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Abstract. Assessing the aesthetic quality of artistic images presents
unique challenges due to the subjective nature of aesthetics and the com-
plex visual characteristics inherent to artworks. Basic data augmentation
techniques commonly applied to natural images in computer vision may
not be suitable for art images in aesthetic evaluation tasks, as they can
change the composition of the art images. In this paper, we explore the
impact of local and global data augmentation techniques on artistic im-
age aesthetic assessment (IAA). We introduce BackFlip, a local data
augmentation technique designed specifically for artistic IAA. We eval-
uate the performance of BackFlip across three artistic image datasets
and four neural network architectures, comparing it with the commonly
used data augmentation techniques. Then, we analyze the effects of com-
ponents within the BackFlip pipeline through an ablation study. Our
findings demonstrate that local augmentations, such as BackFlip, tend
to outperform global augmentations on artistic IAA in most cases, prob-
ably because they do not perturb the composition of the art images.
These results emphasize the importance of considering both local and
global augmentations in future computational aesthetics research.

1 Introduction

Evaluating image aesthetics is a subjective task for humans, making it even more
challenging for neural networks to perform accurately. This task, known as Image
Aesthetic Assessment (IAA) in computer science, is part of the interdisciplinary
field of computational aesthetics and involves modelling aesthetic scores. The
typical approach involves either binary classification, which classifies an image
as low or high in aesthetics [6, 13, 25, 32], or regression, which predicts a con-
tinuous aesthetic score for a given image [15, 19, 23, 29, 34]. In the literature on
automated IAA [9,39], deep learning plays a crucial role based on its significant
impact across various fields. However, datasets collected for this task are often
limited and struggle to reflect the true aesthetic nature of images. Numerous
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psychological factors influence aesthetic judgments, resulting in diverse indi-
vidual preferences. These factors range widely, from low-level image properties
and mid-level organizational qualities to high-level semantic content, including
individual, social, and cultural factors. Consequently, IAA presents a difficult
challenge for artificial intelligence, as it seeks to emulate human aesthetic eval-
uation. This difficulty is amplified when considering the aesthetic assessment of
artworks. Artworks are inherently complex and diverse, characterized by variable
compositions and styles (from highly realistic to purely abstract). This specific
task, known as Artistic IAA, has yet to be fully explored.

Neural network approaches in computer vision commonly use data augmen-
tation techniques to improve performance. However, in artistic IAA, these tech-
niques exhibit limited effectiveness given the importance of overall composition.
When images are modified with data augmentation techniques like cropping, flip-
ping, or color adjustment, the visual aspects that contribute to their aesthetic
appeal can be altered. These modifications likely disrupt the original composi-
tion, harmony, or emotional impact intended by the artist, invalidating the use
of the aesthetic scores originally assigned by human participants.

To address this issue, we examine the effects of data augmentation on artistic
IAA. We compare well-known techniques and propose a novel technique called
BackFlip1, which involves the local flipping of image regions. We first segment
the images using the Segment Anything (SAM) model [18], then inpaint the
background, and flip the selected segment to implement local data augmenta-
tion (see Section 3). Our approach aims to minimize alterations to the overall
composition, thereby preserving human aesthetic appreciation, while effectively
modifying the visual patterns crucial for computer vision recognition. In Fig. 1,
we exemplify global and local image transformations applied to art images, high-
lighting the distinct impacts of different augmentations. Our study examines the
impact of local and global data augmentation techniques on artistic IAA using
three benchmark datasets composed of paintings. We emphasize the challenges
of artwork datasets in the context of data augmentation in computer vision.

2 Related Work

2.1 Artistic Image Aesthetic Assessment

Early approaches to artistic IAA involve studies that extract features from paint-
ings for classification. For example, Amirshahi et al. [1] uses a set of color features
in the field of computer vision and image processing, while Li et al. [22] employs
features representing both global and local characteristics of a painting. Addi-
tionally, Guo et al. [10] evaluates visual complexity of paintings using features
that capture both global and local aspects.

Recent studies include deep learning approaches such as using convolutional
neural networks (CNNs) to predict the aesthetics of Chinese ink paintings [40].
Wilber et al. [36] presented a large-scale dataset of contemporary artworks and
1 The code is available at https://github.com/GMuradas99/BackFlip.

https://github.com/GMuradas99/BackFlip
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Fig. 1: Global (Random Crop, Horizontal Flip, Rotation) and local (BoxFlip, Back-
Flip) image transformations on art images from the JenAesthetics dataset [2–4]. The
local data augmentations generally preserve the global composition of the images, while
introducing considerable pixel-level changes that are often less perceptible to the hu-
man eye unless if they distort perceptually important shapes and objects like faces.

used it for artistic style prediction, improving the generality of existing object
classifiers, and studying visual domain adaptation. More specifically for the artis-
tic IAA task, the Theme-Style-Color Guided Artistic Image Aesthetics Assess-
ment Network (TSC-Net) [35] assesses art images by fusing aesthetic information
with image theme, style, and color. Shi et al. [28] presented semantic and style
based multiple reference learning for artistic and general IAA. Another recent
model, the Style-specific Art Assessment Network (SAAN) [38], evaluates artistic
images by combining style-specific and generic aesthetic features. In our study,
we adopt deep learning models, including SAAN, to predict aesthetic scores.

2.2 Image Data Augmentations

Whether the task involves natural images or artworks, data augmentation tech-
niques are usually necessary for computer vision [21]. Limited labeled data can
lead to overfitting. Additionally, labeling data is time-consuming and expensive.
To address overfitting, various generalization techniques have been proposed,
such as dropout [30] and batch normalization [14]. Among these, data augmen-
tation is the easiest and one of the most common methods to reduce overfit-
ting [20]. Basic data augmentation techniques involve image transformations
such as rotation, flipping, and cropping. In the context of artistic IAA, several
studies examine data augmentation techniques. For instance, a stacking ensem-
ble method for art style recognition has been presented and the effects of data
augmentation such as brightness change and rotation have been examined [26].
In a similar line of research [38], image augmentations to train self-supervised
models have been explored. Both methods use global image transformations.

Different from previous work on data augmentation on art images, we explore
a local data augmentation strategy that does not alter the overall composition of
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Fig. 2: Visualization of the BackFlip pipeline. First, we segment regions in images and
inpaint the background, and then we locally flip the selected segment to implement
data augmentation.

an artistic image. Local data augmentation has been applied on natural images in
various domains but often with highly noticeable visual effects [16,42]. In random
erasing [42], for instance, a rectangular part of an image is selected and the pixels
are replaced with ImageNet mean values to introduce occlusions. This technique
has been shown to complement existing global data augmentation techniques for
image classification, object detection, and person re-identification. Another lo-
cal augmentation technique divides images into rectangular patches and shuffles
and augments a selection of patches [16]. This technique has been proposed to
exploit the local bias property of CNNs, stating that local augmentations cre-
ate more diversity relevant to models that extract local features. This approach
demonstrates competitive performance with other data augmentation techniques
on image classification. Close to this approach, we also suggest BoxFlip, where
a rectangular patch in an image is augmented. We compare this baseline to our
newly proposed BackFlip, which we test under various conditions. We hypoth-
esize that IAA could benefit from local data augmentation more than global
augmentation given the importance of composition in artworks for IAA. Our
novel technique BackFlip extends previous work by locally transforming image
segments in order to maintain as much of the overall composition as possible.

3 BackFlip

The BackFlip algorithm consists of three primary operations: unsupervised seg-
mentation, inpainting, and local transformations, as shown in Figure 2.
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3.1 Segmentation

First, we segment the images using the SAM model [18]. We use unsupervised
segmentation to accommodate the lack of conventional object classes in abstract
art. The SAM implementation in BackFlip returns the segments as binary masks.
We exclude segments whose bounding box is larger than 90% of the image area,
given that these segments would alter the overall composition when augmented
and can no longer be considered local augmentations (e.g., the background). Af-
ter excluding those segments, the remaining segments are ordered in descending
size. One of the hyperparameters of BackFlip is the number of segments n to
save. In our tests, SAM detects around 60 segments per artwork on average for
all tested datasets.

It should be noted that classical image augmentation techniques are typically
applied during training to introduce various random changes to the data at
each epoch. However, BackFlip employs the SAM model for segmentation, which
would drastically increase the training time when implemented on each epoch
(while yielding the same results every epoch). Therefore, the dataset is pre-
segmented once before training to optimize computational resources. During
training, segments are selected and locally augmented with a given probability
on each epoch, ensuring the model sees a wide variety of augmented images.

3.2 Inpainting

In the next step, we erase the chosen segments in the images and inpaint the
background. BackFlip employs three types of inpainting methods, with vari-
ous computational costs and different levels of complexity. These methods typ-
ically involve a trade-off between image quality and computational efficiency.
We present them in descending order of complexity, starting with methods that
produce the most realistic inpainted images.

The first method is LaMa [31], a deep learning model that uses fast Fourier
convolutions [7], providing a receptive field that covers the entire image while re-
maining computationally efficient. This approach is significantly more lightweight
compared to other state-of-the-art inpainting models based on generative meth-
ods like CoModGAN [41] or Stable-Diffusion [27]. The model receives the original
image and the segmented area as input and returns an image where the segments
are erased and inpainted. Since this method repeats the local statistics of the
edge around the erased segment, we first dilate the segment mask to ensure the
background no longer contains pixels of the removed segment. Similar to SAM,
employing LaMa on each epoch would drastically increase the training time while
still yielding the same result on each epoch. Therefore, BackFlip pre-inpaints the
images based on their pre-computed segmentation masks before training when
LaMa is used. The other inpainting methods demand less computational re-
sources and are therefore implemented during training in BackFlip.

The second group of inpainting methods employs classical computer vision
algorithms for efficient real-time data augmentation. We consider two techniques:
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Fast Marching Method (Telea) [33], and fluid dynamics (NS) [5]. These meth-
ods inpaint image pixels using image gradients or the Laplacian. Treating image
intensity as an incompressible flow in fluid dynamics, NS transports the image
Laplacian as vorticity into the inpainting area. On the other hand, Telea prop-
agates smoothness along image gradients, iteratively inpainting the image by
averaging values from neighboring pixels.

Our final inpainting method is based on the mean or median color of the
segment boundary. We first compute a dilated version of the segment mask, from
which we subtract the original mask. As such, we obtain the segment boundary
(or contour), which is then used to calculate its mean or median color to fill the
area of the original segment.

3.3 Local Transformations

In the final step, we introduce local transformations in the images. BackFlip
offers common data augmentation techniques locally such as vertical and hor-
izontal flipping, random rotation, brightness jitter, downscaling and upscaling.
The transformed element is then inserted into the inpainted image. Augmen-
tations are applied on every epoch with a given probability, which is another
hyperparameter that can be adjusted.

4 Results

In this section, we evaluate the impact of local and global data augmentations
on artistic IAA. We assess the performance of BackFlip across three artistic
image datasets and four neural network architectures, comparing it with com-
monly used data augmentation techniques. The models tested are ResNet-18 [11],
ResNet-50, ResNeXt-50 [37], and SAAN [38]. We consider a fixed hyperparame-
ter and training setup for each dataset and model combination, with all models
pre-trained on ImageNet [8]. We detail the experimental setup in Section 4.1 and
present the results in Section 4.2. To ensure robustness and fairness in comparing
augmentations, we perform five independent runs for each experiment. Finally,
we evaluate the components of the BackFlip pipeline through an ablation study
in Section 4.3. Our evaluations are based on the Pearson correlation coefficient
(PCC) and Spearman’s rank correlation coefficient (SRCC) between the ground-
truth aesthetic scores of images and the model’s predictions. We also assess the
classification performance of the models by defining a threshold of 0.5.

4.1 Datasets and Experimental Setup

BAID. The Boldbrush Artistic Image Dataset (BAID) [38] consists of 60,337
artistic images covering various art forms, with more than 360,000 votes from on-
line users. Yi et al. [38] constructed this dataset entirely from artworks obtained
from the website Boldbrush2. This website hosts a monthly artwork contest
2 https://faso.com/boldbrush/popular
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where certified artists upload their works and receive public votes from online
users. The scores of the images in BAID range from 0 to 10, where 0 represents
a lower number of votes and 10 is a higher number of votes. BAID is the most
recent IAA dataset and is considered the largest of its kind currently available.

We trained all models for 50 epochs, using various batch sizes depending
on the model size (ranging from 50 to 512). All models were trained with a
learning rate of 0.001 and the Adam optimizer [17], except SAAN, trained with
0.0001 and AdamW optimizer [24]. For the local data augmentations, we selected
three segments and used median inpainting, as this method is less costly for
the large BAID dataset. We considered horizontal and vertical flips as local
augmentations, each with a probability of 0.5. The number of segments n to
save in BackFlip is 5 for all experiments. Pre-segmenting the BAID dataset
takes 29 hours, 35 minutes, and 12 seconds for 60337 images on 1 A100 GPU.

JenAesthetics. The JenAesthetics Subjective Dataset of Aesthetic Paintings
[2–4] consists of 1,628 art images. These images are colored oil paintings, all
displayed in museums and scanned at high resolution. The dataset covers 11
art periods/styles, including Renaissance, Baroque, and Impressionism, created
by 410 artists. This dataset provides aesthetic quality scores (how aesthetic the
image is) and beauty scores (how beautiful the image is). The rating scale is
continuous, ranging from 1 to 100. Additionally, it includes scores for liking of
color, content, composition, knowledge of the artist, and familiarity with the
painting. Each painting was evaluated by 19-21 observers. Due to some broken
URLs in the original dataset, we obtained 1,576 out of the 1,628 images. The
train, validation, and test sets consist of 1,103, 158, and 315 images, respectively.

We trained all models for 60 epochs. We trained SAAN with a batch size
of 32, using AdamW as the optimizer and a learning rate of 0.0001. The other
models were trained with a batch size of 128, using Adam as the optimizer and
a learning rate of 0.001. For the local data augmentations, we used Telea as
inpainting method. When using BackFlip, we applied the same configuration
as used in BAID. Pre-segmenting the JenAesthetics dataset takes 1 hour, 49
minutes, and 17 seconds for 1584 images on 1 A4500 Laptop GPU.

TAD66K. The Theme and Aesthetics Dataset with 66K images (TAD66K) [12]
is specifically designed for IAA, containing 66k images. It covers 47 popular
themes, which are the most uploaded on the Flickr website from 2008 to 2021.
These themes are grouped into seven superthemes, namely, plants, animals, arti-
facts, colors, humans, landscapes, and others, which were further divided into 47
subthemes. Images of each theme are annotated independently, and each image
contains at least 1200 annotations. The annotation score of each image ranges
from 1 to 10, representing the lowest aesthetics to the highest aesthetics. They
calculated the average value as the ground-truth of the image.

In our study, we focus on the artistic images within the TAD66K dataset,
similar to [28]. This subset contains 1431 labeled artistic images. We maintain
the original dataset’s split, allocating 289 images for testing and 1,142 images
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for training. We randomly split the training set, designating 229 images for vali-
dation. We trained all models for 100 epochs with a batch size of 128, a learning
rate of 0.0001, and the AdamW optimizer. We used median inpainting for our
local data augmentations and implemented BackFlip with the same configura-
tion as used in BAID. Pre-segmenting the TAD66K dataset takes 1 hour, 30
minutes, and 40 seconds for 1431 images on 1 A4500 Laptop GPU.

4.2 Artistic IAA Models

To assess the impact of data augmentation on artistic IAA, we consider both
global and local augmentation techniques. For the global data augmentation
techniques, we include horizontal flip, vertical flip, and rotation. For most aug-
mentations, we first resize every image maintaining the original aspect ratio and
reducing the shortest side to 224. Then, we crop part of the image to obtain an
input of 224×224. We consider both center cropping and random cropping. Ad-
ditionally, we consider random cropping without resizing beforehand, referred to
as random resized crop. We include resize and center crop as a baseline for image
preprocessing and report the results before adding augmentation techniques.

For the local data augmentation techniques, we implement BoxFlip by se-
lecting a random patch in the image with a min-ratio of 0.3 and a max-ratio of
0.5, which is then flipped either horizontally or vertically. To assess the impact
of the local image augmentations using BackFlip, we also propose the erase and
inpaint method, which removes segments and inpaints the background without
augmenting the segment.

Table 1 presents the results on the BAID dataset, showing an overall ten-
dency for local data augmentations to perform slightly better than global ones.
In terms of accuracy, erase+inpaint performs the best for ResNet-18, followed
by BackFlip. In terms of correlations, all local augmentations (erase+inpaint,
BoxFlip, and BackFlip) outperform the others in PCC, whereas there is no sig-
nificant difference in SRCC, except for random resized crop, which comes to
the forefront. For ResNet-50, BoxFlip outperforms the others. In ResNeXt-50,
random resized crop is the best in terms of accuracy, but local data augmen-
tations provide competitive correlations. We observe a similar trend in SAAN.
Additionally, we compare the average results of all global data augmentation ex-
periments with those of all local data augmentation experiments, which is shown
in the right 3 columns. This comparison shows that local augmentations perform
better than global ones, except in ResNeXt-50, where they perform similarly.

We repeat these experiments on the other datasets in our study, with Table 2
showing the results for the JenAesthetics dataset. We observe a similar tendency
as in the previous results, but it is more evident. In terms of SRCC, the average
performance of all local data augmentations outperforms that of global data
augmentations in ResNet-18 and ResNet-50. When comparing accuracy across
all models, local augmentations usually outperform or perform similarly to global
ones. In terms of correlations, BackFlip is superior to the other techniques in
SAAN. We also emphasize that JenAesthetics is a better-curated dataset of
paintings compared to the others.
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Augmentation BAID
Acc. (%) PCC SRCC Acc. (%) PCC SRCC

R
es

N
et

-1
8

R., C.C. 74.9 ± 1.48 0.41 ± 0.04 0.29 ± 0.03

R., Random Crop 70.24 ± 3.81 0.30 ± 0.03 0.22 ± 0.02

70.8 ± 0.2 0.30 ± 0.0 0.23 ± 0.01

Random Resized Crop 72.5 ± 4.64 0.29 ± 0.06 0.28 ± 0.05

R., C.C., Horizontal flip 70.31 ± 1.6 0.31 ± 0.03 0.21 ± 0.02

R., C.C., Vertical flip 70.04 ± 4.09 0.31 ± 0.02 0.22 ± 0.02

R., Rotation, C.C. 70.93 ± 1.94 0.31 ± 0.03 0.23 ± 0.03

R., C.C., Erase+Inpaint 73.35 ± 3.09 0.36 ± 0.05 0.23 ± 0.04

72.47 ± 0.71 0.36 ± 0.01 0.24 ± 0.01R., C.C., BoxFlip 71.01 ± 3.19 0.37 ± 0.03 0.22 ± 0.06

R., C.C., BackFlip 72.93 ± 1.95 0.34 ± 0.03 0.22 ± 0.02

R
es

N
et

-5
0

R., C.C. 70.14 ± 1.88 0.29 ± 0.05 0.2 ± 0.05

R., Random Crop 72.29 ± 1.26 0.29 ± 0.04 0.22 ± 0.03

71.97 ± 0.11 0.30 ± 0.0 0.24 ± 0.0

Random Resized Crop 72.58 ± 5.64 0.28 ± 0.08 0.25 ± 0.05

R., C.C., Horizontal flip 71.15 ± 5.7 0.32 ± 0.05 0.24 ± 0.05

R., C.C., Vertical flip 72.17 ± 0.85 0.33 ± 0.05 0.25 ± 0.05

R., Rotation, C.C. 71.69 ± 4.84 0.3 ± 0.01 0.24 ± 0.02

R., C.C., Erase+Inpaint 72.59 ± 2.72 0.36 ± 0.03 0.23 ± 0.04

73.37 ± 0.28 0.37 ± 0.0 0.25 ± 0.0R., C.C., BoxFlip 74.02 ± 0.6 0.38 ± 0.02 0.24 ± 0.02

R., C.C., BackFlip 70.48 ± 4.57 0.33 ± 0.05 0.22 ± 0.04

R
es

N
eX

t5
0

R., C.C. 73.3 ± 3.13 0.37 ± 0.05 0.27 ± 0.02

R., Random Crop 74.49 ± 1.03 0.32 ± 0.09 0.25 ± 0.09

73.6 ± 0.24 0.30 ± 0.01 0.25 ± 0.01

Random Resized Crop 75.13 ± 2.33 0.3 ± 0.13 0.32 ± 0.04

R., C.C., Horizontal flip 73.48 ± 0.82 0.34 ± 0.05 0.25 ± 0.04

R., C.C., Vertical flip 72.6 ± 1.65 0.3 ± 0.02 0.23 ± 0.01

R., Rotation, C.C. 72.32 ± 2.26 0.24 ± 0.14 0.2 ± 0.07

R., C.C., Erase+Inpaint 73.86 ± 1.25 0.35 ± 0.03 0.25 ± 0.01

73.51 ± 0.22 0.34 ± 0.01 0.24 ± 0.0R., C.C., BoxFlip 73.93 ± 1.35 0.35 ± 0.03 0.23 ± 0.02

R., C.C., BackFlip 72.74 ± 2.02 0.32 ± 0.03 0.23 ± 0.02

S
A

A
N

R., C.C. 74.77 ± 1.37 0.37 ± 0.03 0.3 ± 0.04

R., Random Crop 72.4 ± 1.16 0.37 ± 0.03 0.29 ± 0.03

73.43 ± 0.37 0.38 ± 0.0 0.32 ± 0.01

Random Resized Crop 76.46 ± 0.37 0.41 ± 0.03 0.37 ± 0.02

R., C.C., Horizontal flip 72.4 ± 1.7 0.37 ± 0.04 0.31 ± 0.04

R., C.C., Vertical flip 73.95 ± 0.8 0.35 ± 0.02 0.3 ± 0.03

R., Rotation, C.C. 71.95 ± 1.59 0.39 ± 0.01 0.31 ± 0.01

R., C.C., Erase+Inpaint 74.09 ± 1.01 0.41 ± 0.02 0.32 ± 0.03

73.61 ± 0.14 0.39 ± 0.01 0.31 ± 0.01R., C.C., BoxFlip 73.27 ± 1.74 0.37 ± 0.04 0.29 ± 0.03

R., C.C., BackFlip 73.47 ± 1.05 0.4 ± 0.01 0.33 ± 0.02

Table 1: Results on BAID for four models trained with different global and local data
augmentation techniques. R. and C.C. stand, respectively, for Resize and Center Crop.
We report the average accuracy across at least 5 independent runs. The ensemble mean
and standard deviation for global and local data augmentations are displayed in the
right column. For the local data augmentations, we used median inpainting.

Lastly, Table 3 shows the results on the TAD66K dataset, presenting similar
results between the average local and data augmentations. In terms of accuracy,
PCC, and SRCC, we observe that rotation outperforms the others in ResNet-18
and ResNet-50, with local augmentations following closely. In the ResNeXt-50
and SAAN, we observe similar results between the local augmentations and the
others. However, it is important to note that TAD66K-Art subset includes a
diverse set of images, such as a picture of two paintings and an observer (see
Fig. 3, the second row).
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Augmentation JenAesthetics
Acc. (%) PCC SRCC Acc. (%) PCC SRCC

R
es

N
et

-1
8

R., C.C. 71.43 ± 2.31 0.25 ± 0.03 0.24 ± 0.02

R., Random Crop 71.3 ± 1.58 0.16 ± 0.02 0.14 ± 0.02

70.9 ± 0.6 0.17 ± 0.01 0.15 ± 0.01

Random Resized Crop 73.49 ± 2.5 0.23 ± 0.03 0.2 ± 0.04

R., C.C., Horizontal flip 73.78 ± 1.48 0.13 ± 0.02 0.09 ± 0.02

R., C.C., Vertical flip 69.27 ± 2.06 0.15 ± 0.0 0.16 ± 0.01

R., Rotation, C.C. 66.67 ± 1.63 0.16 ± 0.04 0.15 ± 0.03

R., C.C., Erase+Inpaint 71.81 ± 1.7 0.2 ± 0.02 0.18 ± 0.02

69.00 ± 2.54 0.19 ± 0.02 0.19 ± 0.02R., C.C., BoxFlip 69.53 ± 1.85 0.22 ± 0.01 0.21 ± 0.01

R., C.C., BackFlip 65.65 ± 2.22 0.16 ± 0.02 0.17 ± 0.01

R
es

N
et

-5
0

R., C.C. 75.62 ± 0.57 0.17 ± 0.02 0.15 ± 0.02

R., Random Crop 75.56 ± 0.87 0.22 ± 0.02 0.19 ± 0.02

72.39 ± 0.61 0.16 ± 0.01 0.14 ± 0.01

Random Resized Crop 75.87 ± 0.5 0.17 ± 0.03 0.15 ± 0.03

R., C.C., Horizontal flip 70.48 ± 2.51 0.17 ± 0.04 0.14 ± 0.04

R., C.C., Vertical flip 69.71 ± 2.25 0.13 ± 0.02 0.13 ± 0.02

R., Rotation, C.C. 70.35 ± 2.55 0.13 ± 0.04 0.09 ± 0.03

R., C.C., Erase+Inpaint 75.81 ± 0.73 0.19 ± 0.03 0.18 ± 0.02

74.96 ± 0.60 0.20 ± 0.01 0.18 ± 0.03R., C.C., BoxFlip 74.48 ± 0.73 0.19 ± 0.02 0.15 ± 0.02

R., C.C., BackFlip 74.60 ± 1.90 0.22 ± 0.05 0.22 ± 0.05

R
es

N
eX

t5
0

R., C.C. 69.33 ± 3.16 0.14 ± 0.07 0.13 ± 0.03

R., Random Crop 71.55 ± 4.77 0.19 ± 0.05 0.18 ± 0.04

72.15 ± 0.5 0.19 ± 0.01 0.17 ± 0.01

Random Resized Crop 75.81 ± 1.41 0.26 ± 0.03 0.22 ± 0.04

R., C.C., Horizontal flip 68.83 ± 1.46 0.16 ± 0.07 0.15 ± 0.04

R., C.C., Vertical flip 72.83 ± 1.7 0.2 ± 0.03 0.17 ± 0.02

R., Rotation, C.C. 71.75 ± 2.88 0.13 ± 0.03 0.13 ± 0.03

R., C.C., Erase+Inpaint 75.62 ± 2.08 0.19 ± 0.02 0.16 ± 0.02

75.13 ± 0.34 0.17 ± 0.04 0.15 ± 0.03R., C.C., BoxFlip 74.92 ± 2.74 0.12 ± 0.03 0.11 ± 0.04

R., C.C., BackFlip 74.86 ± 0.73 0.20 ± 0.04 0.17 ± 0.06

S
A

A
N

R., C.C. 73.52 ± 1.72 0.18 ± 0.05 0.22 ± 0.05

R., Random Crop 75.43 ± 1.04 0.29 ± 0.02 0.28 ± 0.02

75.12 ± 0.08 0.25 ± 0.01 0.25 ± 0.02

Random Resized Crop 75.49 ± 1.41 0.25 ± 0.06 0.26 ± 0.04

R., C.C., Horizontal flip 74.54 ± 1.09 0.2 ± 0.03 0.22 ± 0.02

R., C.C., Vertical flip 75.11 ± 1.09 0.26 ± 0.02 0.24 ± 0.02

R., Rotation, C.C. 75.05 ± 1.73 0.27 ± 0.03 0.25 ± 0.02

R., C.C., Erase+Inpaint 74.6 ± 1.92 0.24 ± 0.04 0.22 ± 0.03

74.64 ± 0.21 0.26 ± 0.04 0.25 ± 0.03R., C.C., BoxFlip 74.92 ± 2.36 0.22 ± 0.08 0.23 ± 0.06

R., C.C., BackFlip 74.41 ± 0.86 0.31 ± 0.02 0.29 ± 0.02

Table 2: Results on JenAesthetics for different models trained with global and local
image data augmentation techniques. R. and C.C. stand, respectively, for Resize and
Center Crop. We report the average accuracy across 5 independent runs. For the local
data augmentations, we used Telea inpainting. The table format follows that of Table 1.

4.3 BackFlip Ablation Study

We observed that BackFlip, as well as the erase+inpaint and BoxFlip techniques,
perform well. Here, we evaluate the design choices of BackFlip through an abla-
tion study. Specifically, we test the impact of the inpainting method, the number
of locally augmented segments, and the type of local segment augmentations.

Inpainting method. The inpainting component in BackFlip (Fig. 2) can be
crucial in the visual quality of the output image while it is unclear whether the
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Augmentation TAD66K (artwork)
Acc. (%) PCC SRCC Acc. (%) PCC SRCC

R
es

N
et

-1
8

R., C.C. 52.94 ± 1.83 0.1 ± 0.07 0.1 ± 0.07

R., Random Crop 57.58 ± 2.14 0.24 ± 0.05 0.23 ± 0.04

54.88 ± 0.42 0.22 ± 0.01 0.20 ± 0.01

Random Resized Crop 53.77 ± 3.87 0.25 ± 0.03 0.22 ± 0.04

R., C.C., Horizontal flip 53.83 ± 3.49 0.17 ± 0.05 0.15 ± 0.06

R., C.C., Vertical flip 52.6 ± 3.1 0.18 ± 0.04 0.16 ± 0.04

R., Rotation, C.C. 56.61 ± 2.96 0.27 ± 0.03 0.25 ± 0.04

R., C.C., Erase+Inpaint 53.63 ± 6.03 0.22 ± 0.04 0.18 ± 0.05

54.21 ± 0.28 0.23 ± 0.0 0.19 ± 0.0R., C.C., BoxFlip 53.84 ± 1.98 0.24 ± 0.04 0.19 ± 0.03

R., C.C., BackFlip 55.16 ± 2.7 0.22 ± 0.03 0.2 ± 0.03

R
es

N
et

-5
0

R., C.C. 58.83 ± 2.75 0.3 ± 0.03 0.27 ± 0.03

R., Random Crop 61.39 ± 3.02 0.32 ± 0.02 0.3 ± 0.01

61.07 ± 0.28 0.33 ± 0.01 0.31 ± 0.01

Random Resized Crop 60.76 ± 3.08 0.3 ± 0.03 0.3 ± 0.02

R., C.C., Horizontal flip 59.93 ± 3.57 0.33 ± 0.04 0.3 ± 0.05

R., C.C., Vertical flip 59.93 ± 1.71 0.3 ± 0.03 0.28 ± 0.02

R., Rotation, C.C. 63.32 ± 1.45 0.38 ± 0.01 0.38 ± 0.02

R., C.C., Erase+Inpaint 61.53 ± 1.37 0.34 ± 0.02 0.3 ± 0.01

60.72 ± 0.47 0.34 ± 0.0 0.32 ± 0.0R., C.C., BoxFlip 61.52 ± 1.98 0.33 ± 0.02 0.32 ± 0.02

R., C.C., BackFlip 59.1 ± 1.65 0.35 ± 0.03 0.32 ± 0.03

R
es

N
eX

t5
0

R., C.C. 59.17 ± 3.69 0.37 ± 0.04 0.34 ± 0.05

R., Random Crop 62.77 ± 4.54 0.38 ± 0.02 0.37 ± 0.01

59.62 ± 0.56 0.38 ± 0.0 0.35 ± 0.0

Random Resized Crop 60.49 ± 2.83 0.37 ± 0.03 0.35 ± 0.02

R., C.C., Horizontal flip 55.25 ± 6.9 0.39 ± 0.03 0.36 ± 0.02

R., C.C., Vertical flip 60.55 ± 2.93 0.36 ± 0.03 0.34 ± 0.02

R., Rotation, C.C. 59.03 ± 2.08 0.38 ± 0.04 0.35 ± 0.03

R., C.C., Erase+Inpaint 59.03 ± 1.5 0.38 ± 0.02 0.34 ± 0.02

59.61 ± 0.18 0.38 ± 0.0 0.34 ± 0.0R., C.C., BoxFlip 60.07 ± 2.97 0.39 ± 0.05 0.36 ± 0.05

R., C.C., BackFlip 59.72 ± 1.13 0.37 ± 0.05 0.33 ± 0.06

S
A

A
N

R., C.C. 59.72 ± 2.68 0.26 ± 0.05 0.28 ± 0.03

R., Random Crop 59.31 ± 2.79 0.22 ± 0.06 0.26 ± 0.03

59.29 ± 0.13 0.21 ± 0.01 0.26 ± 0.0

Random Resized Crop 59.58 ± 2.33 0.21 ± 0.06 0.27 ± 0.03

R., C.C., Horizontal flip 58.69 ± 1.95 0.21 ± 0.09 0.24 ± 0.06

R., C.C., Vertical flip 58.69 ± 1.67 0.17 ± 0.07 0.24 ± 0.03

R., Rotation, C.C. 60.21 ± 2.54 0.25 ± 0.06 0.28 ± 0.04

R., C.C., Erase+Inpaint 58.13 ± 1.2 0.26 ± 0.06 0.26 ± 0.03

59.03 ± 0.41 0.25 ± 0.01 0.27 ± 0.0R., C.C., BoxFlip 60.41 ± 2.62 0.23 ± 0.06 0.27 ± 0.05

R., C.C., BackFlip 58.55 ± 2.21 0.26 ± 0.03 0.26 ± 0.03

Table 3: Results on TAD66K - Art for different models trained with global and local
image data augmentation techniques. R. and C.C. stand, respectively, for Resize and
Center Crop. We report the average accuracy across 5 independent runs. For the lo-
cal data augmentations, we used median inpainting. The table format follows that of
Table 1.

models benefit from improved inpainting methods. To showcase the inpainting
technique in isolation, we tested BackFlip without inserting a segmented image,
which is equivalent to ’Erase + Inpaint’ method, in Figure 3. We compared mean,
median, NS, Telea, and LaMa inpainting techniques on two example images
from TAD66K - Art. The original images in the first column of this figure also
exemplify the diversity of images in the ‘art’ category in TAD66K. One example
is a museum picture showing two paintings from an angle, with a visitor partially
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occluding one painting. The image as a whole is not a painting; segmenting out
the person does more than changing the ‘artwork’.

Fig. 3: Erase + Inpaint (BackFlip without inserting a segmented image) with different
inpainting methods on images from TAD66K - Art.

To compare the inpainting techniques, we train SAAN [38] for artistic IAA
on the TAD66K dataset. Table 4 shows the results, keeping the BackFlip setup
constant. In this case, we augmented three local segments and used horizontal
flipping as the local augmentation. The more refined inpainting techniques, such
as LaMa and Telea, yield slightly better results than the others. However, given
their higher computational cost and relatively small performance gain, we argue
that a simpler approach, such as median inpainting, is a more optimal choice,
especially when training on larger datasets.

Inpainting method Acc. (%) PCC SRCC

Mean 56.33 ± 1.05 0.28 ± 0.05 0.26 ± 0.04

Median 57.02 ± 0.79 0.32 ± 0.02 0.28 ± 0.02

Telea 59.03 ± 1.46 0.33 ± 0.02 0.31 ± 0.03

NS 56.81 ± 2.22 0.32 ± 0.03 0.28 ± 0.03

LaMa 58.48 ± 1.49 0.34 ± 0.04 0.32 ± 0.03

Table 4: Testing the effect of BackFlip with different inpainting methods on TAD66K
- Art using SAAN [38]. We report the average across 5 independent runs.

Local augmentation types. Understanding how different image transforma-
tions affect perceived aesthetic value for human observers and models is impor-
tant. We consider six local image transformations using BackFlip, illustrated
on example images from TAD66k - Art in Figure 4. We compare the results to
assess the effect of BackFlip with different local augmentation techniques us-
ing ResNet-18 in Table 5. According to the results, all the local augmentations
perform similarly. However, upscale appears to yield higher PCC and SRCC
scores, likely because the augmented segments cover more of the inpainted back-
ground, thereby mitigating the loss of information due to inpainting. In terms
of accuracy, downscale performs slightly better.
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Fig. 4: BackFlip with different local transformations on images from TAD66K - Art.

Local augmentation Acc. (%) PCC SRCC

Horizontal flipping 53.11 ± 5.83 0.18 ± 0.13 0.15 ± 0.11

Vertical flipping 54.33 ± 5.77 0.19 ± 0.15 0.17 ± 0.13

Hor./Ver. flipping 54.86 ± 1.94 0.24 ± 0.05 0.21 ± 0.04

Rotation 53.34 ± 5.06 0.20 ± 0.14 0.18 ± 0.12

Upscale 54.33 ± 2.45 0.25 ± 0.02 0.23 ± 0.03

Downscale 55.64 ± 1.28 0.24 ± 0.01 0.20 ± 0.01

Brightness jitter 54.19 ± 3.78 0.22 ± 0.05 0.19 ± 0.06

Table 5: Testing the effect of BackFlip with different local augmentation methods on
TAD66K - Art using ResNet-18. We report the average across 5 independent runs.

Number of augmented segments. We illustrate the effect of the number of
segments on images from the TAD66k - Art dataset in Figure 5. This figure shows
the effects of three local image transformations (rotation, horizontal and vertical
flip) using BackFlip, considering up to five augmented segments. As observed,
the number of segments augmented through BackFlip significantly affects the
visual dissimilarity between the augmented images and the original image.

We compare the effect of the number of augmented segments on model per-
formance in Table 6, keeping every other aspect of the training set-up constant
between comparisons. We train ResNet-18, pre-trained on ImageNet, on the
TAD66K - Art dataset. Parameters for the BackFlip components and the cho-
sen inpainting method, in this case, LaMa, are fixed. We consistently use either
vertical flip or horizontal flip for the local augmentations applied to each seg-
ment. The results suggest that one segment is the most optimal choice for local
augmentation for artworks. However, we do not observe a significant difference
between the results across different numbers of segments, except possibly for four
segments. Notably, these results do not show consistent improvements across all
five runs. This inconsistency could have multiple explanations. It could be due
to varying segment sizes, which change the percentage of image alterations be-
tween runs, or the interaction between chosen segments and local augmentations
(horizontal vs. vertical flip), influenced by the complex nature of artistic images.

5 Conclusion and Future Work

We introduce BackFlip and examine the impact of local and global data aug-
mentation on artistic IAA. Local augmentations, such as BackFlip, preserve the
overall composition of images while introducing variations that do not affect
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Fig. 5: Local image transformations (rotation, horizontal and vertical flip) using Back-
Flip with increasing number of segments. Images from the TAD66k - Art dataset.

Number of segments Acc. (%) PCC SRCC

1 55.19 ± 2.44 0.26 ± 0.04 0.23 ± 0.04

2 54.5 ± 3.42 0.24 ± 0.04 0.21 ± 0.04

3 54.86 ± 1.94 0.24 ± 0.05 0.21 ± 0.04

4 52.8 ± 3.06 0.24 ± 0.04 0.21 ± 0.04

5 54.6 ± 2.48 0.23 ± 0.04 0.21 ± 0.05

Table 6: The effect of the number of augmented segments on BackFlip. The results are
obtained on the TAD66k - Art dataset using ResNet-18. We report the average across 5
independent runs. As explained in Section 3.1, we exclude the segments covering more
than 90% of the image and select the remaining segments in descending size.

global aesthetic qualities, making them advantageous for artistic IAA. Our ex-
periments demonstrate that local augmentations outperform global ones in the
majority of our tests. A notable contribution of our study is the inclusion of
the erase+inpainting technique within the BackFlip pipeline, as well as BoxFlip,
which further enhances the effectiveness of local augmentations. This under-
scores the importance of local augmentations that preserve overall composition
and the crucial role that composition plays in the aesthetics of artworks.

Additionally, we emphasize that the dataset quality plays a crucial role in
artistic IAA. A well-curated and diverse dataset is essential for reliable results.
We observed that the annotations in some datasets, such as BAID, are too noisy
to provide a good supervisory signal. Furthermore, the images in TAD66k, which
include pictures of artworks, frames, graffiti, and even nail art, do not always
align with the typical global aesthetic qualities expected in paintings.

Our findings suggest that BackFlip is a promising technique for artistic IAA
and holds potential for broader applications in aesthetics research. An interest-
ing future work would be to explore the impact of varying parameter settings
across different local augmentation methods. Deploying BackFlip can facilitate
empirical aesthetics research by collecting ratings from human participants for
augmented data, further enriching our understanding of aesthetic evaluation.
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