
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TELEPORTER THEORY: A GENERAL AND SIMPLE AP-
PROACH FOR MODELING CROSS-WORLD COUNTER-
FACTUAL CAUSALITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Leveraging the development of structural causal model (SCM), researchers can
establish graphical models for exploring the causal mechanisms behind machine
learning techniques. As the complexity of machine learning applications rises,
single-world interventionism causal analysis encounters theoretical adaptation
limitations. Accordingly, cross-world counterfactual approach extends our under-
standing of causality beyond observed data, enabling hypothetical reasoning about
alternative scenarios. However, the joint involvement of cross-world variables,
encompassing counterfactual variables and factual variables, challenges the con-
struction of the graphical model. Existing approaches, e.g., Twin Network and
Single World Intervention Graphs (SWIG), establish a symbiotic relationship to
bridge the gap between graphical modeling and the introduction of counterfactuals
albeit with room for improvement in generalization. In this regard, we demonstrate
the theoretical limitations of certain current methods in cross-world counterfactual
scenarios. To this end, we propose a novel teleporter theory to establish a general
and simple graphical representation of counterfactuals, which provides criteria
for determining teleporter variables to connect multiple worlds. In theoretical
application, we determine that introducing the proposed teleporter theory can di-
rectly obtain the conditional independence between counterfactual variables and
factual variables from the cross-world SCM without requiring complex algebraic
derivations. Accordingly, we can further identify counterfactual causal effects
through cross-world symbolic derivation. We demonstrate the generality of the
teleporter theory to the practical application. Adhering to the proposed theory, we
build a plug-and-play module, and the effectiveness of which are substantiated by
experiments on benchmarks.

1 INTRODUCTION

Causal inference is a specialized field that presents promising potential with respect to improving
machine learning methods, conventionally encompassing four steps: 1) causal model construction for
modeling causality in machine learning applications in a qualitative analysis manner (Liu et al., 2021;
Chen et al., 2022; Li et al., 2023b); 2) causal model validation, including independence and causality
testing, to demonstrate the correctness of the causal model construction (Daniusis et al., 2012;
Zhang et al., 2012; Lu et al., 2021); 3) causal model-based deconfounding approach implementation,
which prospers in various machine learning fields, e.g., eliminating spurious correlations (Mao et al.,
2021; Liu et al., 2022a) and performing counterfactual reasoning (Chang et al., 2021) in computer
vision, learning the intrinsic rationale of the graph (Ji et al., 2024; Wu et al., 2024) in graph neural
networks, overcoming selection bias (Li et al., 2023a) and popularity bias (Zhao et al., 2022) in
the recommendation systems; 4) deconfounding approach estimation improvement, focusing on
enhancing the accuracy of causal model-based deconfounding (Frauen et al., 2023; Zhu et al., 2024).
Benefiting from the establishment of graphical models, the advances of the structural causal model
(SCM) concentrate greater potential onto exploring the causal mechanisms behind machine learning
techniques, e.g., the analysis of independent relationships among variables and the identification of
causal effects for various machine learning applications.
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In practice, the involvement of derived discrete data with extra stringent structural constraints
increases the complexity of machine learning application scenarios, resulting in a lack of adaptability
of conventional interventionism causal analysis theories, i.e., single-world SCM-based theory (Xia
et al., 2021; Zečević et al., 2021; Pawlowski et al., 2020). cross-world counterfactuals (Correa et al.,
2021; Richens et al., 2022; Shah et al., 2022; Alomar et al., 2023) provide a framework to estimate
“what-if” scenarios that transcend the observed world, aiding in better-informed causal inference,
which is crucial for understanding causal relationships in a more comprehensive manner, as it enables
the exploration of causality under different hypothetical conditions (Shalit et al., 2017; Ibeling &
Icard, 2020; Khemakhem et al., 2021; Sanchez-Martin et al., 2021; D’Amour et al., 2022). A focal
issue is the exclusivity of counterfactual variables and factual variables in an invariant graphical
model, challenging the construction of cross-world counterfactual SCMs. In this regard, Twin
networks (Balke & Pearl, 1994; Han et al., 2022; Vlontzos et al., 2023) demonstrate a symbiotic
relationship of graphical modeling in counterfactual and real-world scenarios. SWIG (Richardson &
Robins, 2013; Hernán & Robins, 2020) presents a simple graphical theory unifying causal directed
acyclic graphs (DAGs) and potential (aka counterfactual) outcomes for identifying counterfactual
queries. Yet, in this paper, we provide multiple scenarios of cross-world counterfactual causal
analysis, where the applications of representative approaches are limited, detailed in Section 3.

To this end, we propose the teleporter theory to establish a complete graphical representation of
counterfactuals, providing a general and simple approach for modeling cross-world counterfactual
causality. Concretely, according to the framework of probabilistic causal models, each variable can
ultimately trace its changes back to the exogenous nodes that influence it by iteratively applying
the structural equations of its parent nodes over a finite number of steps. Variables that have
consistent structural equations in both the real world and the counterfactual world possess equivalence,
which is determined as a teleporter, and thus we can construct cross-world SCM by using the
teleporter variables. Accordingly, we provide sufficient causal analysis from the structural equation
perspective, substantiating the theoretical correctness of the proposed teleporter theory. In terms
of theoretical applications, we focus on two main aspects: 1) we apply d-separation to test the
conditional independence between any two cross-world variables of a cross-world SCM constructed
by introducing the teleporter theory, which can prove the correctness and generalization of our theory;
2) we use the teleporter theory to build the cross-world SCM and further leverage the cross-world
symbolic derivation to compute counterfactual probability, which can avoid the complex calculation
of the probability distribution of background variables, demonstrating the effectiveness and simplicity
of our theory. Adhering to the proposed theory, we build a practical plug-and-play module to address
the intrinsic issue in the field of Graph Out-Of-Distribution (GraphOOD) (Gui et al., 2022; Chen et al.,
2022; Jia et al., 2024). The consistency and effectiveness of the proposed module are substantiated
by experiments on benchmarks.

Our contributions are as follows: (1) We provide multiple motivating examples to elucidate the
incompleteness of current approaches in certain cross-world counterfactual scenarios with sufficient
causal analysis. (2) We propose a general and simple approach for modeling cross-world counterfac-
tual causality, namely the teleporter theory, which is proved as a complete causal analysis method.
(3) We provide sufficient evidence to prove the theoretical correctness of the proposed teleporter
theory by introducing the structural equation analysis. (4) We conduct extensive validations on
commonly adopted benchmarks, demonstrating the generalized applicability of the teleporter theory
from theoretical and practical perspectives.

2 RELATED WORK

Modeling Single-World Causality. Single-world interventions pertain to the first two levels of
Pearl’s causal hierarchy (Pearl, 2009b; Bareinboim et al., 2022): association and intervention. Once
we can model causality using observational data (Perkovi et al., 2018; Jaber et al., 2019), various
methods exist for estimating interventional distributions (Kocaoglu et al., 2017; Ke et al., 2019; Xia
et al., 2021; Zečević et al., 2021), provided identifiability is ensured (Bareinboim et al., 2022). The
implementation of interventions transcends simple modeling of data associations, aiming instead
to answer scientific questions such as “How effective is X in influencing Y ?” and thus achieving
estimates of causal effects. Numerous works in the machine learning community have benefited from
this approach: (1) real user preference in recommendation systems, such as deconfounding (Zhang
et al., 2023a;b; He et al., 2023) and disentangling (Sun et al., 2022), (2) rationale representations
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Figure 1: Example for inapplicability of twin network: Figure (a) represents the real-world SCM,
Figure (b) shows the cross-world SCM constructed using the twin network, and Figure (c) illustrates
the cross-world SCM constructed using the teleporter theory.

in graph neural networks, such as robustness and invariant subgraphs (Chen et al., 2022; Wu et al.,
2022), and (3) invariant representations in domain generalization, such as eliminating spurious
correlations (Arjovsky et al., 2019; Cui & Athey, 2022).

Modeling Cross-World Counterfactual Causality. Cross-world causality aims to address the
top-level query of Pearl’s causal hierarchy (Pearl, 2009b; Bareinboim et al., 2022): counterfactuals.
However, estimating counterfactual causality faces the challenge of conflicts between factual variable
values and counterfactual variable values, making identifiability (Ibeling & Icard, 2020; Khemakhem
et al., 2021; Geffner et al., 2022; D’Amour et al., 2022) more scarce compared to interventions.
Despite this, answering counterfactual queries like “why?” and “what if?” using causal framework
can enable personalized and interpretable decision-making and reasoning. This significantly ad-
vances several key areas: 1) application in computer vision, e.g., alleviating data scarcity through
data augmentation (Kaushik et al., 2019; Xia et al., 2022); 2) fairness in legal and policy-making
contexts (Kusner et al., 2017; Zhang & Bareinboim, 2018); 3) interpretability in the field of medical
health (Oberst & Sontag, 2019; Richens et al., 2022), among others.

3 LIMITATIONS OF EXISTING CROSS-WORLD GRAPHICAL MODELS

Before formally introducing our proposed new graphical model, we reviewed existing classical
and widely influential cross-world graphical models for estimating counterfactual causality: Twin
Network (Balke & Pearl, 1994) and Single World Intervention Graphs (SWIG) (Richardson & Robins,
2013). In this section, we provide detailed case studies to analyze the limitations and constrained
scenarios of the existing cross-world graphical models.

3.1 THEORETICAL INAPPLICABILITY OF TWIN NETWORK

Twin network (Balke & Pearl, 1994) is formed to model cross-world counterfactual causality by
connecting the real world and counterfactual world, sharing exogenous variables between them.
The constructed sub-networks of real world and counterfactual world are structurally identical,
except that the arrows pointing to the intervened variable are removed in the counterfactual sub-
network. The specific construction steps are as follows: 1) duplicating the endogenous variables
X = {X1,X2, ...,Xn} from the real world as endogenous variables X∗ = {X∗1 ,X∗2 , ...,X∗n} in the
counterfactual world; 2) selecting the intervened variable Xi and removing all arrows pointing to the
counterfactual variable X∗i ; 3) connecting X and X∗ through existing exogenous variables U to form
the twin network. Fig. 1(b) illustrates an example of cross-world SCM constructed by using twin
network, where the intervened variable is A, the value of the counterfactual variable A∗ is a, and the
existing exogenous variables are only U and W . We also provide an analysis in the Appendix B.2
for the example that constructs twin network using all exogenous variables.

However, the benchmark twin network encounters theoretical inapplicability in certain scenarios
of modeling cross-world counterfactual causality. Concretely, we explore the firing squad example
in “Causality” (Pearl, 2009b) p. 213, Fig. 7.2, as depicted in Fig. 1(a) and (b). We aim to test
whether Da is independent of A given B or C, i.e., A áDa ∣ B or A áDa ∣ C. The corresponding
twin network of this example causal graph is illustrated in Fig. 1(b). To assess the conditional
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independence between A and Da, we determine under which variables A and Da are d-separated.
Conditional on C, the path from A to Da, i.e., A← C ← U → Ca → Ba →Da, is blocked by node
C, and thus, A áDa ∣ C holds. Yet, conditional on B, this path is d-connected, i.e., A ̸Da ∣ B.

We validate the conclusions obtained from the twin network from two perspectives: 1) empirical
conclusions from (Pearl et al., 2016) Theorem 4.3.1 (Counterfactual Interpretation of Backdoor) on
p. 102 and 2) the quantitative analysis by introducing a numerical example. According to Theorem
4.3.1, both variables B and C satisfy the back-door criterion for (A,D), indicating that for all values
a of A, given B or C, the counterfactual Da is conditionally independent of A.

On the other hand, considering the firing squad example in Fig. 1(a), A and B are the officers, C is
the captain (waiting for the court order U ), and D represents the condemned prisoner. The exogenous
variables are only U and W , which represent the court order and the nervousness of police officer A,
respectively. The values and meanings of each variable are as follows:

1. A(u,w),B(u,w) indicate whether officers A and B fire their guns, respectively, and
D(u,w) = 1 indicates the death of the prisoner. The prisoner will not die from any other
factors besides the executioners, so we ignore the exogenous variables for D.

2. D0(u,w) and D1(u,w) represent the counterfactual values under interventions A = 0 and
A = 1, respectively.

3. P (u = 1) = p represents the probability of issuing a death sentence, P (w = 1) = q represents
the probability that officer A pulls the trigger due to nervousness. For the specific values of
the variables, please refer to Table 2 in Appendix B.1.

Verify that Da ̸A: P (D0 = 1) = p,P (A = 1) = 1 − (1 − p)(1 − q), P (D0,A = 1) = p. Therefore,
P (D0,A = 1) = p ≠ p(1 − (1 − p)(1 − q)) = P (D0 = 1)P (A = 1).
Verify that A áDa∣B: P (D0 = 1∣B = 1) = 1, P (D0 = 1∣B = 1,A = 1) = 1, P (D0 = 0∣B = 1) =
0, P (D0 = 0∣B = 1,A = 1) = 0. The remaining values can be verified, so P (Da∣B) = P (Da∣B,A).
For detailed calculations, please refer to the Appendix B.1.

The above analysis demonstrates that the twin network erroneously determines A ̸ Da ∣ B,
which contradicts the actual condition A áDa∣B, proving that the twin network lacks theoretical
completeness in specific cross-world SCMs.

3.2 DEFICIENCIES OF SINGLE WORLD INTERVENTION GRAPHS

Establishing conditional independencies of counterfactuals in graphical models is a significant area
of research. A prominent example is the Single World Intervention Graph (SWIG) (Richardson &
Robins, 2013), which possesses this property and is covered extensively in relevant textbooks (Hernán
& Robins, 2020, Ch. 6). However, we identified a subtle limitation of the SWIG model: when
conditioning on certain factual variables of interest, it does not intuitively reveal independence
relations from the graphical model. For instance, in Fig. 9 of the Appendix C, while the SWIG model
can derive X á Y (x)∣L1 and X á Y (x)∣L1, L2(x), it fails to capture that X ̸ Y (x)∣L1, L2.

Additional comparison is presented in the Appendix C with three examples in Fig. 8–10, demon-
strating that our theory which is detailed in Section 4 can indeed construct a complete cross-world
graphical model: 1) Consistency with SWIG: Both provide a new graphical view of the back-door
formula, yet the twin network has a counterexample; 2) Superiority over SWIG: SWIG cannot
intuitively display all variables in a single graph, making it difficult to encompass the conditional
independence relationships of all variables in both the real world and counterfactual scenarios.

4 TELEPORTER THEORY FOR MODELING CROSS-WORLD COUNTERFACTUAL
CAUSALITY

To remedy the mentioned theoretical deficiency, we employ a probabilistic causal model frame-
work (Pearl, 2009a) to expound the teleporter theory. As definitions in Appendix A, for SCM
M = ⟨X,U,F ⟩, a probabilistic causal model is a tuple ⟨M,P (u)⟩, where P (u) is the probability
distribution over the set U . By the definition of structural equation xi = fi (pai, ui), the value of an
endogenous variable Xi can be recursively represented by all possible values of exogenous variables,
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Figure 2: Illustration of cross-world SCM construction using teleporter theory: Figure (a) represents
the real worldWr, Figure (b) depicts the counterfactual worldWc, and Figure (c) shows the cross-
world SCMWm formed by connecting the variables inWr andWc through the teleporter Z.

i.e., (u1, u2, ..., un), meaning each endogenous variable is a function of U . For instance, for a certain
endogenous variable Xi ∈X , we have P (Xi = xi) = ∑{u∣Xi(u)=xi}

P (u). We formalize the above
assertion, and the value of Xi can be represented by the following recursively defined function:

xi = fXi(pai, ui) (1)
= fXi(fXi1

(pai1 , ui1), fXi2
(pai2 , ui2), ..., fXik

(paik , uik), ui) (2)

= gXi(u1, u2, ..., un) (3)

where pai = {Xi1 ,Xi2 , ...,Xik} ⊂ X , and gXi is a function determined solely by the exogenous
variables (u1, u2, ..., un) after a finite number of iterations.

Accordingly, we consider the structural equations of variables in the counterfactual world. Suppose
the counterfactual world with the intervention do(Xi = x⋆), and the values of variables Xj are
determined as follows:

xj = fx⋆

Xj
(paj , uj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x⋆, Xj =Xi,

fXj(uj), Xj ≠Xi and paj = ∅,
fXj(fx⋆

Xj1
(paj1 , uj1), ..., fx⋆

Xjk
(pajk , ujk), uj), otherwise.

(4)

According to twin network, the real world and the counterfactual world share only the exogenous
variable U , while the endogenous variables differ, i.e., Xi ≠X∗i . However, in fact, when comparing
the factual value (equation 2) and the counterfactual value (equation 4), there are still certain
endogenous variables that have the same values in both the real and counterfactual worlds, such as
non-intervened variables without endogenous parent nodes as shown in the second line of equation 4.
More generally, variables in the counterfactual world can be classified into two categories, with one
class having the same values as in the real world, while the other class has values that differ from
those in the real world.
Lemma 1. (Categories of counterfactual variables) Suppose the counterfactual world with the
intervention do(X = x), and by removing all arrows pointing to the intervened variable X , we obtain
the counterfactual causal graph Gx. The counterfactual variables can be divided into two categories:
1) In Gx, the set of descendants of the intervention variable X = x, denoted as D∗; 2) In Gx, the set
of variables d-separated from the intervention variable X = x, denoted as Z∗. The values of the
variables in set Z∗ remain the same as in the real world, i.e., Z∗ = Z. In contrast, the values of the
variables in set D∗ differ from those in the real world. Hence, we denote D∗ as Dx to indicate that
its values differ from those in the real world.

For the convenience of counterfactual notation, we present our teleporter theory by introducing en-
dogenous variables as uppercase letters1 X,Y, ..., Z. Accordingly, we provide the detailed theoretical
description of our theory.
Definition 1. (Teleporter and merging operation) A pair of variables that have the same values
in both the real world and the counterfactual world: Z ← UZ → Z∗. We implement a merging
operation on these pairs of variables (in the cross-world SCM graph, this is represented by merging
three variables into one variable Z), thus Z is called the Teleporter.

Pearl’s twin network fundamentally maintains the invariance of values between the real world and
the counterfactual world—specifically, the shared exogenous variables. We have demonstrated that

1Please refer to Appendix A for the definition of counterfactual notation.
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2

Figure 3: Figure (a) represents the real world Wr, Figure (b) shows the cross-world SCM Wm

constructed using the twin network, and Figure (c) depicts the cross-world SCMWm constructed
using the teleporter theory.
it is not just the exogenous variables that remain invariant; the Teleporter Z also conforms to this
property and can therefore be shared. Please refer to Appendix E for the corresponding proofs.
Theorem 1. (Teleporter theory for modeling cross-world counterfactual causality) Suppose we
intervene on the endogenous variable X . Let Wr = ⟨M,u⟩ denote the real world before the
intervention, andWc = ⟨Mx, u⟩ denote the counterfactual world, where u denotes the variable of the
corresponding exogenous variable set U , and u is shared betweenWr andWc. Wr andWc can be
connected to form a cross-world SCMWm by adhering to the following rules:

• Rule 1: In the counterfactual worldWc, the endogenous variables Z, that are d-separated
from X = x, can be determined as the teleporter. Wm is obtained by connectingWr and
Wc through the teleporter Z.

• Rule 2: All descendants of X inWr, e.g., D, have the potential value influenced by the
intervention do(X = x) inWc, e.g., Dx.

• Rule 3: The exogenous variable UZ associated with the teleporter Z is removed, and the
teleporter Z is introduced via the Merging Operation to connectWr andWc. The exogenous
variable UD associated with Dx is retained to connect D ← UD →Dx.

We illustrate the implementation process of teleporter theory by using a classic causal graph as
an example. Fig. 2(a) investigates the causal relationship between X and Y , where Z acts as a
confounder (Pearl, 2009b), and all exogenous variables are depicted in the graph, which is treated as
the real-world SCMWr. Fig. 2(b) represents the intervention do(X = x) on X , where all arrows
pointing to X are removed, which is treated as the counterfactual worldWc. Next, we clarify the
variables in the counterfactual SCMWc. According to Rule 1 of Theorem 1, in Fig. 2(b), the only
endogenous variable that is d-separated from X = x is Z∗, with its structural equation denoted
as fZ∗(uZ). X is not a parent node of these variables, and therefore they are not influenced by
the intervention do(X = x). The value of Z∗ in the counterfactual world equals that of Z in the
real-world graph in Fig. 2(a), thus it is called the teleporter. Furthermore, we determine that the value
of structural equation for Y inWc, denoted as fYx(X = x,Z,uY ), is clearly different from the value
of structural equation for Y inWr, denoted as fY (X,Z,uY ). Therefore, the meaning and value of
Y are different in the two worlds. According to Rule 2 of Theorem 1, the descendants of x consist
only of Y inWc, denoted as Yx. For further discussion on the meaning of factual and counterfactual
variables, please refer to the additional analysis in Appendix D.1.

To derive the cross-world SCM, which connects the real world and counterfactual world, we introduce
the teleporter theory. According to Rule 3 of Theorem 1, the exogenous variable UZ associated with
the teleporter Z is removed, and the connecting path betweenWr andWc, X ← Z ← UZ → Z∗ → Yx,
is merged into X ← Z → Yx. In addition, the exogenous variable UY associated with Yx is retained,
connecting Y ← UY → Yx. By utilizing the common teleporter Z shared betweenWr andWc as a
connecting node along with the remaining exogenous variables, we derive the cross-world SCMWm

depicted in Fig. 2(c).

5 THEORETICAL APPLICATION OF TELEPORTER THEORY

The SCM M and its corresponding graph G facilitate the graphical representation of causal variables,
enabling us to intuitively test the independence between variables (d-separation). This, in turn, allows
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Figure 4: Figure (a) represents the real world Wr, Figure (b) shows the cross-world SCM Wm

constructed using the twin network, and Figure (c) depicts the cross-world SCMWm constructed
using the teleporter theory. Grey nodes indicate conditioning on that variable

us to explore the effects of interventions without conducting new experiments, e.g., back-door/front-
door adjustments. However, counterfactual variables Yx and factual variables X cannot coexist in a
single graph G due to involving cross-world considerations. Twin network (Balke & Pearl, 1994) is
the first attempt to address this issue, yet such a method fails in certain scenarios, shows its theoretical
incompleteness. In the following two subsections, we demonstrate that the teleporter theory can
provide a complete graphical representation of counterfactuals.

5.1 INDEPENDENCE BETWEEN CROSS-WORLD VARIABLES

The cross-world independence between counterfactual variables and factual variables is difficult
to derive from the separated real-world and counterfactual SCMs or the corresponding structural
equations. The significant advantage of the teleporter theory lies in the graphical representation of
counterfactuals, enabling us to analyze the (conditional) independence between any pair of cross-
world variables. Concretely, considering the inapplicability of twin network in Section 3.1, we
propose to demonstrate the theoretical completeness and generalization of the proposed teleporter
theory as follows. In the cross-world SCMWm of Fig. 1(c) obtained through the teleporter theory,
we conclude that both A á Da ∣ B and A á Da ∣ C hold. This is because the path from A to Da,
i.e., A← C → B →Da, is blocked by B or C. Similarly, upon adding D as a condition, new paths
between A and Da are opened through the collider node D. Therefore, conditional on {D,C}, A
and Da are not d-separated, satisfying A ̸Da ∣ {D,C}. However, conditional on {D,B}, A and
Da are d-separated, satisfying A áDa ∣ {D,B}.
Thus, the proposed teleporter theory can widely empower the (conditional) independence testing
between cross-world variables. To better demonstrate the implementation of independence testing
in the cross-world SCM built by using the teleporter theory, we propose the following Theorem 2,
summarizing the d-separation theorem for counterfactuals. The proof can be found in the Appendix
F.

Theorem 2. (d-separation for cross-world variables under the teleporter theory) In the cross-world
SCMWm constructed by following the teleporter theory, the path p between the factual variable X
and the counterfactual variable Yx is d-separated by the node set Z if and only if:

1. p contains either a chain structure or a fork structure, with intermediate nodes in Z, or

2. p contains a collider structure, with neither the intermediate node nor its descendants in Z.

The set Z d-separates X from Yx if and only if Z blocks all paths from X to Yx.

5.2 CROSS-WORLD ADJUSTMENT

The joint distribution of counterfactual statements requires computation, storage, and utilization of
the marginal probability of values of the exogenous variables, i.e., P (u). For example, P (Yx =
y,X = x′) = ∑{u∣Yx(u)=y,X(u)=x′}

P (u). Classic works summarize three steps for estimating the
counterfactual P (Yx ∣ e) in (Pearl, 2009b), where e denote the observed variable values: 1) abduction:
updating P (u ∣ e) using the fact e; 2) action: updating the SCM M to Mx; 3) computing P (Yx ∣ e)
in the counterfactual worldWc = ⟨Mx, P (u ∣ e)⟩. However, obtaining the distribution of exogenous
variables U is extremely difficult. The teleporter theory provides a simple method to compute
P (Yx ∣ e), facilitating cross-world adjustment.
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Figure 5: SCM for GraphOOD. Figure (a) denotes the real-world SCM. Figure (b) denotes the
cross-world SCM.

We propose the counterfactual criterion to obtain the (conditional) independence of X and Yx:

Theorem 3. (Counterfactual criterion and cross-world adjustment) The evidence e represents
the values of the variable E in the real worldWr. Given an observable variable set Z, if E ∪ Z
causes that conditional on E ∪Z, X and Yx are d-separated in the cross-world SCMWm, then the
counterfactual Yx is conditionally independent of X , denoted as X á Yx ∣ {E,Z}. The cross-world
adjustment formula can be derived as follows:

P (Yx = y ∣ E = e) =∑
z

P (Y = y ∣ Z = z,X = x,E = e)P (Z = z ∣ E = e). (5)

In comparison to the counterfactual interpretation of the back-door criterion in (Pearl et al., 2016),
our theoretical approach is proved to be a generalized solution, since the former approach can only
treat the back-door path-related scenarios, our approach can achieve cross-world adjustment for any
pair of variables. Please refer to Appendix G for the corresponding proofs.

We will now present two examples to illustrate that the teleporter theory is more complete compared
to twin network, as the latter fails in multiple scenarios. The first example demonstrates cases
where twin network incorrectly identifies the required variables for adjustment. The SCM of such
an example is depicted in Fig. 3(a). In the twin network of Fig. 3(b), X and Yx are d-connected
by the path X ← C ← Uc → Cx → Zx → Tx → Yx. If we acquire to compute Yx, the variables
for adjustment can only be C, since using Z or T for adjustment would open up a collider node,
resulting in certain dependence relationships between the parent nodes. However, in the cross-world
SCM Wm of Fig. 3(c) modeled by using the teleporter theory, the path between X and Yx is
X ← C → Z → T → Yx. According to Theorem 3, we can perform the adjustment on any node in
{C,Z,T}, which is consistent with the empirical conclusion in “Causality” (Pearl, 2009b).

The second example, as illustrated in Fig. 4(a), involves computing P (Yx ∣ w) given the known
evidence w. In the twin network of Fig. 4(b), X and Yx are connected only through one path:
X → W ← Z ← Uz → Zx → Tx → Yx

2. In this case, we can only perform the adjustment on Z,
since the adjustment on T would open up new paths, i.e., Z ̸ UT ∣ T . The cross-world SCMWm

constructed by using the teleporter theory is depicted in Fig. 4(c), and according to Theorem 3, we can
perform the adjustment on both T and Z, which well fits the empirical conclusion in “Causality” Pearl
(2009b). The above theoretical application analysis sufficiently demonstrate the generalization and
applicability of our teleporter theory.

In addition, we conducted a deeper analysis of the theoretical applications of the teleporter theory in
the Appendix D, demonstrating: 1) How to obtain conditional exogeneity to control for confounding
bias and identify the correct adjustment variables. For example, when calculating P (Yx′ ∣x, y) or
P (Yx′ ∣y), we need to examine the conditional independence of given factual variables Y to determine
the appropriate adjustment variables. The twin network, however, incorrectly selects the adjustment
variables, making it difficult to control for confounding bias. For specific numerical examples, please
refer to the Appendix D.2; 2) The significant potential of teleporter theory in computing complex
counterfactual queries.

2W represents conditioning on W, i.e., W is given.
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Figure 6: GraphOOD learning paradigm with Multi-Scale Environment Mixup Scheme.

6 PRACTICAL APPLICATION OF TELEPORTER THEORY

To demonstrate the practical applicability of teleporter theory, we utilize our theory to model the set
of variables in GraphOOD (Gui et al., 2022; Chen et al., 2022; Jia et al., 2024), and propose a method
to perform the counterfactual conditional probability estimation between cross-world variables.

Preliminary of GraphOOD. The area of OOD learning deals with scenarios in which training and
test data follow different distributions. Furthermore, GraphOOD problems focus on not only general
feature distribution shifts but also structure distribution shifts (Gui et al., 2022). Accordingly, Graph
neural networks (GNNs) (Kipf & Welling, 2016; Xu et al., 2018) are designed based on node features
and adjacent matrix to pass messages, which perform well in solving GraphOOD problems. Previous
GNN-based methods (Yang et al., 2022; Chen et al., 2022; Zhuang et al., 2024) aim at disentangling
the invariant part and the environment part of the input graph to find rationales, thereby addressing
the problem of domain shift. The common learning paradigm is shown in Fig. 6, where the input
graph is processed and split into two latent variables, i.e., the invariant representation zInv and the
environment-dependent representation zEnv, and only zInv is used for label prediction, which is
achieved by leveraging the empirical observation encompassing the available labeled samples.

6.1 CROSS-WORLD COUNTERFACTUAL CAUSALITY MODELING VIA TELEPORTER THEORY

The obtained invariant representation unavoidably contains significant environment-dependent infor-
mation due to the inherent inductive bias arisen from the learning paradigm of benchmark methods.
On the contrary, the desired invariant representation is expected to solely contain pure environment-
agnostic predictive information. However, such a representation can barely be acquired in the real
world yet feasibly obtained in the counterfactual world.

To this end, we propose to explore the causal mechanism behind both factual and counterfactual
variables, which is accomplished by modeling the cross-world counterfactual causality. Concretely,
we establish an SCM at first, as depicted in Fig. 5(a), which elaborates on the causality among the
variables in GraphOOD in the real world. In Fig. 5(a), there exist four endogenous variables in the
real world: the input graph X , the learned representation R of X , the predicted label Y and the
environment-dependent information E. UX , UR, UE and UY are four exogenous variables corre-
sponding to the endogenous variables. According to Theorem 1, the variable E can be determined as
the teleporter, so the cross-world SCM is demonstrated in Fig. 5(b), where x represents the intrinsic
causal subgraph, Rx denotes the environment-agnostic invariant representation, and Yx denotes the
predicted label corresponding to the graph x, which is also the true label, since ideally, x and Rx

only include environment-agnostic task-dependent information in the counterfactual world.

6.2 COUNTERFACTUAL CONDITIONAL PROBABILITY ESTIMATION VIA MULTI-SCALE MIXUP
SCHEME

According to the cross-world SCM in Fig. 5(b), we determine that our objective is to derive the
ideal predicted label Yx by only using the available X . Such an objective can be formalized as
follows: computing the counterfactual probability P (Yx = y ∣ X = x′), where x′ denotes the
available value of X , and y denotes the true label of x′. Deriving P (Yx = y ∣X = x′) is equivalent to
calculating the conditional probability of X on Yx in the cross-world SCM. Such a computation can

9
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Table 1: Evaluation performance on GOOD (Gui et al., 2022) and DrugOOD (Ji et al., 2022)
benchmark. The best is marked with boldface and the second best is with underline. † denotes the
reproduction results.

Method GOOD-HIV DrugOOD Averagescaffold-covariate size-covariate IC50-assay IC50-scaffold EC50-assay EC50-scaffold

DIR 68.44(2.51) 57.67(3.75) 69.84(1.41) 66.33(0.65) 65.81(2.93) 63.76(3.22) 65.31
GSAT 70.07(1.76) 60.73(2.39) 70.59(0.43) 66.45(0.50) 73.82(2.62) 64.25(0.63) 67.65
GREA 71.98(2.87) 60.11(1.07) 70.23(1.17) 67.02(0.28) 74.17(1.47) 64.50(0.78) 68.00
CAL 69.12(1.10) 59.34(2.14) 70.09(1.03) 65.90(1.04) 74.54(4.18) 65.19(0.87) 67.36
DisC 58.85(7.26) 49.33(3.84) 61.40(2.56) 62.70(2.11) 63.71(5.56) 60.57(2.27) 59.42
MoleOOD 69.39(3.43) 58.63(1.78) 71.62(0.52) 68.58(1.14) 72.69(1.46) 65.74(1.47) 67.78
CIGA 69.40(1.97) 61.81(1.68) 71.86(1.37) 69.14(0.70) 69.15(5.79) 67.32(1.35) 68.11
iMoLD † 73.54(1.33) 65.87(1.98) 71.23(0.14) 67.30(0.35) 76.03(1.66) 66.41(1.88) 70.06
iMoLD+MsMs 74.43(1.96) 66.19(2.32) 71.70(0.62) 67.77(0.48) 77.29(0.65) 67.79(0.84) 70.86

be approximated by using neural network-based methods. Adhering Theorem 2’s d-separation for
cross-world counterfactuals, we can directly obtain X á Yx ∣ E from the cross-world SCM in Fig.
5(b). The calculation of P (Yx = y ∣X = x′) can be acquired as follows:

P (Yx = y ∣X = x′) =∑
e

P (Yx = y ∣X = x,E = e)P (E = e ∣X = x′) (6)

As demonstrated in Fig. 6, to acquire P (Yx = y ∣ X = x′), we propose to design a fine-grained
method, which can derive the invariant part zInv and the environment-dependent part ZEnv from the
input graph x′, thereby predict the true label y by leveraging ZInv . According to Equation 6, P (Yx =
y ∣ X = x′) can be estimated by summing the conditional probability of P (Yx = y ∣ X = x,E = e)
with respect to different environment-dependent information E, i.e., zEnv . Following (Zhuang et al.,
2024), we utilize a contrastive learning module to estimate P (Yx = y ∣X = x,E = e), where zInv is
firstly concatenated by a shuffled batch of zEnv , and then projected into z̃Inv via a MLP-predictor ρ.
Ultimately, zInv and z̃Inv are used to measure the similarity for contrasting. Accordingly, expanding
the available value set of E can widely obtain a more precise estimation of P (Yx = y ∣ X = x′).
Hence, we introduce a Multi-Scale Mixup Scheme (MsMs) to enrich the available data of E, which
is achieved by leveraging a hyperparameter scale in concatenating the shuffled environment zEnv.
Furthermore, we further expand the available value set of E by the scaled mixup scheme by M times.

6.3 EXPERIMENTS ON GRAPHOOD

The detailed descriptions of the benchmarks and the baselines are in Appendix H.1 and Appendix
H.2, respectively. To ensure reproducibility, the intricate details of our method’s architecture, and our
hyper-parameter settings are detailed in the Appendix H.3. The empirical results on the GOOD and
DrugOOD benchmarks are presented in Table 1. By enhancing the available value set E with MsMs,
our method places the best in four of six datasets, and shows the best average ROC-AUC score among
the baselines, which indicates the effectiveness of our proposed method and further emphasizes the
practical generalization of teleporter theory. Testing the teleporter theory across a broader range of
datasets and scenarios would further substantiate its generalizability and effectiveness. For instance,
we have extended its practical application to the image domain, as detailed in the Appendix H.5.

7 CONCLUSIONS AND LIMITATIONS

We strive to explore graphical representation of counterfactuals and propose the teleporter theory
to address the challenge of simultaneously representing factual and counterfactual variables in a
single SCM. The cross-world SCM constructed by using the teleporter nodes can well avoid the
theoretical limitations of current approaches in various cross-world counterfactual scenarios, thereby
demonstrating the completeness and generalization of the teleporter theory. However, the rules
that teleporter variables are required to adhere are quite stringent, and introducing such constraints
increases the complexity of constructing cross-world SCMs. In future work, we will explore to
simplify the proposed rules for determining teleporter variables and attempt to apply our theory in
the scenarios involving multiple counterfactual worlds.
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A PRELIMINARY

We recap the necessary preliminaries of causal background knowledge relevant to our work. For a
more in-depth understanding, please refer to the literature (Pearl, 2009a;b; Pearl et al., 2016).

Structural Causal Models. A SCM (Pearl, 2009b; Peters et al., 2017) is a causal model in a triple
form, i.e., M = ⟨X,U,F ⟩, where U presents the exogenous variable set, determined by external
factors of the model. X = {X1,X2, ...,Xn} presents the endogenous variable set, determined by
the internal functions F = {f1, f2, ..., fn}. Each fi represents {fi ∶ Ui ∪ PAi →Xi}, where Ui ⊆ U ,
PAi ⊆X/Xi, satisfying:

xi = fi (pai, ui) , i = 1,2, ..., n. (7)
PAi denotes the parent nodes of Xi. Note that, in SCM, uppercase letters conventionally denote
variables, and lowercase letters conventionally denote values of the corresponding variables, e.g.,
xi is the value of Xi. For ease of discussion, we omit such clarification in the following sections.
Each causal model M corresponds to a directed acyclic graph G, where each node corresponds to a
variable in X ∪U , and directed edges point from Ui ∪ PAi to Xi. It is worth noting that exogenous
variables U have no ancestor nodes, and each endogenous variable Xi is at least a descendant of one
exogenous variable.

Once we define the probability distribution of exogenous variables U , we can obtain the probabilistic
causal model. A causal world is a tuple ⟨M,u⟩ where u is a realization of the exogenous variables
U , and a probabilistic causal model ⟨M,P (u)⟩ is a distribution over causal worlds.

Interventions and Do-operator. The causal model M describes intrinsic causal mechanisms,
characterized by the observed distribution PM(X) = ∏n

i=1 P (xi ∣ pai). Intervention3 is defined
as forcing a variable Xi to take on a fixed value x, modifying the model M = ⟨X,U,F ⟩ to Mx =
⟨X,U,Fx⟩, where Fx = {F /fi} ∪ {Xi = x}. This is equivalent to removing Xi from its original
functional mechanism xi = fi (pai, ui) and modifying this function to a constant function Xi = x.
Formally, we denote the intervention as do(xi = x), called the do-operator. It explores how causal
mechanisms will change when external interventions, or experiments, are introduced. We denote the
distribution after the intervention as PMx(X) = P (x1, ..., xn ∣ do(xi = x)), where

P (x1, ..., xn ∣ do(xi = x)) = {∏j≠i P (xj ∣ paj) xi = x
0 xi ≠ x

. (8)

Counterfactuals. If Mx defines the effect of the action do(X = x) on M , what is the potential
change of another endogenous variable Y due to the intervention effect Mx? We denote Mx as
the SCM of the counterfactual world (Pearl, 2009b) derived by adopting the intervention X = x.
The potential value of Y influenced by the intervention do(X = x) is denoted as Yx(u), which is a
solution to the equation set Fx, i.e., Yx(u) = YMx(u). Concretely, Yx(u) presents the counterfactual
statement “Under condition u, if X were x, then Y would be Yx(u).”

Path and d-separation. We recap two classic definitions (Pearl et al., 2016) to help us determine
the independence between variables in the SCM graph.
Definition 2. (Path) In the SCM graph, the paths from variable X to Y include three types of
structures: 1) chain structure: A → B → C or A ← B ← C; 2) fork structure: A ← B → C; 3)
collider structure: A→ B ← C.
Definition 3. (d-separation) A path p is blocked by a set of nodes Z if and only if:

1. p contains a chain of nodes A→ B → C or a fork A← B → C such that the middle node
B is in Z, i.e., A and C are independent conditional on B, or

2. p contains a collider A → B ← C such that the collider node B is not in Z, and no
descendant of B is in Z, i.e., A and C are marginal independent.

If Z blocks every path between two nodes X and Y , then X and Y are d-separated, conditional on
Z, i.e., X and Y are independent conditional on Z, denoted as X á Y ∣ Z.

3The definition here refers to the atomic intervention (Pearl, 2009b). For brevity, we intervene on only one
variable.
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B QUANTITATIVE ANALYSIS WITH NUMERICAL EXAMPLES FOR
INAPPLICABILITY OF TWIN NETWORK

B.1 ORIGINAL FIRING SQUAD EXAMPLE IN “CAUSALITY”

Considering the firing squad example in Fig. 1(a), A and B are the officers, C is the captain (waiting
for the court order U ), and D represents the condemned prisoner. The exogenous variables are only
U and W , which represent the court order and the nervousness of police officer A, respectively. The
values and meanings of each variable are as follows:

1. A(u,w),B(u,w) indicate whether officers A and B fire their guns, respectively, and
D(u,w) = 1 indicates the death of the prisoner. The prisoner will not die from any other
factors besides the executioners, so we ignore the exogenous variables for D.

2. D0(u,w) and D1(u,w) represent the counterfactual values under interventions A = 0 and
A = 1, respectively.

3. P (u = 1) = p represents the probability of issuing a death sentence, P (w = 1) = q represents
the probability that officer A pulls the trigger due to nervousness. For the specific values of
the variables, please refer to Table 2.

u w A(u,w) D(u,w) B(u,w) D0(u,w) D1(u,w)
0 0 0 0 0 0 1
0 1 1 1 0 0 1
1 0 1 1 1 1 1
1 1 1 1 1 1 1

Table 2: Numerical examples demonstrate the inapplicability of the twin network, with the SCM
graph shown in (Pearl, 2009b), p. 213, figure 7.2 and Fig. 1. P (u = 1) = p represents the probability
of issuing a death sentence, and P (w = 1) = q represents the probability that officer A pulls the
trigger due to nervousness. A(u,w) = 1 and B(u,w) = 1 indicate that officers A and B fire their
guns, respectively. D(u,w) = 1 indicates the death of the prisoner, and D0(u,w) and D1(u,w)
represent the counterfactual values under interventions A = 0 and A = 1, respectively. It can be
verified that P (Da∣B) = P (Da∣B,A), which implies A áDa∣B.

In this model, the distribution of the exogenous variables is

P (u,w) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pq, u = 1,w = 1
p(1 − q), u = 1,w = 0
(1 − p)q, u = 0,w = 1
(1 − p)(1 − q), u = 0,w = 0.

(9)

Verify that Da ̸A:

P (D0 = 1) = ∑
{(u,w)∣D0(u,w)=1}

P (u,w)

= P (u = 1,w = 0) + P (u = 1,w = 1)
= p(1 − q) + pq = p

P (A = 1) = ∑
{(u,w)∣A(u,w)=1}

P (u,w)

= 1 − P (u = 0,w = 0)
= 1 − (1 − p)(1 − q)
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Figure 7: The SCM graph of the extended firing squad example: Figure (a) represents the real-world
SCM considering all relevant exogenous variables, Figure (b) shows the cross-world SCM constructed
using the twin network with all exogenous variables, and Figure (c) illustrates the cross-world SCM
constructed using the teleporter theory.

P (D0 = 1,A = 1) = ∑
{(u,w)∣D0(u,w)=1&A(u,w)=1}

P (u,w)

= P (u = 1,w = 0) + P (u = 1,w = 1)
= p(1 − q) + pq = p

Hence,
P (D0,A = 1) = p ≠ p(1 − (1 − p)(1 − q)) = P (D0 = 1)P (A = 1).

Verify that A áDa∣B:

P (D0 = 1∣B = 1) = 1, P (D0 = 1∣B = 1,A = 1) = 1,
P (D0 = 0∣B = 1) = 0, P (D0 = 0∣B = 1,A = 1) = 0.

The remaining values can be verified, so P (Da∣B) = P (Da∣B,A).

B.2 EXTENDED FIRING SQUAD EXAMPLE: CONSIDERING ALL EXOGENOUS VARIABLES

The original definition of the twin network includes all exogenous variables, and clearly, the firing
squad example can be further extended to better reflect real-world scenarios. Based on Fig. 1, we
now consider that officer B may also fire due to nervousness, and thus we introduce the exogenous
variable V to represent officer B’s nervousness. P (v = 1) = s represents the probability that officer
B pulls the trigger due to nervousness. We still do not consider exogenous variables for D, as the
prisoner’s death is unrelated to external factors, such as the unlikely possibility of dying suddenly
from illness or fear. Thus, the extended firing squad example with all exogenous variables is shown
in Fig. 7. For the specific values of each variable, please refer to Table 3.

In the extended firing squad example, we rewrite the distribution of exogenous variables from equa-
tion 9:

P (u,w, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pqs, u = 1,w = 1, v = 1
p(1 − q)s, u = 1,w = 0, v = 1
pq(1 − s), u = 1,w = 1, v = 0
p(1 − q)(1 − s), u = 1,w = 0, v = 0
(1 − p)qs, u = 0,w = 1, v = 1
(1 − p)(1 − q)s, u = 0,w = 0, v = 1
(1 − p)q(1 − s), u = 0,w = 1, v = 0
(1 − p)(1 − q)(1 − s), u = 0,w = 0, v = 0.

(10)

Verify that Da ̸A:
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u w v A(u,w) B(u,w) D(u,w) C(u,w) D0(u,w) D1(u,w)
0 0 0 0 0 0 0 0 1
0 1 0 1 0 1 0 0 1
0 0 1 0 1 1 0 1 1
0 1 1 1 1 1 0 1 1
1 0 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

Table 3: The numerical example of the extended firing squad, with its SCM graph depicted in Fig. 7,
includes the exogenous variable V for officer B. Compared to the original SCM graph depicted in
Fig. 1, this model additionally considers the probability that officer B fires due to nervousness, which
is P (v = 1) = s.

P (D0 = 1) = ∑
{(u,w,v)∣D0(u,w,v)=1}

P (u,w, v)

= 1 − P (u = 0,w = 0, v = 0) − P (u = 0,w = 1, v = 0)
= 1 − (1 − p)(1 − s) = p + s − ps

P (A = 1) = ∑
{(u,w,v)∣A(u,w,v)=1}

P (u,w, v)

= 1 − P (u = 0,w = 0, v = 0) − P (u = 0,w = 0, v = 1)
= 1 − (1 − p)(1 − q) = p + q − pq

P (D0 = 1,A = 1) = ∑
{(u,w,v)∣D0(u,w,v)=1&A(u,w,v)=1}

P (u,w, v)

= 1 − P (u = 0,w = 0, v = 0) − P (u = 0,w = 0, v = 1) − P (u = 0,w = 1, v = 0)
= p + sq − pqs

Hence,

P (D0,A = 1) = (p + s − ps)(p + q − pq) ≠ p + sq − pqs = P (D0 = 1)P (A = 1).

Verify that A áDa∣B:

P (D0 = 1∣B = 1) = 1, P (D0 = 1∣B = 1,A = 1) = 1,
P (D0 = 0∣B = 1) = 0, P (D0 = 0∣B = 1,A = 1) = 0.

The remaining values can be verified, so P (Da∣B) = P (Da∣B,A).

C COMPARISON WITH ROBINS’S SINGLE WORLD INTERVENTION GRAPHS
(SWIG)

We will illustrate the superiority and consistency of our work compared to SWIG through three
examples. The teleporter theory not only accommodates the SWIG and Twin Network frameworks
but also addresses their deficiencies, constructing a comprehensive graphical model for identifying
the counterfactual conditional independence. These three examples can be found in Fig. 8–10.

1. Fig. 8: According to the SWIG model, we obtain Fig. 8 (b). When the factual variable Z is
given, since the SWIG model cannot fully represent all factual variables, we are unable to
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X Z Y 𝑋 𝑥 𝑍(𝑥) 𝑌(𝑥)

𝑋 𝑍 𝑌

𝑈𝑌

𝑥 𝑍(𝑥)

𝑈𝑍𝑈𝑋

𝑌(𝑥)

(a)                                                              (b)                                 (c)

Figure 8: (a) The DAG G, Figure 4.3 in (Pearl et al., 2016, p.99); (b) The SWIG model cannot
directly derive X ̸ Y (x)∣Z, a conclusion drawn from (Pearl et al., 2016, p.103). This is because the
factual variable Z is not present in the graph; (c) Teleporter model can obtain X ̸ Y (x)∣Z, which is
consistent with Pearl’s conclusion.

directly obtain independence relationships conditioned on the factual variable Z from the
graphical model. However, according to (Pearl et al., 2016, p.99), X ̸ Y (x)∣Z, which can
also be proved by introducing quantitative analysis with numerical examples. This indicates
that SWIG is limited when dealing with the real-world descendants of X . In contrast,
according to the teleporter theory as shown in Fig. 8 (c), X → Z ← UZ → Z(x)→ Y (x) is
unblocked when given Z.

2. Fig. 9, or in Fig.7 on page 7 of Richardson & Robins (2013): According to the SWIG
model, we can infer X á Y (x)∣L1 and X á Y (x)∣L1, L2(x), but it cannot obtain X ̸
Y (x)∣L1, L2, which can also be proved by introducing quantitative analysis with numerical
examples. In other words, when all the factual variables are given, SWIG is limited.
However, according to the teleporter theory, as shown in Fig. 9 (c), when X → Y ← UY and
the collider node Y ’s descendants L2 are given, by Pearl et al. (2016) p.44 (Rule 3), X and
UY are dependent, thus X and Y (x) are dependent, so X ̸ Y (x)∣L1, L2

4.

3. Fig. 10: According to the SWIG model, we obtain Fig. 10 (b). Z(x0) blocks the only
path from X1(x0) to Y (x0, x1). Given the consistency conditions, we obtain Y (x0, x1) á
X1∣Z,X0 = x0. However, according to the teleporter theory, as shown in Fig. 10 (c), the path
X1 ← H → Z(x0) → Y (x0, x1) is not blocked, so Y (x0, x1) ̸ X1∣Z,X0 = x0, which
aligns with the conclusion in Example 11.3.3 on p.353 of (Pearl, 2009b) and can also be
proved by introducing quantitative analysis with numerical examples. Based on this example
in Fig. 10, we summarize the limitations of SWIG when dealing with multiple worlds,
especially the need for additional consistency assumptions and its inability to intuitively
represent all variables in a single graph.

We acknowledge that SWIG’s construction is more streamlined. Although teleporter theory follows
more criteria, it can handle conditional independencies between any two cross-world variables. As
demonstrated in Fig. 8 and 9, SWIG’s limitations in handling null hypotheses are evident, such as its
inability to manage conditional independencies when descendants of X in the real world are given.

SWIG’s ability to handle variables is limited, making it challenging to encompass all variables’
conditional independencies in both the real and counterfactual worlds, whereas the teleporter theory
offers a more generalized approach.

4This conclusion is derived from the Non-Parametric Structural Equation Models with Independent Errors
(NPSEM-IE) considered in (Pearl, 2009b).
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Figure 9: (a) The DAG G, Figure 7 in (Richardson & Robins, 2013, p.7); (b) SWIG model shows
that X á Y (x)∣L1 but does not imply X ̸ Y (x)∣L1, L2; (c) Teleporter model can obtain X ̸
Y (x)∣L1, L2.
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Figure 10: (a) The DAG G, Ex.11.3.3, Fig.11.12 in (Pearl, 2009b, p.353); (b) SWIG model shows
that Y (x0, x1) á X1∣Z,X0 = x0; (c) Teleporter model obtains the same conclusion as Pearl:
Y (x0, x1) ̸X1∣Z,X0 = x0.

D DEEPER ANALYSIS ON THE THEORETICAL APPLICATIONS OF TELEPORTER
THEORY.

D.1 THE CLARIFICATION BETWEEN FACTUAL VARIABLE D AND COUNTERFACTUAL
VARIABLE Dx

The factual variable D refers to the collected observed data, encompassing different groups with
various values of X . The counterfactual variable Dx corresponds to the unique group after the
intervention X = x.

For instance, consider the numerical example corresponding to Fig. 8. E(YX=1∣Z = 1) repre-
sents the expected salary for individuals with a skill level Z = 1 if they had received higher
education. In this scenarios, these individuals with Z = 1, there exist both the ones who have
received higher education (X = 1) and the ones who have not (X = 0). In contrast, the expectation
E(Y ∣do(X = 1), Z = 1) refers to the group of individuals in the post-intervention world, which only
includes the ones who have received higher education(X = 1) (i.e., after intervening on X = 1, we
then condition on Z = 1). Since E(Y ∣do(X = 1), Z = 1) only represents the post-intervention world.
E(YX=1∣Z = 1) represents a cross-world scenario, but do-operator cannot capture counterfactual
queries: E(Y∣do(X = 1),Z = 1) ≠ E(YX=1∣Z = 1). E(Y ∣do(X = 1), Z = 1) can be easily con-
verted into the counterfactual notation E(YX=1∣ZX=1 = 1), where ZX=1 explicitly designates the
event Z = 1 in the post-intervention world. This leads to E(YX=1∣ZX=1 = 1) ≠ E(YX=1∣Z = 1),
which is why we believe it is necessary to distinguish between factual variable Z = 1 and counterfac-
tual variable ZX=1 = 1. Therefore, after intervention, we transform Z into Zx, and in the cross-world
SCM graph, Z and Zx are represented as two distinct nodes.
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D.2 OBTAIN CONDITIONAL EXOGENEITY TO CONTROL FOR CONFOUNDING BIAS AND
IDENTIFY THE CORRECT ADJUSTMENT VARIABLES

We believe that an important use lies in more intuitively achieving conditional exchangeability (or
exogeneity) to control for confounding bias, which is where the teleporter theory and SWIG are in
agreement. Furthermore, the teleporter theory, by knowing the independence of all variables, helps
avoid incorrect adjustments of factual variables.

We compute P (Yx′ ∣x, y) or P (Yx′ ∣y) in the extended firing squad example, corresponding to Fig.
7(a), which is P (D0 = 1∣A = 1,D = 1). According to the teleporter theory, as shown in Fig. 7(c),
upon conditioning on D, new paths between A and Da are opened through the collider node D.
Consequently, conditional on {D,C}, A and Da are not d-separated, leading to A ̸Da ∣ {D,C}.
However, when conditioned on {D,B}, A and Da become d-separated, satisfying A áDa ∣ {D,B}.
Therefore, we can only choose B to control for confounding bias, rather than C. However, in
the twin network, as shown in Fig. 7(b), when conditioned on D, there are two open paths between
A and Da: A → D ← B ← V → Ba → Da and A ← C ← U → Ca → Ba → Da. In this case,
arbitrarily choosing a variable from {B,C} for adjustment is not valid because A ̸Da ∣ {D,B} and
A ̸Da ∣ {D,C}. This is where the twin network fails in cross-world adjustment. For verification
of this conclusion, please refer to the following numerical calculations.

As shown in Fig. 7(a) and Table 3:

P (D0 = 1∣A = 1,D = 1) =
P (D0 = 1,A = 1,D = 1)

P (A = 1,D = 1)

= 1 − (1 − p)(1 − q) − (1 − p)q(1 − s)
1 − (1 − p)(1 − q) (11)

1. Choose B to control for confounding bias:
P (D0 = 1∣A = 1,D = 1) = P (D = 1∣A = 0,D = 1,B = 1)P (B = 1∣A = 1,D = 1)

+ P (D = 1∣A = 0,D = 1,B = 0)P (B = 0∣A = 1,D = 1)

= 1 − (1 − p)(1 − q) − (1 − p)q(1 − s)
1 − (1 − p)(1 − q) (12)

2. Choose C to control for confounding bias:
P (D0 = 1∣A = 1,D = 1) = P (D = 1∣A = 0,D = 1,C = 1)P (C = 1∣A = 1,D = 1)

+ P (D = 1∣A = 0,D = 1,C = 0)P (C = 0∣A = 1,D = 1)

= (1 − p)q
1 − (1 − p)(1 − q) (13)

It is evident that using C as adjustment to calculate P (D0 = 1∣A = 1,D = 1) is incorrect, which
aligns with the conclusions drawn from our teleporter theory.

D.3 COMPUTATION OF COUNTERFACTUAL QUERIES

Another significant potential of Teleporter theory is in computing complex counterfactual queries.
The standard approach, which encompasses Abduction, Action, and Prediction, albeit correct, is
computationally expensive.

Typically, when we aim to compute P (Yx = y∣E = e), we need to obtain the distribution of exogenous
variables, i.e., ⟨Mx, P (u∣e)⟩. However, teleporter theory allows us to construct a cross-world network,
reducing the problem to computing a conditional probability P (y∗∣e) in an augmented Bayesian
network. This computation can be performed using standard evidence propagation techniques,
leveraging conditional independence and adopting a local computation approach.

We have identified a neural network architecture constrained by twin network: deep twin net-
work (Vlontzos et al., 2023), which is a neural network implementation of the aforementioned
Bayesian inference techniques. Teleporter theory removes most exogenous variables while preserving
the topology of the cross-world network, which can significantly reduce the graph size required for
inference in the twin network for counterfactual queries. This demonstrates that our teleporter theory
also has the potential to be combined with neural networks for estimating counterfactuals.
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Figure 11: (a) The SCM graph of the real worldWr; (b) The illustration for the two types of variables
in the counterfactual worldWc, where x is highlighted in red to indicate that the value of the structural
equation is determined by X = x.

E PROOF OF THEOREM 1

The core idea of the proof is to find pairs of variables that have the same values in both the real world
and the counterfactual world: Z ← UZ → Z∗ (note that their structural equations are certainly the
same, as the only difference in structural equations between the two worlds is the intervened variable).
We implement a merging operation on these pairs of variables (in the cross-world SCM graph, this
is represented by merging three variables into one variable Z), thus Z is called the Teleporter.

Proof of Lemma 1. To visually illustrate the types of variables in the real world Wr and the
counterfactual worldWc, refer to the example in Fig. 11. In the real worldWr, as shown in Fig.
11(a), we categorized the relationship of specific variables X with the rest of the variables in the
SCM graph into four types: descendant nodes, d-separated nodes, sibling nodes, and parent nodes.
Since X is intervened, the arrow pointing to X is removed in the counterfactual worldWc, as shown
in Fig. 11(b). Therefore, variables related to x are either its descendants or d-separated from it, while
parent and sibling nodes naturally transform into d-separated from x. ◻
Proof of Theorem 1. We first use proof by contradiction to demonstrate the cross-world invariance
property of the teleporter Z. Since there are only two types of variables in the counterfactual world
Wr: Z∗ and D∗,

• The set of descendants of the intervention variable X = x, denoted as D∗. For
the variables in the set D∗, their values are given by d∗ = fx

D∗(paD∗ , uD∗) =
fD∗(fx

D∗j1
(paj1 , uj1), fx

D∗j2
(paj2 , uj2), . . . , fx

D∗jn
(pajn , ujn), uD∗). There must exist at

least one parent node D∗jk of D∗ whose structural equation value is determined by X = x,
i.e., D∗jk = fx

D∗jk
(x, ..., ujk). This can be obtained by iteratively applying the structural

equations until ultimately recursing to X = x. Hence, we denote D∗ as Dx to indicate that
its values differ from those in the real worldWr.

• The set of variables d-separated from the intervention variable X = x, denoted as Z∗. Similar
to the structural equations of D∗, we need to prove that the values of the structural equations
for any parent node Z∗ik of Z∗ are not influenced by X = x. Using a proof by contradiction,
assume there exists a Z∗ik = f

x
Z∗ik
(x, ..., uik). Then X = x is d-connected to Z∗ik , and since

Z∗ik is a parent node of Z∗, X = x would be d-connected to Z∗, which contradicts the
definition of Z∗. Therefore, the values of the variable Z∗ in the counterfactual world are
equal to its values in the real world, i.e., Z = Z∗.
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Since in the real worldWr, the structural equation and value of the teleporter Z are equal to the
corresponding structural equation and value of Z∗ in the counterfactual worldWc, the exogenous
variable UZ is no longer needed as a unique proxy for the counterfactual variable Z∗. Instead, Z∗ is
governed by the equation Z = fZ . Therefore, in the cross-world SCM graph, Z ← UZ → Z∗ merges
into a single node Z. The topological structure of the cross-world SCM graphWm is still determined
byWr andWc, preserving the connectivity between variables. ◻

F PROOF OF THEOREM 2

After constructing the DAG Gm, which consists of both factual and counterfactual variables using
the teleporter theory, the resulting cross-world Bayesian network preserves the topological structure
of both the real-worldWr and the counterfactual worldWc (i.e., the directed relationships between
variables in the DAG). Therefore, the probability function Pm and the DAG Gm are Markov com-
patible (Pearl, 2009b, Def.1.2.2). As a result, the d-separation criterion naturally extends to the
cross-world SCM graph. ◻

G PROOF OF THEOREM 3

Below, we use the calculation of the counterfactual statement P (Yx = y ∣ E = e) as an example to
illustrate that once the conditional independence of relevant variables is obtained through cross-world
SCM, cross-world adjustment can be achieved using simple algebraic derivations:

P (Yx = y ∣ E = e) =∑
z

P (Yx = y ∣ E = e,Z = z)P (Z = z ∣ E = e) (14)

=∑
z

P (Yx = y ∣X = x,E = e,Z = z)P (Z = z ∣ E = e) (15)

=∑
z

P (Y = y ∣X = x,E = e,Z = z)P (Z = z ∣ E = e). (16)

Equation 15 holds because X á Yx ∣ {E,Z}. Equation 16 holds due to the consistency condition:
X(u) = x,Y (u) = y → Yx(u) = y. ◻

H EXPERIMENTAL SETTINGS

H.1 BENCHMARKS

We employ two real-world GraphOOD benchmarks, i.e. GOOD (Gui et al., 2022) and DrugOOD
(Ji et al., 2022) to exam the performance of our method. GOOD is a systematic benchmark which
is tailored specifically for graph OOD problems. We adopt one molecular dataset GOOD-HIV for
the graph prediction task, where the objective is binary classification to predict whether a molecule
can inhibit HIV. DrugOOD is an OOD benchmark for AI-aided drug discovery, which provides
two measurements (IC50 and EC50) and their environment-splitting strategies (assay, scaffold, and
size). According to the split strategy, we choose four datasets, e.g., IC50-assay, IC50-scaffold,
EC50-assay, EC50-scaffold as the benchmarks. Due to the chosen task of GOOD-HIV and DrugOOD
are both binary classification, we adopt the ROC-AUC score as the evaluation metric. The details of
benchmark are shown in Table 4.

Table 4: Benchmark statistics. BC denotes Binary Classification.

Dataset Task Metric #Train #Val #Test #Tasks

GOOD HIV scaffold-covariate BC ROC-AUC 24682 4133 4108 1
size-covariate BC ROC-AUC 26169 4112 3961 1

DrugOOD
IC50 assay BC ROC-AUC 34953 19475 19463 1

scaffold BC ROC-AUC 22025 19478 19480 1

EC50 assay BC ROC-AUC 4978 2761 2725 1
scaffold BC ROC-AUC 2743 2723 2762 1
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H.2 BASELINES

To compare our method with other methods, we include three interpretable graph learning methods
(DIR (Wu et al., 2022), GSAT (Miao et al., 2022) and GREA (Liu et al., 2022b)) and five GraphOOD
algorithms (CAL (Sui et al., 2022), DisC (Fan et al., 2022), MoleOOD (Yang et al., 2022), CIGA
(Chen et al., 2022) and iMoLD (Zhuang et al., 2024)) as baselines. Note that iMoLD performs not
stable on DrugOOD benchmarks, so we reproduce the results using the official code on github. The
descriptions and the github links of the baselines are listed as follows:

• DIR (Wu et al., 2022) identifies an invariant rationale by performing interventional data augmen-
tation to generate multiple distributions from the subset of a graph. https://github.com/
Wuyxin/DIR-GNN

• GSAT (Miao et al., 2022) introduces an interpretable graph learning method that leverages the
attention mechanism. It injects stochasticity into the attention process to select subgraphs relevant
to the target labels. https://github.com/Graph-COM/GSAT

• GREA (Liu et al., 2022b) identifies subgraph structures called rationales by employing an en-
vironment replacement technique. This allows the generation of virtual data points, which
in turn enhances the model’s generalizability and interpretability. https://github.com/
liugangcode/GREA

• CAL (Sui et al., 2022) introduces a causal attention learning strategy for graph classification tasks.
This approach encourages GNNs to focus on causal features, while mitigating the impact of shortcut
paths. https://github.com/yongduosui/CAL

• DisC (Fan et al., 2022) takes a causal perspective to analyze the generalization problem of GNNs.
It proposes a disentangling framework that learns to separate causal substructures from biased
substructures within graph data. https://github.com/googlebaba/DisC

• MoleOOD (Yang et al., 2022) investigates the OOD problem in the domain of molecules. It designs
an environment inference model and a substructure attention model to learn environment-invariant
molecular substructures. https://github.com/yangnianzu0515/MoleOOD

• CIGA (Chen et al., 2022) proposes an information-theoretic objective that extracts the desired
invariant subgraphs from the causal perspective. https://github.com/LFhase/CIGA

• iMoLD (Zhuang et al., 2024) propose a first-encoding-then-split method to disentangle the
invariant representation and the environment representation via a residual vector quantization skill
and a self-supervised learning pattern. https://github.com/HICAI-ZJU/iMoLD

Algorithm CMNIST VLCS PACS OfficeHome Average

ERM 51.5 ± 0.1 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 70.25
balance+ERM 60.1 ± 1.0 76.1 ± 0.3 85.2 ± 0.4 67.1 ± 0.4 72.13
balance+ERM+ours 62.5 ± 2.5 77.1 ± 2.2 86.3 ± 1.2 68.2 ± 0.8 73.53

Table 5: Performance on image domain.

H.3 HYPER-PARAMETERS

We reproduce iMoLD with the best hyper-parameters provided in the paper. As for the MsMs part,
we choose scale from {0.3, 0.7, 1.0}, M from {1, 3, 5}.

H.4 EXPERIMENTS COMPUTE RESOURCES

Experiments are conducted on one 24GB NVIDIA RTX 4090 GPU.

H.5 TEST THE TELEPORTER THEORY ON A WIDER RANGE OF DATASETS BEYOND GOOD AND
DRUGOOD

We expand the pactical application into the image domain. In image classification tasks, we typically
hope that the neural network will focus on the semantic parts (foreground) of an image and ignore
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the background information. This is because background information is generally easier to learn,
and when the foreground and background of a class of images frequently appear together, the
neural network will be more inclined to learn the background information, which can lead to poorer
performance on image OOD (domain generalization) tasks. Based on this characteristic, the image
OOD field can also construct an SCM model as Fig. 5(a), where X represents the input image, E
represents the background information, R represents the semantic information, and Y represents the
predicted label. Similar to the analysis of the graph domain, here the teleporter theory can be used to
analyze that the background E is a transworldly backdoor variable. According to Equation 6, we can
expand the range of E to obtain a more accurate causal effect of P (Yx = y∣X = x′).
Specifically, we firstly pass the input image through a fast Fourier transform to separate the foreground
and background, and then swap the foreground and background of different images within a batch
to expand the values of E. We use balance+ERM from (Wang et al., 2022) as the baseline, and
verify the effectiveness of our method on four benchmark domain generalization datasets on OOD
scenarios: CMNIST (Arjovsky et al., 2019), VLCS (Fang et al., 2013), PACS (Li et al., 2017) and
OfficeHome (Venkateswara et al., 2017), with the results shown in the Table 5 (repeat for 3 times).
This experiment demonstrates that our method is not only effective in the graph domain, but can also
be applied to other domains, further illustrating the generality of our method.
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