvement. We hypothesize that this
is largely due to the high level of noise inherent in single-cell data, which hampers the model’s ability
to generalize when guided by noisy examples. This observation highlights an important insight: In
few-shot settings, sample quality may be more critical than sample quantity.

Obs. 6: Error Profiles Vary across Tasks. Figure 7 shows the distribution of error types made
by DeepSeek—-R1 across different tasks. We observe that the most frequent error categories are
reasoning errors and misclassifications. Additionally, another type of error, factual errors, is more
prominent in gene-level tasks, whereas they are relatively rare in cell-level and drug-level tasks.

5 Conclusion

In this work, we introduced CELLVERSE, a unified language-centric benchmark that encompasses
single-cell multi-omics data and spans hierarchical single-cell analysis tasks, addressing the absence
of systematic evaluation in LLMs for cell biology. Through a comprehensive assessment of 14
advanced LLMs, we uncovered both their capabilities and limitations in reasoning over single-cell
analysis tasks, laying the groundwork for future research within this domain. In future works, we
plan to (1) enhance the scalability and diversity of CELLVERSE, and (2) build on CELLVERSE to
advance natural language understanding as a next-generation paradigm for interpreting cell biology.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .
Justification: Please refer to Section 1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: Please refer to Appendix E.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
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Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: Please refer to Section 4.1.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes] .
Justification: A link to the data and code is provided in the abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .
Justification: Please refer to Section 4.1.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Note that prior studies in this field have not reported error bars in their
experiments, and we follow this convention for consistency. To ensure fair comparisons, we
fix random seeds and use the same inference framework across all LLMs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .
Justification: All the experiments were conducted on 4 x A800 80GB GPUs.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .
Justification: We sincerely read the ethics guidelines and obey this rule.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .
Justification: The discussion about the broader impacts is provided in Section 5.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .
Justification: All the creators of assets and licenses are properly credited and respected.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .
Justification: New assets are well documented in the code repository.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix Overview

* Section A: More Details about CELLVERSE.
* Section B: Additional Experimental Results.
 Section C: Additional Error Analysis.

* Section D: Case Study.

¢ Section E: Limitation and Future Work.

A More Details about CELLVERSE

A.1 Model Sources

For all evaluated LLMs, we select their latest versions and best-performing configurations to accu-
rately assess their capabilities in understanding cell biology. Table 5 summarizes the release dates
and sources of the models included in CELLVERSE.

Table 5: The release dates and sources of the evaluated models in CELLVERSE.

Model Release Date Source

C2S-Pythia-160M [34] 2024-02 https://huggingface.co/vandijklab/pythia-160m-c2s
C2S-Pythia-410M ) 2024-09 2;;1—)lspyég?z%iir(l)if—?iiiecrc;/e‘izr;ilgjlkel—aabn/d—mult1— cell-tasks
c2s-pythia-15 U} 2025-04 Coara e etace cofvandijia/

Qwen-2.5-7B [58] 2024-09 https://huggingface.co/Qwen/Qwen2.5-7B
Qwen-2.5-32B [58] 2024-09 https://huggingface.co/Qwen/Qwen2.5-32B
Qwen-2.5-72B [58] 2024-09 https://huggingface.co/Qwen/Qwen2.5-72B
Llama-3.3-708[1§] 202412 LYUPS://huggingface.co/nota-llana/Llana-3.
DeepSeek-V3 [38] 2025-03 https://huggingface.co/deepseek-ai/DeepSeek-V3
DeepSeek-R1 [19] 2025-03 https://huggingface.co/deepseek-ai/DeepSeek-R1
GPT-4 [1] 2023-06 https://platform.openai.com/docs/models/gpt-4
GPT-4o-mini [44] 2024-07 https://platform.openai.com/docs/models/gpt-4o0-mini
GPT-4o0 [45] 2024-11 https://platform.openai.com/docs/models/gpt-4o
GPT-4.1-mini [46] 2025-04 https://platform.openai.com/docs/models/gpt-4.1-mini
GPT-4.1 [46] 2025-04 https://platform.openai.com/docs/models/gpt-4.1

A.2 Evaluation Prompts for Single-cell Analysis Tasks

We design task-specific prompts to evaluate the performance of LLMs on different single-cell analysis
tasks within CELLVERSE. At the beginning of each interaction, we add a unified system prompt
instructing the LLMs to act as experts in cell biology and genomics. We then integrate the transformed
language-centric information with the task-specific prompts to form the final questions. Since current
LLMs struggle to produce accurate predictions in open-ended formats, we convert all questions into
a closed-set, multiple-choice setting to ensure more reliable evaluation. As shown in Table 6, we
summarize the prompt design strategies used for each task.

B Additional Experimental Results

B.1 Performance of Strengthening Open-source Models

As shown in Table 7, we include three more cutting-edge open-source LLMs for performance
comparison, to alleviate the concerns of closed-source model dependency.
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Table 6: Evaluation prompt of LLMs for different single-cell analysis tasks.

Task

Prompt

Cell Type Annotation

You are an expert who knows a lot about single
cell biology and genomics and will help me solve
a series of tasks related to single cell data analy-
sis. Below is a list of {gene_names} ordered by
descending expression level in a single-cell sample.
Your task is to select one cell type to which this cell
most likely belongs from the following candidate
cell types: {cell_types}. Make your choice in format
‘Final Answer: Prediction’.

— Gene Names: {gene_names}

— Cell Types: {cell_types}

Drug Response Prediction

You are an expert who knows a lot about single cell
biology and genomics and will help me solve a series
of tasks related to single cell data analysis. Below is a
list of {gene_names} ordered by descending expres-
sion level in a cell. Your task is to predict its response
to the drug {drug}: Responses: {responses}. Make
your choice in format ‘Final Answer: Response’.

— Gene Names: {gene_names}

— Drug: {drug}

— Responses: {responses}

Perturbation Significance Analysis

You are an expert who knows a lot about single cell
biology and genomics and will help me solve a se-
ries of tasks related to single cell data analysis. Does
perturbing {gene_a} in K562 cells cause significant
changes in the expression of {gene_b}? Make your
choice in format ‘Final Answer: Yes’ or ‘Final An-
swer: No’.

— Gene A: {gene_a}

— Gene B: {gene_b}

Perturbation Direction Analysis

You are an expert who knows a lot about single cell
biology and genomics and will help me solve a series
of tasks related to single cell data analysis. Does per-
turbing {gene_a} in K562 cells cause the expression
of {gene_b} to upregulate or downregulate? Make
your answer in format ‘Final Answer: Up’ or ‘Final
Answer: Down’.

— Gene A: {gene_a}

— Gene B: {gene_b}

B.2 Performance of Random Baseline

In Table 8, we add the performance of the random guess baseline to make the comparison more
visually immediate.

B.3 Performance Comparison of Specific Cell Types

We present fine-grained comparisons of model performance across specific cell types in the cell type
annotation task. Figures 8, 9, and 10 report precision, recall, and F1 scores on scRNA-seq data,
respectively. Similarly, Figures 11 and 12 show results on CITE-seq and ASAP-seq data. From
the results, it can be observed that all the evaluated LLMs consistently struggle to identify certain
challenging cell types, such as oligodendrocyte C and phagocyte.
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Table 7: Cell type annotation results (%) of additional open-source models.

Data \ scRNA-seq CITE-seq ASAP-seq

Metrics \ Precision Recall F1 Acc  Precision Recall F1 Acc  Precision Recall F1 Acc
LLaMA-3.1-8B 21.54 11.82 8.16 11.9 35.49 20.5 22.02 2343 9.7 2.6 393 289
Qwen-3-8B 32.15 249  19.57 2527 44.68 39.5 3998 45.14 24.7 182 16.06 20.22
Qwen-3-14B 4141 28.72 2759 3222 55.44 5229 504 5229 25.77 21 19.85 23.33

Table 8: Performance (%) of the random guess baseline on various tasks.

Task | CTA (scRNA-seq) CTA (CITE-seq) CTA (ASAP-seq) DRP PSA PDA
Precision 5.08 15.19 11.53 4937 51.01 4492
Recall 4.29 14.86 11.56 49.37 51.40 44.56
Fl1 4.61 14.96 11.51 4936 45779 43.75
Acc 5.08 14.86 11.56 49.38 4833 4444

B.4 More Metrics Comparison under Few-shot Settings

Figure 13 presents experimental results for precision, recall, and F1 score under few-shot settings
across different single-cell analysis tasks. The results indicate that for all of the evaluated LLMs,
increasing the number of few-shot samples does not necessarily lead to performance gains and can
even degrade model performance, which is consistent with our earlier analysis. These findings
suggest that in future research on LLMs for cell biology, selecting high-quality and representative
few-shot samples will be a critical and challenging problem.

C Additional Error Analysis

In Figure 14 and Figure 15, we additionally present the error type distributions of GPT-4.1 and
GPT-40 across various tasks in CELLVERSE. The results show that, similar to the error type
distribution of DeepSeek—R1, misclassification and reasoning errors are also the two most common
error types for GPT—4 .1 and GPT—4o. For cell-level tasks, factual errors are relatively rare, whereas
their frequency increases in drug-level and gene-level tasks. This trend is expected, as drug-level and
gene-level tasks are inherently more complex than cell-level ones.

We also include a discussion on in-depth error analysis about specific rare cell types:

Cell Type Annotation

Question: Below is a list of {gene_names} ordered by descending expression level in a single-cell
CITE-seq sample. Your task is to select one cell type to which this cell most likely belongs from the
following candidate cell types: {cell_types}.

{gene_names}: MALAT1 TMSB4X TPT1 RPL13 RPL10 RPS19 ACTB RPS12 RPS14 IL32 RPS3A
LTB RPL30 RPLP1 RPL28 RPL13A RPS27 RPS3 RPS7 RPL3 HLA-B RPL14 RPS13 UBAS52 RPS6
RPS23 RPS9 RPL11 HLA-C RPS15A RPS24 RPL6 RPL36 RPL37A HLA-A RPS21 RPS15 S100A4
RPL39 CYBA RPL29 RPL18A S100A6 PTPRC RPL22 PTMA NACA HLA-E RPS20 RPS29 RPL27
RPL9 EIF1 SERF2 CFL1 RPL38 HSP90OAB1 RPL23A STAT1 RPL37 IFITM2 CALM1 ATP5FIE
KIAA1551 ISG15 SON HLA-F PABPC1 CD48 YWHAZ PPIA RPL10A RPL5 HNRNPA2B1 STK17A
HINT1 CALR UBB FTH1 RPSA GAPDH CORO1A PSME1 GIMAP7 XAF1 ZNF217 FXYDS5 CD2
GADD45GIP1 NCL CYSLTR1 RPL24 RPL31 SAMDY9 TRGC2 ENO1 TAF15 CDC42 PSMA7 SSB...
{cell_types}: Naive CD4+ T, Effector CD4+ T, Naive CD8+ T, NK, Effector CD8+ T, B, Monocytes.
Ground Truth: Effector CD8+ T

DeepSeek—-R1: The gene list provided includes markers indicative of T cell identity (e.g., IL32, LTB,
PTPRC) and lacks classical markers for B cells (e.g., CD79A, MS4A1), monocytes (e.g., CD14, LYZ), or
NK cells (e.g., NKG7, GNLY). Among T cell subsets, IL32 is strongly associated with activated/effector
CD4+ T cells, while the absence of cytotoxic genes (e.g., GZMB, PRF1) and CD8-specific markers
(e.g., CD8A/B) makes CD8+ effector T cells less likely. Additionally, SI00A4 and STAT1 suggest
an activated/effector phenotype, further supporting effector CD4+ T cells over naive subsets (which
typically express CCR7 or SELL).

Final Answer: Effector CD4+ T X
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Error Analysis. The model incorrectly predicted "Effector CD4+ T" instead of the ground truth
"Effector CD8+ T" due to:

1. Biased interpretation of IL32 as CD4+-specific,
2. Inadequate handling of single-cell data limitations (dropout effects),

3. Failure to recognize CD8+-specific signatures in the expression profile.

D Case Study

Here, we present a case study showcasing responses from different LLMs across various tasks in
CELLVERSE, demonstrating their reasoning capabilities in cell biology.

Cell Type Annotation

Question: Below is a list of {gene_names} ordered by descending expression level in a multiple
sclerosis cell. Your task is to select one cell type to which this cell most likely belongs from the
following candidate cell types: {cell_types}.

{gene_names}: MT-CO2 ATP1B1 MT-CO3 MT-CO1 YWHAG RAB3B GAD1 MAP1B PSAP......
{cell_types}: phagocyte, cortical layer 2-3 excitatory neuron A, cortical layer 4 excitatory neuron......
Ground Truth: PVALB-expressing interneuron

DeepSeek—-R1: The cell exhibits high expression of genes associated with GABAergic interneurons,
including GAD1 and GAD?2, which are critical for GABA synthesis. Synaptic markers like SNAP25,
SYT1, and VAMP?2 further confirm neuronal identity. Notably, KCNC2 (encoding Kv3.2, a potassium
channel linked to fast-spiking interneurons) is present, which is characteristic of PVALB-expressing
interneurons. While PVALB itself is not explicitly listed, the combination of GABAergic markers and
KCNC?2 strongly supports this subtype. Other interneuron subtypes (e.g., SST, VIP) lack their defining
markers in the gene list. Glial or oligodendrocyte markers are absent, ruling out non-neuronal types.
Final Answer: PVALB-expressing interneuron v/

GPT-4.1: Reasoning: The gene list is highly enriched for neuronal markers (e.g., SNAP25, SYT]I,
GADI1, GAD2, ERBB4, CALM3, ELAVL2, NDRG4, ATP1A3, KCNC2, DNER, PNMA2, ATP2A2,
RAB3A, UCHLI1, PRKACB, PRNP, RTN1, CPLX1, VAMP2, SLC24A2, STXBP1, GPM6A, SYN2,
FGF12, DNM3, SLC6A1, SLC6A17, SYN1, SCAMP5, GABRA1, GABRG1, GLRA2, GLRA3,
GRIK1, GRIK3, GABARAPL1, GABARAPL2, etc.). There is strong expression of GAD1 and GAD2,
which are canonical markers of GABAergic interneurons. SV2C is not directly listed, but the presence
of many synaptic vesicle and GABAergic genes (e.g., RAB3A/B/C, SNAP25, SYT1, STXBP1, VAMP2,
SLC6A1, SLC6A17) supports an interneuron identity. There is no strong evidence for astrocyte,
oligodendrocyte, microglial, or endothelial markers. Among interneuron subtypes, there is no strong
expression of VIP, SST, or PVALB, which would suggest those specific subtypes. The overall profile,
with high GABAergic and synaptic gene expression, best matches the SV2C-expressing interneuron
among the provided options.

Final Answer: SV2C-expressing interneuron X

GPT-40: To determine the most likely cell type based on the gene expression profile provided, we need
to identify key marker genes that are characteristic of specific cell types. 1. Neuronal Markers: Genes
such as SNAP25, SYT1, MAP1B, and GADI are typically associated with neurons. GAD1 and GAD2
are markers for GABAergic neurons, which include interneurons like SST-expressing, VIP-expressing,
and PVALB-expressing interneurons. 2. Excitatory Neuron Markers: Genes like ATP1A3, CAMK2G,
and MAPKI1 are often found in excitatory neurons, including cortical layer neurons and pyramidal
neurons. 3. Interneuron Markers: SST, VIP, and PVALB are specific markers for different types of
interneurons. 4. Glial Cell Markers: Genes such as GFAP, S100B, and AQP4 are typical for astrocytes.
Oligodendrocyte markers include MBP, MOG, and PLP1, but none of these are prominently listed.
Microglial markers include CX3CR1 and P2RY 12, which are not prominently listed. 5. Other Cell
Types: Endothelial cells often express genes like PECAM1 and VWE, which are not prominently
listed. Given the presence of neuronal markers such as SNAP25, SYT1, and GADI, the cell is likely a
neuron. The presence of GAD1 and GAD?2 suggests it is a GABAergic neuron, which points towards an
interneuron. Among the interneurons listed, SST-expressing interneurons are a possibility due to the
presence of genes like SST and other neuronal markers.

Final Answer: SST-expressing interneuron X
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Drug Response Prediction

Question: Below is a list of {gene_names} ordered by descending expression level in a cell. Your task
is to predict its response to the drug Erlotinib: [Resistant, Sensitive].

{gene_names}: HSP9OAA4P MALSUI RPL37A FTLP1 PABPCIL RPLP1P13 RPS16P5 RPS14P3......
Ground Truth: Sensitive

DeepSeek-R1: The prediction of Erlotinib response hinges on identifying markers linked to
resistance or sensitivity. Erlotinib targets EGFR, with sensitivity often tied to activating EGFR
mutations (e.g., exon 19 deletions, L858R) and resistance to mechanisms like T790M mutations, MET
amplification, or bypass signaling pathways. The provided gene list lacks EGFR itself but includes
potential resistance-associated genes: 1. RPS6KA1 (Ribosomal S6 Kinase A1l): This kinase is part of
the MAPK/ERK pathway downstream of EGFR. High expression suggests sustained ERK signaling
independent of EGFR inhibition, a known resistance mechanism. Persistent MAPK pathway activity
could bypass EGFR blockade, promoting survival. 2. HSP90 Pseudogenes (HSP90OAA4P, HSP9OAB2P,
HSP90B2P): HSP9O0 stabilizes oncoproteins, including mutant EGFR. Elevated HSP90 expression
might stabilize resistance-associated EGFR variants (e.g., T790M) or other client proteins, enabling
survival despite EGFR inhibition. 3. SI00A9/S100A11: These genes are implicated in inflammation
and resistance pathways, potentially modulating survival signals or drug efflux, though their direct
role here is unclear. 4. Ribosomal and Mitochondrial Genes (RPL, RPS, MT-CO3, MT-CYB): High
ribosomal activity may indicate proliferation, while mitochondrial genes suggest metabolic adaptation,
both common in resistant phenotypes. However, these are broadly expressed and less specific. The
absence of clear sensitivity markers (e.g., EGFR mutations, epithelial markers) and the presence of
RPS6KAT1 (sustaining MAPK signaling) and HSP90 pseudogenes (stabilizing oncoproteins) strongly
suggest resistance. While ribosomal and mitochondrial genes are non-specific, their prominence aligns
with proliferative and adaptive states typical of resistant cells.

Final Answer: Resistant X

GPT-4. 1: To predict the response to Erlotinib, we need to consider the expression of genes associated
with sensitivity or resistance to this drug. Erlotinib is an EGFR (Epidermal Growth Factor Receptor)
inhibitor, and sensitivity is often associated with high EGFR pathway activity and low expression
of resistance markers such as EMT (epithelial-mesenchymal transition) genes, AXL, MET, or high
expression of certain ribosomal and stress response genes. From the provided gene list, the most highly
expressed genes are ribosomal proteins (RPL, RPS), heat shock proteins (HSP9OAA4P, HSPOOAB2P,
HSP90B2P), and other housekeeping genes. There is no evidence of high expression of EGFR,
AXL, MET, or EMT markers (such as VIM, ZEB1, SNAI1, TWIST1). However, high expression of
ribosomal proteins and heat shock proteins can sometimes be associated with a more proliferative, less
differentiated state, which may be more sensitive to EGFR inhibition, but high HSP90 expression
can also be associated with resistance mechanisms. Notably, there is no clear evidence of canonical
resistance markers (e.g., AXL, MET, EMT genes) or sensitivity markers (e.g., high EGFR, ERBB2, or
downstream effectors). Given the lack of strong resistance markers and the predominance of ribosomal
and housekeeping genes, the cell is more likely to be in a proliferative state, which is generally more
sensitive to Erlotinib.

Final Answer: Sensitive v/

GPT-4o0: To predict the response of a cell to the drug Erlotinib based on gene expression data, we need
to consider the known mechanisms of action of Erlotinib and the role of the genes listed. Erlotinib is
an EGFR (epidermal growth factor receptor) inhibitor, and its effectiveness can be influenced by the
expression of genes involved in the EGFR signaling pathway, as well as genes related to cell proliferation,
apoptosis, and drug resistance mechanisms. In the provided list, there are several ribosomal protein
genes (e.g., RPL, RPS), heat shock proteins (e.g., HSP90), and other genes involved in cellular stress
responses and protein synthesis. High expression of ribosomal proteins and heat shock proteins can
sometimes be associated with increased cellular proliferation and survival, which might contribute to
drug resistance. However, without specific information on the expression of genes directly involved
in the EGFR pathway or known resistance markers, it is challenging to make a definitive prediction.
Generally, high expression of genes that promote cell survival and proliferation could suggest a resistant
phenotype, but this is a complex decision that would ideally be informed by more specific data. Given the
high expression of heat shock proteins and ribosomal proteins, which can be associated with increased
cellular resilience and potential drug resistance, I would lean towards predicting resistance.

Final Answer: Resistant X
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Question: Does perturbing NEDDS in K562 cells cause significant changes in the expression of
GFI1B?
Ground Truth: Yes

DeepSeek-R1: To determine if perturbing NEDD8 in K562 cells significantly alters GFI1B
expression, we consider the role of NEDDS in neddylation, a process critical for cullin-RING ubiquitin
ligase (CRL) activity. CRLs mediate protein degradation, and their inhibition via NEDDS perturbation
can stabilize or destabilize transcription factors regulating GFI1B. Experimental evidence, such as
studies using the neddylation inhibitor MLN4924 in K562 cells, has shown that GFI1B expression
is downregulated following NEDDS inhibition. This suggests that NEDDS8 perturbation disrupts
CRL-mediated degradation pathways, indirectly affecting GFI1B levels.

Final Answer: Yes

GPT-4.1: No.
Final Answer: No X

GPT-4o0: Yes.
Final Answer: Yes

Question: Does perturbing QARS in K562 cells cause the expression of PCM1 to upregulate or
downregulate?
Ground Truth: Up

DeepSeek—-R1: To determine whether perturbing QARS in K562 cells affects PCM1 expression, we
consider the roles of these genes and potential pathways. QARS, a glutaminyl-tRNA synthetase, is
critical for protein synthesis, and its perturbation could activate stress responses like the integrated
stress response (ISR) via GCN2 kinase. This might suppress general translation but upregulate
stress-related genes. PCM1, involved in centriole assembly, could be influenced by cell cycle changes or
structural stress. While direct evidence is lacking, amino acid deprivation stress (via QARS inhibition)
often downregulates proliferation-related genes. PCM1’s role in cell division suggests potential
downregulation. However, stress responses might also upregulate structural genes as compensatory
mechanisms. Considering studies on tRNA synthetase inhibition leading to stress-induced gene
upregulation, PCM1 might be upregulated. After evaluating these pathways and potential compensatory
mechanisms, the balance leans toward upregulation under stress.

Final Answer: Up

GPT-4.1: Down.
Final Answer: Down X

GPT-40: Down.
Final Answer: Down X

E Limitation and Future Work

Although CELLVERSE is the first language-centric benchmark for single-cell analysis with LLMs and
marks a step forward in applying LLMs to cell biology, it still presents several noteworthy limitations.

First, while CELLVERSE spans hierarchical single-cell analysis tasks, such as cell type annotation
(cell-level), drug response prediction (drug-level), and perturbation analysis (gene-level), it does not
yet provide a quantitative distinction in their levels of difficulty. Future work could draw inspiration
from benchmarks in mathematics [22] to assign difficulty levels to distinct problems, enabling a more
nuanced understanding of the problem-solving capabilities of LLMs in cell biology.

Second, although CELLVERSE introduces a pipeline for converting raw single-cell multi-omics data
into natural language QA problems across multiple tasks, all prompts and questions are currently
formulated in English. Extending the benchmark to include multilingual QA settings would improve
its global applicability and allow for more comprehensive evaluation of LLMs in terms of linguistic
diversity and understanding, which we leave as future work.
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Figure 8: Precision score comparison of specific cell types on scRNA-seq data. All LLMs fail to
predict certain challenging cell types, such as oligodendrocyte C and phagocyte.
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Figure 9: Recall score comparison of specific cell types on scRNA-seq data. All LLMs fail to predict
certain challenging cell types, such as oligodendrocyte C and phagocyte.
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Figure 10: F1 score comparison of specific cell types on scRNA-seq data. All LLMs fail to predict
certain challenging cell types, such as oligodendrocyte C and phagocyte.
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Figure 11: Performance comparison of specific cell types on CITE-seq data.
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Figure 12: Performance comparison of specific cell types on ASAP-seq data.
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Figure 13: Precision, Recall, and F1 score comparison under few-shot settings.

32



CTA (scRNA-seq) CTA (CITE-seq) CTA (ASAP-seq)

Reasoning Error
33.09%

Reasoning Error
33.54%

Reasoning Error
43.04%

Misclassification

56.96% . PPy /
Misclassification J§

PDA (scATAC-seq)

Factual Error

34.09%
Reasoning Error Misclassification

49.69% 49.69%

Misclassification
94.12%
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