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Abstract

Efficiently and flexibly estimating treatment ef-
fect heterogeneity is an important task in a wide
variety of settings ranging from medicine to mar-
keting, and there are a considerable number of
promising conditional average treatment effect
estimators currently available. These, however,
typically rely on the assumption that the mea-
sured covariates are enough to justify conditional
exchangeability. We propose the P-learner, mo-
tivated by the R- and DR-learner, a tailored two-
stage loss function for learning heterogeneous
treatment effects in settings where exchangeabil-
ity given observed covariates is an implausible as-
sumption, and we wish to rely on proxy variables
for causal inference. Our proposed estimator can
be implemented by off-the-shelf loss-minimizing
machine learning methods, which in the case of
kernel regression satisfies an oracle bound on the
estimated error as long as the nuisance compo-
nents are estimated reasonably well.

1. Introduction

The conditional average treatment effect (CATE) measures
the net benefit, such as the decrease in blood pressure, a
certain subset of a population experiences by being assigned
a certain intervention, such as a drug. Obtaining accurate es-
timates of CATEs is important in order to understand for ex-
ample which parts of a population should be assigned a treat-
ment, if any. A large body of work has made tremendous
advances in designing flexible estimators for the CATE. Ex-
amples include Hill (2011); Alaa & van der Schaar (2017);
Hahn et al. (2020) for Bayesian approaches, Athey & Im-
bens (2016); Wager & Athey (2018) for tree-based methods,
Johansson et al. (2016); Shalit et al. (2017); Yoon et al.
(2018); Shi et al. (2019) for adopting neural networks, and
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Kiinzel et al. (2019); Nie & Wager (2021) for combinations
thereof.

To identify causal effects, the aforementioned approaches
operate under the exchangeability assumption, i.e., the asser-
tion that conditional on observed covariates, the treatment
assignment is as good as random. We propose a CATE
estimator, which using the framework of Tchetgen Tchet-
gen et al. (2020), allows one to estimate causal effects in
settings where conditional exchangeability fails, but one has
measured a set of sufficient proxy variables. Our practical
approach is motivated by the generic Neyman-orthogonal
(Chernozhukov et al., 2018a) loss function from Nie & Wa-
ger (2021) and Kennedy (2020) that decouples nuisance
estimation and CATE estimation into two stages that can be
estimated (and tuned with cross-validation) by flexible loss-
minimizing machine learning tools, where the latter stage is
to first order less sensitive to estimation error arising from
the first stage. Our contribution is to extend this flexible
CATE estimation strategy to the proximal causal inference
framework (Tchetgen Tchetgen et al., 2020). The proposed
loss relies on doubly robust scores (Robins et al., 1994; Rot-
nitzky et al., 1998; Scharfstein et al., 1999; Chernozhukov
et al., 2018a; Cui et al., 2023) which can also be re-purposed
to enable semi-parametric efficient estimation and inference
on lower-dimensional summaries of the CATEs, such as best
linear projections (Semenova & Chernozhukov, 2021), or
rank-weighted average treatment effects (Yadlowsky et al.,
2021).

1.1. Proxy Variables and Unmeasured Confounding

Conditional exchangeability (often also referred to as uncon-
foundedness (Imbens & Rubin, 2015)), is a crucial identify-
ing assumption that underlies many popular methodologies
for estimating causal effects from observational data, includ-
ing most CATE estimators. Loosely stated, it requires the
investigator to have collected a sufficient set of covariates,
such that controlling for these, the treatment assignment
is as good as random. Given some additional regularity
assumptions, this allows the investigator to estimate a dif-
ference in potential outcomes, without having access to a
randomized control trial (Imbens & Rubin, 2015). Naturally,
the quality of the causal estimates hinges on whether the
collected covariates sufficiently account for confounding,
and a large body of work, going back to for example Rosen-
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baum & Rubin (1983) has pioneered measures for assessing
the sensitivity of a causal estimate to this assumption.

The proximal causal inference framework (Tchetgen Tch-
etgen et al., 2020) departs from this classical approach by
instead asking: even with the presence of unmeasured con-
founding, are the alternative and realistic assumptions that
can be made in order to estimate causal effects? The answer
is yes: if the investigator has access to auxiliary variables
that satisfy certain assumptions. These auxiliary variables
are so-called proxy variables that augment the set of controls
with additional variables that are either treatment-inducing
or outcome-inducing. Consider a simple example where
we are interested in the causal effect of the treatment A
on the outcome Y and have collected a set of covariates L
that is related to both the treatment and outcome. Unfortu-
nately, due to the presence of an unmeasured confounder
U, conditional exchangeability fails. Figure 1 (top) shows
this scenario as a causal DAG (Pearl, 2009). The proximal
causal learning framework relaxes the conditional exchange-
ability assumption and instead operates under the premise
that the variables L can be partitioned into three specific
groups: common causes of the treatment and outcomes (X)),
treatment-inducing confounding proxies (Z), and outcome-
inducing confounding proxies (W). Figure 1 (bottom) show
the covariates L partitioned into these three groups and
suggest that with reasonable assumptions on the interde-
pendencies between treatment, outcomes, confounders, and
proxies, one may still learn causal effects. The intuition
is that we may use this structure to back out the net effect
of the unobserved confounder through its relation with Z
and W, then remove this confounding bias to arrive at the
effect of A on Y. As prudently pointed out in Tchetgen Tch-
etgen et al. (2020), many observational datasets exhibit a
certain structure whereby the data collected was not mea-
sured with the precise intent of quantifying a certain source
of confounding. Rather, depending on the question the in-
vestigator is trying to answer, these collected variables serve
as noisy measures of confounding. The promise of proxi-
mal causal learning is that with the right assumptions and
structure, one may leverage a subset of these noisy variables
as “proxies” which serve the purpose of backing out the net
effect of the confounder U.

1.2. Previous Work

There is a fast-growing literature on causal inference meth-
ods that leverage proxy variables to mitigate confounding
(Lipsitch et al., 2010; Kuroki & Pearl, 2014; Deaner, 2018).
On a high level, our work leverages the generalizations set
forth by Tchetgen Tchetgen et al. (2020) who cast proximal
causal learning in the potential outcomes framework and
Miao et al. (2018); Cui et al. (2023) who provide nonpara-
metric identification results for average treatment effects.
Dukes et al. (2021); Shi et al. (2021b); Shpitser et al. (2021);

@Z@

Figure 1. Top: an illustration of a violation of conditional ex-
changeability due to the presence of the unmeasured confounder
U that affects both the treatment A and the outcome Y, even given
observed covariates L. Bottom: if one is able to partition L into X
(common causes of A and Y'), Z (proxies for confounders that af-
fect A), and W (proxies for confounders that affect Y'), then these
may be used to back out the implied bias caused by U. Note that
exchangeability need not hold conditional on observed covariates.

Ying et al. (2023; 2022) consider identification and estima-
tion for other causal quantities.

A nascent body of work is developing new methods utilizing
this framework to answer important questions. Singh (2020)
develop kernel methods for nonparametric estimation of for
example dose-response curves under unmeasured confound-
ing, Li et al. (2022) use proximal causal learning to estimate
vaccine effectiveness, Qi et al. (2023); Shen & Cui (2022)
develop individualized treatment allocation rules under un-
measured confounding, and Imbens et al. (2021) propose
novel methods for panel data with proxies. Besides causal
inference, the core idea of the proximal causal inference
framework has also been adopted in survival analysis (Ying,
2022) to address dependent censoring and reinforcement
learning (Shi et al., 2021a; Bennett & Kallus, 2021) to tackle
a partially observable Markov decision process.

Our practical approach for CATE estimation draws inspira-
tion from Nie & Wager (2021) who cast the problem as a
generic two-step loss minimization (the R-learner, named
so to commemorate the work of Robinson (1988) for the
statistical foundation of the approach) that can be imple-
mented by off-the-shelf machine learning methods. The
benefit of this decoupling is that it clearly separates the sta-
tistical tasks of estimating nuisance components, and that of
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estimating treatment effects, which can be implemented and
optimized (by standard cross-validation) through different
learners (Wu & Yang (2022) extend the R-learner to handle
data combination from observational and experimental trial
data).

The final step of our approach takes the form of a pseudo out-
come regression, where transformed outcomes are regressed
on covariates, and this approach dates back to van der Laan
(2006); Luedtke & van der Laan (2016) who under tradi-
tional unconfoundedness suggests it as a method for estimat-
ing CATEs, but without explicit error guarantees. Kennedy
(2020) and Foster & Syrgkanis (2019) give error guaran-
tees under general assumptions on the nuisance components
(when estimated using sample splitting) and derive desirable
properties for this approach to CATE estimation (in Section
2.2 we highlight the connection between Kennedy (2020)’s
proposed DR-learner under unconfoundedness with the
proximal P-learner, and how our approach can be seen
as a generalization of existing methods for CATE estimation
under unconfoundedness to proxies). Finally, classical ap-
proaches to causal estimation, when unconfoundedness fails,
is to rely on instruments, and Syrgkanis et al. (2019) develop
a powerful loss-based method to estimate treatment effects
conditional on the units complying with the instrument.

2. CATE Estimation under Unmeasured
Confounding

2.1. Setup

We operate under the potential outcomes framework and
posit the existence of potential outcomes Y;(1), Y;(0) cor-
responding to binary treatment assignment A; = {0,1}.
We have access to a collection of covariates X; that are
potential common causes of both the treatment and the
outcome and are interested in measuring the conditional
average treatment effect (CATE) defined as 7%(X;) =
E [Yi(1) — Yi(0)| X; = x]. We assume that conditioning on
the covariates X; is not sufficient to guarantee conditional
exchangeability, due to the presence of latent unmeasured
confounders U;. To identify 7*(x) we rely on the existence
of proxy variables Z; and W; where Z; are treatment induc-
ing and W; outcome inducing, which satisfies

Assumption 1. Y; L Z;|U;, X;, A;.
Assumption 2. W; 1 (Z;, A)|U;, X.
Assumption 3. (Y;(1),Y;(0)) L A;|U;, X.

Assumption 4. For any square-integrable function g and for
any a, x, E [g(U;)|Z;, Ai = a, X; = z] = 0 almost surely
if and only if g(U;) = 0 almost surely.
Assumption 5. For any square-integrable function g and for
any a, x, E [g(U;)|W;, A; = a, X; = z] = 0 almost surely
if and only if g(U;) = 0 almost surely.

The last two assumptions are completeness conditions that
essentially ensure that the proxy variables carry sufficient
information about the confounders U,. Given consistency
assumptions on potential outcomes, positivity assumptions
on the treatment assignment A;, and some technical regular-
ity conditions (Miao et al., 2018; Cui et al., 2023), this setup
allows for identification of causal effects through assuming
the existence of the following integral equations:

E [Y;|Z;, Ai, Xi] :/h*(waAiin)dF(w|ZiaAiin)a

()
and
1
E [¢*(Zi,a, X;)|Wi, A; = a, X;] =
[q ( iy Ay Z)|VV“ v @, Z] f(A’L :a|Wi7Xi)’
(2)

almost surely. In the proximal causal inference literature,
Equations (1) and (2) are referred to as bridge functions and
characterize a type of inverse problem (known as the Fred-
holm integral equation) that allows for the identification of
counterfactual means with the presence of unmeasured con-
founders U;. We defer a discussion of obtaining estimates
of h* and ¢* to Section 2.4.

2.2. A Loss Function for Proximal CATEs

To estimate an average treatment effect E [Y;(1) — Y;(0)]
under proximal causal learning, motivated by the semipara-
metric efficient influence function given in Cui et al. (2023),
we consider the following doubly robust score,

T, = ()" 4¢"(Zi, A, Xi) (Y — B* (W3, Aiy X))
+ h*(Wi, 1, X,') - h*(Wt, 0, XL)
3)

The corresponding semiparametric efficient ATE estimate
is the sample average of I';. The key insight is to recognize
that to efficiently estimate a conditional ATE (CATE), it
suffices to learn the mapping from covariates X to pseudo-
outcome I'. This motivates the following procedure:

Algorithm 1. (P-learner)

Step 1. Split the data, ¢ = 1...n, into C evenly sized
folds. Estimate h(w,a,z) and q(z, a, z) with cross-
fitting over the C folds, using tuning as appropriate.

Step 2. Form the scores (3) using cross-fit plug-in esti-
mates of nuisance components ﬁ(_c(i))(z, a,z) and
¢=°®) (2, a,x), where the notation c(-) maps from
sample to fold and (—c(7)) indicates predictions made
without using the i-th sample for training. We esti-
mate treatment effects by minimizing the following
empirical loss

#() = argmin [La(7()] . @
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where

Enfr() = 7 (P - (X)) ®

and f‘l(fc(i)) are cross-fit estimates of the scores (3),
ie.,

f\l(fC(i)) — (—1)1_Aid(_c(i))(zi7AiaXi)
X (Yi — B (wr, Ai,Xi)>
+ RO (W, 1, X)) — RO (W5, 0, X).

The final stage model E {fl(-fc(z)) |X; = x} is purely a pre-
dictive problem that can leverage flexible non-parametric
learners ranging from random forests to neural networks, etc
(or combinations in the form of stacking), to simpler para-
metric models. As shown in Section 3, this approach can
deliver accurate estimates of 7*(+) even when the nuisance
components are subject to estimation error.

An interesting conceptual connection is that under the tradi-
tional unconfoundedness assumption, Equation (3) reduces
to the celebrated Augmented Inverse-Probability Weighted
(AIPW) score of Robins et al. (1994); Robins & Rotnitzky
(1995), which forms the basis for the DR-learner proposed
by Kennedy (2020) where the unconfounded efficient influ-
ence function for the ATE is used to learn a CATE function
via a similar procedure.

Remark 1. The empirical loss (5) can be used for learn-
ing other estimands of interest. For example, for the con-
ditional average treatment effect on the treated |1*(x) =
E[Yi(1) — Yi(0)|A; = 1, X; = x|, suppose there exists h*
and q* satisfying

and

f(A; = 1|5, X;)
f(A; =0|W;, X;)

E [¢"(Z;, X3)|W;, A =0, X;] =

Motivated by Cui et al. (2023), we define the following loss
function,

B0 () = Ly A,

i=1

— (1= A)g" (2, Xy)[Y; — A (W, X))
— A [ (Wi, X5) + (X))

The rest of the learning procedure follows Algorithm 1.

2.3. Doubly Robust Scores and Semiparametric
Inference

While the aforementioned procedure for learning 7(-) sat-
isfies desirable oracle properties, it is still a challenging
statistical task to conduct pointwise inference on the es-
timated treatment effects (see for example Armstrong &
Kolesar (2018) for fundamental limits to uncertainty quan-
tification for a single point estimated nonparametrically).
For this reason, it is often advisable to delegate uncertainty
quantification to lower-dimensional summaries of the 7(+)
function. This is the approach advocated by Chernozhukov
et al. (2018a) and can be attained by the doubly robust
score construction in Equation (3). As a concrete example,
if we in Step 2 fit a linear parametric model, we recover
the best linear projection of Semenova & Chernozhukov
(2021); Chernozhukov et al. (2018b) that delivers standard
errors with nominal coverage (demonstrated as an example
in Section 5). Moreover, for assessing if the estimated 7(-)
function actually manages to stratify the population into
groups that respond differently to treatment, the same score
construction (3) can be used to construct the recently pro-
posed RATE metric of Yadlowsky et al. (2021). We present
an example of this approach in Section 5.1.

2.4. Estimating Nuisance Components

As mentioned in Section 2.1, two crucial ingredients for
proximal causal learning are the bridge functions ~A* and
q*. Equations (1) and (2) define challenging inverse prob-
lems known as Fredholm integral equations of the first kind.
Timely and pioneering work by Dikkala et al. (2020) gives
an empirical strategy for estimating these quantities by reg-
ularized minimax estimation, which Ghassami et al. (2022)
draws on to propose a flexible kernel machine learning esti-
mator of h* and ¢* (this is also the approach used by Kallus
et al. (2021); Mastouri et al. (2021); Qi et al. (2023)).

For the purpose of simulated and practical illustrations of
the P-learner, we rely on the flexible kernel estimator of
Kallus et al. (2021); Ghassami et al. (2022), which can
be implemented by off-the-shelf software using Gaussian
kernels and tuned with cross-validation. In particular, we
consider the following min-max optimization problem,

hmei;g rTng%(IP’n[(H{A =a}Y —Il{A=a}h(W,a, X))r(Z,X)

=122, X)) = AelIrllie + AnllRll,
inmax P,[(1 — I{A = a}q(Z,a, X))s(W, X
minmax Py [(1 —I{A = a}q(Z, 0, X))s(W, X)
= (W, X)) = Asllslls + Aqllalf,

where R, H,S, and Q are critic classes with norms repre-
sented by || - [z, || - |13 ]| - I|s. and || - [|o. P, denotes
the sample average with respect to a training sample, and
Ay, s Ay, A are tuning parameters. This problem has
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a closed-form solution given by Propositions 9 and 10 in
Dikkala et al. (2020).

3. Oracle Bound for P-learner

Our theory focuses on a P-learner based on penalized kernel
regression. Regularized kernel learning has been thoroughly
studied in the learning literature (Bartlett & Mendelson,
2006; Steinwart & Christmann, 2008; Mendelson & Nee-
man, 2010) and is also used in the theoretical analysis of
the R-learner (Nie & Wager, 2021). Following Nie & Wa-
ger (2021), we study || - ||c-penalized kernel regression,
where C is a reproducing kernel Hilbert space (RKHS) with
a continuous, positive semi-definite kernel function.

Our main goal is to establish error bounds for P-learner that
only depends on the complexity of 7*(-), and that match
the error bounds we could achieve if we knew h* and ¢* a
priori. We study the following cross-fitted estimator and its
oracle analog

7(-) =arg mTin [% i (f\l(fc(i)) _ T(Xi))Q

=1

+2nlile) : lirlloo < 28]

n

7(-) =arg mTin {% Z (T; — T(Xi))2

+ alille) « lirlloe < 204],

respectively, where A, (||7]|¢) is a properly chosen penalty.
Similar to the estimated loss given in (5), we define popula-
tion and oracle losses

L(r()) = E [T = 7(x.))°] .

B 1 n 9
La(r()) = = 37 (T = m(X2))?,
i=1
respectively. We are interested in the regret bound R(7) =
L(7(-)) = L(7*(-)) for our P-learner 7(-).

Let

Co ={7:[I7llc < a,I7|lcc <2M}

denote a radius-« ball of C capped by 2M. We denote
75 = argmin{L(7) : 7 € C,} as the best approximation
to 7* within the working class C,.

In addition, we also define the population, estimated, and
oracle a-regret functions

respectively. Then we are ready to state the following propo-
sition.

Proposition 1. Suppose Assumptions 1-5 and Equations (1)-
(2) hold. Further assume Assumptions 6-9 given in the
Appendix hold, then we have

R(r,a) — R(1,a) < Op (apn_l/QR(T, oz)l%p—i—

log(n) 10 P ant/(1-p) 1-p
e BT a) oy [loe R(r, ) Rir.e)
oP anl/(1—p) 1—p oP »

+Z lOg( R(’T7 O[) )R(Ta Oé) + 5/4 R(Ta Oé) )

where p is defined in Assumption 6 given in the Appendix.

The proof of Proposition 1 is given in the Appendix. This
key result provides the excess error bound for regret R(T, a)
using the cross-fitted learner over the regret bound R(T, a)
using the oracle learner. By leveraging the above proposi-
tion, we have the following theorem.

Theorem 1. Suppose the conditions of Proposition 1 hold.
With a properly chosen penalty \,(||7|]), 7(-) satisfies
the same regret bound 7(-), that is, R(7) = R(7) =
Op(n==28)/+(=28)1\ "ywhere j3 is defined in Assump-
tion 7 given in the Appendix.

Note that the P-learner objective is the following regression:

, 2
#(-) = argmingec, 130, (fz(—C(z)) - T(Xi)) . The
proof of Theorem 1 is essentially the same as Theorem 3
of Nie & Wager (2021) and we omit it here. Theorem 1
implies that with penalized kernel regression, the cross-
fitted P-learner can achieve a similar performance as the
oracle learner that knows both confounding bridge functions

a priori.

4. A Motivating Example

To illustrate the promise of the P-learner we consider a sim-
ple motivating example that highlights some salient features
(to the best of our knowledge, we are not aware of other
current proposals for proximal CATE estimation, making
traditional benchmark comparisons challenging). We de-
sign a proximal data generating mechanism using the setup
from Cui et al. (2023) where we incorporate treatment het-
erogeneity using the moderately complex CATE function
T*(X) = exp(X(1)) — 3X(2) used in Shen & Cui (2022) to
learn proximal treatment regimes and add three additional
irrelevant normally distributed covariates X (the complete
setup is described in Appendix B). In the left-most plot in
Figure 2 we train a Causal Forest (Athey et al., 2019), a
popular method for estimating CATEs under conditional
exchangeability on data with n4,.4:, = 4000 samples and
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predict the estimated CATEs on a test set with 145 = 2000.
Since unconfoundedness fails, the point estimates are con-
siderably biased, as seen by estimated CATEs falling above
the 45-degree line shown in red.

Causal Forest (MSE: 0.521) P-Lasso (MSE: 0.06)

5.

Oracle P-Lasso (MSE: 0.049)

Estimated CATE
I
iR
o
.
N
w
B

True CATE

Figure 2. Top left: a Causal Forest (Athey et al., 2019) fit on
simulated training data (n¢rqin = 4000 and S covariates) where
unconfoundedness fails, is used to predict estimated CATEs on
a test set (n¢est = 2000). Top right: estimated and true CATEs
using the same training and test data with a P-learner using cross-
validated Lasso (Friedman et al., 2010) and nuisance components
h and g estimated with kernels (Ghassami et al., 2022). Bottom
left: the same P-learner fit using oracle h and q. Mean square
error (MSE) is defined as = "7 (7(X;) — 7 (X))

i=1

In the right-hand panel in Figure 2 we use glmnet (Friedman
et al., 2010; R Core Team, 2022) to fit a P-learner using
cross-validated Lasso (Tibshirani, 1996) on squared and
pairwise interactions of a 7-degree natural spline-based ex-
pansion on X where we use cross-fit estimates of nuisance
components h and ¢ using kernel estimation (Ghassami
et al., 2022). This figure suggests the promise of the P-
learner, as the point estimates are not far off from an oracle
learner on h* and ¢* (Figure 2 bottom panel). In Figure 3
we consider two different final stage learners for 7*(-): Ran-
dom Forest (Breiman, 2001), fit using an honest' regression
forest as implemented in grf (Tibshirani et al., 2022) us-
ing default tuning parameters, and boosting using XGBoost
(Chen & Guestrin, 2016) using tuning parameters selected
by cross-validation. In this particular example XGBoost has

' A honest regression forest use sample splitting to avoid estima-
tion bias that arises from using the same observations to perform
CART splitting as to form the leaf averages. For the example
considered here, an honest regression forest performed better than
a traditional random forest.

slightly more trouble adapting to the 7(-) signal (choosing
a good grid of tuning parameters may sometimes be chal-
lenging), though paints a slightly more realistic picture in
the sense that the deviation from the oracle MSE might be
large for some realizations.

To conclude this section we caution that while the simu-
lation example is intended to bear some resemblance to
a real-world scenario where heterogeneity is present, but
hidden beneath unmeasured confounding, it is but a toy
example that has limited use in helping choose among dif-
ferent P-learners in practice. A machine learning algorithm
fit to minimize the empirical loss (5) may do very well in
minimizing test set error, regardless of whether treatment
heterogeneity is actually present or not. Section 5.1 de-
scribes our suggested approach for evaluating the practical
performance of a P-learner by using the recently developed
RATE metric by Yadlowsky et al. (2021) which under con-
siderable generality can be paired with the proximal doubly
robust scores (3) to deliver a test set area-under-the-curve
(AUC) measure of heterogeneity along with bootstrapped
confidence intervals.?

Random Forest (MSE: 0.075)

Oracle Random Forest (MSE: 0.043)

XGBoost (MSE: 0.097) Oracle XGBoost (MSE: 0.058)

Estimated CATE

-1 0 1 2 3 4 -1 0 1 2 3 4
True CATE

Figure 3. Top: P-learner implemented with honest regression for-
est (with default tuning parameters) (Athey et al., 2019) fit on
simulated training data (n¢rqin = 4000 and 5 covariates) where
unconfoundedness fails. The left figure shows predictions on a test
set (ntest = 2000) vs true simulated CATEs when using h and q
(Ghassami et al., 2022) while the right-hand panel uses h* and ¢*.
Bottom: P-learner implemented with XGBoost (Chen & Guestrin,
2016) (with tuning parameters selected by cross-validation). Mean
square error (MSE) is defined as = "7 (7(Xi) — 77 (X4))>.

2For “real-world” simulation-based approaches to validating

estimators see Athey et al. (2021) and for further discussion on the
limitations of benchmarking in the context of CATE estimation
see Curth et al. (2021).
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5. Treatment Heterogeneity in the SUPPORT
Study

To illustrate the P-learner in action we consider data from
the Study to Understand Prognoses and Preferences for
Outcomes and Risks of Treatments (“SUPPORT”, Connors
et al. (1996)), used in a series of papers (Tchetgen Tch-
etgen et al., 2020; Cui et al., 2023; Qi et al., 2023; Ying
et al., 2022) as an example of the proximal causal inference
framework. The treatment assignment in this study is a
so-called right heart catheterization that was administered
to certain patients when admitted to the intensive care unit.
The outcome of interest is the number of days between ad-
mission, and death or censoring at 30 days. The SUPPORT
study did not randomize treatment, however, an informa-
tive set of covariates were collected for each of the patients
that were administered treatment (2184 patients) or control
(3551 patients). Connors et al. (1996)’s original analysis
concluded that heart catheterization was on average harmful
to patient health. To account for latent confounding due to
measurement error in the patient’s physiological variables,
Tchetgen Tchetgen et al. (2020) reanalyze the data by us-
ing proxy variables Z = (pafil, paco21) and W = (phl,
hemal), a set of physiological status measures, and find
evidence (using parametric modeling) that the harmful ef-
fect is even larger (ATE = —1.80 days) than previously
reported. To investigate the possibility of heterogeneity in
this harmful effect we fit P-learners using the covariates
(age, sex, catl_coma, cat2_coma, dnrl, surv2mdl, apsl)
also considered in Ghassami et al. (2022) for illustrating
the non-parametric kernel estimation of h and g. Among
those variables, catl_coma, cat2_coma, and dnrl are indi-
cator variables indicating coma and “Do Not Resuscitate”
status, while surv2md]1 and aps1 are estimates of 2-month
survival and severity-of-disease score respectively.

As a first step, we consider a linear CATE model, Table 1
show estimates of the best linear projection

{85, 87} = arg min E [(T*(X;) — Bo — XiB)*], (6)

using cross-fit estimates of /& and ¢ on all 5735 units to form
the proximal scores (3). The second column of Table 1 is
simply the projection onto a constant and recovers an ATE
in line with the estimates from Ghassami et al. (2022) and
Tchetgen Tchetgen et al. (2020).

Next, we consider the three P-learners described in Sec-
tion 4. For the Lasso learner, we use the same spline-based
featurization for the continuous covariates X; and just in-
teractions for the binary X;. For all learners, we fit i and
q using the non-parametric kernel estimator of Ghassami
et al. (2022) (using their hyperparameters suggested for this
dataset).

Table 1. Best linear projection (BLP) of the CATEs on covariates
considered in Ghassami et al. (2022) for the SUPPORT data, as
well as a doubly robust estimate of the average treatment effect
(ATE), the BLP on a constant. All 5735 units are used to form
cross-fit estimates of nuisance parameters h and ¢, using the ker-
nel method of Ghassami et al. (2022) with associated suggested
hyperparameters for this study. HCs (MacKinnon & White, 1985)
standard errors are in parentheses.

(BLP) (ATE)
(Intercept) 4.55 (2.41) —1.66 (0.27)***
age —0.06 (0.02)***

sex —1.03 (0.54)

catl_.coma  —0.28 (1.16)

cat2_coma 3.08 (2.22)

dnrl 1.00 (0.87)

surv2md1 —3.93 (1.88)*

apsl 0.01 (0.02)

***p < 0.001; **p < 0.01; *p < 0.05

5.1. Assessing Treatment Heterogeneity with RATE

As pointed out in Section 4, a fundamental challenge with
evaluating CATE estimators on real-world data is the lack
of ground truth for calculating traditional error metrics, as
treatment effects are fundamentally unobservable. Recent
developments in the statistics literature offer an attractive
solution to this problem in the form of a family of met-
rics called rank-weighted average treatment effects (RATE).
A RATE metric’s fundamental ingredient is a calibration
curve inspired by the ROC, called the Targeting Operator
Characteristic (TOC), defined as:

TOC(q) = E [Yi(1) = Yi(0)[#(X:) = Frx) (1 - q)
~E[Yi(1) - ¥;(0)],

and is a curve that ranks all observations on a test set accord-
ing to 7(X;) estimated from a training set, and compares the
ATE for the top g-th fraction of units prioritized by 7(X;)
to the overall ATE. The RATE is the area under this curve
and measures how well the CATE estimator stratifies the
population in terms of units that benefit differently from
treatment. If there is significant heterogeneity present, and
the CATE estimator detects it, then the estimated RATE
should be significantly different from zero. When selecting
among CATE estimators, the one with the largest RATE
metric is the best performing in the sense that it most suc-
cessfully manages to stratify test set subjects according to
different treatment benefits.

Inferential properties of the RATE extend to the proximal
setting through the doubly robust proximal scores (3) (Yad-
lowsky et al., 2021, Theorem 4) which satisfy £ [fi \Xz} ~
E [Y;(1) — Y;(0)|X;] and motivates the following Algo-
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rithm 2 to evaluate a P-learner.

Algorithm 2. (Evaluate P-learner)

Step 1. Randomly partition the data into a training and
evaluation set.

Step 2. Using Algorithm 1, learn a 7(-) function on the
training data.

Step 3. Estimate cross-fit doubly robust scores (3) on the
evaluation data and predict 7(Xcyaiuation) using 7(+)
learned in Step 2. Use these to compute the TOC and
the area under the TOC.

Table 2 show estimated RATEs using three P-learners and
indicate that all procedures learn a CATE function that man-
ages to stratify units on a test set’. The largest estimated
RATE is obtained by the Random Forest-based P-learner
and Figure 4 shows the corresponding TOC curve. The
RATE is the area under this curve and has a point esti-
mate of —0.79 with a bootstrapped standard error of 0.31,
and suggests there is heterogeneity in the response to right
heart catheterization. For example, from Figure 4, the pa-
tients in the lowest 20-th quantile of estimated CATEs, die
3 days sooner than on average when administered right
heart catheterization, indicating a considerably more harm-
ful effect for certain parts of the population than previously
reported for the population as a whole.

Table 2. Estimated RATEs and bootstrapped standard errors using
CATE estimates obtained by training P-learners (selecting tuning-
parameters with cross-validation) on a random half-sample of the
SUPPORT study (with cross-fit kernel estimates of 2™ and ¢* with
hyperparameters suggested in Ghassami et al. (2022)). Proximal
doubly robust scores for evaluation are estimated on the held-out
evaluation set.

Lasso Random Forest XGBoost
AUTOC -0.79 —1.07 —0.72
Std.err (0.39) (0.31) (0.34)

6. Discussion and Extensions

Detecting and measuring treatment effect heterogeneity is
an important task across a wide range of domains, and in
many observational applications, the investigator does not
have access to an unconfounded treatment assignment. We
have shown how powerful approaches to CATE estimation
under unconfoundedness that rely on a Neyman-orthogonal
loss can be extended to the seminal proximal causal learning
framework of Tchetgen Tchetgen et al. (2020).

3Since the ATE is negative we form the TOC by conditioning
on the most negative CATE:s first.

TOC: By increasing CATE (RF)

| /,/

T T T T T
0.2 0.4 0.6 0.8 1.0

Treated fraction
(95 % confidence bars in dashed lines)

Figure 4. The Targeting Operator Characteristic (TOC) for CATEs
estimated with a random forest-based P-learner fit on the SUP-
PORT data, using half of the dataset for CATE training, and the
other half for evaluating the RATE. The area under the TOC curve
(AUTOC) is —1.07 with a bootstrapped standard error of 0.31.

A natural extension is to ask for the CATE
conditional on proxy variables Z; and W;:
™x,2) = E[Y:(1)-Yi(0)|X;=2,7Z;=2] and

™(z,w) = E[Y;(1) = Y;(0)|X; = 2, W; = w]. Given
doubly robust scores for 7*(z, z) and 7*(x, w), these could
in principle be used in place of (3) in the P-learner. The
derivation of these is an active research area (Tchetgen
Tchetgen et al.)

Finally, a challenge with proximal causal learning is the
estimation of the confounding bridge functions ~* and g*.
Kallus et al. (2021); Ghassami et al. (2022) make tremen-
dously useful contributions in designing flexible regularized
Gaussian kernel estimators for these components. Scal-
ing this approach to large datasets, however, is challeng-
ing as kernel estimators typically require work on the or-
der of O(n?). As pointed out by Dikkala et al. (2020),
some promising approximation schemes such as Nystrom’s
method can bring this down to the order of O(n?). Kompa
et al. (2022) take a neural network approach to bridge func-
tion estimation and avoids the reliance on kernel methods.
Alternate approaches like this may suggest other avenues for
scaling. One example could be the connection to the general
minimax optimization problem (Dikkala et al., 2020): this
is a type of adversarial estimation problem that is similar
to the ones encountered and successfully solved at large
scales with Generative Adversarial Networks (Goodfellow
et al., 2014; Arjovsky et al., 2017), and which have promis-
ing adaptions for certain statistical tasks (Kaji et al., 2020;
Chernozhukov et al., 2020).
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A. Proof of Proposition 1

Let P be a non-negative measure over the compact metric space X C RY, and K be a kernel with respect to P. Let
Tk : La(P) — Lo(P) be defined as Tk (f)(-) = E[K (-, X) f(X)]. By Mercer’s theorem (Cucker & Smale, 2002), there
is an orthonormal basis of eigenfunctions (¢/;)$2, of T with corresponding eigenvalues {0 }22; such that K (z,y) =

Dm0 (@) (y).

We consider the function ¢ : X — [z defined by ¢(z) = {/7;1;(x)}52;. Following Mendelson & Neeman (2010),
we define the RKHS C to be the image of lo, that is, for every ¢t € l2, we define the corresponding element in C by
fi(x) = (¢(x), t), with the induced inner product (fs, fi)c = (t, s).

Assumption 6. Without loss of generality, we assume K (x,x) < 1 for any © € X. We further assume that for 0 < p < 1,
SUP;>1 jl/paj = G < coandsup, ||¢j|ec < G2 < 00 for some constants Gy and G.

Assumption 7. We assume that HTIB((T*())HC < o0 for some 0 < 3 < 1/2.

Assumption 8. For any a, we have that E [[E(VV, a,X) —h*(W,a, X)]Q] = o(n7'?), and
E [[§(Z,a,X) — ¢*(Z,a, X)P’] = o(n™'/?).

Assumption 9. We assume that |Y;| < M, sup,, , , |h(w,a,x)| < M, and sup, , , |q(z,a,x)| < M.

To give some intuition on the role of p and 3, 0 < 8 < 1/2 essentially quantifies the amount of smoothing needed for 7*
to have finite C-norm, where 0 corresponds to ||7*||¢c < inf and 1/2 would mean 7* is square-integrable. p captures how

much the 7 function can oscillate through the eigenvalues of the corresponding RKHS. If 3, p — 0, then Theorem 1 yields
the familiar result that 4-th root nuisance rates are sufficient to yield /n rates for a single target parameter.

Proof. We have the following decomposition,

(1) = L(7;) = L() + L(v3)

S|

= 1M

— AW, A, X)) — h* (Wi, A, Xo)lld(Zs, Ai, X)) — ¢ (Zi, Ag, X0)](75(X3) — 7(X3)

+
+1

[G(Zi, Aiy Xi) — ¢ (Zi, Ay, X)][Yi — B (Wi, Ai, Xo)[(75(Xs) — 7(X3))
(Wi, 1, Xi) = h* (Wi, 1, X)l[1 — Aiq™ (Zs, Aiy, X)|J(70(Xi) — 7(X3)).

pupbd

By the Cauchy Schwarz inequality, the first term is bounded by

2N AW, As, X0) — W, As X2 A X0) = 0 (22 A X)) = 7(X0)
=1

n n

1 ~ 1
<2\ D (AW, Aiy Xo) — b (Wi, Ay, X))? - > 16(Zi, Ai, Xi) = ¢ (Zi, Ay, Xi)]? % |78 = 7Tlloo
1=1 i=1

<aPR(t, ) = 0, (n=1?),
where the last inequality holds by the following fact

I7lloo < IITIIEIITI 5 Ep):
as provided in Lemma 5.1 of Mendelson & Neeman (2010).
Next, we consider the second term, and the third term can be bounded in a similar manner. For the c-th fold, we define
2 e
Ne(T, ) = o ;Ai[ﬁc(ziv Ay, Xi) — " (Zi, A, X)[Yi — " (Wi, Ag, Xo)(75(X5) — 7(X3),

where to ease notation, we use superscript ¢ to denote (—c(4)) and n. to denote the sample size of c-th fold. Note that to
bound sup, ¢ {7:(7, )}, we essentially need to bound sup, ¢ {ne(7, @) : |7 — 75|, Py < L}.
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We denote the samples that are not included in the c-th fold by €. By cross-fitting, we have that
E [ne(r, a)|1°]

= ZE [G°(Zi, Ai, Xi) — q"(Zi, Ag, Xa)]IYi = h™ (Wi, Ai, X3)] (70 (X) — 7(X3)) 1]
:fZE [0°(Zi, Ai, Xi) — a"(Zi, Ai, X)I[Ys — W5 (Wi, Ay, Xo)|(74(Xa) — 7(X0))| Zi, Aiy X, 1]

_ ZE AC Z7,7A1aX ) (Zla AZ7X1)]E D/Z - h*(W%AzaXZ)'ZuA%Xl] (T;(XL) - T(XZ))|IC]
=0.

Following Lemma 5 of Nie & Wager (2021), we further have that

E [sup,ec, {ne(r,0) : |17 = 7|l zap) < LHI] ("L} plog( ))
E [(Ail°(Z, Ai, Xi) — q*(Zi, Ay, Xi)])2]° ' nt/2 =
and therefore, we have
log(n)

E | sup {ne(r,a) : |7 = 72||L,py < LHIC| = Op(a’L'™?

TEa

n3/4 )-

Note that for some constants Cy, Cy > 0,
Sup {114i[G°C) = ¢ OY: = W O(Ta () = T(Dlloo = [I7 = TallLopy < L} < CraPLPP,

and
sup {EH{AG(Zi, Ai, Xi) — ¢ (Zi, Ag, X)I[Yi = B* (Wi, Ai, X)l(2(Xa) = 7(Xa)}?) : |Im = 72l Loy < L}
TECH
< C2a2pL2(1*p)n*1/2.

Then by Talagrand’s concentration inequality, for any fixed o, L, e > 0,

1 pLi-p 1 1
sup {ne(r, )| 1° : ||7 = 72| paipy < L} < O (alep Og’;(/z) +2 S\ log(2) +a” L' rl ~ log(~ ))
n n

T7ECH

holds with probability larger than 1 — .
By a similar construction of Nie & Wager (2021), we have the following bound for any & > 1 and L < 4M.

. _log(n) aPL'7P anl/(1-p)
sup {ne(1,a) : |7 = 73||Lp) S L} < Op (ale P 3/ + n3/4 1og(T)

T7€CH

1 anlt/(1—p) aP 1P
prl-r_
+a - og(

1.2 + nb/4

Finally, by combining three terms, we have that

aP anl/(1-p) 1—p oP 1-p
+;10g(W)R(T7a) 2 +n5/4R(T a)z |,

which completes the proof.

13
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B. Illustrative Data Generating Process

We adopt the setup from Cui et al. (2023). Covariates X are drawn from a normal distribution N(0,0.2574x4)
where [jxq is the identity matrix and d = 5; A is drawn from a Binomial distribution with success probability
(1 + exp((0.125,0.125,0,0,0)7 X)) ~t; Z, W, U are drawn from a multivariate normal:

0.25 +0.25A + (0.25,0.25,0,0,0)7 X 1 025 05
(Z,W,U)|A, X ~MVN [ = {025+0.1254 4 (0.25,0.25,0,0,0)"X | ,= = {025 1 05| |;
0.25 + 0.25A4 + (0.25,0.25,0,0,0)7 X 05 05 1

and Y is drawn from a normal with distribution with ¢ = 0.25 and conditional mean

E[Y|W,U,A,Z X] =2+ 7(X)A+ (0.25,0.25,0,0,0)7 X + 2E [W|U, X] + 2W,

where E [W|U, X] = 0.25 + (0.25,0.25,0,0,0)7 X + 0.5(U — 0.25 — (0.25,0.25,0,0,0)7 X) and the treatment effect
7*(X) = exp(X (1)) — 3X () is from Shen & Cui (2022).
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