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Abstract

Domain generalization provides a research spot
for enhancing the generalization capability of
the machine learning model. We focus on a
causal perspective for the domain generaliza-
tion task. In causal theory, a confounder is a
factor that affects both the cause and the ef-
fect. The confounder is often hidden, which
causes problems in correctly performing the
intervention. The Deconfounder approach indi-
cates that a factorized multiple causes could be
considered a substitute confounder. We choose
a non-linear ICA method to factorize the data
features to represent the confounder. The con-
founder is considered to represent the back-
ground, and domain biases. Empirical results
on text and image classification domain gener-
alization validate the proposed methods.

1 Introduction

Deep neural networks have achieved significant
success in various application domains, ranging
from image recognition Szegedy et al. (2015);
Simonyan and Zisserman (2015) to text embed-
ding Devlin et al. (2019), to games Silver et al.
(2016), etc. We consider the problem of the do-
main generalization (DG) in text and image classi-
fication Szegedy et al. (2015); Simonyan and Zis-
serman (2015); He et al. (2016); Dosovitskiy et al.
(2021), due to its great significance.

The DG setting in this paper is when the distri-
bution of the target domain is unknown. The chal-
lenge is twofold. First, the built model should have
a good generalization capability on an unknown
target domain, which is also the ultimate goal of
the DG task. Meanwhile, the model should still per-
form well on the source domains. The State-of-the-
art mainly aims to minimize the risk on the source
domains via aligning their distributions Wang et al.
(2021); Li et al. (2018b). This strategy, however,
tends to overfit the model in the source domains, as
the last layers of the deep learning models capture
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Figure 1: An illustration of the difference between the
domain bias and the background difference: (1) Be-
tween (b), (¢) and (d), the bias includes both domain
bias and background bias. (2) Between (b) and (a), the
dataset difference equals to domain bias.

the specifics of the source data but fail to generalize
well on the target domain. (more in section 2).

The domain generalization strategy proposed in
this paper focuses on handling the domain biases
resulting from the different specifics of the source
datasets, referred to as dataset biases Yang et al.
(2020). The background biases are common prob-
lems in generic object recognition tasks. While
domain biases in DG are more noticeable, many
proposed methods do not tackle the issue of the in-
herent background bias within the same dataset.
As shown in Figure 1, it is clear that: (1) Between
(b), (c) and (d), the bias includes both domain bias
and background bias. (2) Between (b) and (a), the
bias equals to domain bias. There is not a sim-
ple relationship between domain bias and back-
ground bias, they should be considered separately.

Hence, we propose to model both the back-
ground and domain biases. From the perspective
of causal inference, Pearl and Mackenzie (2018);
Peters et al. (2017), the input images are viewed
as the cause of the learned model, and its semantic
recognition performance is considered as the po-
tential outcomes (effect) Scholkopf et al. (2021);
Yang et al. (2020). The dataset biases (the domain
biases and background differences) are viewed as



hidden confounders, affecting both the causes and
outcomes. For instance, a man running on the
beach may be incorrectly recognized as swimming,
as the seaside background makes a spurious link
between the image and the term “swimming”.

On the one hand, from the causal inference per-
spective, the average effect of the intervention is
hard to estimate, given the hardly defined domain
differences and the highly complex background
of the images in the datasets. On the other hand,
the components of a generative model, viewed as
substitute hidden confounders (SHCs), are used
to block the backdoor effect from the hidden con-
founders, in Deconfounder Wang and Blei (2019).
Deconfounder relies on a factorized generative
model of the data and is receiving increasing atten-
tion recently (D’ Amour (2019); Gan et al. (2021)).
However, the factor model is not always identifi-
able D’ Amour (2019), hindering the validity of
the results obtained (more in section 3). The non-
identifiability issue is well-explained in non-linear
ICA approaches Hyvarinen and Morioka (2016);
Xiu et al. (2021).

Taking inspiration from both Deconfounder and
the adversarial non-linear ICA factor model Brakel
and Bengio (2017), the proposed method, namely,
DeconICA scheme, aims to solve the domain bi-
ases confounding effect, by extracting substitute
hidden confounders and estimating their average ef-
fect, with a novel fusion method based on the atten-
tion mechanism. The fusion method can be viewed
from two perspectives: first, it can be viewed as
a more flexible feature fusion mechanism to esti-
mate the average effect; second, it can be seen as
an intervention, i.e., the final representation would
select the useful features from SHCs to prevent the
true confounder from affecting the real causal link.

The contributions of this paper are threefold: 1)
The DG task is formulated from a causal inference
perspective, considering the background and do-
main biases as confounders. 2) A novel neural
scheme inspired by the Deconfounder, and mitigat-
ing its unidentifiability issue is proposed. 3) The
empirical results on various datasets validate the
effectiveness of the proposed scheme.

2 Related Work

2.1 Domain Generalization

Similar to Domain Adaptation Ben-David et al.
(2007, 2010), Domain Generalization Huang et al.
(2006); Pan et al. (2010); Zhang et al. (2015); Ghi-

fary et al. (2016) aims to transfer learning, and
specifically porting models learned from so-called
source domain(s) to a target domain. In the case
where the source and target distributions are known,
one option consists of learning a general model,
and adapting to each domain, e.g. via learning a
set of bias vectors for each domain (Khosla et al.,
2012). Another option is to embed the source
and target domains in the same latent space, using
e.g. Canonical Correlation Analysis Yang and Gao
(2013), or minimizing the distance among the im-
ages of the source and target distributions, via min-
imizing Maximum Mean Discrepancy (MMD) Li
et al. (2018b) or KL divergence Wang et al. (2021),
or using Adversarial Learning Ganin et al. (2016a).
Another option, in the realm of deep learning and
computer vision, is to use semantic contrastive
loss Motiian et al. (2017); Yoon et al. (2019); Ma-
hajan et al. (2021).

2.2 Causal Inference

The fact that most real-world domains neverthe-
less involve hidden confounders is tackled by the
Deconfounder approach Wang and Blei (2019).
The Deconfounder relies on finding a factor model
based on latent variables Z such that the X vari-
ables are independent on each other conditionally
to the Z:

P(Xy,...,Xn) = i(P(X|Z2)P(Z). (1)

Under mild assumptions, it is suggested that the
Z, referred to as substitute hidden confounders
(SHCs), can be used to block the true hidden
confounders and support a back-door adjustment.
Quite a few authors (see in particular D’ Amour
(2019); Imai and Jiang (2019)) have been arguing
however that the non-identifiability of the SHCs
(the fact that the solution of Eq. 1 is not uniquely
defined) undermines the validity of the Decon-
founder approach.

2.3 Non-Linear ICA

Non-linear ICA aims to find mutually independent
non-linear components, or latent features, defining
a generative model of the observational data Hy-
varinen et al. (2019). Non-linear ICA is hampered
by the fact that simple approaches to non-linear
ICA are not identifiable, in stark contrast to the
linear ICA case. In the particular case where the
data has a structure (e.g. temporal data), Hyvarinen
and Morioka (2017, 2016) propose a general con-
trastive learning scheme for non-linear ICA, using



the data structure to define a binary classification
problem. For instance, a pair of data fragments
(x[t], z[t']) is labelled as 1 (respectively 0) if t — ¢/
is small (resp. big). The model learned to solve
this binary classification problem induces auxiliary
variables (e.g. the nodes on the last neural layer
of the classifier), and the core idea is that the fac-
tors are mutually independent given the auxiliary
variables. The authors show that the conditional in-
dependence of the factors given auxiliary variables
is enough to establish the identifiability of the non-
linear ICA, without necessarily a strict condition
on the marginal independence of the factors (see
also Khemakhem et al. (2020)).

An alternative to the use of contrastive losses to
extract a non-linear ICA is based on adversarial
learning Brakel and Bengio (2017). The authors
exploit the permutation-invariant property of the
mutually independent components and apply adver-
sarial learning to identify the factorized distribution
that best matches the data distribution.

3 Introduction of DeconlCA

This section introduces the proposed DeconlCA
scheme in detail.

Preliminaries The domain generalization (DG)
in image or text classification considers a set of N
source domains of data, where the i-th domain is
associated with a dataset D; = {(x;, y;)}jw:ll, con-
taining M; labelled samples. The features noted
X = {Xi,... X4} and the label or outcome in the
causal literature, noted Y, requiring the same di-
mension and categories in all domains. DG aims to
learn a classifier with good accuracy on all source
domains, that still maintains a satisfying accuracy
on a target domain, which is not met in the training
phase.

3.1 Problem Statement

The model for classification problems commonly
aims to estimate class Y as a function of X, e.g.
the Bayes classifier E[Y|X = z]. The challenge,
as discussed previously, is that each domain usu-
ally involves unobserved confounders U (e.g. the
background of images) affecting both the extracted
features X and the outcome (outputs of the model)
Y thus causing spurious correlations. Such con-
founders induce a serious bias in the estimation of
the outcome (E[Y|X = z| #Y).

From the causal perspective, the back adjust-
ment Pearl (2009) takes into account the con-

(B) Our Modeling Method with Observed Domain Variable and Adversarial Training for Non-linear ICA.

Figure 2: The DeconICA scheme. Left: Domain Gen-
eralization involves features X, outcome (label) Y and
the hidden confounders U depend on the domain index
D. Middle: Substitute Hidden Confounders Z are ex-
tracted as in the Deconfounder scheme, and Z are made
independent of the domain. Right: DeconIlCA searches
for a model expressing the relationship between X and
Y while being independent of the SHCs Z.

founders and their impact on the extracted data
features by computing

E,YIX=2,U=u|=Y. ()

The DG challenge here, is even more critical, as
the spurious correlations among X and Y due to
the confounders generally depend on the consid-
ered domain, preventing the learned model from
being accurately applied in new domains with dif-
ferent confounders. DG thus needs to cancel out
the effects of confounders.

3.2 Principle of DeconlCA

The proposed DeconICA is illustrated in Figure 2.
As an example, X, Y and U might respectively cor-
respond to the data, the semantic label, and unob-
served confounders such as the measurement bias.
Following the Deconfounder principles Wang and
Blei (2019), substitute hidden confounders Z are
extracted by searching for a factorized model of
X (Eq. 1). Specifically, the mutually independent
Z are obtained by applying non-linear ICA Brakel
and Bengio (2017) to factorize X. The SHCs Z
are used to further process the model: an attention
mechanism is used to tune the impact of the SHCs
onto the prediction, akin to a front-door interven-
tion mechanism Pearl (1995); Yang et al. (2021).
The structure of the attention mechanism, trained
using a standard predictive loss, has the potential
to automatically adjust the impact of the Z on the
model depending on X.

An originality of the proposed approach is to
introduce the D variable, standing for the domain



itself. By definition, D has an impact on the other
confounders U, and it could be rightly considered
as part of U. The point is that D is observed, as op-
posed to U: we can thus enforce the independence
of Z s wrt. D (Fig. 2, middle). By cutting off
the link from the domain variable D to the SHC
7, the latter is made invariant and robust w.r.t. the
different domain biases. Therefore, the SHCs Z are
both mutually independent and invariant w.r.t. the
domain variable D. The model learns to estimate
the expectation of outcome Y conditionally to both
X and Z.

3.3 The DeconlCA Algorithm

The system of DeconICA is presented in Figure 3.
The backbone model is to represent the features
X = (X1,...Xyg). These features are processed
via an autoencoder with 1d convolutional opera-
tions, yielding the latent representation V (of the
same dimension d as X for convenience).

This latent representation is trained using a stan-
dard reconstruction loss: denoting v as the encod-
ing of x and X as the decoding of v (realized as 1d
convolutional blocks), it comes for the ¢-th domain

M;
Larse(i) =[x — %1% 3)
j=1

The search for non-linear independent compo-
nents is achieved using adversarial learning Brakel
and Bengio (2017). Noting ¢ a random permu-
tation on [[1,d]], the discriminator D;c4 aims
to discriminate among the latent representation v
of the data and their permuted image v, (with
vV = (’Ul, NN ,Ud) and v, = (Ug(l), .. -'Ua(d)))-
Overall, the non-linear ICA loss is defined as the
sum of the AE loss (Eq. 3) and the adversarial loss:
on the i-th domain,

L(i) = Lase(i) — Lago(t),
M;

Laao(i) =Y (log(Drea(vy)) +log(L = Dica(¥j.e)))-

j=1
“)

This loss does not guarantee the identifiability of
the model Khemakhem et al. (2020). To mitigate
this, the loss term is augmented with a third term,
an adversarial loss imposing that the latent factors
be independent of the domain variable. Formally,
letting w = (v, 4) denote a paired term if v is the
latent representation of a sample in the i-th domain,
and w = (v, j) denote an unpaired term if v’ is the

latent representation of a sample in the ¢-th domain
with ¢ # j, then the £peconsca is expressed as,

N
ﬁDeconICA = Z(ﬁMSE(Z) - EAdv(i)) - EDoma
=1
Lpom = Z lOg(DDom(W))
W paired
+ ) log(1— Dpom(W)).
W unpaired

)

The pseudo-code of the proposed DeconlCA algo-
rithm is displayed in Algorithm 1.

Algorithm 1 DeconlCA

Input data X Output The trained model; Encoder, Decoder,
discriminators Drca, Dpom.

Not converged get a batch of examples x; in the source
domains

Lig <0

Lica+ 0

LDo'm 0

7 in batch

Vi < Encoder(x;)

x; + Decoder(v;)

w; = (v;, k) for k the domain index of x;

Wi = (vi.j) for j # k. j in [[L, N]

Draw o permutation on [[1, d]]

Lica < Lica +log(Drca(vi)) +log(1 — Dica(vie))
Lag < Lag + ||x: — Xi|2

Lpom < Lpom + lOg(DDom(Wi)) + log(l — Dpom (W;))
Update D;c 4 to maximize Lrca

Update D pom, to maximize L pom

Update  Encoder and  Decoder to
Lae —Lica — Lpom

minimize

3.4 DG Classifier

The classifier is learned on the top of the X and V
representations learned by DeconlCA, with a novel
fusion method based on the attention mechanism.
Formally,

6=X0YV, dot product attention
i
sim = exp(—g;——>),  attention score
N
F.=V+4+sim=xX, confounder features
Frina =X+ axF.  final features
(6)

with « the d x d matrix, dot product attention
of the region features X and the SHCs V; o is the
average of the i-th column in «; sim defines the
attention score and F, additively aggregates the in-
formation from the SHCs and the initial description
biased according to sim.
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Figure 3: Neural architecture of DeconlCA. The top box is an auto-encoder defining a latent representation Z of the
features, using a standard MSE loss. The middle box enforces the mutual independence of the Z, via an adversarial
loss distinguishing the Z and their random permutations. The bottom box enforces the independence of the Z w.r.t.
the domain indices, via an adversarial loss distinguishing the paired (Z, dormnain) and their unpaired equivalent (see
text). Overall, the scheme learns latent variables which are independent of each other, and independent from the

domain variable D.

The final features F'f;y,q used by the classifier
elementally add the F. and the initial X, along the
neural architecture.

The overall loss includes the standard classifier
loss and A times the DeconlCA loss (Eq. 7):

Loss = EClassify + )\ﬁDecon[CA- (7)

Note that the gradients of the classifier module
operate on the whole neural architecture (the back-
bone network) while the gradients of the DeconlCA
modules are stopped and do not operate on the back-
bone, to achieve more stability during training.

Methods Caltech101 LabelMe Sun09 VOC2007 Avg
Mixup (Yan et al., 2020) 98.3 64.8 72.1 743 774
MLDG (Li et al., 2018a) 97.4 65.2 71.0 75.3 77.2
MMD (Li et al., 2018b) 97.7 64.0 72.8 75.3 71.5
CDANN (Li et al., 2018¢) 97.1 65.1 70.7 77.1 71.5
MTL (Blanchard et al., 2021a)  97.8 64.3 71.5 753 772
SagNet (Nam et al., 2021) 97.9 64.5 71.4 71.5 778
ARM (Zhang et al., 2021) 98.7 63.6 71.3 76.7 71.6
VREX (Krueger et al., 2021) 98.4 64.4 74.1 76.2 783
RSC (Huang et al., 2020) 97.9 62.5 72.3 75.6 77.1
SelfReg (Kim et al., 2021) 48.8 41.3 57.3 40.6 47.0
PCL (Yao et al., 2022) 96.6 58.1 72.4 752 75.6
AdaNPC (Zhang et al., 2023) ~ 98.9 64.5 73.5 75.6 78.1
DeconICA 99.10 64.12 7451  79.76 79.37

Table 1: Comparative assessment of DeconICA on the
VLCS dataset.

Methods Art  Clipart Product Real World Avg
MMD-AAE (Saito et al., 2018)  56.5 47.3 72.1 74.8 62.7
CCSA (Motiian et al., 2017) 59.9 499 74.1 75.7 64.9
JiGen (Carlucci et al., 2019) 53.0 475 71.5 72.8 61.2
CrossGrad (Shankar et al., 2018) 58.4 494 73.9 75.8 64.4
FAR (Jin et al., 2020) 614 529 74.5 75.4 66.0
VREX (Krueger et al., 2021) 60.7 53.0 75.3 76.7 66.4
RSC (Huang et al., 2020) 60.7 514 74.8 75.1 65.5
DANN (Ganin et al., 2016a) 599 53.0 73.6 76.9 65.9
CDANN (Li et al., 2018c) 61.5 504 74.4 76.6 65.7
MTL (Blanchard et al., 2021b) 61.5 524 74.9 76.8 66.4
SagNet (Nam et al., 2021) 63.4 548 75.8 78.3 68.1
ARM (Zhang et al., 2021) 589 51.0 74.1 75.2 64.8
SelfReg (Kim et al., 2021) 63.6 53.1 76.9 78.1 67.9
PCL (Yao et al., 2022) 62.7 54.0 76.9 78.5 68.0
AdaNPC (Zhang et al., 2023) 629 523 75.1 75.6 66.5
DeconICA 69.8 522 71.7 82.2 70.5

Table 2: Comparative assessment of DeconlCA on the
Office-Home dataset.

4 Experimental Setting

4.1 Datasets

Two publicly available benchmark datasets in
computer vision are considered: The VLCS
dataset Torralba and Efros (2011), with 5 classes,
involves four datasets respectively shared by the
PASCAL VOC 2007, LabelMe, Caltech and Sun.
The Office-Home dataset Saenko et al. (2010),
with 65 classes, includes 15,500 images of ev-
eryday objects in the office and home scenarios,
divided into four domains: Artistic images (Ar),
Clip Art (Cl), Product images (Pr) and Real-World
images (Rw). For VLCS, we follow the offi-



Methods DVD Electronics Kitchen Book Avg

Guo et al. (Guo et al., 2018a) 87.70  89.50 90.50 87.90 88.90
Wright et al. (Wright and Augenstein, 2020) 88.90  90.30 90.80 90.00  90.00
Roberta-Large (Liu et al., 2019) 90.00 93.95 93.40 92.65 92.50
MMD (Li et al., 2018b) 89.85 94.15 93.70 92.55 92.56
MoE (Guo et al., 2018b) 90.25 94.04 93.99 92.50  92.69
Intra (Wen et al., 2016a; Ye et al., 2020) 90.06 94.00 94.06 92.75 92.72
Adv (Ganin et al., 2016b) 90.25 94.45 94.60 92.85 93.04
SCL (Tan et al., 2022a) 89.95 94.25 93.10 93.45 92.69
SCL+M=128 (Tan et al., 2022a) 91.45 95.10 95.10 93.70 93.85
DeconICA 91.75  95.00 94.50 94.75  94.00
DeconICA+M=128 92.00 96.00 95.75 95.00 94.69

Table 3: Comparative assessment of DeconlCA on the
Multi-Domain Sentiment dataset.

Methods charlich ferguson germanw ottawashoo sydneysiege  Avg

Wright et al. (Wright and Augenstein, 2020)  67.90 45.40 74.50 62.60 64.70 63.02
Roberta-Large (Liu et al., 2019) 64.78 43.03 69.87 60.42 62.02 60.02
MMD (Li et al., 2018b) 63.80 43.44 69.04 63.94 63.27 60.70
MOoE (Guo et al., 2018b) 65.84 43.61 7223 61.63 64.25 61.51
Intra (Wen et al., 2016a; Ye et al., 2020) 64.14 42.89 70.77 61.84 64.21 60.41
Adv (Ganin et al., 2016b) 64.83 4223 65.74 61.47 62.81 59.45
SCL (Tan et al., 2022a) 65.57 4322 73.03 63.50 63.52 61.77
SCL+M=128 (Tan et al., 2022a) 68.08 44.55 75.41 66.52 65.19 63.95
DeconICA 81.14 76.23 67.35 69.27 72.80 73.36
DeconlCA+M=128 83.74 76.81 74.41 77.07 74.28 71.26

Table 4: Comparative assessment of DeconlCA on the
Multi-Domain Sentiment dataset.

cial training-val-testing split, for the Office-Home
dataset, similar to the previous methods, we ran-
domly split the training-validation into 90% and
10% samples of the original datasets.

Two publicly available benchmark datasets
in natural language processing are used: The
Multi-Domain Sentiment Dataset for cross-
domain sentiment classification. The dataset con-
sists of 8,000 Amazon product reviews, evenly dis-
tributed across four domains: DVD, Electronics,
Kitchen and Book. Within each domain, there are
1,000 positive and 1,000 negative reviews. To en-
sure a fair comparison with previous studies, we
followed the same data split Ganin et al. (2016a);
Du et al. (2020); Guo et al. (2020), resulting in
1,600 training examples and 400 test examples
for each domain. The PPHEME Rumour De-
tection Dataset, which includes 5,802 annotated
tweets from 5 different events ((C)harlie(H)ebdo,
(F)erguson, (G)erman(W)ings, (O)ttawa(S)hooting,
and (S)ydneySiege) labelled as rumour or non-
rumour (1,972 rumours, 3,830 non-rumours). On
each benchmark, the DeconlCA classifier is trained
on all domains but one and tested on the remain-
ing one. For both datasets, we follow the official
training-val-testing split to perform the experimen-
tal evaluation.

4.2 TImplentation Details

The DeconlCA architecture implemented on the
PyTorch platform (Fig. 3) is built on top of the X

representation consisting of the last and second last
convolutional features of the ResNet-50 backbone
network, for the sake of a fair comparison with the
baselines.

The classifier takes as input the SHCs V (Alg. 1)
fused with X via an attention mechanism, and with
X directly, along a residual connection scheme. As
said, the gradient from the DeconlCA module is
stopped and has no impact on the backbone net-
work.

Instead of utilizing the fully connected layers,
the operations in DeconICA are realized via 1d
convolutions to not only learn the relationship be-
tween data points but also reach a higher efficiency.
The backbone network in image classification and
DeconICA are trained with learning rate 1e-5 using
Adam optimizer, with batch size 48,! for at most
200 epochs. Early stopping based on the validation
set performance (available from the benchmark)
is used. The size of the 1dconvolutional kernel
is set to 7 in all benchmarks (all domains) after
preliminary experiments.

All the experiments are conducted on a comput-
ing server equipped with a GPU of Nvidia Geforce
2080-Ti. The code is implemented in Python, ref-
erencing the evaluation protocol from related re-
search. We will make the codes public upon the
acceptance of our paper.

S Experimental Validation

5.1 Comparison with other State-of-the-arts

5.1.1 Image Classification

VLCS Benchmark. The considered baselines in-
clude Domainbed Gulrajani and Lopez-Paz (2021),
which proposes a platform supporting the model
selection criteria for domain generalization; a
Mean Maximum Discrepancy approach Li et al.
(2018b) (legend MMD) that aligns the latent rep-
resentation of all domains (while using adversarial
learning to make the aligned distributions match
a prior distribution); the CDANN approach Li
et al. (2018c), using a conditional invariant ad-
versarial network to learn domain-invariant rep-
resentations; SagNet Nam et al. (2021), target-
ing the disentangled representations of style and
content; MTL Blanchard et al. (2021a), focusing
on the transfer learning of the marginal distribu-
tions in the perspective of supervised classification;
RSC Huang et al. (2020), proposing an iterative

"More precisely, if the benchmark includes 3 training do-
mains, the batch involves 16 samples from each domain.



self-challenging training scheme to enhance the
generalization capability of the model on out-of-
distribution data. The approach most related to
DeconICA is CDANN Li et al. (2018c), which
also aims at domain-invariant features using ad-
versarial learning. The difference is rooted in the
deconfounding approach. CDANN proceeds by
combining an alignment of the domains with Gra-
dient Reversal Layer (GRL) Ganin and Lempitsky
(2015) and category-conditioned domain discrim-
ination, while DeconlCA extracts mutually inde-
pendent and domain-independent substitute hidden
confounders. Empirically, DeconlCA outperforms
all baselines on two out of four domains on the
VLCS benchmark, with the best average perfor-
mance (Table 1). The Office-Home benchmark.
the considered baselines include: FAR Jin et al.
(2020), that aligns and repairs the data distribution
to ensure a high generalization and discrimination
capacity at the same time; CrossGrad Shankar et al.
(2018), that trains a label and a domain classifier
on examples perturbed by loss gradients of each
other’s objectives, under various distribution as-
sumptions; JiGen Carlucci et al. (2019), that pro-
poses to solve jigsaw puzzles, to learn the spatial
correlation, thus enforce good generalization capac-
ity; CCSA Motiian et al. (2017), using a Siamese
architecture to align the different domain distribu-
tions; MMD-AAE Saito et al. (2018), aimed to
align the domains via considering the discrepancy
of domain classifiers.

The proposed DeconICA follows the domain
alignment approach, similar to CCSA Motiian et al.
(2017) and MMD-AAE Saito et al. (2018), though
with a quite different learning criterion. Table 2
shows that DeconlCA outperforms the state of the
art on all but one domain.

Methods Caltech101 LabelMe Sun09 VOC2007 Avg

ResNet-50 98.74 62.18 73.23  73.80 76.99
ICA Brakel and Bengio (2017) Alone  98.42 63.30 72.08  75.02 77.45
GCL Xiu et al. (2021) Alone 98.42 60.22 73.50  70.74 75.72
DeconICAw/o Attention 99.62 65.00 73.74  75.60 78.23
DeconICA(Full Model) 99.10 64.12 74.51  79.76 79.37
DeconICA(Kernel = 3) 98.46 64.04 73.83  75.06 77.85
DeconICA(Kernel = 5) 98.66 65.32 73.80 75.45 78.33
DeconICA(Kernel = 7) 99.10 64.12 74.51  79.76 79.37
DeconICA(A = 0.5) 98.94 63.80 73.14  74.63 71.51
DeconIlCA(A =2) 98.82 63.50 73.10 74.14 77.39
DeconlCA(a=1) 98.58 65.12 74.06  76.93 79.17
DeconICA(a = 0.16) 99.10 64.12 74.51  79.76 79.37
DeconICAw/ Dimy = 0.5 x Dimy 99.05 65.36 74.00  76.73 78.77

Table 5: DeconlCA: Ablation Studies and sensitivity
w.r.t. hyper-parameters on the VLCS dataset. The full
DeconICA scheme has 1dconvolutional kernel of size
7, A =1and dimv = dimx.

Lastly, the computational cost per iteration is
compared to that of the baselines in Table 6, show-
ing a moderate cost increase compared to ICA,
essentially due to the attention mechanism.

Methods Time(s)/Iteration

ResNet-50 0205
ICA Brakel and Bengio (2017) 043 s
GCL Xiu et al. (2021) 0.30s
DeconICAw/o Attention 0.44s
DeconICA(Full Model) 0.50s

Table 6: Training Efficiency on the VLCS Dataset.

5.1.2 Text Classification

The Multi-Domain Sentiment Dataset the con-
sidered baselines include: Roberta-Large Liu et al.
(2019), that directly apply the baseline model to
extract features and perform classification for do-
main generalization in the text;a Mean Maximum
Discrepancy approach Li et al. (2018b) (legend
MMD) that aligns the latent representation of all
domains (while using adversarial learning to make
the aligned distributions match a prior distribu-
tion); the MoE approach Guo et al. (2018a), uti-
lizes an approach of mixture-of-experts for the do-
main generalization and domain adaptation. In-
tra Wen et al. (2016b); Ye et al. (2020) proposes a
method for domain adaptation for language prob-
lems, with a feature adaptation method. The feature
adaptation method applies self-distillation to make
the pseudo labels of the target domain more ro-
bust, thus realizing a sample-level alignment; our
baseline model Tan et al. (2022b), which applies
self-supervised contrastive learning and a mem-
ory block to solve the domain generalization for
text classification. Empirically, DeconlCA out-
performs all baselines on all four domains on the
Multi-Domain Sentiment Dataset benchmark, with
the best performance (Table 3). The PHEME Ru-
mour Detection Dataset The considered baselines
include: Roberta-Large Liu et al. (2019), which di-
rectly applies the baseline model to extract features
and perform classification for domain generaliza-
tion; a Mean Maximum Discrepancy approach Li
et al. (2018b) (legend MMD) that aligns the la-
tent representation of all domains; the MoE ap-
proach Guo et al. (2018a), utilizes an approach of
mixture-of-experts for the domain generalization
and domain adaptation. Intra Wen et al. (2016b); Ye
et al. (2020) utilizes the feature adaptation method
that applies the self-distillation to make the pseudo
labels of the target domain more robust, thus real-
izing a sample-level alignment; CL, our baseline



model and the SCL with memory block for train-
ing (SCL + M). Our method, as shown in Table 4,
achieves the State-of-the-art performance among
all the listed methods.

5.2 Ablation Study on Text classification:
Multi-domain Sentiment Dataset

The impact of the different components in
DeconlCA is assessed using ablation studies on the
Multi-Domain Sentiment Dataset. Impact of the
DeconlCA Scheme over baseline The standalone
Roberta-Large backbone network trained on all
domains yields the bottom performance). The non-
linear ICA standalone Brakel and Bengio (2017)
(DeconlCAw/o Domain Invariance).). Impact of
the Convolutional Kernel size on Text The impact
of the kernel size in the 1d convolutional blocks is
displayed in lines 9-10, showing a moderate sensi-
tivity of the approach. Similar to the case of image
classification, we find that 7 kernel size best fits the
model. Impact of the Hyper-parameter A\ \ con-
trols the trade-off between the classifier loss and
the deconfounder losses, displayed in lines 11-14.
Impact of the Hper-parameter o The impact of
setting the trade-off between the original features
and the fused confounder features is shown in lines
2-8, showing a moderate impact. Impact of the
Batch Size The batch size, on the text classification
task, is easier to increment, due to the task’s low
computing resource requirement than image classi-
fication. We find that batch size has a more obvious
impact on the training of the proposed scheme, a
batch size of 48, has the best performance.

Methods DVD  Electronics Kitchen Book Avg

Roberta-Large Liu et al. (2019) 90.00 93.95 93.40 92.65 92.50
DeconlCAw/ o = 0.24 91.00 95.00 93.50 94.75  93.56
DeconlCAw/ o = 0.20 90.75 95.25 93.75 94.25  93.50
DeconIlCAw/ o = 0.16 91.75 95.00 94.50 94.75  94.00
DeconlCAwW/ av=0.12 89.50 93.75 94.75 94.00  93.00
DeconICA(Kernel = 3) 91.25 9541 94.50 93.50 93.67
DeconICA(Kernel = 7) 91.75 95.00 94.50 94.75  94.00
DeconIlCAwW/ A =2.5 91.75 95.00 94.50 94.75  94.00
DeconIlCAw/ A =2.0 91.75 95.00 94.50 94.00 93.81
DeconIlCAW/ A = 1.5 91.75 95.00 94.50 94.00 93.81
DeconICAw/ A = 1.0 91.75 95.00 94.50 94.00 93.81
DeconICAw/ bs = 96 90.75 95.50 90.5 91.00 91.94
DeconICAw/ bs = 48 91.75 95.00 94.50 94.75  94.00
DeconIlCAw/ bs =24 88.75 90.25 93.75 93.75 91.63
DeconlCAw/ bs =12 87.75 89.50 89.75 93.00 90.00
DeconlCAw/o Domain Invariance  90.25  90.33 94.42 93.25 93.06
DeconICAw/ Domain Invariance  91.75  95.00 94.50 94.75  94.00

Table 7: Training Efficiency on the VLCS Dataset.

Lastly, the computational cost per iteration is
compared to that of the baselines in Table 6, show-
ing a moderate cost increase compared to ICA,
essentially due to the attention mechanism.

Figure 4: Quality of the X representation on the
VOC2007 (Left) and LabelMe (Right) domains (VLCS
benchmark) using a t-SNE visualization. Top: represen-
tation learned by ResNet-50. Bottom: representation
learned by DeconICA.

5.3 Qualitative Evaluation: inspecting the
SHCs

We investigate the DeconlCA factor representation
learned by DeconICA, compared to the baseline
representation learned by ResNet-50. Considering
the VOC2007 (Left) and LabelMe (Right) domains
of the VLCS benchmark.

We apply t-SNE Van der Maaten and Hinton
(2008) on the X representation of the data, avail-
able in both ResNet-50 and DeconlCA. As shown
on Fig. 4, the DeconlCA scheme induces well-
separated clusters of points (Fig. 4, bottom), as
opposed to ResNet-50 standalone (Fig. 4, top).

6 Conclusion

Domain generalization (DG) aims to improve the
generalization ability of a machine learning model
in an unknown domain. This paper solves the DG
task from a causal perspective, in which the poor
generalization ability is considered from the hidden
confounder. We model the ’dataset bias’, contain-
ing the background and domain bias as the hidden
confounder. Informed by the Deconfounder the-
ory, we choose a non-linear ICA method to fac-
torize the causes, representing the substitute con-
founder. These factors are subsequently trained to
be domain-invariant via adversarial learning, forc-
ing their identifiability. The proposed causal DG
framework is theoretically solid. The empirical
results on various classification tasks validate its
effectiveness.

Limitations

There are two limitations to this research: First,
more empirical results on large-scale datasets will
be included in the future. Second, an improvement



over the identifiability of the proposed non-linear
ICA method will be studied. The current method
relies on auxiliary labels, i.e., the domain labels,
to achieve identifiability. This weakness raises a
question of the identifiability of this method for,
e.g., the single-domain domain generalization task,
where there are no diverse domain labels.
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