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ABSTRACT

The ability to conduct and learn from self-directed interaction and experience is
a central challenge in robotics, offering a scalable alternative to labor-intensive
human demonstrations. However, realizing such "play" requires (1) a policy robust
to diverse, potentially out-of-distribution environment states, and (2) a procedure
that continuously produces useful, task-directed robot experience. To address
these challenges, we introduce Tether, a method for autonomous play with two
key contributions. First, we design a novel non-parametric policy that leverages
strong visual priors for extreme generalization: given two-view images, it identifies
semantic correspondences to warp demonstration trajectories into new scenes. We
show that this design is robust to significant spatial and semantic variations of
the environment, such as dramatic positional differences and unseen objects. We
then deploy this policy for autonomous multi-task play in the real world via a
continuous cycle of task selection, execution, evaluation, and improvement, guided
by the visual understanding capabilities of vision-language models. This procedure
generates diverse, high-quality datasets with minimal human intervention. In a
household-like multi-object setup, our method is among the first to perform many
hours of autonomous real-world play, producing a stream of data that consistently
improves downstream policy performance over time. Ultimately, Tether yields over
1000 expert-level trajectories and trains policies competitive with those learned
from human-collected demonstrations.

1 INTRODUCTION

Recent advances in robotic manipulation have been powered by imitation learning policies (Zhao
et al.,[2023; Chi et al.,[2023; Zhao et al.; |Black et al., 2024a; |[Kim et al., 2024; |Brohan et al., [2022;
2023; |Collaboration et al., [2024) trained on real-world teleoperated demonstrations. In all these
cases, the human effort involved in teaching a skill is substantial: while there are continued efforts to
simplify teleoperation interfaces (Zhao et al.,[2023; [Shafiullah et al., 2023; |(Chi et al., 2024; Cheng
et al., 2024; |Fu et al., 2024), such demo datasets can fundamentally only scale linearly with human
time, and these data-hungry policy architectures need large spatially and semantically diverse datasets
in order to generalize usefully (Lin et al.,2024). In this paper, we propose an alternative paradigm:
autonomous play with robust policies where data scales primarily with robot time, minimizing the
human effort bottleneck.

Our method, Tether, involves two key components. First, autonomous play requires an extremely
robust policy that can recover from mistakes and out-of-distribution states. Without relying on massive
datasets for training large neural policy architectures, we instead design a new non-parametric policy
class that specifically supports generalization with few demonstrations. Specifically, our architecture
exploits the remarkable leaps in semantic image keypoint correspondences: given a new scene
with potentially new task-relevant object instances in new spatial layout with new distractors, it
first computes keypoint correspondences with the demo images, selects the closest-matched demo,
computes 3D transformations associated with each correspondence, and accordingly warps the robot
trajectory to fit the new scene. Validated on 12 manipulation tasks in a household-like setting, we
show that our policy surpasses the performance of alternative methods, including those that rely on
foundation models or pretraining with large robotics or internet datasets.
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Second, we run our policy within a cyclic multi-task play procedure that autonomously produces data
for continuous downstream policy training. For a collection of tasks with few human demonstrations
each, we query a vision-language model (VLM) to repeatedly plan and select tasks our policy should
attempt. This is real-world task-directed play without any manual resets: the procedure naturally
induces resets with a growing initial state distribution as the object configurations drift away from the
beginning of play. Additionally, to evaluate the suboptimal play data, we query a VLM and compute
correspondences to detect successful executions; these are then used downstream for filtered imitation
learning. We show that this procedure can collect over 1000 new expert-level demonstrations across
26 hours with minimal human intervention (5 cases requiring a minute total of human time, 0.26%
of executions). We also validate that this stream of newly generated demonstrations progressively
improves the training of neural policies, which consistently improve with more play data and reach
high success rates competitive with policies trained on human-collected demonstrations.

In summary, our contributions are:

1. A keypoint correspondence-driven trajectory warping policy that exhibits impressive generalization
and robustness for diverse manipulation tasks.

2. A multi-task VLM-guided play procedure that generates increasingly diverse demonstrations over
many hours, powering downstream neural policy training.

2 RELATED WORK

Robustness in Imitation Learning. To build robust policies that excel in diverse environments,
many prior efforts turn to scaling data and policy architecture, often with foundation models or large
human-collected demo datasets (Khazatsky et al., [2024;|Collaboration et al.,|[2024; AgiBot-World{
Contributors et al., |2025). Prominent techniques include training representations for robotics on
non-robot data (e.g., human videos) (Nair et al.,[2022; Ma et al., 2023; |Shi et al.| [2025), querying
vision-language models (VLMs) or large language models (LLMs) (Nasiriany et al., 2024} |Goetting
et al.| 2024; |Fang et al.,2024), and finetuning vision-language-action models (VLAs) (Black et al.|
2024a; NVIDIA et al., 2025; Intelligence et al., 2025).

Another class of approaches design strong built-in priors for models trained on much fewer demos,
with some executing actions open-loop. Some build action affordances or primitives (Kuang et al.|
2024; Haldar & Pinto} 2025), retrieve from existing datasets (Du et al.,|2023; Memmel et al., 2024;
Xie et al.| [2025), leverage pretrained representations and models (Pari et al., 2021} |Burns et al., 2023;
Shi et al.; [2024), or exploit 3D scene geometry (Rashid et al., 2023} |Goyal et al.| 2024; [Ke et al.|
2024; [Ze et al.| [2024). Closest to our work are methods that operate on visual semantic keypoint
correspondences. Like object-centric approaches (Shi et al., 2024; |Qian et al., [2024), they benefit
from recent advances in scene understanding and are naturally robust to distractors, yet provide
higher spatial precision and avoid the rigid "objectness" assumptions that fail on deformable objects
and granular particles. One class of approaches tracks keypoints through frames of human or robot
videos and retargets the dense trajectory to the desired setting (Wen et al.,2023; Bharadhwaj et al.;
2024; Ren et al., 2025). Another class instead uses keypoint correspondences as a compact trajectory
representation. Among these, KAT (D1 Palo & Johns||[2024) queries an LLM to generate open-loop
actions based on keypoints, while P3-PO (Levy et al.| 2024) and SKIL (Wang et al., 2025) input
keypoints to point-conditioned policies. We too use keypoint correspondences, but we demonstrate
the advantages of a more direct approach: using correspondences to select and warp a demonstrated
trajectory to fit the new scene. We compare against KAT (D1 Palo & Johns, 2024) in our experiments.

Autonomous Data Generation. To reduce the need for large, human-collected datasets, recent
efforts in robotic manipulation have explored autonomously generating data for downstream policy
learning. Previous works collect data in simulation by querying foundation models to propose and
solve tasks (Ha et al.| 2023; ' Wang et al.,|2024) or leveraging privileged simulation state to adapt
human-collected demos for new scene configurations (Mandlekar et al., 2023; Jiang et al., [2025;
Lin et al., 2025a). However, simulation-based approaches struggle with sim-to-real transfer within
cluttered, unstructured environments, which remains an open challenge especially for tasks involving
complex contacts and vision-based policies trained on synthetic renders (Blanco-Mulero et al., [2024;
Yu et al.| |2024; Lin et al., 2025b). Alternatively, another class of works autonomously generate
data directly in the real world. Some require initial policies that are trained on hundreds of human-
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Figure 1: Demonstration Summaries. Tether summarizes demonstrations into the pre- and post-
images, action sequence (red), waypoints (blue), and keypoints.

collected demos (Zhou et all,2024; Mirchandani et al., 2024), which still pose a bottleneck when
transferring to new tasks and environments. Most similar to our work are methods that initialize from
few demos using specially-designed policies. Manipulate-Anything (Duan et al., 2024b) introduces a
zero-shot foundation model policy and applies it to autonomous data collection. However, performing
multiple rounds of foundation model inference significantly hinders its throughput, and it collects
under 50 real world demos; additionally, environment reset during data collection is not considered.
In contrast, we introduce a system that autonomously collects over 1000 demonstrations in the real
world with minimal human intervention.

3 ROBUST IMITATION AND AUTONOMOUS PLAY

We formulate robot manipulation as a Controlled Markov Process (CMP). A CMP is represented as a
tuple M = (S, A, T), where S is the set of states, A is the set of actions, 7 : S x A — A(S) is the
transition dynamics function.

In the imitation learning problem, for a given CMP M and a desired task, we have a dataset
of N expert demonstrations D = {7y, 75 ...,7x} that perform that task, with trajectories 7; =
{51, a1, $2,a2,...}. In practice, our robot does not have direct access to state s; and instead receives
visual observations o, = O(s;), consisting of two third-person RGB camera views from the left and
right sides, as shown in Figure[I} There is no significant partial observability. The actions a; are the
6-DOF pose of robot gripper and the gripper’s binary open/close command. Given this demonstration
dataset D, our goal is to learn a policy 7 : O — A(A) for the task.

As motivated in the introduction, today’s standard imitation learning approaches require extensive
human demonstration collection that is difficult to scale. Our paper directly addresses this problem.
First, we introduce a non-parametric trajectory warping-based policy that generates action plans
from a few training demonstrations (Section , much fewer than standard neural policies. Next,
to address the challenge of scaling data, we deploy our policy in a VLM-guided multi-task play
procedure, which autonomously produces demos for the downstream training of parametric policies.

3.1 TRAJECTORY WARPING WITH KEYPOINT CORRESPONDENCES

Towards robust imitation, Tether leverages semantic visual priors in the form of image correspondence
matching algorithms to interpolate within and generalize beyond a few demonstrations.

At a high level, our policy works as follows. Every demonstration is represented by the pre-image,
i.e. the camera observations at the beginning of the demo, the post-image from the end of the demo,
and a sequence of 3-D waypoints for the gripper motion. These waypoints, projected onto the
pre-image, identify important visual “keypoints” for that demo. To execute the policy starting from an
initial observation of the scene, we identify the best-matched demo based on the quality of keypoint
correspondences, backproject those keypoints to compute desired 3-D gripper waypoints, and warp
the demonstrated trajectory based on those waypoints. We walk through these steps in detail below.

Demonstration Summaries: Pre-Image, Post-Image, Waypoints, and Keypoints. Our policy
is non-parametric, and relies on accessing demonstrations at test time. For convenience, we first
preprocess all demonstrations into concise summaries in preparation for execution. This is a “training
time” operation, it needs to be done once for each demonstration, and once summarized, the original
demonstration can be discarded. For each demonstrated trajectory 7; € D, we summarize the
key information for Tether in a tuple k; = (Opre, Opost; Wy Kpre, Kpost, ), where opre and opos;
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Figure 2: Policy Inference. During inference, Tether (left) computes correspondences (middle) and
produces a warped trajectory action plan (right).

are respectively the pre- and post-images i.e., two-view camera observations at the beginning and
end of the trajectory. W is a “waypoint” sequence [w1,ws, ..., wy] of task-critical 3-D gripper
locations. In practice, we simply use the gripper locations from frames where the gripper open/close
position toggles, following the convention for selecting critical frames from prior work (Johns, 2021}
Mandlekar et al.,|[2023;|Vecerik et al.,|[2024), and which is applicable to diverse manipulation tasks.
Next, a = [ag, ..., aps] is the full sequence of robot actions during the trajectory i.e. 6-DOF gripper
positions and gripper state. Finally, for each of the T" waypoint locations, we project them onto
Opre and 0pos to identify visually important keypoints Kpre = [Kpre.1, Epre,2; - kpre, 7] and Kpos
respectively. We depict this process in Figure|[T}

This remaining subsection outlines executing our policy for an observation o, visualized in Figure 2}

Correspondence Matching and Source Demo Selection. To execute a Tether policy, we start by
matching the current camera observations o to the demos in D to find a nearest-neighbor demo. In
particular, for each demo summary x;, we search the current images o for correspondences for all
keypoint locations K. ; in the demo pre-images o0y, ;. We do this separately for the left-image
and right-image to find a set of corresponding pixels in each image K; = [Ki,left, Ki)ﬁght]. To find
these 2D correspondences, we use a state-of-the-art model (Zhang et al.| |2024) built on DINOv2
(Oquab et al.|[2023) and Stable Diffusion (Rombach et al., 2022) features in our implementation.

We then backproject these images using calibrated camera extrinsics, to obtain a sequence of target
3-D waypoints W;. If the backprojections fail to intersect, then the match is deemed to have failed i.e.
demo ¢ is an infeasible match for the current observation o. For the feasible matches, we rank the
demos in order of dissimilarity to o by computing the Euclidean distance between the original and
target waypoints, i.e. score;(0) = ||[W; — W;(0)||2. The closest demo is selected as the source demo
K*, with its original gripper waypoints W*, original robot action sequence a and the translated target
waypoints for the current scene TW* (o).

Warping the Source Demo Trajectory. The “target waypoints” T7/* (0) above provide a scaffold for
how to warp the robot trajectory for the current scene. However, we still need to fill in the fine-grained
robot actions in-between by warping the intermediate segments between waypoints.

Consider the segment [w;, wy41] between two waypoints from the selected source demo x*. The
target waypoints are [y, Wy41]. Denote the action sequence segment for this waypoint as a;. We
first compute the 3-D displacements of the two waypoints that mark the beginning and end of the
segment d; = W; — w; and dy11 = Wey1 — We1. We now perform linear interpolation between
those displacements and add the resulting displacements to the original action sequence a; to get
the transformed action plan segment a;. Concatenating these segments produces the full action plan
a = [a1,ay, ...] to be executed in the new scene.

To prioritize preserving spatial relationships, we perform this linear interpolation in space rather than
time. For waypoints wy, w1, we define a local 1-D coordinate frame mapping w; to 0 and w4
to 1. Then, the interpolation coefficient « for each a € the source action segment a; is simply its
coordinate in this frame. Geometrically, this can be thought of as projecting the gripper position
a onto the line spanning w; and w1, then computing the projection’s relative distance to w; and
wy1. Then, the corresponding displacement that ¢ must undergo when warped into the new scene is:
d, = (1 — a)d; + ady41. The new action is thus a + d,.
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Figure 3: Autonomous Play. Our iterative procedure runs Tether for multiple tasks and uses VLMs
for plan generation and success detection.

While simple, we show in Section .2 that our correspondence-driven trajectory warping is robust and
performs remarkably well with as few as 10 demos, across challenging manipulation tasks—including
those with out-of-distribution objects, millimeter-level precision, and complex contacts.

3.2 AUTONOMOUS MULTI-TASK PLAY WITH VISION-LANGUAGE MODELS

Now, we address the issue of the scalability of human data collection by using our robust and efficient
policy as a spark to set autonomous play in motion, so that the hundreds of new diverse trajectories
can then be used to train larger, more flexible neural policy architectures.

To maximize the autonomy of our data generation, we apply our policy towards continuous task-
directed play and design a set of tasks that facilitate natural resets and randomization: the end state
of each task is a valid start state for another task (e.g., "place pineapple on table" leads into "place
pineapple on shelf" or "place pineapple in bowl"), even in the event of failures. This approximately
indefinitely composable structure is an extension of forward-backward tasks in prior reset-free
learning (Eysenbach et al., 2017} [Sharma et al.| [2021; |Mirchandani et al., [2024), and it allows
previous tasks (and potential mistakes) to naturally randomize both relevant and background object
locations and states for each task. This formulation is further illustrated by experiments in Section4.3.

With these tasks, we run an iterative procedure where each step applies the policy to complete one task
from our set. At a high level, each iteration proceeds as follows: we first query a VLM with an image
of the scene and ask for an appropriate task to attempt. Then, we run the corresponding Tether policy,
record its execution, and evaluate it with a two-stage process using VLMs and correspondences.
These steps are visualized in Figure[3] and we describe them in detail below.

Task Selection And Planning. At each iteration, we select tasks based both on which demos we
would like to add to our collection, and which tasks are actually executable. To prioritize demos to
add, we maintain a running count of the number of successes for each task, and weight rare tasks
higher. In particular, we sample the target task from a softmax over the negated success counts.

However, this rare target task might not be instantly executable. For instance, to attempt to “move
object from shelf to table”, the object of interest must have been placed on the shelf in the first place.
If that object could be in many other locations in the scene, it might only rarely reach the shelf in the
course of undirected play. To overcome this, we query a VLM to provide a task plan, i.e., a sequence
of executable tasks that culminates in the target task, of which we attempt the first task within the
current iteration, similar to receding horizon control. Our prompt and examples are in the Appendix.

Success Evaluation. Having attempted a task, we determine the success of the resulting trajectory
via two evaluations, employed in sequence to minimize false positives. First, from the final camera
image o, of the source demo ™ that produced this trajectory, we look for correspondences of its
final keypoint k., o in the Tether execution’s post-image 0,05 If one (or both) of the rays projected
by the best-matched point from either camera view is far from the executed gripper position (beyond
a preset threshold of 10 centimeters), we mark the trajectory a failure. If this test is passed, we then
further query a VLM with the image frames from the trajectory to double-check for task success.
This two-stage procedure alleviates the false positive problem with naively querying off-the-shelf
VLMs as success detectors observed in prior works (Duan et al., 2024a).

Improving For and Through Play. There are a few additional considerations when deploying Tether.
First, play benefits from injecting some stochasticity to help generate exploratory data to search for
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Figure 4: Evaluation Tasks. Our tasks involving moving fruits and containers with in-distribution
(orange) and out-of-distribution (green) objects, as well as challenging manipulation skills (purple).

improved policies. This also expands the set of potential actions, decreasing the chance of our policy
being trapped in states where all actions fail to induce environment transitions. Thus, rather than
providing our policy with the full set of demos given for play, we first sub-select £ demos and then
run our policy to warp the closest one amongst them.

While we can select these & demos randomly, there is a second consideration: human demos could be
of varying quality, in which case, play using various source demos could help identify consistently
better demos to warp from, avoiding, for example, demos that involve non-robust fingertip grasps.
Thus, we select the top k£ demos by formulating a multi-arm bandit problem: arms are demos, and the
reward for picking a demo is the binary success of the executed trajectory warped from that demo.
For this problem, we use upper confidence bounds (Garivier & Moulines| 2011), which balances
exploring relatively less-tested source demonstrations with exploiting high-success ones. We provide
pseudocode in Appendix.

4 EXPERIMENTS

We conduct experiments evaluating our policy design and autonomous play procedure. Specifically,
we study (1) policy robustness, particularly for out-of-distribution settings and challenging tasks, and
(2) the effectiveness of autonomous play in generating a stream of data for policy training.

4.1 EXPERIMENTAL SETUP

We run all experiments on the 7 DOF Franka Emika Panda arm running at 15 Hz and record two RGB
views from calibrated ZED cameras. Across all experiments, we provide 10 demonstrations for each
task. We run our semantic correspondence on 1 A6000 GPU. In autonomous play, we use Gemini-2.5
Flash for task selection and GPT-4.1 for success evaluation. Additional details are in Appendix.

Baselines And Ablations. We compare our Tether policy with recent imitation learning methods.
These baselines are representative of the state-of-the-art across various levels of data-efficiency. First,
mo (Black et all},[2024a)) (with FAST (Pertsch et al., 2025)) is an open-source VLA intended to operate
entirely zero-shot in new scenes. Second, Keypoint Action Tokens (KAT) (D1 Palo & Johns, 2024)
queries a LLM for in-context action sequence generation, given a few demos (10 in the original
work). Third, Diffusion Policy (DP) 2023) is a general imitation learning algorithm
typically trained with a few tens up to a few hundreds of demos, depending on task complexity.
Here, we evaluate 7 zero-shot and provide DP and KAT with 10 demos each, same as our approach.
Additionally, we ablate the number of demos given to our method, evaluating with 1, 5, and 10.

Tasks. We visualize our 12 tasks in Figure[4. First, we have 4 tasks that involve moving fruits and
containers on a table and shelf. We instantiate these tasks with a soft pineapple toy and a curved rigid
bowl. The main challenges are the bowl, which requires careful orientation of the gripper to prevent
slipping, and the shelf, which requires a horizontal orientation approach to avoid collision.

We start with in-distribution objects (the same pineapple and bowl from demos) to specifically
evaluate spatial generalization, since our few demos do not fully cover the entire distribution of object
positions. Afterwards, we test with out-of-distribution objects to also assess semantic generalization:
focusing on the "Pineapple to Bowl" task, we change the pineapple to an apple (color change) or
strawberry (size change) and the bowl to a basket (appearance change) or cup (geometry change).
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Figure 5: Main Policy Comparison. We compare the Tether policy with baselines across 12 tasks.

Next, we probe the limits of our policy design across 4 challenging tasks involving deformation,
sustained contacts, articulation, and precision. First, the robot picks up a soft cloth from the table and
maintains consistent contact to wipe marks off a whiteboard. Second, it grasps a cabinet doorknob
only 0.5 centimeters thick (1/4 of gripper width) and applies stable contacts to fully open the cabinet’s
tight hinge. Third, it places a roll of tape on a small silver hook, 3 centimeters deep and visible in
only a few pixels. Fourth, it inserts a K-cup pod into a coffee machine, which demands precision
with an error margin of 8 millimeters.

We report success rates over 10 trials. For each trial, we randomize object positions and use the
same two camera views that capture the entire scene (depicted in Figure[T). This naturally includes
irrelevant objects and locations in the majority of the image, requiring methods to focus on task-
relevant regions of the scene. The "Inserting Coffee" task is the sole exception: since the 8-millimeter
margin of error projects onto the camera views as 2 to 3 pixels, we move the cameras closer to zoom
in on the coffee pod and machine compartment.

4.2 ROBUST IMITATION

Tether policy outperforms alternative imitation learning approaches. In Figure |5, we find
that given few demos, our policy surpasses baselines across all tasks. Diffusion Policy, being
an end-to-end model trained from scratch without built-in priors, fails to generalize from just 10
demos. Meanwhile, 7y performs well on standard tabletop pick-and-place, likely benefiting from its
pretraining on datasets containing similar behaviors, but fails with more complex tasks due to (1)
incomplete command understanding (e.g., grasping the cloth but failing to locate the whiteboard) and
(2) imprecise manipulation (e.g., approaching the coffee pod but missing the grasp).

Our few-shot learning baseline, KAT, did not achieve any successes on our tasks. KAT extracts
visual tokens without considering task relevance, and the task-irrelevant features in our cluttered
scene significantly outnumbers the task-relevant objects. We tried to fix this by manually annotating
task-relevant scene regions, as well as running multiple language models (Gemini-2.5 Flash and
GPT-4.1, and GPT-4 Turbo from the original work) and subsampling frequencies (between 3 and 15
Hz). We believe KAT’s failures are due to the LLMs failing to handle complex multi-dimensional
numerical patterns present in our tasks, caused by orientation changes and non-linear velocities.

Tether policy excels at both spatial and semantic generalization. First, our policy excels in
tasks involving spatial robustness with in-distribution objects, including the bowl, which requires
accurate orientation and position to avoid slipping. Second, our policy performs well even with
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Figure 6: Autonomous Play Statistics. In around 26 hours of play, our method produces over 1000
diverse trajectories across 6 tasks.

out-of-distribution objects, attesting to the strong semantic generalization inherited from visual
correspondence: without the demo object being present at test-time, correspondence finds the most
semantically similar object and pinpoints the relative region of the keypoint (e.g., center of fruit or
rim of container). This capability is significant especially for grasping the strawberry, which is vastly
different in appearance and 1/4th the size of the demonstrated pineapple, and cup, which has 1/2 the
diameter of the bowl and just big enough to fit the pineapple, thus requiring precision along with
generalization. Visualizations are in Appendix.

Tether policy succeeds even on challenging manipulation tasks. Our policy is effective at more
difficult manipulation tasks despite their challenges with deformation, sustained contacts, articulation,
and precision. Successes with small features of the scene like the cabinet knob, hook, and coffee
machine compartment demonstrate the high accuracy of our semantic correspondences. Most notably,
our method achieves non-trivial success for the coffee insertion task without using the wrist camera;
this task requires significant accuracy during grasping, since the deformable cylindrical pod crumbles
if held just 1 centimeter off, and insertion, since the difference in pod and compartment diameter is a
mere 8 millimeters. Additionally, fully opening the cabinet and wiping marks off the whiteboard show
that trajectory warping can maintain consistent contacts with the scene, even without closed-loop
adjustments. Finally, accurate grasps of the soft cloth demonstrate our method’s flexibility with
deformable objects, in contrast with prior work (Wen et al.| [2022; [Mandlekar et al.| 2023} [Zhu et al.|
that rely on rigid objects for pose estimation.

4.3 AUTONOMOUS PLAY

Given our policy’s strong performance, we now deploy it on a subset of evaluation tasks for au-
tonomous play. Specifically, we use the demos from Section [£.2] (10 per task) for moving the
pineapple between the table, shelf, and bowl, as well as moving the bowl between the table and shelf.
As described in Section [3.2] this task set is chosen so that there is a high certainty of at least one
viable subsequent task that can be executed after previous tasks, even in their most common failure
cases (e.g. object drops to the table).

Tether runs across multiple hours without resets. We run autonomous play for 4 sessions totaling
around 26 hours. Success statistics for each task are shown in Figure[6 (left). Our policy generates
1085 successes from 1946 attempts across our 6 tasks, averaging around 1 success every 86 seconds
and 1 attempt every 48 seconds, with a cumulative success rate of 55.8%. We intervene a total of 5
times (due to the bowl flipping), amounting to 0.26% of the attempts and an average of once every
5.2 hours. We provide a time-lapse in the Appendix.

We observe that these success rates are lower than those in Section [4.2] due to the uncontrolled
nature of play. For instance, the bowl is sometimes tilted on its side due to imprecise placements or
accidental pushes; these make grasps significantly harder, though our policy is still able to recover
and fix the bowl. On rare occasions, the bowl is flipped completely upside-down after dropping from
the shelf. With only one arm, this state is generally irrecoverable and requires interventions. However,
on two separate instances, the robot accidentally recovers by squeezing it against the shelf and forcing



Under review as a conference paper at ICLR 2026

Bowl from Shelf to Table Bowl to Shelf Pineapple from Bowl to Table
1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 0.50
0.25 0.25 0.25
£ 0.00 0.00 0.00
g™ o 500 1000 1500 2000 O 500 1000 1500 2000 O 500 1000 1500 2000
0 . . .
% Pineapple from Shelf to Table Pineapple to Bowl Pineapple to Shelf
S 1.00 1.00 1.00
a
0.75 0.75 0.75
0.50 0.50 0.50
0.25 0.25 0.25
0.00 0.00 0.00
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Iterations

Figure 7: Downstream Policy Learning Results. The stream of data generated by autonomous play
consistently improves policy performance over time.

it back upright. While such recoveries are not intended and occur purely by luck, they highlight the
interesting nature of play: that at scale, coincidences may result in unexpected novel behaviors.

Tether produces diverse trajectories. In Figure|6 (right), we visualize the diversity of keypoints
from demonstrations and successful play trajectories. We see that while our demos sparsely cover the
table and shelf, using them to seed play allows us to not only interpolate between the demos but also
expand on the edges of the distribution, such as the area around the cabinet.

Tether produces a stream of data that trains effective policies. Next, we train parametric policies
on the generated data. While there are numerous algorithms for learning from suboptimal data, we
adopt filtered behavioral cloning as a straightforward and effective approach. Integrating alternative
methods that make fuller use of suboptimal trajectories remains a key direction for future work.

After every 500 iterations of play, we train Diffusion Policies on the cumulative successful trajectories
for each task. We track their performance in Figure[7] Across all tasks, these policies progressively
improve over time, with most eventually reaching near-perfect success rates. Thus, the data generated
by Tether is consistently high-quality and effective for downstream policy learning. Diving deeper
into the nature of this improvement, we see that as our ever-expanding datasets scale with more play,
they increase in diversity and naturally build a stronger coverage of the object pose distribution. Thus,
policies trained on this data improve primarily on their spatial robustness to different object positions:
earlier policies succeed only when the object is in some specific locations, whereas our final policies
are generally effective for any random object placement. Note that this robustness also extends to
distractor objects that were involved in other tasks during play: for instance, policies that interact
only with the bowl perform well irrespective of the pineapple position, and vice versa.

Finally, we compare our results with policies trained on an equivalent number of human-collected
demos. For the "Pineapple from Shelf," "Pineapple to Bowl," and "Bowl to Shelf" tasks, these
baselines achieve 80%, 100%, and 70% success rates, compared with 90%, 100%, and 90% from
Figure[7, Thus, we confirm that Tether-generated data is competitive with human-collected data,
while requiring minimal human effort and scaling simply with robot time.

5 CONCLUSION

We have presented Tether, a system for autonomous play with robust policies that scales data primarily
with robot time. We introduce a novel policy design with semantic correspondence and trajectory
warping that excels across a diverse set of tasks, and we deploy it within a VLM-guided multi-task
play procedure that successfully produces over 1000 trajectories in 26 hours with minimal human
intervention. This generated data, funneled downstream for filtered imitation learning, consistently
improves the performance of neural policies, which ultimately reach near-perfect success rates. We
believe that Tether demonstrates the potential for an alternative path in robot learning: one driven by
scalable methods that perform and learn from autonomous interaction and experience.
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