
Under review as a conference paper at ICLR 2024

TEXTBOOKS ARE ALL YOU NEED

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce phi-1, a new large language model for code, with significantly
smaller size than competing models: phi-1 is a Transformer-based model with
1.3B parameters, trained for 4 days on 8 A100s, using a selection of “textbook
quality” data from the web (6B tokens) and synthetically generated textbooks
and exercises with GPT-3.5 (1B tokens). Despite this small scale, phi-1 attains
pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP. It also displays sur-
prising emergent properties compared to phi-1-base, our model before our fine-
tuning stage on a coding exercises dataset, and phi-1-small, a model with 350M
parameters trained with the same pipeline that still achieves 45% on HumanEval.

1 INTRODUCTION

The art of training large artificial neural networks has made extraordinary progress in the last decade,
especially after the discovery of the Transformer architecture Vaswani et al. (2017), yet the science
behind this success remains limited. Amidst a vast and confusing array of results, a semblance of
order emerged around the same time as Transformers were introduced, namely that performance
improves somewhat predictably as one scales up either the amount of compute or the size of the
network Hestness et al. (2017), a phenomenon which is now referred to as scaling laws Kaplan
et al. (2020). The subsequent exploration of scale in deep learning was guided by these scaling laws
Brown et al. (2020), and discoveries of variants of these laws led to rapid jump in performances
Hoffmann et al. (2022). In this work, following the footsteps of Eldan and Li Eldan & Li (2023), we
explore the improvement that can be obtained along a different axis: the quality of the data. It has
long been known that higher quality data leads to better results, e.g., data cleaning is an important
part of modern dataset creation Raffel et al. (2020), and it can yield other side benefits such as
somewhat smaller datasets Longpre et al. (2023); Yu et al. (2023) or allowing for more passes on
the data Muennighoff et al. (2023). The recent work of Eldan and Li on TinyStories (a high quality
dataset synthetically generated to teach English to neural networks) showed that in fact the effect of
high quality data extends well past this: improving data quality can dramatically change the shape
of the scaling laws, potentially allowing to match the performance of large-scale models with much
leaner training/models. In this work we go beyond the initial foray of Eldan and Li to show that
high quality data can even improve the SOTA of large language models (LLMs), while dramatically
reducing the dataset size and training compute. Importantly, smaller models requiring less training
can significantly reduce the environmental cost of LLMs Bender et al. (2021).

We focus our attention on LLMs trained for code, and specifically writing simple Python functions
from their docstrings as in Chen et al. (2021). The evaluation benchmark proposed in the latter work,
HumanEval, has been widely adopted for comparing LLMs’ performance on code. We demonstrate
the power of high quality data in breaking existing scaling laws by training a 1.3B-parameter model,
which we call phi-1, for roughly 8 passes over 7B tokens (slightly over 50B total tokens seen)
followed by finetuning on less than 200M tokens. Roughly speaking we pretrain on “textbook
quality” data, both synthetically generated (with GPT-3.5) and filtered from web sources, and we
finetune on “textbook-exercise-like” data. Despite being several orders of magnitude smaller than
competing models, both in terms of dataset and model size (see Table 1), we attain 50.6% pass@1
accuracy on HumanEval and 55.5% pass@1 accuracy on MBPP (Mostly Basic Python Programs),
which are one of the best self-reported numbers using only one LLM generation. In Section 2, we
give some details of our training process, and we discuss evidence for the importance of our data
selection process in achieving this result. Moreover, despite being trained on much fewer tokens
compared to existing models, phi-1 still displays emergent properties. In Section 3 we discuss these

1

Under review as a conference paper at ICLR 2024

Date Model Model size Dataset size HumanEval MBPP
(Parameters) (Tokens) (Pass@1) (Pass@1)

2021 Jul Codex-300M Chen et al. (2021) 300M 100B 13.2% -
2021 Jul Codex-12B Chen et al. (2021) 12B 100B 28.8% -
2022 Mar CodeGen-Mono-350M Nijkamp et al. (2023b) 350M 577B 12.8% -
2022 Mar CodeGen-Mono-16.1B Nijkamp et al. (2023b) 16.1B 577B 29.3% 35.3%
2022 Apr PaLM-Coder Chowdhery et al. (2022) 540B 780B 35.9% 47.0%
2022 Sep CodeGeeX Zheng et al. (2023) 13B 850B 22.9% 24.4%
2022 Nov GPT-3.5 OpenAI (2023) 175B N.A. 47% -
2022 Dec SantaCoder Allal et al. (2023) 1.1B 236B 14.0% 35.0%
2023 Mar GPT-4 OpenAI (2023) N.A. N.A. 67% -
2023 Apr Replit Replit (2023) 2.7B 525B 21.9% -
2023 Apr Replit-Finetuned Replit (2023) 2.7B 525B 30.5% -
2023 May CodeGen2-1B Nijkamp et al. (2023a) 1B N.A. 10.3% -
2023 May CodeGen2-7B Nijkamp et al. (2023a) 7B N.A. 19.1% -
2023 May StarCoder Li et al. (2023) 15.5B 1T 33.6% 52.7%
2023 May StarCoder-Prompted Li et al. (2023) 15.5B 1T 40.8% 49.5%
2023 May PaLM 2-S Anil et al. (2023) N.A. N.A. 37.6% 50.0%
2023 May CodeT5+ Wang et al. (2023) 2B 52B 24.2% -
2023 May InstructCodeT5+ Wang et al. (2023) 16B 52B 35.0% -
2023 Jun WizardCoder Luo et al. (2023) 16B 1T 57.3% 51.8%
2023 Jun phi-1 1.3B 7B 50.6% 55.5%

Table 1: We use self-reported scores whenever available. Despite being trained at vastly smaller scale, phi-1
outperforms several competing models on HumanEval and MBPP.

emergent properties, and in particular we confirm the hypothesis that the number of parameters
plays a key role in emergence (see e.g., Wei et al. (2022)), by comparing the outputs of phi-1 with
those of phi-1-small, a model trained with the same pipeline but with only 350M parameters. The
methodology used in this section is reminiscent of the Sparks of AGI paper Bubeck et al. (2023) for
beyond-benchmark evaluation. Finally in Section 4 we discuss alternative benchmarks to evaluate
the model and in Section 5 we study possible contamination of our training data with respect to
HumanEval. We release the model for usage and evaluation by the broader community, but omit
some details of the synthetic data generation, for proprietary reasons1.

More related works. Our work is part of the recent program of using LLMs for program synthesis,
see Chen et al. (2021); Nijkamp et al. (2022) for more references on this. Our approach is also part of
the emerging trend of using existing LLMs to synthesize data for the training of new generations of
LLMs, Wang et al. (2022); Taori et al. (2023); Mukherjee et al. (2023); Lin et al. (2023); Jung et al.
(2023). There is an ongoing debate about whether such “recursive training” might lead to narrower
scope for the resulting LLM Shumailov et al. (2023); Gudibande et al. (2023), see Mukherjee et al.
(2023) for a counterviewpoint. Note that in this paper we focus on a narrow task, similarly to Jung
et al. (2023), where it is plausible to improve upon the teacher LLM (as is argued in the latter paper).

2 TRAINING DETAILS AND THE IMPORTANCE OF HIGH-QUALITY DATA

As alluded to in the title of the paper, the central ingredient our model relies on textbook-quality
training data. We devote this section primarily to our data curation ideas 2.

Previous work used standard sources of text and code data for code generation, such as The Stack
Kocetkov et al. (2022) and other web-based datasets (e.g., StackOverflow). While these form large
and diverse corpus covering broad range of topics and use cases, we argue that these sources are not
optimal for teaching the model how to reason and plan algorithmically. Based on manual inspection
we observe that many of these snippets are not very instructive for learning the basics of coding:

• Many samples are not self-contained, meaning that they depend on other modules or files
that are external to the snippet, making them hard to understand without additional context.

• Typical examples do not involve any meaningful computation, but rather consist of trivial
or boilerplate code, such as defining constants, parameters, or configuring GUI elements.

• Samples that do contain algorithmic logic are often buried inside complex or poorly docu-
mented functions, making them difficult to follow or learn from.

• The examples are skewed towards certain topics or use cases, resulting in an unbalanced
distribution of coding concepts and skills across the dataset.

1In recent past, other highly influential papers like Brown et al. (2020) and Lewkowycz et al. (2022) have
also similarly withheld dataset details for competitive advantage.

2Our model architecture and training methods are largely conventional and discussed in the Appendix D.

2

Under review as a conference paper at ICLR 2024

Figure 1: Pass@1 accuracy (%) on HumanEval. The grouping of bar plots correspond to the usual scaling
dimensions of either increasing the compute time (more passes on the data, here from 26B tokens seen to 76B)
or increasing the number of parameters of the model (here from 350M to 1.3B). Each column within a group
corresponds to different training datasets: (A) The first (orange) column represents the performance of models
trained on the standard datasets of deduplicated Python files from The Stack and StackOverflow; (B) The
second (light green) column represents the performance of models trained with our new dataset composition
CodeTextbook; (C) Finally, the third (dark green) column corresponds to the respective second column models
finetuned on our new CodeExercises dataset. For the 1.3B models, phi-1 and phi-1-base are checkpoints after
training on 51B tokens and The Stack+ model was trained for 76B tokens. We highlight that even without
any finetuning, our phi-1-base model trained on CodeTextbook dataset achieves 29% HumanEval performance
with a mere 1.3B parameter model. The previous smallest model that achieves close to 30% performance on
HumanEval was Replit-Finetuned at 2.7B parameters, which was trained with 100 times more training tokens
than us Replit (2023). On top of this, finetuning on our CodeExercises dataset to obtain phi-1 not only gives us
our top performance of 51% on HumanEval, but also unlocks unexpected coding capabilities (see Section 3).

One can only imagine how frustrating and inefficient it would be for a human learner to try to
acquire coding skills from these datasets, as they would have to deal with a lot of noise, ambiguity,
and incompleteness in the data. We hypothesize that these issues also affect the performance of
language models, as they reduce the quality and quantity of the signal that maps natural language
to code. We conjecture that language models would benefit from a training set that has the same
qualities as a good “textbook”: it should be clear, self-contained, instructive, and balanced.

In this work, we address this challenge directly and show that by intentionally selecting and gener-
ating high-quality data, we can achieve state-of-the-art results on code-generation tasks with a much
smaller model and less compute than existing approaches. Our training relies on three main datasets:

• A filtered code-language dataset, which is a subset of The Stack and StackOverflow, ob-
tained by using a language model-based classifier (consisting of about 6B tokens).

• A synthetic textbook dataset of <1B tokens of GPT-3.5 generated Python textbooks.
• A small synthetic exercises dataset of ∼180M tokens of Python exercises and solutions.

We describe those datasets in more detail in the next subsections. Taken together, the above datasets
contain less than 7B tokens. We refer to the combination of filtered code-language and synthetic
textbook datasets as “CodeTextbook” and use it in the pretraining phase to obtain our base model
phi-1-base—this model already achieves a competitive HumanEval performance of 29%. Then we
use the 180M token synthetic exercises dataset, referred to as “CodeExercises”, to finetune our phi-
1-base model to obtain phi-1. Despite the small size of the “CodeExercises” dataset, finetuning
with this dataset is crucial not only for large improvements in generating simple Python function as
shown in Figure 1, but more broadly to unlock many interesting emergent capabilities in our phi-1
model that are not observed in phi-1-base (see Section 3).

2.1 FILTERING OF EXISTING CODE DATASETS USING A TRANSFORMER-BASED CLASSIFIER

We begin with publicly available Python code datasets: we use the Python subset of the deduplicated
version of The Stack and the StackOverflow, which together contain over 35 million files/samples,
totalling over 35B tokens. We annotate the quality of a small subset of these files (about 100k
samples) using GPT-4: given a code snippet, the model is prompted to “determine its educational
value for a student whose goal is to learn basic coding concepts”.

3

Under review as a conference paper at ICLR 2024

We then use this annotated dataset to train a random forest classifier that predicts the quality of
a file/sample using its output embedding from a pretrained codegen model as features. We note
that unlike GPT-3.5, which we use extensively to generate synthetic content (discussed below),
we use GPT-4 minimally only for annotations on the quality of a small subset of The Stack and
StackOverflow samples. We thus view our usage of GPT-4 as merely a way to avoid tedious human-
annotation efforts Dubois et al. (2023).

Educational values deemed by the filter
High educational value

import torch
import torch.nn.functional as F
def normalize(x, axis=-1):

"""Performs L2-Norm."""
num = x
denom = torch.norm(x, 2, axis,
keepdim=True).expand_as(x) + 1e-12
return num / denom

def euclidean_dist(x, y):
"""Computes Euclidean distance."""
m, n = x.size(0), y.size(0)
xx = torch.pow(x, 2).sum(1, keepdim=
True).expand(m, n)
yy = torch.pow(x, 2).sum(1, keepdim=
True).expand(m, m).t()
dist = xx + yy - 2 * torch.matmul(x,
y.t())
dist = dist.clamp(min=1e-12).sqrt()
return dist

def cosine_dist(x, y):
"""Computes Cosine Distance."""
x = F.normalize(x, dim=1)
y = F.normalize(y, dim=1)
dist = 2 - 2 * torch.mm(x, y.t())
return dist

Low educational value

import re
import typing
...
class Default(object):

def __init__(self, vim: Nvim) -> None:
self._vim = vim
self._denite: typing.Optional[

SyncParent] = None
self._selected_candidates: typing.

List[int] = []
self._candidates: Candidates = []
self._cursor = 0
self._entire_len = 0
self._result: typing.List[typing.Any]

= []
self._context: UserContext = {}
self._bufnr = -1
self._winid = -1
self._winrestcmd = ''
self._initialized = False
self._winheight = 0
self._winwidth = 0
self._winminheight = -1
self._is_multi = False
...

Our filtering boosts model performance significantly even without the synthetic datasets discussed
below: for 350M parameter models trained on unfiltered Stack (deduplicated python) and Stack-
Overflow, the HumanEval performance saturates at 12.19% even after training for 96k steps (200B
tokens), while training on the filtered subset achieves 17.68% on HumanEval after 36k steps. We
further improve this to 20.12% (reported in Figure 1) by training on a combination of the filtered
dataset and the synthetic textbooks dataset discussed below.

2.2 CREATION OF SYNTHETIC TEXTBOOK-QUALITY DATASETS

One of the main challenges in creating a high-quality dataset for code generation is ensuring that
the examples are diverse and non-repetitive. By diversity, we mean that the examples should cover
a wide range of coding concepts, skills, and scenarios, and that they should vary in their level of
difficulty, complexity, and style. Diversity is important for several reasons: it exposes the language
model to different ways of expressing and solving problems in code, it reduces the risk of overfitting
or memorizing specific patterns or solutions, and it increases the generalization and robustness of
the model to unseen or novel tasks. However, achieving diversity is not trivial, especially when
using synthetic data generated by another language model. Simply prompting the model to produce
a coding textbook or a set of exercises, even with some variation in the instructions or the parame-
ters, will likely result in a very homogeneous and redundant dataset, where the same concepts and
solutions are repeated over and over with minor changes. This is because language models tend to
follow the most probable or common paths given their training data and their priors, and they lack
the creativity or the incentive to explore alternative or novel ways of generating code. Therefore, one
needs to find the right “trick” that will induce the language model to be more creative and diverse
in its output, while still maintaining the quality and the coherence of the examples. Inspired by
Eldan & Li (2023), where a diverse set of short stories were created by including a random subset of
words chosen from some fixed vocabulary in the prompt and requiring that they would be somehow
combined in the generated text, we look for ways to inject randomness into the prompt in a way that
gives rise to the generation of a diverse dataset.

4

Under review as a conference paper at ICLR 2024

THE SYNTHETIC TEXTBOOK DATASET

This dataset consists of less that 1B tokens of GPT-3.5 generated Python textbooks, synthesized to
provide a high-quality source of natural language heavy text interleaved with relevant code snippets.
We further targeted the content of these textbooks to cover topics that promote reasoning and basic
algorithmic skills. Here, diversity is obtained by providing constraints on topics and target audience
of the generated textbook. The following is an example text from the synthetic textbook:

To begin, let us define singular and nonsingular matrices. A matrix is said to be singular
if its determinant is zero. On the other hand, a matrix is said to be nonsingular if its
determinant is not zero. Now, let's explore these concepts through examples.

Example 1: Consider the matrix A = np.array([[1, 2], [2, 4]]). We can check if this matrix
is singular or nonsingular using the determinant function. We can define a Python

function, `is_singular(A)`, which returns true if the determinant of A is zero, and false
otherwise.

import numpy as np
def is_singular(A):

det = np.linalg.det(A)
if det == 0:

return True
else:

return False

A = np.array([[1, 2], [2, 4]])
print(is_singular(A)) # True

THE CODEEXERCISES DATASET

This is a small synthetic exercises dataset consisting of less than 180M tokens of Python exercises
and solutions. Each exercise is a docstring of a function that needs to be completed. The goal of this
dataset is to align the model to perform function completion tasks based on natural language instruc-
tions. This dataset was also generated by GPT-3.5, where the main means of eliciting diversity is by
constraining the function names. For this dataset in particular, we conduct explicit decontamination
and alternative evaluations in the following sections to ensure that problems similar to those from
HumanEval benchmark are not seen during finetuning. Example exercise:

def valid_guessing_letters(word: str, guesses: List[str]) -> List[str]:
"""
Returns a list of valid guessing letters, which are letters that have not been guessed
yet and

are present in the word.
Parameters:
word (str): The word to guess.
guesses (List[str]): A list of letters that have already been guessed.
Returns:
List[str]: A list of valid guessing letters.
"""
valid_letters = []
for letter in word:

if letter not in guesses and letter not in valid_letters:
valid_letters.append(letter)

return valid_letters

3 SPIKES OF MODEL CAPABILITY AFTER FINETUNING ON CODEEXERCISES

Figure 1 showed that the largest improvement in HumanEval resulted from finetuning on the small
CodeExercises dataset (<200M tokens). CodeExercises consist exclusively of short Python tasks us-
ing only basic Python libraries. In this section, we demonstrate that, quite remarkably the model af-
ter finetuning also exhibits a substantial improvement in executing tasks that are not featured
in the finetuning dataset. This includes managing intricate algorithmic tasks and using external
libraries. This suggests that our finetuning process might have helped the model in reorganizing and
consolidating the knowledge acquired during pretraining, even if such knowledge is not explicitly
present in our CodeExercises dataset. In this section we will focus on qualitatively comparing and
contrasting the capabilities of our finetuned model phi-1 and its pretrained base model phi-1-base.

5

Under review as a conference paper at ICLR 2024

3.1 FINETUNING IMPROVES THE MODEL’S UNDERSTANDING

Using a simple Python function that we created ourselves, we observe in Figure 2 that the model
shows a much higher level of understanding and compliance with instructions after finetuning. In
particular, phi-1-base struggles with the logical relationships in the prompts, while phi-1 can inter-
pret the question and generate the answer correctly. In this example, even our 350M phi-1-small
model shows some level of understanding of the problem even though the final solution is wrong.

Prompt:
""" Alice, Bob and Charles are playing games. Alice first pick a random number from 333

to 678, Bob then pick a number starting from Alice’s number to 888, Charles then pick a

number starting from 123 to Bob’s number. Alice gets one point if Alice’s number minus

Charles’s number is divisible by the floor of the square root of Bob’s number, otherwise

Bob gets one point. Simulate Alice’s and Bob’s points in 30 iterations."""

phi-1

points = [0, 0]
for i in range(30):

alice_num = random.
randint(333, 678)
bob_num = random.
randint(alice_num, 888)
charles_num = random.
randint(123, bob_num)
if (alice_num -
charles_num) % int(
bob_num ** 0.5) == 0:

points[0] += 1
else:

points[1] += 1
return f"Alice: {points

[0]}, Bob: {points[1]}"

phi-1-base

self.points = 0
self.alice = 333
self.bob = 678
self.charles = 888
self.bob_points = 0
self.alice_points = 0
self.iterations = 30
self.alice_turn = True
self.bob_turn = True
self.alice_turn_points = 0
self.bob_turn_points = 0
self.alice_turn_points

_history = []
self.bob_turn_points

_history = []
...

phi-1-small

indices = []
import random
alice_points = 0
bob_points = 0
for i in range(30):

alice_num = random.randint
(333, 678)
bob_num = random.randint
(123, bob_num)
if (alice_num - bob_num) %
math.floor(math.sqrt(
bob_num)) == 0:

alice_points += 1
if (i % 2) == 0:

bob_points += 1
print(f"Alice gets {

alice_points} points,
while Bob gets {bob_points
} points.")

Figure 2: Model performance with a multi-step algorithmic prompt, comparing the effects of finetuning and
scale. We see such trends consistently in our interactions, see Appendix A for another example.

3.2 FINETUNING IMPROVES THE MODEL’S ABILITY TO USE EXTERNAL LIBRARIES

We demonstrate here that finetuning on CodeExercises unexpectedly improves the model’s ability
to use external libraries such as Pygame, Tkinter, and pytorch, eventhough our exercises do not
contain these libraries. This suggests that our finetuning not only improves the tasks we targeted,
but also makes unrelated tasks easier to distill from pretraining. As an example, Figure 3 shows
a PyGame example that asks the model to generate code to move a ball, where we see that phi-1
shows phenomenal improvement over phi-1-base model. See Appendix A for additional examples.

4 EVALUATION ON UNCONVENTIONAL PROBLEMS WITH LLM GRADING

A potential concern with the surprisingly good performance of phi-1 on HumanEval (see Table 1
and Figure 1) is that there might be memorization stemming from contamination of the synthetic
CodeExercises dataset. We study this potential contamination directly in Section 5, while this sec-
tion addresses the concern with a new evaluation that is designed to be unconventional enough to be
unlikely to appear in our training data. To minimize bias and leakage, the new evaluation problems
were created by a dedicated team that did not access the CodeExercises dataset or the final model.
They created 50 new problems in the format as HumanEval with instructions to design problems
that are unlikely to appear in real-world code bases or as coding exercises. Here is an example:

def sort_concat_square_deduplicate(list1, list2, my_threshold):
""" This functions takes two lists of integers, sorts each of them in ascending order,

concatenates them, squares the entries at even indices, filters out entries smaller
than my_threshold and then removes duplicates. The resulting list is returned. """

6

Under review as a conference paper at ICLR 2024

Prompt:
""" Write a PyGame. There is a ball. At every iteration, (1). The x-axis of the ball

increases by a random integer between (-10, 10), (2). The y-axis of the ball increases by

a random integer between (-20, 20). The x-axis of the ball should stay inside 0-400, and

y-axis of the ball should stay inside 0-600. When the user press ’space’, set the x-axis

of the ball to 200 and y-axis of the ball to 400. """

phi-1

...
screen = pygame.display.set_mode

((400, 600))
x, y = 0, 0
while True:

for event in pygame.event.
get():

...
elif event.type ==

pygame.KEYDOWN:
if event.key ==

pygame.K_SPACE:
x = 200
y = 400

x += random.randint(-10, 10)
y += random.randint(-20, 20)
if x < 0:

x = 0
elif x > 400:

x = 400
if y < 0:

y = 0
elif y > 600:

y = 600
screen.fill((255, 255, 255))
pygame.draw.circle(screen,
(255, 0, 0), (x, y), 10)
pygame.display.update()

phi-1-base

...
ball_x = random.randint(-10,

10)
ball_y = random.randint(-20,

20)
ball_vx = random.randint(-5,

5)
ball_vy = random.randint(-5,

5)
...
screen = pygame.display.

set_mode((800, 600))
...
while not done:

for event in pygame.
event.get():

...
elif event.type ==

pygame.KEYDOWN:
if event.key ==

pygame.K_SPACE:
ball_x = 200
ball_y = 400

ball_x += ball_vx
ball_y += ball_vy
ball_vx += ball
pygame.display.flip()

phi-1-small

...
x, y = 0, 0
dx, dy = random.randint

(-10, 10), random.
randint(-20, 20)

while True:
screen.fill((0, 0, 0)
)
pygame.draw.rect(
screen, (255, 255,
255), (x, y, 400,
600))
pygame.display.update
()
x += dx
y += dy
if x + dx > 400:

dx = -dx
elif x + dx < 0:

dx = dx
if y + dy > 600:

dy = -dy
elif y + dy < 0:

dy = dy
pygame.time.wait(50)

Figure 3: The above code snippets show the main loop of a simple PyGame program that bounces a ball on
the screen. We omit the code for initialization and boundary checking, which both models handle correctly.
phi-1 correctly applies the PyGame functions as instructed by the prompt. We can see that phi-1-base shows
some ability to use the appropriate API calls, but it fails to follow the logic of the task, while phi-1-small after
finetuning understands the logic but does not have enough capacity to learn the correct function calls.

One of the challenges of evaluating language models on coding tasks is that the output of the model
is often binary: either the code passes all the unit tests or it fails. However, this does not capture the
nuances of the model’s performance, as it might have produced a code that is almost correct but has
a minor error, or a code that is completely wrong but coincidentally passes some tests. Arguably,
a more informative way of assessing the model’s coding skills is to compare its output with the
correct solution and grade it based on how well it matches the expected logic. This is similar to how
humans are evaluated on coding interviews, where the interviewer does not only run the code but
also examines the reasoning and the quality of the solution.

To evaluate candidate solutions, we therefore adopt the approach of using GPT-4 to grade the solu-
tion (such as in Eldan & Li (2023)). This approach has two distinct advantages: (1) by using GPT-4
as a grader, we can leverage its knowledge and generative abilities to obtain a more fine-grained and
meaningful signal of the student model’s coding capabilities, and (2) it obviates the need for tests3.
Our prompt instructs the LLM to evaluate a student’s solution first in a short verbal evaluation fol-
lowed by grades from 0 to 10.

See Table 2 for our results with phi-1 and competing models. The grades on our new unconventional
problems give the same ranking as HumanEval (see Table 1). phi-1 again achieves a score signif-
icantly higher than StarCoder, as it did on HumanEval. Given that the new problems have had no
chance to contaminate the training data and, furthermore, were designed to be outside the training
distribution, these results greatly increase our confidence in the validity of phi-1’s performance.

3Developing rigorous sets of tests can be a significant undertaking, as demonstrated by Liu et al. (2023).

7

Under review as a conference paper at ICLR 2024

Model Size Train tokens Score HumanEval
CodeGen-Mono-350M Nijkamp et al. (2023b) 350M 577B 19% 13%
CodeGen-Mono-16.1B Nijkamp et al. (2023b) 16.1B 577B 38% 29%
Replit Replit (2023) 2.7B 525B 37% 22%
StarCoder Li et al. (2023) 15.5B 1T 51% 34%
phi-1-base 1.3B 7B 37% 29%
phi-1-small 350M 7B 45% 45%
phi-1 1.3B 7B 52% 51%

Table 2: LLM graded Understanding scores on 50 new unconventional coding problems.

5 DATA PRUNING FOR UNBIASED PERFORMANCE EVALUATION

In Figure 1, we see that training on CodeExercises leads to a substantial boost in the performance
of the model on the HumanEval benchmark. To investigate this boost, we propose to prune the
CodeExercises dataset by removing files that are “similar” to those in HumanEval. This process can
be viewed as a “strong form” of data decontamination. We then retrain our model on such pruned
data, and still observe strong performance on HumanEval. In particular, even after aggressively
pruning more than 40% of the CodeExercises dataset (this even prunes files that are only vaguely
similar to HumanEval, see Appendix C), the retrained phi-1 still outperforms StarCoder.

We believe that such data pruning experiment is a fair way to evaluate performance, and is more
insightful than standard “contamination” studies in the literature that are usually based on measures
of overlap between training and test data (e.g., Section 4.8 of Austin et al. (2021)). For sake of
completeness we start this section by conducting a standard contamination experiment, which shows
that CodeExercises is not contaminated by HumanEval in this standard sense.

5.1 N-GRAM OVERLAP

N-gram measures the similarity of text segments based on the shared n-word sequences. We calcu-
late the n-gram overlap between the docstrings of each humaneval question and each exercise in the
CodeExercises dataset that was generated. We found 4 humaneval questions with 13-gram overlap
with at least one of the entries in our dataset. After further investigating, we found out that all the 4
overlap cases in the 13-gram are all false positives (see examples shown in Appendix C).

5.2 EMBEDDING AND SYNTAX-BASED SIMILARITY ANALYSIS

As we just saw, the n-grams are not refined enough to find similar code snippets between HumanEval
and CodeExercises. Instead we use a combination of embedding and syntax-based distances. For the
embedding distance we compute the L2 distance between the embedding of the code snippets where
the embedding is derived from a pre-trained CodeGen-Mono 350M model Nijkamp et al. (2023b).
We observe that the embedding distance is successful in capturing code pairs where the overall
code semantics are similar, which can be inferred via the Python Docstring, function/class names,
as well as the code structure. For the syntax-based distance we calculate the (string) edit distance
between the abstract syntax trees (ASTs) of two given code snippets. The AST distance successfully
identifies overlapping sections between code pairs while being agnostic to non-syntax text such as
variable/function naming, comments, and Python Docstrings. See Appendix C for examples of code
pairs that are captured at various τ and embedding distances.

For our pruning experiments on CodeExercises, we fix a threshold for the embedding distance,
and we test several match rate τ for the AST distance. We vary τ between 0.95 and 0.8, which
corresponds to 4% to 40% of problems in CodeExercises, respectively. Table 3 summarizes the
performance of our retrained phi-1 on pruned datasets (with τ = 0.95,0.9,0.85 and 0.8) versus the
original phi-1 trained on full CodeExercises and the 15.5B-parameter StarCoder-prompted. We
divide the HumanEval problems into two subsets (“similar” and “non-similar”) based on whether or
not they have at least one close match (for this given τ) inside the original CodeExercises dataset.
We then report the accuracy of the models on each subset of HumanEval separately. As one can
see, even after heavily pruning our dataset, phi-1 still outperforms StarCoder-Prompted by a large
margin, which validates that our performance boost is not due to dataset “contamination”, even when
the latter term is understood loosely.

8

Under review as a conference paper at ICLR 2024

τ
Problem
Count phi-1 phi-1 retrained

on pruned data
StarCoder-Prompted

Li et al. (2023)

0.95
similar 71 81.7% 74.6% 57.7%
non-similar 93 26.9% 32.3% 29.0%
total 164 50.6% 50.6% 41.5%

0.9
similar 93 63.4% 51.6% 48.4%
non-similar 71 33.8% 36.6% 32.4%
total 164 50.6% 45.1% 41.5%

0.85
similar 106 62.3% 52.8% 47.2%
non-similar 58 29.3% 34.5% 31.0%
total 164 50.6% 46.3% 41.5%

0.8
similar 116 59.5% 52.6% 45.7%
non-similar 48 29.2% 27.1% 31.2%
total 164 50.6% 45.1% 41.5%

Table 3: Percentage of similar versus non-similar HumanEval problems correctly solved by different models.
Similarity is determined based on whether or not the corresponding HumanEval problem has any close matches
inside the CodeExercises dataset (for a given τ). The problem count denotes the number of HumanEval prob-
lems within each subset. Here, τ is the threshold on AST-based match rate between codes for similarity check.

6 CONCLUSION

Just as a comprehensive, well-crafted textbook can provide a student with the necessary knowledge
to master a new subject, our work demonstrates the remarkable impact of high-quality data in honing
a language model’s proficiency in code-generation tasks. By crafting “textbook quality” data we
were able to train a model that surpasses almost all open-source models on coding benchmarks such
as HumanEval and MBPP despite being 10x smaller in model size and 100x smaller in dataset size.
We hypothesize that such high quality data dramatically improves the learning efficiency of language
models for code as they provide clear, self-contained, instructive, and balanced examples.

There remains a number of limitations of our model compared to larger models for code. Firstly, phi-
1 is specialized in Python coding, which restricts its versatility compared to multi-language models.
Secondly, phi-1 lacks the domain-specific knowledge of larger models such as programming with
specific APIs or using less common packages. Lastly, due to the structured nature of the datasets
and the lack of diversity in terms of language and style, phi-1 is less robust to stylistic variations or
errors in the prompt (for instance, its performance substantially degrades with grammatical mistakes
in the prompt). We expand on these limitations and other failure modes of phi-1 in Appendix B.

None of these limitations seem fundamental, and with more work our approach could be used to
tackle each one of them, although it is unclear what scaling might be necessary to overcome them
(both for the model size and the dataset size). We also believe that significant gains could be achieved
by using GPT-4 to generate the synthetic data instead of GPT-3.5, as we noticed that GPT-3.5 data
has a high error rate. It is interesting that phi-1 is able to achieve such high coding proficiency de-
spite those errors (a similar phenomenon was observed in Allen-Zhu & Li (2023) where a language
model can be trained on data with 100% error rate and still generate correct answers at test time).

More generally, our work provides evidence that developing good methodology for creating high-
quality datasets is a central direction of research for advancing natural language processing and
related fields (see also Jung et al. (2023) for further evidence). However, creating high-quality
datasets is not a trivial task, and it poses several challenges that need to be addressed. One challenge
is to ensure that the dataset covers all the relevant content and concepts that one wants the model
to learn, and that it does so in a balanced and representative way. Another challenge is to ensure
that the dataset is truly diverse and non-repetitive, so that the model does not simply overfit to the
data or memorize specific patterns or solutions. This requires finding ways to inject randomness and
creativity into the data generation process, while still maintaining the quality and the coherence of
the examples. Moreover, even after creating such datasets, we lack a good methodology to measure
and evaluate the amount of diversity and redundancy in the data. For example, if we have a dataset
with coding exercises, it is hard to determine how many different variations of each exercise exist,
and how they are distributed across the dataset. Finally, as language models themselves will be used
to curate data for future language models, it further increases the urgency on the ethical and social
implications of training such models, such as the accountability, the transparency, and the bias of
the data and the models that are involved in this process.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv
preprint arXiv:2207.14255, 2022.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, pp. 610–623, 2021.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-
NeoX-20B: An open-source autoregressive language model. In Proceedings of the ACL Work-
shop on Challenges & Perspectives in Creating Large Language Models, 2022. URL https:
//arxiv.org/abs/2204.06745.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pp. 1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. arXiv preprint arXiv:2305.14387, 2023.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

10

https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745

Under review as a conference paper at ICLR 2024

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey
Levine, and Dawn Song. The false promise of imitating proprietary llms. arXiv preprint
arXiv:2305.15717, 2023.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Henni-
gan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and Laurent
Sifre. An empirical analysis of compute-optimal large language model training. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022.

Jaehun Jung, Peter West, Liwei Jiang, Faeze Brahman, Ximing Lu, Jillian Fisher, Taylor Sorensen,
and Yejin Choi. Impossible distillation: from low-quality model to high-quality dataset & model
for summarization and paraphrasing. arXiv preprint arXiv:2305.16635, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quan-
titative reasoning problems with language models. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 3843–3857. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differentially
private synthetic data via foundation model apis 1: Images. arXiv preprint arXiv:2305.15560,
2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, et al. A pretrainer’s guide to training
data: Measuring the effects of data age, domain coverage, quality, & toxicity. arXiv preprint
arXiv:2305.13169, 2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct, 2023.

Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Noua-
mane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language
models. arXiv preprint arXiv:2305.16264, 2023.

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf

Under review as a conference paper at ICLR 2024

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv
preprint arXiv:2306.02707, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint, 2022.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Code-
gen2: Lessons for training llms on programming and natural languages. arXiv preprint
arXiv:2305.02309, 2023a.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. ICLR, 2023b.

OpenAI. Gpt-4 technical report, 2023. arXiv preprint arXiv:2303.08774 [cs.CL].

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Replit. Replit dev day. https://twitter.com/Replit/status/
1651344184593506304, 2023.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson.
Model dementia: Generated data makes models forget. arXiv preprint arXiv:2305.17493, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv
preprint arXiv:2305.07922, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022. Survey Certification.

Da Yu, Sivakanth Gopi, Janardhan Kulkarni, Zinan Lin, Saurabh Naik, Tomasz Lukasz Religa,
Jian Yin, and Huishuai Zhang. Selective pre-training for private fine-tuning. arXiv preprint
arXiv:2305.13865, 2023.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x, 2023.

12

https://twitter.com/Replit/status/1651344184593506304
https://twitter.com/Replit/status/1651344184593506304
https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2024

A ADDITIONAL EXAMPLES FOR SECTION 3

In Section 3, we discussed with a couple examples on how finetuned modes shows a substantial
improvement over the base model in executing tasks that are not featured in the finetuning dataset.
Here we provide additional examples and details to further illustrate improvements in the areas of
model understanding in managing intricate algorithmic tasks and using external libraries.

A.1 FINETUNING IMPROVES THE MODEL’S UNDERSTANDING ABILITY

The example below is challenging due to the prevalence of various logical operators such as “and”
and “not” that link numerous statements. Prior to finetuning, the model is confused by the logic
embedded in the statement. It struggles to differentiate between “elements” and “indices”, and is
unsure about which array to use. Conversely, the finetuned model is adept at accurately identifying
all relevant arrays and indices, while correctly implementing the logical operators.

Prompt:
""" Input is an array A, an array B, an array C, an array E, a numpy
matrix D. I want to find all the indices of D whose elements are in
the union of B and C and whose row index is not in A and column index
is in D. Loop through the elements in D. Return the list of indices.
"""
phi-1

indices = []
for i in range(D.shape[0]):

for j in range(D.shape
[1]):

if D[i][j] in B or D
[i][j] in C:

if i not in A
and j in D:

indices.
append((i,j))

return indices

phi-1-base

indices = []
for i in range(len(D)):

for j in range(len(D[i])
):

if D[i][j] in B and
D[i][j] not in A:

indices.append(j
)

return indices

phi-1-small

indices = []
for i in range(D.shape[1]):

if D[0][i] in B and D
[0][i] not in A and D[i
][0] in C and D[i][0]
not in E:

indices.append(i)
return indices

A.2 FINETUNING IMPROVES THE MODEL’S ABILITY TO USE EXTERNAL LIBRARIES

In Section 3, we demonstrate with an example prompt using PyGame library that our finetuned phi-
1 model remarkably improves over phi-1-base even though our finetuning CodeExercises does not
contain examples involving PyGame packages. For reference, Figure 4 shows the distribution of
package imports in our CodeExercises dataset.

Figure 4: The number of imports among 879486 exercises in the finetuning (ignored libraries imported <10
times). The plot itself is generated by phi-1 from dictionary of imports with the prompt: “I have a dictionary,
first sort the dictionary using the value, from largest to smallest. Then generate a pyplot bar plot. First set font
size to be 7, then rotate the x-axis label by 90 degree, the x-axis is the key, y-axis is the value of the dictionary.
Use log-scale on y-axis. Moreover, set the y-axis label to be ‘Log Number of Times’ and x-axis label to be
‘Imports’. Set dpi to be 1000.”

In the following, we provide additional examples to show how our finetuning with CodeExercises
dataset unexpectedly improves the model’s ability to use external libraries such as Tkinter, pyplot,
and pytorch, eventhough our exercises do not contain these libraries.

13

Under review as a conference paper at ICLR 2024

TKinter example. Our second example is a TKinter application where we ask the model to update
a textfield accordingly when the user clicks buttons.

Prompt:
""" Write a tkinter application, there is a textfield on top, a submit
button at the button and a recover button next to it. When pressing
the submit button, get the text from the textfield and save it to
a global string s. If the text contains the word "pew" update the
textfield text to "pewpewpew?", otherwise, add "no pew..." to the end.
When pressing the recover button, replace the text in the textfield
with s.
"""

phi-1

...
global s
s = ""
def submit():

global s
text = textfield.get()
if "pew" in text:

textfield.delete(0, tk.END)
textfield.insert(0, "pewpewpew..."

)
else:

textfield.delete(0, tk.END)
textfield.insert(0, text + "no pew

...")
s = text

def recover():
global s
textfield.delete(0, tk.END)
textfield.insert(0, s)

textfield = tk.Entry(root)
textfield.pack()
submit_button = tk.Button(root, text="

Submit", command=submit)
submit_button.pack()
recover_button = tk.Button(root, text="

Recover", command=recover)
recover_button.pack()
root.mainloop()

phi-1-base

global s
s = s.replace("pew", "pewpewpew")
if "pew" in s:

s = s.replace("pew", "pewpewpew")
else:

s = s + "no pew..."
text.delete(0.0, END)
text.insert(0.0, s)
def main():

global s
s = "pewpewpew"
text.delete(0.0, END)
text.insert(0.0, s)
text.tag_add("button", "<Button-1>", "<
Button-3>")
text.tag_add("button", "<Button-2>", "<
Button-4>")
The model keeps adding buttons from here.

phi-1-small

import tkinter as tk
root = tk.Tk()
global s
text = ""
while True:

event, values = tk.popup()
if event == "submit":

text += values.split()[0] + " "
elif event == "textfield":

s += values.split()[0] + " "
elif event == "submit-button-text":

text = values.split()[0] + " "
elif event == "text-button-text":

s = text
if "pew" in text:

text = text.replace("pew", "pewpewpew")
if "no pew" in text:

break
tk.destroy()

The three models’ completions show a huge gap in their prompt understanding. Both phi-1-base
and phi-1-small fail to use the correct Tkinter APIs and make up meaningless function calls. On
the other hand, phi-1 implements the GUI and all the functions correctly (except that it did not copy
“pewpewpew?” correctly).

14

Under review as a conference paper at ICLR 2024

Chat mode example. Finally, we show that phi-1 has a better chat capability than phi-1-base
despite that chat data is exclusive in pretraining, but not in the finetuning.

Prompt:
Student: I have a Python pyplot, I want to increase its resolution
and rotate it, what should I do? TA:
phi-1

1. Set the 'dpi' parameter to the desired
resolution (e.g. 300 for 300 DPI)
2. Use the 'rotate' function from the '
matplotlib.pyplot' module to rotate the plot
by 90 degrees clockwise
Here's an example:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [4, 5, 6])
Set the resolution to 300 DPI
ax.set_dpi(300)
Rotate the plot by 90 degrees clockwise
ax.rotate(90)

phi-1-base

You can use the `setp()` function to set the
resolution and the `set_rotation()` function
to rotate the plot. <|endoftext|>

phi-1-small

I am a Python pyplot, and I want to increase
its resolution and rotate it, what should I
do?
SECOND:
I am a Python pyplot, and I want to increase
its resolution and rotate it, what should I
do?
THIRD:...

Pytorch example. In this PyTorch example, we ask the model to write a modified gradient update:

Prompt:
""" Write a pytorch function. The input is a model, take the gradient
of each parameter of the model, do an SVD of each gradient to get U,
Sigma, V, take the top k singular values of Sigma as Sigmak, then do a
update step to the parameter using Uk*Sigmak*Vk times the norm of the
parameter.
"""
phi-1

...
for p in model.parameters():

if p.grad is not None:
U, Sigma, V = p.grad.svd()
Sigmak = Sigma[:k].diag()
p.data.add_(torch.mm(U[:,:

k], torch.mm(Sigmak, V[:k,:])
).mul_(norm))

phi-1-base

...
self.model = model
self.k = k
self.eps = eps
self.max_iter =

max_iter
self.verbose =

verbose
self.svd_u = None
self.svd_sigma = None
self.svd_v = None
self.svd_k = None
self.svd_u_k = None
self.svd_sigma_k =

None
self.svd_v_k = None
...

phi-1-small

def svd(x):
u, s, v = np.linalg.svd(x)
return u, s, v

def update_parameter(parameter,
grad):
u, s, v = svd(grad)
parameter = u[:, :k]
np.diag(s[:k]) v[:k, :]
parameter += np.diag(sigmoid
(parameter))
return parameter

The code by phi-1-small reveals a lack of understanding of the prompt, leading to multiple signif-
icant missteps. First, it uses np.linalg.svd(x), which is incompatible with PyTorch tensors.
Second, it erroneously assigns the SVD result directly to the parameter, deviating from the prompt’s
instruction to add it. On the other hand, phi-1-base is completely clueless and only produces a
sequence of meaningless definitions. This indicates that improving the model’s logical reasoning
ability (even only on simple functions) can greatly enhance the model’s general coding ability.

15

Under review as a conference paper at ICLR 2024

Pyplot example. The final API example is a Pyplot application. The model is generally good with
Pyplot, so we design a challenging task to ask the model implement an animation.

Prompt:
"""Create an x array that are integers from 1 to 20, y array that is
equal to the elementwise cos of x divided by element-wise sqrt(x +
1). Write a Python code of line plot that animates the change of y
according to x ***step by step*** with red lines. However, during
the animation, when x[i] is larger than 11, change the animation line
color from red to green.
"""

phi-1

...
x = np.arange(1, 21)
y = np.cos(x) / np.sqrt(x + 1)
fig, ax = plt.subplots()
line, = ax.plot([], [], color=

'red')
...
ax.set_title('Animation of

Cosine and Cosine-Square-
Root')

def animate(i):
if x[i] > 11:

line.set_color('green'
)
else:

line.set_color('red')
line.set_data(x[:i+1], y[:
i+1])
return line,

anim = animation.FuncAnimation
(fig, animate, frames=len
(x), interval=500, blit=
True)

plt.show()

phi-1-base

...
fig, ax = plt.subplots()
x = np.arange(1, 21)
y = np.cos(x) / np.sqrt(x +

1)
line, = ax.plot([], [], lw

=2)
def init():

line.set_data([], [])
return line,

def animate(i):
if x[i] > 11:

line.set_color('
green')
else:

line.set_color('red
')
return line,

anim = FuncAnimation(fig,
animate, init_func=init
, frames=len(x),
interval=50, blit=True)

phi-1-small

...
fig, ax = plt.subplots()
x_array = list(range(1, 21)

)
y_array = [math.cos(xi/10)

for xi in x_array]
def animate(i):

...
ax.plot(x_array,
y_array)
if x_array[i] > 11:

color = "red"
else:

color = "green"
ax.scatter(x_array[i],
y_array[i], color=color
)
return ax

ani = animation.
FuncAnimation(fig,
animate, frames=len(
x_array), interval=50,
blit=True)

plt.show()

phi-1-small produces a very incorrect completion. From the API perspective, the model fails to
understand the “line plot” requirement and only uses a scatter plot (and even that is implemented
wrongly). phi-1-base gets the template correct, but misses the core function to update the line plot
every iteration.

B LIMITATION OF PHI-1

While finetuning through simple exercises significantly enhances the model’s overall performance,
there are certain constraints intrinsic to our model that cannot be overcome solely by finetuning.
Firstly, our model has only 1.3B parameters trained with only 7B tokens, this restricts our model’s
capacity to manage more complex tasks such as developing an intricate Flask application, in com-
parison to other models like Starcoder. Beyond our model’s limitations in terms of generality when
contrasted with StarCoder or ChatGPT, we’ve also outlined several other weaknesses as follows:

Sensitivity to prompt variations. Our model is sensitive to various perturbations of prompts.
First, its performance drops significantly as the length of the prompt increases, as it tends to ignore,
forget or misinterpret parts of the prompt when it is too long. For example, our model fails when
we increase the number of layers from 3 to 4 in the following case. We hypothesize that this issue
arises because our exercises predominantly consist of short prompts. Furthermore, its generation
may appear qualitatively different with a slightly modified prompt. In this case, with an additional
import torch command, the model tends to succeed on the very task that it failed previously.

16

Under review as a conference paper at ICLR 2024

Prompt:
""" Create a neural

network class in Pytorch

with 3 layers. Implement

a new "rr" method to this

new function: It takes

input x. Apply the first

layer on x and assign the

output to y, then apply

the second layer on y and

assign the output to z,

then apply the third layer

on z and assign it to w,

then sum up y, z,w and

assign it to Q. Return

Q.

"""

Prompt:
""" Create a neural

network class in Pytorch

with 4 layers. Implement

a new "rr" method to this

new function: It takes

input x. Apply the first

layer on x and assign the

output to y, then apply

the second layer on y and

assign the output to z,

then apply the third layer

on z and assign it to w,

then apply the forth layer

on w and assign it to p,

then sum up y, z,w, p and

assign it to Q. Return

Q.

"""

Prompt:
import torch

""" Create a neural network

class in Pytorch with 4 layers.

Implement a new "rr" method to

this new function: It takes

input x. Apply the first layer

on x and assign the output to y,

then apply the second layer on

y and assign the output to z,

then apply the third layer on z

and assign it to w, then apply

the forth layer on w and assign

it to p, then sum up y, z,w, p and

assign it to Q. Return Q.

"""

class NeuralNetwork(nn.
Module):
def __init__(self):

super(
NeuralNetwork, self).
__init__()

self.layer1 = nn.
Linear(2, 5)

self.layer2 = nn.
Linear(5, 3)

self.layer3 = nn.
Linear(3, 1)

def rr(self, x):
y = self.layer1(x)
z = self.layer2(y)
w = self.layer3(z)
Q = y + z + w
return Q

class NeuralNetwork:
def __init__(self):

self.layers = []

def add_layer(self,
layer):

self.layers.append
(layer)
...
def rr(self, x):

y = self.forward(x
)

z = self.forward(y
)

w = self.forward(z
)

p = self.forward(w
)

Q = y + z + w + p
return Q

class NeuralNetwork(torch.nn.
Module):
def __init__(self):

super(NeuralNetwork,
self).__init__()

self.layer1 = torch.nn.
Linear(10, 20)

...

def forward(self, x):
x = torch.nn.functional.

relu(self.layer1(x))
y = torch.nn.functional.

relu(self.layer2(x))
z = torch.nn.functional.

relu(self.layer3(y))
w = torch.nn.functional.

relu(self.layer4(z))
p = torch.nn.functional.

relu(self.output(w))
Q = p + y + z + w
return Q

17

Under review as a conference paper at ICLR 2024

Sensitivity to natural language inputs. phi-1 demonstrates less robustness in handling natural
language compared to ChatGPT or StarCoder, particularly with ambiguous prompts. This may
be because we filter out certain types of data from the training process to guarantee textbook-level
quality. For instance, our model struggles with the term “unchanged” and has difficulties interpreting
a numbered list within the prompt.

Prompt:
""" Alice is moving a point

along x,y axes at every

iteration. Every time Alice

moves the point randomly with

one of the options: (1). x

increases by 2, y decreases

by 5; (2). x increases by

1, y decreases by 2, (3). x

stays unchanged, y increase

by 4. Simulate the movement

of the points.

"""

Prompt:
""" Alice is moving a point

along x,y axes at every

iteration. Every time Alice

moves the point randomly with

one of the options: (1). x

increases by 2, y decreases

by 5; (2). x increases by

1, y decreases by 2, (3). x

stays at x, y increase by 4.

Simulate the movement of the

points.

"""

Prompt:
""" Alice is moving a

point along x,y axes at

every iteration. Every

time Alice moves the

point randomly with one

of the options: (1).

move by (2, -5); (2).

move by (1, 2); (3).

move by (0, 4); Simulate

the movement of the

points.

"""

x, y = 0, 0
for i in range(10):

move = random.choice([1,
2, 3])
if move == 1:

x += 2
y -= 5

elif move == 2:
x += 1
y -= 2

elif move == 3:
x = 0
y += 4

return f"Alice's final
position is ({x}, {y})."

x, y = 0, 0
for i in range(10):

move = random.choice([1,
2, 3])
if move == 1:

x += 2
y -= 5

elif move == 2:
x += 1
y -= 2

elif move == 3:
x = x
y += 4

print(f"Alice moved {move
} point to ({x}, {y})")

x, y = 0, 0
for i in range(n):

move = random.choice
([(1, 2), (2, -5),
(1, 2), (3, 0), (0,
4)])
x += move[0]
y += move[1]

return f"Alice moved {x}
units to the right
and {y} units down
after {n} iterations
."

Note: the model hallucinates the

moves (1, 2), (3, 0).

18

Under review as a conference paper at ICLR 2024

Bad at counting and spatial reasoning. A primary constraint of our model, particularly when
contrasted with alternatives like StarCoder, lies in its performance on tasks involving counting and
spatial reasoning. The model struggles to consistently maintain precise data regarding the quantity
and positioning of elements within a scene. To illustrate, consider the following example:

Prompt:
""" Generate a tkinter application, I want two textfields side by
side at the top, three buttons at the bottom, one named A on the
left, one named B on the right, one named C at the middle.
"""

phi-1 phi-1-small
...
text_a = tk.Text(root, width=30, height=5)
text_b = tk.Text(root, width=30, height=5)
text_c = tk.Text(root, width=30, height=5)

Create the buttons
button_a = tk.Button(root, text="A", width

=10, height=2)
button_b = tk.Button(root, text="B", width

=10, height=2)
button_c = tk.Button(root, text="C", width

=10, height=2)

Place the text fields and buttons in the
top row

text_a.grid(row=0, column=0, padx=5, pady
=5)

text_b.grid(row=0, column=1, padx=5, pady
=5)

text_c.grid(row=0, column=2, padx=5, pady
=5)

Place the buttons in the bottom row
button_a.grid(row=1, column=0, columnspan

=3, padx=5, pady=5)
button_b.grid(row=1, column=1, columnspan

=3, padx=5, pady=5)
button_c.grid(row=1, column=2, columnspan

=3, padx=5, pady=5)
...

window = tk.Tk()
window.title("TextFields")
Create the left and right textfields
text1 = tk.Text(window, text="A")
text1.pack()
text2 = tk.Text(window, text="B")
text2.pack()
Create the middle button
button = tk.Button(window, text="C")
button.pack()
Start the tkinter application
window.mainloop()

phi-1-base
root = tk.Tk()
root.title("Text Fields")
root.geometry("300x200")
root.resizable(False, False)
root.configure(background="white")
root.configure(font=("Arial", 12))
root.configure(foreground="black")
root.configure(relief="groove")
root.configure(padx=10, pady=10)
root.configure(state="disabled")
The model keeps outputting nonsensical

code.

Despite the improvement from finetuning, our model still struggles with counting and spatial rea-
soning. It generates an extra textfield and misplaces the button in the scene.

19

Under review as a conference paper at ICLR 2024

C APPENDIX FOR SECTION 5

C.1 N-GRAM ANALYSIS

Our n-gram overlap analysis shows that our dataset has minimal letter-by-letter overlap with Hu-
manEval. In particular, for our 13-gram analysis, we uncovered 4 matches to HumanEval questions,
but all four of these were false positives. An example of such a false positive is given below.

HumanEval: CodeExercises:
You are given a non-empty list of positive

integers. Return the greatest integer that

is greater than zero, and has a frequency

greater than or equal to the value of the

integer itself. The frequency of an integer is the
number of times it appears in the list.

Calculates the power frequency analysis sum

of a list of integers. The power frequency

analysis sum is calculated by taking the sum

of the squares of the frequencies of each

unique integer in the list. The frequency of an
integer is the number of times it appears in the list.

C.2 EXAMPLES OF AST AND EMBEDDING DISTANCE BASED SIMILARITY

In this section, we provide example pairs of codes captured with different AST match rates, denoted
as τ in the paper. Additionally, we provide an example of code pair obtained using embedding
distance as a measure of similarity.

AST match rate = 1.0 Here the coding problems require the same reasoning while the wording
of the prompts can vary drastically. Particularly, the prompt uses a real-world event, i.e., distance
between holes on a line, to implicitly teach the model the basic reasoning task of finding the closest
pair of elements in an array.

HumanEval CodeExercises
from typing import List, Tuple
def find_closest_elements(numbers: List[

float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of
length at least two) select and

return two that are the closest to
each
other and return them in order (smaller
number, larger number).

>>> find_closest_elements([1.0, 2.0,
3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0,
3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
min_diff = float('inf')
closest_pair = None
for i in range(len(numbers) - 1):

diff = numbers[i+1] - numbers[i]
if diff < min_diff:

min_diff = diff
closest_pair = (numbers[i],

numbers[i+1])
return closest_pair

from typing import List, Tuple
def find_closest_two_holes(holes: List[int

]) -> (int, int):
"""
Finds the two closest holes on a line.
Args:

holes: A list of integers
representing the positions of holes on
a line.

Returns:
A tuple of two integers

representing the positions of the two
closest holes on the line.
"""
holes.sort()
min_distance = float('inf')
closest_holes = None
for i in range(len(holes) - 1):

distance = holes[i+1] - holes[i]
if distance < min_distance:

min_distance = distance
closest_holes = (holes[i],

holes[i+1])
return closest_holes

20

Under review as a conference paper at ICLR 2024

AST match rate = 0.96 Here the two problems use similar reasoning and coding concepts but their
prompts ask for different tasks, i.e., returning a pair of numbers versus computing their average.

HumanEval CodeExercises

from typing import List
def find_closest_elements(numbers: List[

float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of
length at least two) select and

return two that are the closest to
each
other and return them in order (smaller
number, larger number).

>>> find_closest_elements([1.0, 2.0,
3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0,
3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
min_diff = float('inf')
closest_pair = None
for i in range(len(numbers) - 1):

diff = numbers[i+1] - numbers[i]
if diff < min_diff:

min_diff = diff
closest_pair = (numbers[i],

numbers[i+1])
return closest_pair

from typing import List
def find_closest_pair_average(li: List[int])

-> float:
"""
Returns the average of the two integers
in the list that are closest to each
other.
If there are multiple pairs with the
same minimum difference, the function
returns the average of the first pair
it encounters.
Args:
- li: a list of integers
Returns:
- a float representing the average of
the two integers in the list that are
closest to each other
"""
li.sort()
min_diff = float('inf')
closest_pair = None
for i in range(len(li)-1):

diff = li[i+1] - li[i]
if diff < min_diff:

min_diff = diff
closest_pair = (li[i], li[i+1])

return sum(closest_pair) / 2

AST match rate ≤ 0.9 When the AST match rate ≤ 0.9, the code pairs start getting less similar as
shown in the following two examples. Here, the AST match rate is 0.9 and 0.83, respectively.

HumanEval CodeExercises

from typing import List
def all_prefixes(string: str) -> List[str]:

""" Return list of all prefixes from
shortest to longest of the input
string
>>> all_prefixes('abc')
['a', 'ab', 'abc']
"""

prefixes = []
for i in range(len(string)):

prefixes.append(string[:i+1])
return prefixes

from typing import List
def increase_after_each(li: List[int]) ->

List[int]:
"""
Given a list of integers, returns a new
list where each element is increased by
the number of elements in the original
list that come after it.

Args:
- li: A list of integers
Returns:
- A new list of integers where each
element is increased by the number of
elements in the original list that come
after it.

"""
result = []
for i in range(len(li)):

result.append(li[i] + len(li[i+1:]))
return result

21

Under review as a conference paper at ICLR 2024

HumanEval CodeExercises

from typing import List
def rescale_to_unit(numbers: List[float])

-> List[float]:
""" Given list of numbers (of at least
two
elements), apply a linear transform to
that
list, such that the smallest number
will
become 0 and the largest will become 1
>>> rescale_to_unit([1.0, 2.0, 3.0,
4.0, 5.0])
[0.0, 0.25, 0.5, 0.75, 1.0]
"""
min_num = min(numbers)
max_num = max(numbers)
return [(num - min_num) / (max_num -
min_num) for num in numbers]

from typing import List
def frequency_ranges_plot(values: List[float

]) -> List[List[int]]:
"""
Returns a list of lists where each inner
list represents a frequency range and
contains the count of values
that fall within that range. The ranges
are determined by dividing the range of
values into 10 equal parts.

Args:
- values: A list of float values
Returns:
- A list of lists where each inner list
contains two integers representing the
lower and upper bounds of the range
and the count of values that fall within
that range.

"""
min_val = min(values)
max_val = max(values)
range_size = (max_val - min_val) / 10
ranges = [[min_val + i*range_size,
min_val + (i+1)*range_size, 0] for i in
range(10)]

for val in values:
for i, r in enumerate(ranges):

if r[0] <= val < r[1]:
ranges[i][2] += 1
break

return [[int(r[0]), int(r[1]), r[2]] for
r in ranges]

Embedding Distance = 0.16 Here the two problems have similar Python Docstrings, function
names, as well as the code structure which can be extracted with using the L2 distance between the
normalized CodeGen-Mono 350M embedding for each of them.

HumanEval CodeExercises

def sum_product(numbers: List[int]) ->
Tuple[int, int]:
""" For a given list of integers,
return a
tuple consisting of a sum and a product
of

all the integers in a list.
Empty sum should be equal to 0 and
empty
product should be equal to 1.
>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24)
"""

sum_value = 0
prod_value = 1

for n in numbers:
sum_value += n
prod_value *= n

return sum_value, prod_value

from typing import List, Tuple
def all_numbers_sum_product(numbers: List[

int]) -> Tuple[int,int]:
"""
Returns a tuple containing the sum and
product of all the numbers in the input
list.

Args:
- numbers (List[int]): a list of
integers
Returns:
- a tuple containing two integers:

- the sum of all the numbers in the
input list

- the product of all the numbers in
the input list

"""
sum_of_numbers = 0
product_of_numbers = 1
for num in numbers:

sum_of_numbers += num
product_of_numbers *= num

return (sum_of_numbers,
product_of_numbers)

22

Under review as a conference paper at ICLR 2024

D MODEL ARCHITECTURE AND TRAINING DETAILS

We use a decoder only transformer Vaswani et al. (2017) model using the FlashAttention imple-
mentation of multi-head attention (MHA) Dao et al. (2022). We also use MHA and MLP layers
in parallel configuration following some recent models like CodeGen Nijkamp et al. (2022), PaLM
Chowdhery et al. (2022), and GPT-NeoX Black et al. (2022). The architecture for our 1.3B parame-
ter phi-1 model consists of 24 layers, hidden dimension of 2048, MLP-inner dimension of 8192, and
32 attention heads of dimension 64 each. The smaller 350M parameter phi-1-small model consists
of 20 layers, hidden dimension of 1024, MLP-inner dimension of 4096, and 16 attention heads of
dimension 64 each. We also use a rotary position embedding Su et al. (2021) with rotary dimension
32. These architectural choices were adopted from Nijkamp et al. (2022). We also use the same tok-
enizer as codegen-350M-mono Nijkamp et al. (2022). Aside from FlashAttention, our models do not
use other techniques like Fill-In-the-Middle (FIM) Bavarian et al. (2022), or Multi-Query-Attention
(MQA) Raffel et al. (2020) that could further boost efficiency Li et al. (2023).

For both pretraining and finetuning, we concatenate our respective datasets into a single dimensional
array with “⟨∣endoftext∣⟩” token used for separating the files. We train our models on sequence length
of 2048 sliced from our dataset array with next-token prediction loss. We use fp16 training with
AdamW optimizer, linear-warmup-linear-decay learning rate schedule, and attention and residual
dropout of 0.1. We train on 8 Nvidia-A100 GPUs using deepspeed. Our pretrained base model
phi-1-base was obtained in under 4 days of training. Finetuning to obtain phi-1 used an additional
7 hours on the same hardware.

Pretraining. phi-1-base was trained on the CodeTextbook dataset (filtered code-language corpus
and synthetic textbooks). We use effective batch size 1024 (including data parallelism and gradient
accumulation), maximum learning rate 1e-3 with warmup over 750 steps, and weight decay 0.1, for
a total of 36,000 steps. We use the checkpoint at 24,000 steps as our phi-1-base – this is equivalent
to ∼ 8 epochs on our CodeTextbook dataset for a total of little over 50B total training tokens. Despite
the small size and computation, this model already achieves a 29% accuracy on HumanEval.

Finetuning. phi-1 is obtained by finetuning phi-1-base on the CodeExercises dataset. For finetun-
ing, we use the same setup as pretraining, but different hyperparameters: we use effective batchsize
of 256, maximum learning rate 1e-4 with 50 steps of warmup, and weight decay 0.01. We train for
total of 6,000 steps and pick the best checkpoint (saved every 1000 steps).

23

	Introduction
	Training details and the importance of high-quality data
	Filtering of existing code datasets using a transformer-based classifier
	Creation of synthetic textbook-quality datasets

	Spikes of model capability after finetuning on CodeExercises
	Finetuning improves the model's understanding
	Finetuning improves the model's ability to use external libraries

	Evaluation on unconventional problems with LLM grading
	Data pruning for unbiased performance evaluation
	N-gram overlap
	Embedding and syntax-based similarity analysis

	Conclusion
	Additional examples for Section 3
	Finetuning improves the model's understanding ability
	Finetuning improves the model's ability to use external libraries

	Limitation of phi-1
	Appendix for Section 5
	N-Gram analysis
	Examples of AST and embedding distance based similarity

	Model architecture and training details

