Under review as submission to TMLR

FEATHERS: Federated Architecture and Hyperparameter
Search

Anonymous authors
Paper under double-blind review

Abstract

Deep neural architectures have profound impact on achieved performance in many of today’s
AT tasks, yet, their design still heavily relies on human prior knowledge and experience.
Neural architecture search (NAS) together with hyperparameter optimization (HO) helps to
reduce this dependence. However, state of the art NAS and HO rapidly become infeasible with
increasing amount of data being stored in a distributed fashion, typically violating data privacy
regulations such as GDPR and CCPA. As a remedy, we introduce FEATHERS—FEderated
ArchiTecture and HypER parameter Search, a method that not only optimizes both neural
architectures and optimization-related hyperparameters jointly in distributed data settings,
but further adheres to data privacy through the use of differential privacy (DP). We show that
FEATHERS efficiently optimizes architectural and optimization-related hyperparameters
alike, while demonstrating convergence on classification tasks at no detriment to model
performance when complying with privacy constraints.

1 Introduction

Federated learning (FL) is a distributed machine learning paradigm aiming to learn a shared model on data
distributed at different locations without ever exchanging the data itself (McMahan et all 2017). It is a
promising solution in several industries, such as finance or healthcare, where it is infeasible to share the data
due to privacy and security regulations. As in classical machine learning (ML), neural architectures and
optimization-related hyperparameters (hence simply referred to as hyperparameters) have to be selected in
FL before training. Since even experts are likely to choose non-optimal architectures and hyperparameters,
different neural architecture search (NAS) and hyperparameter optimization (HO) methods have been
developed to automatically search for suitable architectures/hyperparameters (Kairouz et al., |2021} |Zoph &
Le), 2017; |Pham et al., [2018} [Liu et al.l 2019; |Agrawal et all 2021). With HO- and NAS-methods experts
only have to define a search space over candidates instead of defining a specific rigid architecture and setting
hyperparameters for a given ML-task. A search strategy is then applied to automatically find the optimal
element within this space.

To date, most NAS- and HO-methods are designed for classical ML-settings. As more and more data
is being stored decentralized and privacy awareness is rising (He et al., |2020a; [Khodak et all 2021), a
number of approaches to perform NAS/HO in FL settings have lately been proposed. However, the latter
still face a significant number of challenges. First, current methods either optimize neural architectures
or hyperparameters; a serious obstacle as performing NAS and HO sequentially is costly, especially in FL
settings where it is preferable to minimize the communication performed between devices. In addition, the
choice of architectures and hyperparameters inherently depend on each other. For instance, adopting a deeper
architecture may require selecting different learning rates in order to assure adequate update scaling, following
gradient back-propagation through the network. Therefore architectures and hyperparameters should be
optimized jointly. A second major challenge is that NAS- and HO-methods are traditionally not designed
to be privacy-preserving. Throughout FL training, the server and clients exchange the updated parameters
several times. In light of the growing concern about the disclosure of personal information(Fredrikson et al.,
2015) and the threat of adversarial attacks (Ye et al.l |2022)), both ML models and their training process,
and hence NAS and HO approaches, should guarantee privacy in distributed settings. To address the above

Under review as submission to TMLR

ol

Hyper s

e Table 1: FEATHERS unifies NAS, HO and DP
- ﬁ>._/$‘ in federated learning settings. FEATHERS is the

first method that jointly optimizes neural architectures

(X)

E
.

Contral Server PP | e (NAS) and arbitrary other hyperparameters (HO) in

a federated learning (Fed.) setting while providing

privacy guarantees (DP). Existing SOTA methods do

2':,:219,9,5 not tackle all of these challenges in a unified way.
A Spaakd Method NAS | HO | DP | Fed,

S DARTS(Liu et al.|[2019) SO X x| X
o s Client € DP-FNAS(Singh et al.[[2020) | v | X | v/ | V/
FedNAS(He et al.|[2020a) v X | X v
, , DP-FTS-DE(Dai et alJR021) | X | v | v | /
Figure 1: FEATHERS Overview. FEATH- FedEx (Khodak ct al.| 2021 b X /| ox v
ERS jointly optimizes neural architectures and ~FEATHERS 7 7 7 7

hyperparameters using data distributed across
clients C while providing privacy-guarantee.

challenges, we propose a novel method: FEATHERHH— FEderated ArchiTecture and HypERparameter
Search. As illustrated in Table [[, FEATHERS is the first method to synergize architecture search and
hyperparameter optimization, while enabling privacy preserving federated learning.

The overall architecture of FEATHERS is shown in Fig.[I} In essence, it consists of an HO- and a NAS-phase
executed in an alternating fashion. In the HO phase, a n-bandit game is played to identify promising
hyperparameters for a subsequent NAS-phase. Then, a NAS-phase is performed for a multiple iterations
using the identified hyperparameters. Differentiable, cell-baded, NAS is used to allow
“averaging” architectures of several clients using FedAvg, thus obtaining a new global architecture. The global
architecture obtained is then sent back to the clients and used for further training. The differentiability of
the architecture entails a crucial property of FEATHERS: enabling a privacy preserving optimization-scheme
using differential privacy (DP).

Overall, we make the following contributions:
1. We propose a novel method, FEATHERS, that jointly optimizes neural architectures and hyperpa-
rameters in distributed data settings.

2. We prove that the HO phase of FEATHERS converges with high probability and that FEATHERS’
convergence properties subsequently coincide with those of DARTS if the HO phase converges.

3. By exploiting differentiability of model- and architectural parameters we provide privacy-guarantees
during the search- and evaluation-stage via DP.

4. We empirically show that FEATHERS converges towards well-suited architectures and hyperparame-
ters on various classification tasks.

We proceed as follows: After presenting related work we formally introduce the problem before moving to our
proposed solution. A convergence analysis is then conducted, followed by our experimental evaluation of
FEATHERS on several classification tasks. Finally, we conclude our work and show possible directions for
future work.

2 Related Work

Hyperparameter Optimization. Several works address hyperparameter optimization in federated learning
(Koskela & Honkelal, 2018} |[Mostafal [2019). Genetic CFL(Agrawal et al., 2021)) clusters edge devices based

"We make our code publicly available at: https://anonymous.4open.science/r/FEATHERS-250B/.

https://anonymous.4open.science/r/FEATHERS-250B/

Under review as submission to TMLR

on the training hyperparameters and genetically modifies the parameters clusterwise. DP-FTS-DE(Dai
et al., |2021)) integrates differential privacy into federated Thompson sampling with distributed exploration to
preserve privacy and uses it for federated hyperparameter tuning. FLoRA(Zhou et al. [2021) uses a single-shot
task by querying each client for several instantiations once and selects the best instantiations based on what
the clients returned w.r.t. learning progress. FedEx(Khodak et al., |2021]) uses a weight-sharing mechanism
for hyperparameter optimization in the federated setting. In contrast, FEATHERS follows a few-shot policy
as we adjust the hyperparameters several times during training.

Neural Architecture Search. NAS aims to automatically identify an optimal neural architecture for a
given task. Most methods are based on reinforcement learning (RL) (Zoph & Le, [2017; |Zoph et al., [2016;
2018)), evolutionary algorithms (EAs) (Xie & Yuille, [2017; |Galvan & Mooneyl, 2021} Darwish et al., [2020)
or gradient decent (GD) (Liu et al., 2019; |Dong & Yang, [2019; Xie et all |2018; |Li et al., |2020a). Gradient
based methods have been found to be more robust compared to the former (Zhu et al.l |2021) and thus we
adapt gradient-based neural architecture search in FEATHERS. Since this approach is differentiable it can
be used in federated setting. Some recent NAS-methods for FL include Fed-NAS (He et al., [2020a)) that
uses the gradient-based NAS method MiLeNAS (He et al.l |2020b) for personalized federated learning, and
DP-FNAS (Singh et al, 2020), which also adopted differentiable NAS (Liu et al., 2019)) combined with DP.

Differential Privacy DP has first been introduced in (Dwork, |2006) to protect private information in a
dataset from queries based on arbitrary mechanisms. In recent years, select works have shown that ML-models,
especially neural networks, carry private information of their training data in their parameters (Fredrikson
et al., [2015)). To protect such private data from leaking, DP has been successfully employed in various FL
settings. In particular, it has been shown that SGD can be turned into a differentially private algorithm by
simply adding an appropriate amount of noise to the parameters during training (Abadi et al., [2016)).

3 FEATHERS

Our objective is to efficiently optimize neural architectures and hyperparameters in a joint manner in FL
under privacy guarantees. We now define our problem setup formally and present our proposed solution.

3.1 Problem Definition

We consider a federated learning setting with a set of clients C of size C, each holding a dataset Dy, ..., D¢.
The data of cach client c is split into training (X' {9 Y and validation data (X' y{?) that is used
to solve a supervised learning task. We aim to find an architecture a € A and hyperparameters h € H

minimizing the global validation loss over all clients. Formally we phrase the problem as follows:

min} " ve - Lan(w', X{ ¥ with (1)
eC
w" =arg min Z Ve - ‘Ca,h(w’ Xgﬁlma Ygglm) (2)

where w € R” refers to the parameters of a neural network (model parameters) and v, is the weight of a
client c: ©
X (&
Ve 1= | val |(c) (3)
ZCEC |Xval|
Note that in a FL settings, the global validation loss is a weighted sum of the client’s local validation
losses. From now on, we denote the global training- and validation loss as La n(W, Xirain, Yirein) and
Lan(W,Xya1, Yvar) respectively. Additionally, we require our method to be e-differential w.r.t. model
parameters, architectural parameters and rewards. For better readability, we omit DP in the definition of the
optimization problem and will return to it in Section [3.3

Under review as submission to TMLR

3.2 FEATHERS Architecture

FEATHERS operates in two stages, the search stage and the evaluation stage. The search stage consists of
an alternating procedure: As a first step, an instantiation of hyperparameters is identified which is expected
to achieve a high decrease in validation loss. In a second step, the identified instantiation is used to perform
several optimization-steps of the architecture. The two steps are repeated until convergence.

In the evaluation stage the optimized architecture is retrained. Again, the HO-scheme from the search stage
is applied to optimize hyperparameters. We now describe the HO and NAS phase in detail.

Hyperparameter Optimization (HO). To identify well-working hyperparameters h we have to solve
the following objective:
h* = arg m}in Lax n(W*; Xyal, Yval) (4)

Here, w* denote model parameters minimizing the training-loss under architecture a* and a* are the
architectural parameters minimizing the validation-loss under hyperparameters h € H where H is a discreete
set of hyperparameter instantiations. We solve the above by using a n-armed bandit-approach with a
strategy similar to e-greedy as shown in Algorithm [I} (Line 1-3): We start of by intializing the parameters,
architecture and reward estimates. (Line 4-13): We then randomly sample m hyperparameter instantiations
from a distribution 7 over H. For each sampled instantiation one communication round of training is
performed using the same weights w and architecture a. This yields an approximation of a* and w*. Each
client computes its local validation loss before and after performing local training using hyperparameters
h, parameters w and a as shown in Algorithm (Line 1-5). The losses are denoted as &Efz,v and 55:,)7“,,
)

respectively. We compute the reward-signal r}(f indicating how well instantiation h performed in HO-phase e

as:
1O = S (69— £9,) ?
ceC

In the above equation v, refers to the weight of each client. After testing each sampled h we obtain a vector
r(®) where each entry corresponds to one hyperparameter instantiations in #: For instantiations h sampled
in HO-round e, r(®) contains the reward, all other entries are zero. The reward-estimates r are then updated
using r(®) by applying the update rule:

r=r+(icao(r® —1)+((1-i)e(acr—1)) (6)
Here, o is the Hadamard product, i is a binary vector indicating which hyperparameter instantiations were
sampled in exploration round e and « is a constant factor determining how aggressively the reward-estimate
should be updated. If a hyperparameter instantiation was sampled at round e, its reward in r will be
corrected by the error of the current reward estimate. All instantiations that were not sampled in e get scaled
down by « since well suited instantiations in an early stage of training might not be suitable in later stages
anymore. For example, in the beginning of training, an instantiation with a higher learning rate might be
more appropriate whereas in later training-stages lower learning rates should be chosen.

The use of the reward estimates is three-fold: (1) The hyperparameter instantiation with the highest reward
achieved so far will be used to train the supernet in the next NAS-phase. (2) Reward estimates determine
the number of communication-rounds in the HO-phase before the HO-phase is starting: For this, we first
compute the distribution 7 = softmax(r) over instantiations using the reward estimates r. This allows to
compute the entropy H:

H =Y In(r(h)) =(h) (7)

heH

The number of HO-rounds performed next is determined by « = rnd(8H). Here, 8 is a parameter to
control the exploration-exploitation trade-off. In the beginning, all rewards are set to 0, thus leading to
a uniform distribution which has the maximum entropy. Over time the reward-estimates reflect which
instantiations work well and which do not. Hence, 7 gets less uniform and the entropy decreases over time,
favoring exploitation over exploration in later training stages. (3) The distribution 7 is used to sample
hyperparameter-instantiations tested in the next HO-round.

Under review as submission to TMLR

Algorithm 1: FEATHERS method server side Algorithm 2: FEATHERS Framework Client-
Data: set of clients C, client weight v.Ve € C side Search stage
Data: hyperparameter search space H Data: Network parameters w, architecture a
Data: architecture search space A Data: Hyperparameter configuration h
1 initialize parameters w; Data: Data Xirain, Xoal, Yerain Yoal
2 initialize architecture a; 11y Lan(W, Xoal, Yoal);
3 initialize reward estimates r + O; 2 W < SGD(VwLan(W, Xtrain, Yirain), W, h);
4 m ¢ softmax(r); 3 a < SGD(Valan(W*, Xyal, Yval), a, h);
5 for D in phases do 4 W SG-D(VwEa,h(W; Xtrain7 ytrain)a w, h)7
6 if b == ho” then 5 l2 <~ La,h(w7 Xval7 YUal);
7 sample n hyperparameters h from ; 6 return i, l», w, a;
8 r, < 0;
9 for h in h do Algorithm 3: FEATHERS Framework Client-
10 l1, l2, w*, a* < client_step(h, w, a); side Evaluation stage
11 rp[h] < D e Ve - (14 =18y, Data: Network parameters w, architecture a
12 r < update_rewards(r, rp); Data: Hyperparameter configuration h
13 7+ softmax(r); Data: Data Xyrain, Xval, Yirain Yual
14 if p == 'nas’ then 1 ll — ﬁa,h(wa Xval7 yval);
15 h* < H{[arg maxy, r[h][; 2 W SGD(VwLan(W, Xirain, Yirain), W, h);
16 for j in nas_steps do 3 lo < Lan(W,Xpal; Yoal);
17 ‘ w, a < client_steps(h*, w, a); 4 return Iy, [y, w, a;

Neural Architecture Search. Once the HO-phase yields a hyperparameter instantiation h, the architecture
is optimized under h for a certain number of communication rounds as shown in Algorithm [1| (Line 14-17),
thereby solving:

m;n Ea7h(W*, Xyals Yval) (8)
where w* = arg H}},n Ca,h(W, Xitrains Yrain) (9)

Inspired by Differentiable Architecture Search (DARTS) (Liu et al., [2019)) we solve this optimization problem
as follows: We define our search space to be a space over cells. A cell is a Directed Acyclic Graph (DAG) in
which each node is a feature representation and each edge is a mized operation. The feature representation of
some node z is computed using all its parent-nodes and the mixed operations defining the edges between z
and its parent, i.e. for some node z; the representation is computed as: z; = ZK]. o7 (x%) Here, o(%i-%)
is a mixed operation and x* is the feature representation of node z;. A mixed operation connecting nodes z;
and zo is defined as a weighted sum over a set of operations O:

(21,22)
21,2 eXp(a)
ol71:72) — Z o (zleZ))O(X) (10)

oeO EO’EO eXp(a‘o’

Here, aﬁf“zf) are the architectural parameters to be learned. Since they fully describe the architecture, we

will refer to them as the architecture a from now on. Objective [§|is solved by an alternating optimization
of the architecture and model parameters. First, the architecture is updated by following the gradient
Valan(W,Xyai; Yoar) where W = w —)V La h(W, Xtrain, Yerain)- As a second step the model parameters
are updated by following the gradient Vi La n(W, Xtrain, Yirain). As shown in Algorithm [2 (Line 2-4),
parameter-updates are performed on client-side in each communication round and yield new architectural
and model parameters aj, and w/, for each client ¢ respectively. Since both, the architectural and model
parameters, are parameters of a non-convex optimization problem with a differentiable loss-function, we use
FedAvg to aggregate the model- and architecture parameters of all clients after each communication round.
We use two types of cells: Normal cells and reduction cells. Normal cells keep the dimensions of the input
while reduction cells apply an additional reduction-operation.

Discretizing the Architecture. Since differentiable NAS requires a continuous relaxation of the architec-
tural sapce A, the architecture learned by FEATHERS has to be discretized after training. This is done

Under review as submission to TMLR

Algorithm 4: FEATHERS Framework Client-

side Search stage with DP Algorithm 5: FEATHERS Framework Client-
Data: Parameters w and architecture a side Evaluation stage with DP
Data: Hyperparameter configuration h Data: Parameters w and architecture a
Data: Data X¢rain, Xval, Yirain Yval Data: Hyperparameter configuration h

1l Ea,h(wa Xval;yq)al); Data: Data Xirain, Xovals Yerain Yval

2 W SGD(Vw‘Ca,h(')a w, h)? 1 ll — La,h(wa Xvala yval);

3 aFSGD(% Zil va£a(')+Ni7aah); 2 W(—SGD(% ZzB;l Vwﬁa(')—l—Ni;

4w SGD(L P VLa() + Ni,w, h); 3 Iy Lan(w, Xoar, Yval);

5 lg < Lan(W, Xyal; Yval); 4 return Iy, lo, w, a;

6 return [, l5, w, a;

by selecting the top k operations with the highest architectural weight over all cells. Also, no operation is
allowed to connect the same two nodes. The discretized architecture is then retrained in the evaluation stage
where only the HO phase from Algorithm [I] is applied as discussed above. Each client performs standard
gradient descent w.r.t. the model parameters as shown in Algorithm [3| (Line 1-3).

3.3 Differential Privacy

Although in FL no data is exchanged between server and clients, the parameters sent to the server still leak
private information (Fredrikson et al. |2015). It has been shown that differential privacy (DP) can be used to
provably protect private information encoded in these parameters during Stochastic Gradient Descent (SGD)
(Abadi et al., [2016]). We adapt this notion to both, model parameters and architectural parameters since
both inherently depend on the data the model is trained on. DP was introduced in |Dwork| (2006) and is
defined as follows:

Definition 1. For any two datasets D, D' that differ in exactly one record a mechanism M is called
e-differential private if Vo : Pr{M (D) = z] < exp(e) Pr[M (D’) = z] holds where Pr{M (D) = z| refers to the
probability of mechanism M outputting x if executed on D.

In our case M is the learning procedure, i.e. SGD. Making SGD differential private can be achieved by
clipping gradients and adding Gaussian noise to the gradient of each sample w.r.t. the parameters, resulting
in an algorithm called DP-SGD (Abadi et al., |2016)). Updating model- and architectural parameters with
DP-guarantees then becomes:

B
6« agé S VoLa(w,x®) + N (0, 03C2T) (1)
i=1

In the above equation 6 € {w,a} refers to the model- or architectural parameters, B is the batch-size, N is
the normal distribution, oy is a scaling-parameter, Cy is the maximum gradient norm, I the identity matrix
and ay is the learning rate for parameters §. We use DP-SGD for learning both, the model parameters and
the architecture. Hence, our method enjoys all convergence- and privacy-guarantees given by DP-SGD which
can be controlled via the parameter € (Abadi et al.l 2016). As e inversely depends on noise-parameters o,
for high e-values DP-SGD achieves approximately SGD-convergence while losing privacy-guarantees. For
low € we obtain strong privacy guarantees while losing convergence-guarantees. It should be noted that
FedAvg averages the parameters that have been computed by the clients. Since DP is closed under arbitrary
post-processing, averaging does not break DP (Dwork et al., [2014)). Similarly, we apply DP on rewards sent
to the server to “hide” possible private information from data by adding small Gaussian noise with zero mean
to the rewards. Algorithm [4] shows the DP variant of the search stage of FEATHERS clients. It performs
the exact same computations as Algorithm [2] except that it adds independent noise N; to the gradient of
each sample 7 (Line 2-4). The noise is drawn from a Gaussian distribution with zero mean and variance
depending on the privacy budget e (lower € means higher variance). Algorithm [5|shows the DP variant of the
evaluation stage and performs the same computation as Algorithm [3] Again, the only difference is that the
DP variant adds independent Gaussian noise N; with zero mean and variance depending on € to each sample
i (Line 2).

Under review as submission to TMLR

3.4 Convergence Analysis

We now show that FEATHERS’ convergence properties in distributed settings coincide with the convergence
properties of DARTS in centralized settings with high probability, only scaled by a controllable factor arising
from using FedAvg. For simplicity we do not consider adding DP in our analysis.

Theorem 1. Given a joint distribution p(X1,...,Xn,y) over random variables X1, ..., X,y from which each
client ¢ € C from a set of clients C samples a dataset (X(©),y(©)) FEATHERS enjoys the same convergence
properties as DARTS in a centralized setting if applied on a dataset (X,y) where X = J,cc X(©) and

Y = Ueee v'9.

Proof. We treat the HO-phase of FEATHERS as an oracle and assume that it returns well-suited hyper-
parameters h. Once h was obtained, it is fixed for a certain number of communication rounds . In each
communication round i epochs of DARTS are performed locally on each client. Since we employ FedAvg
to average model parameters after ¢ local epochs, we exploit that FedAvg converges with rate (’)(i) (Li
et all 2020b). Since FedAvg converges and parameter-updates are only propagated during NAS-phases, it
follows that FEATHERS enjoys the same convergence properties as DARTS in each NAS-phase scaled by the
convergence of FedAvg O(L). O

Since the above proof assumes that our method selects well-suited hyperparameters h for each NAS-phase,
we will now show that the HO-phase converges with high probability in non-stationary bandit-environments.

Theorem 2. Given a fixed hyperparameter-space H and noisy, non-stationary rewards rl(lj) ~ N(ug), On)
where ,ug) is the expected value of the reward at iteration j, on its standard deviation and h € H, the
HO-strategy of FEATHERS is at most off by a - 3oy for learning rate o with probability 0.997 once h € H is

sampled.

Proof. Our proof is inspired by convergence results for e-greedy strategies as stated in (Sutton & Barto, [2018]).

We assume that | ,u(]) _ g)\ < § for all iterations and that we set 0 < o < 1 in the update rule. Since the

softmax-function cannot evaluate to a point-mass, for the probability of each hyperparameter instantiation
m;[h] > 0 holds. Thus, with j approaching infinity, each h € H will be sampled infinitely many times, i.e.
each instantiation will be sampled. At an iteration j, in the most extreme case a certain h € H has not
been sampled yet. Assume it gets sampled in iteration j. Since 7’ ~N (uh ,on) and the current estimate
reward-estimate ry, = 0, the update rule reads: r, = « - rh) Since we assume all rewards being Gaussian
distributed, the probability of obtaining a reward rl(lj) in the range of 3oy, is 0.997. Since 0 < a < 1 holds,
our estimate is at most +a - 3o, of w.r.t. ,u(]) in 99.7% of the cases. O
As the above only considers the case in which our algorithm terminates after some h € H is sampled, we also
have to consider the following case: Assume h is sampled at iteration j and a reward-estimate is obtained.
After that, h is not sampled for k subsequent iterations. The following theorem gives bounds for how much

off our estimate will be in this case.

(j+k)

Theorem 3. Under the assumptions of Theorem @ the reward estimate r; will be at most off by

a® ff) (ko + M(J)) assuming that h is sampled at iteration j and not sampled for k subsequent iterations.

Proof. By assumptions from Theorem [2] the mean will be shifted by at most k§ after k steps. Since the update

rule for ry, is defined as r, = ary, the reward estimate after k iterations in which h is not sampled is o*r G).

It follows that, k iterations after h was sampled, the reward estimate is off by at most a*r (J — (ko + uhj)). D

It turns out that the above bound can be controlled by setting a < (1 + uk(f))% assuming we have access to

) (see Appendix F). In the case ptD — G) = §, this relation guarantees that our reward estimate of
some h is still optimal if h was not sampled for £ HO-rounds. Since we can assume that the loss decreases
between HO-rounds, i.e. pUtY — 40) < 0, the assumption 0 < o < 1 used in the above theorems is not

Under review as submission to TMLR

violated. Using Theorem [2f we can assume that we have an estimate of x) fulfilling at least pu/) 4 o - 30y,
with high probability for some h sampled the first time in round j. Hence, the errors of reward-estimates can
be controlled within reasonable bound given by Theorem [3]| in subsequent rounds.

4 Experiments and Results

In order to empirically demonstrate that FEATHERS is capable of jointly optimizing neural architectures
and hyperparameters in FL settings with privacy guarantees, we investigate the following three questions:

Q1. Can FEATHERS compete with state of the art HO- and NAS-methods in FL settings at various
scales and label skews (referred to as non-i.i.d.)?

Q2. Does FEATHERS adjust the choices of instantiations over time to account for dynamics of training
process?

Q3. How well does FEATHERS perform if DP is employed to preserve privacy with respect to privacy-
budget €7

We next describe our experiment protocol including the employed datasets before presenting our results in
detail.

4.1 Experimental Protocol

In our experiments, we analyzed FEATHERS on three image classification tasks: Fashion-MNIST which
contains black-white images of 10 different articles of clothing to be categorized as well as CIFAR-10 and
Tiny-Imagenet which contain colored images of 10/200 different categories respectively. The fourth task is a
binary classification problem on a fraud detection dataset which contains anonymized bank-account data
from bank-customers based on which the fraud risk (high or low) has to be predicted (see Appendix A). All
datasets were partitioned randomly on a set of clients such that each client holds the approximately same
number of samples. Since in FL it is common to have data unequally distributed across clients, we also
conducted experiments in which we introduced a label skew in the data (referred to as non-i.i.d. subsequently)
.We first executed the search stage of FEATHERS using a search space over CNN/MLP-architectures. For
the evaluation-stage we used the best normal cell and reduction cell obtained in the search stage to build
up a larger network (validation networks). For discretizing the architecture k = 2 was chosen in order to
be comparable to other cell-based NAS-methods. We then retrained the validation network and optimized
hyperparameters using the same HO-strategy as in the search stage. The results of the validation network were
then reported. Since we assume a cross-silo setting, we allowed all clients to participate in each communication
round. Additionally we tested both FEATHERS with and without DP for fraud detection, to show that
adding DP does not prevent learning a suitable architecture. Appendix B contains a detailed description of
our search space.

We implemented FEATHERS in Python based on the flower framework for federated learning. All models
were built using PyTorch and the clients were distributed on Nvidia DGX-clusters with A-100 40GB GPUs.
Also the server was deployed on the same cluster, however, using a separate GPU to simulate a cross-silo
federated learning setting with parallel client-execution.

4.2 Results

We are now ready to answer the posed research questions and will elaborate on each of them in more detail.

(Q1) FEATHERS achieves SOTA, independently of scale and label skew. First, we show that
FEATHERS, while performing both HO and NAS, achieves state of the art results on Fashion-MNIST,
CIFAR-10 and Tiny-Imagenet in Table Despite DARTS being based on hyperparameters that have
traditionally manually been tuned for best results by humans, our method beats DARTS (94% vs. 92%
on Fashion-MNIST, 93% vs. 92% on CIFAR-10, 0.69% vs. 0.67% on Tiny-Imagenet) in most distributed

Under review as submission to TMLR

Table 2: FEATHERS outperforms state of the art federated NAS- and HO-methods while being
more flexible. DARTS, FedEx and FEATHERS were compared in different federated learning settings
as described in Section [} Each experiment was performed 5 times and the mean accuracy and standard
deviation are reported. Colors are interpolated from green to blue (high accuracy to low accuracy).

Dataset Fashion-MNIST CIFAR-10 Tiny-Imagenet
ii.d non-i.i.d. iid. non-i.i.d. iid. non-i.id.
DARTS (f, 5 clients)f 0.93 £0.01 | 0.92 £ 0.02

DARTS (f, 10 clients)’ 0.68 & 0.02

DARTS (£, 100 clients)T
FedEx (5 clients)*
FedEx (10 clients)*
FedEx (100 clients)*

FEATHERS (5 clients) 0.94£0.01 0.93=£0.02 | 0.93+0.03
FEATHERS (10 clients) | 0.93+0.01 0.93+0.03 | 0.92 &£ 0.02
FEATHERS (100 clients) | 0.94 £0.02 0.93 &+ 0.03
*Training performed using architecture found by DARTS.

1The same hyperparameter-settings as described in 1 2019) were used.

Table 3: FEATHERS does not add significant overhead. FEATHERS’ runtime is approximately 0.4
GPU-days higher than the runtime of DARTS. FedEx has lower runtimes compared to both, FEATHERS and
DARTS, mainly because it does not optimize the architecture and performs less exploration than FEATHERS.
All runtimes are reproted in GPU-days.

0.69+0.02 0.69 £0.03
0.68+0.02 0.68 £0.02

0.68+0.03 0.67 +0.03

Fsahion-MNIST CIFAR-10 Tiny-Imagenet Fraud Detection
DARTS (5 Clients) 1.8 2.1 3.1 0.4
DARTS (10 Clients) 1.7 2.0 2.9 0.3
DARTS (100 Clients) 1.5 1.8 2.7 0.2
FedEx (5 Clients) 0.8 0.9 1.3 0.09
FedEx (10 Clients) 0.8 0.8 1.3 0.07
FedEx (100 Clients) 0.6 0.7 1.1 0.05
FEATHERS (5 Clients) 2.2 2.5 3.6 0.6
FEATHERS (10 Clients) 2.1 24 3.5 0.6
FEATHERS (100 Clients) 1.9 2.1 3.1 0.35

learning settings while optimizing for a larger set of parameters. The same holds for label-skew scenarios.
Introducing label skews does not seem to adversely affect its performance. However, if label-skew is present,
a slight increase in the variance of our results can be seen.

Second, to assess scalability of FEATHERS, we consider variance in results for increasing number of clients
(marked in the rows of Table . We find that, in contrast to FedEx, the number of participating clients does
not seem to have a negative influence on the performance of FEATHERS. We hypothesize that FEATHER’s
stability is due to more extensive exploration. For an increasing number clients, each client holds a smaller
subset of data since the datasets used have fixed size. Thus the stochastic gradients per client tend to have a
higher variance, which in turn leads to higher variances in parameter-changes across clients. FEATHERS
tests a set of hyperparameter instantiations on a frozen model before applying them for parameter-updates,
whereas FedEx directly applies the chosen instantiations. Consequently, higher variance of gradients and
FedEx’ higher risk of choosing inappropriate hyperparameters can lead to poorly performing models. In
contrast, FEATHERS tends to choose “safer” instantiations.

Finally, in terms of runtime, FEATHERS (~ 2.5 GPU-days) does not add significant overhead compared to
DARTS (~ 2 GPU-days). The additional HO-phase during the search stage adds an overhead of approximately
0.1-0.8 GPU-days, depending on the number of instantiations tested in each HO-round. In contrast, FedEx’
runtime (~ 1 GPU-day) is much lower compared to DARTS and FEATHERS since FedEx does not perform

Under review as submission to TMLR

Learning Rate Weight Decay Momentum Arch. Learning Rate Arch. Weight Decay
0.012+ 0.012+ 14 0.012+ 0.012- 7
0.01 6
0.008 >
0.006 4
3
0.004 g
AN <X 2
0.002 - S / ¢ 002
J BN o
0-)| ¥ 0> NAS Round

Figure 22 FEATHERS adjusts hyperparameters over time. The choices of hyperparameters are
adapted during training to optimize the validation loss. In earlier stages (blue lines) higher learning rates
are chosen whereas in later stages of training (red lines) lower learning rates are chosen. The figure shows
hyperparameter-selections of three FEATHERS-runs on CIFAR-10. (Best viewed in color)

0.95 HEE NAS-Bench-201
mEm FEATHERS
0.90 =
go.ss a
3 oy
%] [
<0.80 E
0.75 mEm FEATHERS 5 Clients
mEm FEATHERS 10 Clients
BN FEATHERS 100 Clients
0.70 5 Clients 10 Clients 100 Clients 0.60 063 065 068 070 073 075 078 080
Number of Clients F1-Score
Figure 3: FEATHERS beats NAS-Bench- Figure 4: DP retains performance. For ¢ > 1,
201. FEATHERS’ HO phase improves the per- FEATHERS achieves nearly the same perfor-
formance of the final model compared to NAS- mance with DP as without DP regardless of the
Bench-201. Note that NAS-Bench-201 only pro- number of clients. For low e-values (i.e. stronger
vides averaged results in centralized settings. privacy-guarantees), the performance decreases.

NAS and that it performs less exploration than our method. See Table [3] for a detailed listing of runtimes
w.r.t. datasets and number of clients.

(Q2) FEATHERS dynamically adjusts hyperparameters. Figure [2| shows the hyperparameters
selected by FEATHERS over time for three runs on CIFAR-10. We observe that our method chooses more
"cautious* hyperparameters than engineers usually do. For example, in DARTS it is common to start with a
learning rate of 0.025, FEATHERS however chooses much lower learning rates most of the time. Presumably
this is due to the properties of our HO-algorithm: In the first HO-round it samples and tests a small subset
of instantiations from H before greedily selecting the one leading to the highest decrease in validation loss.
In this concrete example, this choice might lead FEATHERS to choose a lower learning rate than 0.025,
simply because there was no better sample. In subsequent HO-rounds the goal is to learn a distribution over
instantiations maximizing the reward in the long run. As SGD never truly converges due to its inherent
stochasticity, a smaller learning rate is ultimately beneficial in the later stages of training, in order to avoid
heavily perturbing away from a minimum (i.e. too large learning rates will “overshoot”).

10

Under review as submission to TMLR

Consequently, FEATHER’s ”cautious® instantiations entail more stable convergence. In that sense, FEATH-
ERS mimics an annealing mechanism in later training stages, which find frequent use in Deep Learning
problems. To assess the effect of dynamic hyperparameter adjustments, we compare FEATHERS with
NAS-Bench-201 (Dong & Yang), [2020). This benchmark provides a database which allows to query the
performance of architectures trained under fixed and manually tuned hyperparameters. The architectures in
NAS-Bench-201 were chosen such that they cover widely used architecture search space, including ours. We
can easily assess whether our additional HO mechanism helps improving model performance by comparing to
NAS-Bench-201: We first run the search stage of FEATHERS to identify an architecture for 5/10/100 clients.
Note that the architecture found can vary for a different number of clients. Then, we compare the accuracy
of the model trained during FEATHER'’s validation stage (with adjustments of hyperparameters) with the
accuracy the same architecture reported in NAS-Bench-201 on CIFAR-10. Figure [3] demonstrates that our
dynamic adjustment helps improving model performance. This observation further supports our claim that
our method adjusts hyperparameters appropriately over time.

(Q3) FEATHERS preserves privacy. To demonstrate that FEATHERS provides privacy guarantees
without sacrificing predictive performance, we performed classification on the fraud detection dataset. The
hyperparameter search space and the architecture search space are described in Appendix B. The privacy
budgets €,,¢e, € {0.2,0.25,0.5,1.0,1.5,2.0,00} were both set to equal values in all experiments. It is
noteworthy that a privacy budget of oo corresponds to FEATHERS without DP. The search stage was
performed for 100 communication rounds, all other parameters were set as above. Note that the dataset is
heavily skewed (95% negative class, 5% positive class), we thus report Fl-scores instead of accuracy. We
further used oversampling on the client-side to account for label-skew. Figure [4] visualizes the results for
different privacy budgets e. For ¢ > 1 we obtained a F1-score of approximately 0.77. This means, FEATHERS-
DP performs equally well as FEATHERS as long as € is chosen larger to be larger than 1. Decreasing € adds
more noise on the gradients which increases the privacy level while disturbing the gradient-signal. For ¢ < 0.5
we obtained a significant decrease of the F1-score. This confirms that the gradients carrying less (private)
information also get less useful for parameter-updates.

In summary, FEATHERS-DP retains the performance of FEATHERS for appropriate €. Finally, we emphasize
that adding DP came with approximately 1.5-2 times longer runtimes on our setup. A reasonable trade-off to
accommodate privacy considerations. The underlying reason is that for DP the gradient of each sample has
to be manipulated, resulting in poorer parallel execution of automatic differentiation. Hence, two trade-offs
have to be considered when using DP: (1) Finding a good balance between a high performing model and
privacy guarantees and (2) determining whether a longer runtime for training is still practically feasible to
protect privacy.

5 Conclusion

We have introduced FEATHERS, a federated learning method that efficiently optimizes both neural architec-
tures and hyperparameters jointly, while preserving privacy of the underlying training-data. Our empirical
investigation demonstrates that FEATHERS is more than competitive with state of the art NAS-algorithms,
despite popular approaches like DARTS only performing a subset of the above, while also optimizing in a
larger space of hyperparameters.

FEATHERS now allows for a myriad of real-world problems to be addressed fully, e.g. tasks surrounding
finance, defence, or healthcare. As one example, hospitals can use it to collaboratively train cancer-detection
models without sharing sensible patient-data and without revealing the patient’s identity through parameters.
That said, we note that fully automating critical systems could be risky and a human in-the-loop should
evaluate the quality of the model found before it is deployed and monitor its prediction.

From a technical perspective, it is further desirable to relax FEATHER’s requirement of discrete hyperparame-
ter search spaces in order to properly account for continuous hyperparameters in future work. Incorporating a
state reflecting the current state of training in HO-phases to allow for more informed hyperparameter choices
instead of a stateless bandit approach is a promising additional direction. Lastly, considering FL-scenarios

11

Under review as submission to TMLR

other than the cross-silo set-up considered in this work is intriguing, also with respect to enabling above
mentioned applications.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016.

Shaashwat Agrawal, Sagnik Sarkar, Mamoun Alazab, Praveen Kumar Reddy Maddikunta, Thippa Reddy
Gadekallu, and Quoc-Viet Pham. Genetic cfl: Hyperparameter optimization in clustered federated learning.
Computational Intelligence and Neuroscience, 2021.

Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. Differentially private federated bayesian
optimization with distributed exploration. Advances in Neural Information Processing Systems (NeurIPS),
2021.

Ashraf Darwish, Aboul Ella Hassanien, and Swagatam Das. A survey of swarm and evolutionary computing
approaches for deep learning. Artificial Intelligence Review, 2020.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search.
In International Conference on Learning Representations, 2020.

Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener
(eds.), Automata, Languages and Programming, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 2014.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2015.

Edgar Galvan and Peter Mooney. Neuroevolution in deep neural networks: Current trends and future
challenges. IEEFE Transactions on Artificial Intelligence, 2021.

Chaoyang He, Erum Mushtaq, Jie Ding, and Salman Avestimehr. Fednas: Federated deep learning via neural

architecture search. Workshop on Neural Architecture Search and Beyond for Representation Learning
(CVPR), 2020a.

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search via
mixed-level reformulation. In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern
Recognition, 2020b.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends in Machine Learning, 2021.

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, and Ameet Talwalkar.
Federated hyperparameter tuning: Challenges, baselines, and connections to weight-sharing. Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Antti Koskela and Antti Honkela. Learning rate adaptation for federated and differentially private learning.
arXiv:1809.03852, 2018.

12

Under review as submission to TMLR

Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet, and Bernard Ghanem. Sgas:
Sequential greedy architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg
on non-iid data. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020, 2020b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In International
Conference on Learning Representations (ICLR), 2019.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, 2017.

Hesham Mostafa. Robust federated learning through representation matching and adaptive hyper-parameters.
arXiv:1912.13075, 2019.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture search
via parameter sharing. CoRR, 2018.

Ishika Singh, Haoyi Zhou, Kunlin Yang, Meng Ding, Bill Lin, and Pengtao Xie. Differentially-private federated
neural architecture search. arXiv:2006.10559, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of the IEEE international conference on computer
vision, 2017.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiw:1812.09926, 2018.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. Enhanced
membership inference attacks against machine learning models. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2022.

Yi Zhou, Parikshit Ram, Theodoros Salonidis, Nathalie Baracaldo, Horst Samulowitz, and Heiko Ludwig.
Flora: Single-shot hyper-parameter optimization for federated learning. arXiv:2112.08524, 2021.

Hangyu Zhu, Haoyu Zhang, and Yaochu Jin. From federated learning to federated neural architecture search:
a survey. Complex € Intelligent Systems, 2021.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International Conference
on Learning Representations (ICLR), 2017.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for low-resource neural
machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures

for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), 2018.

13

	Introduction
	Related Work
	FEATHERS
	Problem Definition
	FEATHERS Architecture
	Differential Privacy
	Convergence Analysis

	Experiments and Results
	Experimental Protocol
	Results

	Conclusion

