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Abstract

Domain generalization provides a research spot001
for enhancing the generalization capability of002
the machine learning model. We focus on a003
causal perspective for the domain generaliza-004
tion task. In causal theory, a confounder is a005
factor that affects both the cause and the ef-006
fect. The confounder is often hidden, which007
causes problems in correctly performing the008
intervention. The Deconfounder approach indi-009
cates that a factorized multiple causes could be010
considered a substitute confounder. We choose011
a non-linear ICA method to factorize the data012
features to represent the confounder. The con-013
founder is considered to represent the back-014
ground, and domain biases. Empirical results015
on text and image classification domain gener-016
alization validate the proposed methods.017

1 Introduction018

Deep neural networks have achieved significant019

success in various application domains, ranging020

from image recognition Szegedy et al. (2015);021

Simonyan and Zisserman (2015) to text embed-022

ding Devlin et al. (2019), to games Silver et al.023

(2016), etc. We consider the problem of the do-024

main generalization (DG) in text and image classi-025

fication Szegedy et al. (2015); Simonyan and Zis-026

serman (2015); He et al. (2016); Dosovitskiy et al.027

(2021), due to its great significance.028

The DG setting in this paper is when the distri-029

bution of the target domain is unknown. The chal-030

lenge is twofold. First, the built model should have031

a good generalization capability on an unknown032

target domain, which is also the ultimate goal of033

the DG task. Meanwhile, the model should still per-034

form well on the source domains. The State-of-the-035

art mainly aims to minimize the risk on the source036

domains via aligning their distributions Wang et al.037

(2021); Li et al. (2018b). This strategy, however,038

tends to overfit the model in the source domains, as039

the last layers of the deep learning models capture040

Figure 1: An illustration of the difference between the
domain bias and the background difference: (1) Be-
tween (b), (c) and (d), the bias includes both domain
bias and background bias. (2) Between (b) and (a), the
dataset difference equals to domain bias.

the specifics of the source data but fail to generalize 041

well on the target domain. (more in section 2). 042

The domain generalization strategy proposed in 043

this paper focuses on handling the domain biases 044

resulting from the different specifics of the source 045

datasets, referred to as dataset biases Yang et al. 046

(2020). The background biases are common prob- 047

lems in generic object recognition tasks. While 048

domain biases in DG are more noticeable, many 049

proposed methods do not tackle the issue of the in- 050

herent background bias within the same dataset. 051

As shown in Figure 1, it is clear that: (1) Between 052

(b), (c) and (d), the bias includes both domain bias 053

and background bias. (2) Between (b) and (a), the 054

bias equals to domain bias. There is not a sim- 055

ple relationship between domain bias and back- 056

ground bias, they should be considered separately. 057

Hence, we propose to model both the back- 058

ground and domain biases. From the perspective 059

of causal inference, Pearl and Mackenzie (2018); 060

Peters et al. (2017), the input images are viewed 061

as the cause of the learned model, and its semantic 062

recognition performance is considered as the po- 063

tential outcomes (effect) Schölkopf et al. (2021); 064

Yang et al. (2020). The dataset biases (the domain 065

biases and background differences) are viewed as 066
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hidden confounders, affecting both the causes and067

outcomes. For instance, a man running on the068

beach may be incorrectly recognized as swimming,069

as the seaside background makes a spurious link070

between the image and the term “swimming”.071

On the one hand, from the causal inference per-072

spective, the average effect of the intervention is073

hard to estimate, given the hardly defined domain074

differences and the highly complex background075

of the images in the datasets. On the other hand,076

the components of a generative model, viewed as077

substitute hidden confounders (SHCs), are used078

to block the backdoor effect from the hidden con-079

founders, in Deconfounder Wang and Blei (2019).080

Deconfounder relies on a factorized generative081

model of the data and is receiving increasing atten-082

tion recently (D’Amour (2019); Gan et al. (2021)).083

However, the factor model is not always identifi-084

able D’Amour (2019), hindering the validity of085

the results obtained (more in section 3). The non-086

identifiability issue is well-explained in non-linear087

ICA approaches Hyvarinen and Morioka (2016);088

Xiu et al. (2021).089

Taking inspiration from both Deconfounder and090

the adversarial non-linear ICA factor model Brakel091

and Bengio (2017), the proposed method, namely,092

DeconICA scheme, aims to solve the domain bi-093

ases confounding effect, by extracting substitute094

hidden confounders and estimating their average ef-095

fect, with a novel fusion method based on the atten-096

tion mechanism. The fusion method can be viewed097

from two perspectives: first, it can be viewed as098

a more flexible feature fusion mechanism to esti-099

mate the average effect; second, it can be seen as100

an intervention, i.e., the final representation would101

select the useful features from SHCs to prevent the102

true confounder from affecting the real causal link.103

The contributions of this paper are threefold: 1)104

The DG task is formulated from a causal inference105

perspective, considering the background and do-106

main biases as confounders. 2) A novel neural107

scheme inspired by the Deconfounder, and mitigat-108

ing its unidentifiability issue is proposed. 3) The109

empirical results on various datasets validate the110

effectiveness of the proposed scheme.111

2 Related Work112

2.1 Domain Generalization113

Similar to Domain Adaptation Ben-David et al.114

(2007, 2010), Domain Generalization Huang et al.115

(2006); Pan et al. (2010); Zhang et al. (2015); Ghi-116

fary et al. (2016) aims to transfer learning, and 117

specifically porting models learned from so-called 118

source domain(s) to a target domain. In the case 119

where the source and target distributions are known, 120

one option consists of learning a general model, 121

and adapting to each domain, e.g. via learning a 122

set of bias vectors for each domain (Khosla et al., 123

2012). Another option is to embed the source 124

and target domains in the same latent space, using 125

e.g. Canonical Correlation Analysis Yang and Gao 126

(2013), or minimizing the distance among the im- 127

ages of the source and target distributions, via min- 128

imizing Maximum Mean Discrepancy (MMD) Li 129

et al. (2018b) or KL divergence Wang et al. (2021), 130

or using Adversarial Learning Ganin et al. (2016a). 131

Another option, in the realm of deep learning and 132

computer vision, is to use semantic contrastive 133

loss Motiian et al. (2017); Yoon et al. (2019); Ma- 134

hajan et al. (2021). 135

2.2 Causal Inference 136

The fact that most real-world domains neverthe- 137

less involve hidden confounders is tackled by the 138

Deconfounder approach Wang and Blei (2019). 139

The Deconfounder relies on finding a factor model 140

based on latent variables Z such that the X vari- 141

ables are independent on each other conditionally 142

to the Z: 143

P (X1, . . . , Xn) = Πi(P (Xi|Z)P (Z). (1) 144

Under mild assumptions, it is suggested that the 145

Z, referred to as substitute hidden confounders 146

(SHCs), can be used to block the true hidden 147

confounders and support a back-door adjustment. 148

Quite a few authors (see in particular D’Amour 149

(2019); Imai and Jiang (2019)) have been arguing 150

however that the non-identifiability of the SHCs 151

(the fact that the solution of Eq. 1 is not uniquely 152

defined) undermines the validity of the Decon- 153

founder approach. 154

2.3 Non-Linear ICA 155

Non-linear ICA aims to find mutually independent 156

non-linear components, or latent features, defining 157

a generative model of the observational data Hy- 158

varinen et al. (2019). Non-linear ICA is hampered 159

by the fact that simple approaches to non-linear 160

ICA are not identifiable, in stark contrast to the 161

linear ICA case. In the particular case where the 162

data has a structure (e.g. temporal data), Hyvarinen 163

and Morioka (2017, 2016) propose a general con- 164

trastive learning scheme for non-linear ICA, using 165
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the data structure to define a binary classification166

problem. For instance, a pair of data fragments167

(x[t], x[t′]) is labelled as 1 (respectively 0) if t− t′168

is small (resp. big). The model learned to solve169

this binary classification problem induces auxiliary170

variables (e.g. the nodes on the last neural layer171

of the classifier), and the core idea is that the fac-172

tors are mutually independent given the auxiliary173

variables. The authors show that the conditional in-174

dependence of the factors given auxiliary variables175

is enough to establish the identifiability of the non-176

linear ICA, without necessarily a strict condition177

on the marginal independence of the factors (see178

also Khemakhem et al. (2020)).179

An alternative to the use of contrastive losses to180

extract a non-linear ICA is based on adversarial181

learning Brakel and Bengio (2017). The authors182

exploit the permutation-invariant property of the183

mutually independent components and apply adver-184

sarial learning to identify the factorized distribution185

that best matches the data distribution.186

3 Introduction of DeconICA187

This section introduces the proposed DeconICA188

scheme in detail.189

Preliminaries The domain generalization (DG)190

in image or text classification considers a set of N191

source domains of data, where the i-th domain is192

associated with a dataset Di = {(xij , yij)}
Mi
j=1, con-193

taining Mi labelled samples. The features noted194

X = {X1, . . . Xd} and the label or outcome in the195

causal literature, noted Y , requiring the same di-196

mension and categories in all domains. DG aims to197

learn a classifier with good accuracy on all source198

domains, that still maintains a satisfying accuracy199

on a target domain, which is not met in the training200

phase.201

3.1 Problem Statement202

The model for classification problems commonly203

aims to estimate class Y as a function of X, e.g.204

the Bayes classifier E[Y |X = x]. The challenge,205

as discussed previously, is that each domain usu-206

ally involves unobserved confounders U (e.g. the207

background of images) affecting both the extracted208

features X and the outcome (outputs of the model)209

Y thus causing spurious correlations. Such con-210

founders induce a serious bias in the estimation of211

the outcome (E[Y |X = x] ̸= Y ).212

From the causal perspective, the back adjust-213

ment Pearl (2009) takes into account the con-214

Figure 2: The DeconICA scheme. Left: Domain Gen-
eralization involves features X, outcome (label) Y and
the hidden confounders U depend on the domain index
D. Middle: Substitute Hidden Confounders Z are ex-
tracted as in the Deconfounder scheme, and Z are made
independent of the domain. Right: DeconICA searches
for a model expressing the relationship between X and
Y while being independent of the SHCs Z.

founders and their impact on the extracted data 215

features by computing 216

Eu[Y |X = x,U = u] = Y. (2) 217

The DG challenge here, is even more critical, as 218

the spurious correlations among X and Y due to 219

the confounders generally depend on the consid- 220

ered domain, preventing the learned model from 221

being accurately applied in new domains with dif- 222

ferent confounders. DG thus needs to cancel out 223

the effects of confounders. 224

3.2 Principle of DeconICA 225

The proposed DeconICA is illustrated in Figure 2. 226

As an example, X, Y and U might respectively cor- 227

respond to the data, the semantic label, and unob- 228

served confounders such as the measurement bias. 229

Following the Deconfounder principles Wang and 230

Blei (2019), substitute hidden confounders Z are 231

extracted by searching for a factorized model of 232

X (Eq. 1). Specifically, the mutually independent 233

Z are obtained by applying non-linear ICA Brakel 234

and Bengio (2017) to factorize X. The SHCs Z 235

are used to further process the model: an attention 236

mechanism is used to tune the impact of the SHCs 237

onto the prediction, akin to a front-door interven- 238

tion mechanism Pearl (1995); Yang et al. (2021). 239

The structure of the attention mechanism, trained 240

using a standard predictive loss, has the potential 241

to automatically adjust the impact of the Z on the 242

model depending on X. 243

An originality of the proposed approach is to 244

introduce the D variable, standing for the domain 245
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itself. By definition, D has an impact on the other246

confounders U, and it could be rightly considered247

as part of U. The point is that D is observed, as op-248

posed to U: we can thus enforce the independence249

of Z s w.r.t. D (Fig. 2, middle). By cutting off250

the link from the domain variable D to the SHC251

Z, the latter is made invariant and robust w.r.t. the252

different domain biases. Therefore, the SHCs Z are253

both mutually independent and invariant w.r.t. the254

domain variable D. The model learns to estimate255

the expectation of outcome Y conditionally to both256

X and Z.257

3.3 The DeconICA Algorithm258

The system of DeconICA is presented in Figure 3.259

The backbone model is to represent the features260

X = (X1, . . . Xd). These features are processed261

via an autoencoder with 1d convolutional opera-262

tions, yielding the latent representation V (of the263

same dimension d as X for convenience).264

This latent representation is trained using a stan-265

dard reconstruction loss: denoting v as the encod-266

ing of x and x̂ as the decoding of v (realized as 1d267

convolutional blocks), it comes for the i-th domain268

LMSE(i) =

Mi∑
j=1

∥xj − x̂j∥2. (3)269

The search for non-linear independent compo-270

nents is achieved using adversarial learning Brakel271

and Bengio (2017). Noting σ a random permu-272

tation on [[1, d]], the discriminator DICA aims273

to discriminate among the latent representation v274

of the data and their permuted image vσ (with275

v = (v1, . . . , vd) and vσ = (vσ(1), . . . vσ(d))).276

Overall, the non-linear ICA loss is defined as the277

sum of the AE loss (Eq. 3) and the adversarial loss:278

on the i-th domain,279

L(i) = LMSE(i)− LAdv(i),

LAdv(i) =

Mi∑
j=1

(log(DICA(vj)) + log(1−DICA(vj,σ))).

(4)280

This loss does not guarantee the identifiability of281

the model Khemakhem et al. (2020). To mitigate282

this, the loss term is augmented with a third term,283

an adversarial loss imposing that the latent factors284

be independent of the domain variable. Formally,285

letting w = (v, i) denote a paired term if v is the286

latent representation of a sample in the i-th domain,287

and w′ = (v′, j) denote an unpaired term if v′ is the288

latent representation of a sample in the i-th domain 289

with i ̸= j, then the LDeconICA is expressed as, 290

LDeconICA =
N∑
i=1

(LMSE(i)− LAdv(i))− LDom,

LDom =
∑

w paired

log(DDom(w))

+
∑

w′ unpaired

log(1−DDom(w′)).

(5)

291

The pseudo-code of the proposed DeconICA algo- 292

rithm is displayed in Algorithm 1. 293

Algorithm 1 DeconICA
Input data X Output The trained model; Encoder, Decoder,
discriminators DICA, DDom.
Not converged get a batch of examples xi in the source
domains
LAE ← 0
LICA ← 0
LDom ← 0
i in batch
vi← Encoder(xi)
x̂i ← Decoder(vi)
wi = (vi, k) for k the domain index of xi

w′
i = (vi, j) for j ̸= k, j in [[1, N ]]

Draw σ permutation on [[1, d]]
LICA ← LICA + log(DICA(vi)) + log(1−DICA(vi,σ))
LAE ← LAE + ∥xi − x̂i∥2
LDom ← LDom + log(DDom(wi)) + log(1−DDom(w′

i))
Update DICA to maximize LICA

Update DDom to maximize LDom

Update Encoder and Decoder to minimize
LAE − LICA − LDom

3.4 DG Classifier 294

The classifier is learned on the top of the X and V 295

representations learned by DeconICA, with a novel 296

fusion method based on the attention mechanism. 297

Formally, 298

β = X ⊙ V, dot product attention

sim = exp(
βi∑d
j=1 β

j
), attention score

Fc = V + sim ∗ X, confounder features

Ffinal = X + α ∗ Fc final features
(6)

299

with α the d × d matrix, dot product attention 300

of the region features X and the SHCs V; αi is the 301

average of the i-th column in α; sim defines the 302

attention score and Fc additively aggregates the in- 303

formation from the SHCs and the initial description 304

biased according to sim. 305
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Figure 3: Neural architecture of DeconICA. The top box is an auto-encoder defining a latent representation Z of the
features, using a standard MSE loss. The middle box enforces the mutual independence of the Z, via an adversarial
loss distinguishing the Z and their random permutations. The bottom box enforces the independence of the Z w.r.t.
the domain indices, via an adversarial loss distinguishing the paired (Z, domain) and their unpaired equivalent (see
text). Overall, the scheme learns latent variables which are independent of each other, and independent from the
domain variable D.

The final features Ffinal used by the classifier306

elementally add the Fc and the initial X, along the307

neural architecture.308

The overall loss includes the standard classifier309

loss and λ times the DeconICA loss (Eq. 7):310

Loss = LClassify + λLDeconICA. (7)311

Note that the gradients of the classifier module312

operate on the whole neural architecture (the back-313

bone network) while the gradients of the DeconICA314

modules are stopped and do not operate on the back-315

bone, to achieve more stability during training.316

Methods Caltech101 LabelMe Sun09 VOC2007 Avg

Mixup (Yan et al., 2020) 98.3 64.8 72.1 74.3 77.4
MLDG (Li et al., 2018a) 97.4 65.2 71.0 75.3 77.2
MMD (Li et al., 2018b) 97.7 64.0 72.8 75.3 77.5
CDANN (Li et al., 2018c) 97.1 65.1 70.7 77.1 77.5
MTL (Blanchard et al., 2021a) 97.8 64.3 71.5 75.3 77.2
SagNet (Nam et al., 2021) 97.9 64.5 71.4 77.5 77.8
ARM (Zhang et al., 2021) 98.7 63.6 71.3 76.7 77.6
VREx (Krueger et al., 2021) 98.4 64.4 74.1 76.2 78.3
RSC (Huang et al., 2020) 97.9 62.5 72.3 75.6 77.1
SelfReg (Kim et al., 2021) 48.8 41.3 57.3 40.6 47.0
PCL (Yao et al., 2022) 96.6 58.1 72.4 75.2 75.6
AdaNPC (Zhang et al., 2023) 98.9 64.5 73.5 75.6 78.1
DeconICA 99.10 64.12 74.51 79.76 79.37

Table 1: Comparative assessment of DeconICA on the
VLCS dataset.

Methods Art Clipart Product Real World Avg

MMD-AAE (Saito et al., 2018) 56.5 47.3 72.1 74.8 62.7
CCSA (Motiian et al., 2017) 59.9 49.9 74.1 75.7 64.9
JiGen (Carlucci et al., 2019) 53.0 47.5 71.5 72.8 61.2
CrossGrad (Shankar et al., 2018) 58.4 49.4 73.9 75.8 64.4
FAR (Jin et al., 2020) 61.4 52.9 74.5 75.4 66.0
VREx (Krueger et al., 2021) 60.7 53.0 75.3 76.7 66.4
RSC (Huang et al., 2020) 60.7 51.4 74.8 75.1 65.5
DANN (Ganin et al., 2016a) 59.9 53.0 73.6 76.9 65.9
CDANN (Li et al., 2018c) 61.5 50.4 74.4 76.6 65.7
MTL (Blanchard et al., 2021b) 61.5 52.4 74.9 76.8 66.4
SagNet (Nam et al., 2021) 63.4 54.8 75.8 78.3 68.1
ARM (Zhang et al., 2021) 58.9 51.0 74.1 75.2 64.8
SelfReg (Kim et al., 2021) 63.6 53.1 76.9 78.1 67.9
PCL (Yao et al., 2022) 62.7 54.0 76.9 78.5 68.0
AdaNPC (Zhang et al., 2023) 62.9 52.3 75.1 75.6 66.5
DeconICA 69.8 52.2 77.7 82.2 70.5

Table 2: Comparative assessment of DeconICA on the
Office-Home dataset.

4 Experimental Setting 317

4.1 Datasets 318

Two publicly available benchmark datasets in 319

computer vision are considered: The VLCS 320

dataset Torralba and Efros (2011), with 5 classes, 321

involves four datasets respectively shared by the 322

PASCAL VOC 2007, LabelMe, Caltech and Sun. 323

The Office-Home dataset Saenko et al. (2010), 324

with 65 classes, includes 15,500 images of ev- 325

eryday objects in the office and home scenarios, 326

divided into four domains: Artistic images (Ar), 327

Clip Art (Cl), Product images (Pr) and Real-World 328

images (Rw). For VLCS, we follow the offi- 329
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Methods DVD Electronics Kitchen Book Avg

Guo et al. (Guo et al., 2018a) 87.70 89.50 90.50 87.90 88.90
Wright et al. (Wright and Augenstein, 2020) 88.90 90.30 90.80 90.00 90.00

Roberta-Large (Liu et al., 2019) 90.00 93.95 93.40 92.65 92.50
MMD (Li et al., 2018b) 89.85 94.15 93.70 92.55 92.56
MoE (Guo et al., 2018b) 90.25 94.04 93.99 92.50 92.69
Intra (Wen et al., 2016a; Ye et al., 2020) 90.06 94.00 94.06 92.75 92.72
Adv (Ganin et al., 2016b) 90.25 94.45 94.60 92.85 93.04
SCL (Tan et al., 2022a) 89.95 94.25 93.10 93.45 92.69
SCL+M=128 (Tan et al., 2022a) 91.45 95.10 95.10 93.70 93.85

DeconICA 91.75 95.00 94.50 94.75 94.00
DeconICA+M=128 92.00 96.00 95.75 95.00 94.69

Table 3: Comparative assessment of DeconICA on the
Multi-Domain Sentiment dataset.

Methods charlieh ferguson germanw ottawashoo sydneysiege Avg

Wright et al. (Wright and Augenstein, 2020) 67.90 45.40 74.50 62.60 64.70 63.02

Roberta-Large (Liu et al., 2019) 64.78 43.03 69.87 60.42 62.02 60.02

MMD (Li et al., 2018b) 63.80 43.44 69.04 63.94 63.27 60.70

MoE (Guo et al., 2018b) 65.84 43.61 72.23 61.63 64.25 61.51

Intra (Wen et al., 2016a; Ye et al., 2020) 64.14 42.89 70.77 61.84 64.21 60.41

Adv (Ganin et al., 2016b) 64.83 42.23 65.74 61.47 62.81 59.45

SCL (Tan et al., 2022a) 65.57 43.22 73.03 63.50 63.52 61.77

SCL+M=128 (Tan et al., 2022a) 68.08 44.55 75.41 66.52 65.19 63.95

DeconICA 81.14 76.23 67.35 69.27 72.80 73.36

DeconICA+M=128 83.74 76.81 74.41 77.07 74.28 77.26

Table 4: Comparative assessment of DeconICA on the
Multi-Domain Sentiment dataset.

cial training-val-testing split, for the Office-Home330

dataset, similar to the previous methods, we ran-331

domly split the training-validation into 90% and332

10% samples of the original datasets.333

Two publicly available benchmark datasets334

in natural language processing are used: The335

Multi-Domain Sentiment Dataset for cross-336

domain sentiment classification. The dataset con-337

sists of 8,000 Amazon product reviews, evenly dis-338

tributed across four domains: DVD, Electronics,339

Kitchen and Book. Within each domain, there are340

1,000 positive and 1,000 negative reviews. To en-341

sure a fair comparison with previous studies, we342

followed the same data split Ganin et al. (2016a);343

Du et al. (2020); Guo et al. (2020), resulting in344

1,600 training examples and 400 test examples345

for each domain. The PPHEME Rumour De-346

tection Dataset, which includes 5,802 annotated347

tweets from 5 different events ((C)harlie(H)ebdo,348

(F)erguson, (G)erman(W)ings, (O)ttawa(S)hooting,349

and (S)ydneySiege) labelled as rumour or non-350

rumour (1,972 rumours, 3,830 non-rumours). On351

each benchmark, the DeconICA classifier is trained352

on all domains but one and tested on the remain-353

ing one. For both datasets, we follow the official354

training-val-testing split to perform the experimen-355

tal evaluation.356

4.2 Implentation Details357

The DeconICA architecture implemented on the358

PyTorch platform (Fig. 3) is built on top of the X359

representation consisting of the last and second last 360

convolutional features of the ResNet-50 backbone 361

network, for the sake of a fair comparison with the 362

baselines. 363

The classifier takes as input the SHCs V (Alg. 1) 364

fused with X via an attention mechanism, and with 365

X directly, along a residual connection scheme. As 366

said, the gradient from the DeconICA module is 367

stopped and has no impact on the backbone net- 368

work. 369

Instead of utilizing the fully connected layers, 370

the operations in DeconICA are realized via 1d 371

convolutions to not only learn the relationship be- 372

tween data points but also reach a higher efficiency. 373

The backbone network in image classification and 374

DeconICA are trained with learning rate 1e-5 using 375

Adam optimizer, with batch size 48,1 for at most 376

200 epochs. Early stopping based on the validation 377

set performance (available from the benchmark) 378

is used. The size of the 1dconvolutional kernel 379

is set to 7 in all benchmarks (all domains) after 380

preliminary experiments. 381

All the experiments are conducted on a comput- 382

ing server equipped with a GPU of Nvidia Geforce 383

2080-Ti. The code is implemented in Python, ref- 384

erencing the evaluation protocol from related re- 385

search. We will make the codes public upon the 386

acceptance of our paper. 387

5 Experimental Validation 388

5.1 Comparison with other State-of-the-arts 389

5.1.1 Image Classification 390

VLCS Benchmark. The considered baselines in- 391

clude Domainbed Gulrajani and Lopez-Paz (2021), 392

which proposes a platform supporting the model 393

selection criteria for domain generalization; a 394

Mean Maximum Discrepancy approach Li et al. 395

(2018b) (legend MMD) that aligns the latent rep- 396

resentation of all domains (while using adversarial 397

learning to make the aligned distributions match 398

a prior distribution); the CDANN approach Li 399

et al. (2018c), using a conditional invariant ad- 400

versarial network to learn domain-invariant rep- 401

resentations; SagNet Nam et al. (2021), target- 402

ing the disentangled representations of style and 403

content; MTL Blanchard et al. (2021a), focusing 404

on the transfer learning of the marginal distribu- 405

tions in the perspective of supervised classification; 406

RSC Huang et al. (2020), proposing an iterative 407

1More precisely, if the benchmark includes 3 training do-
mains, the batch involves 16 samples from each domain.
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self-challenging training scheme to enhance the408

generalization capability of the model on out-of-409

distribution data. The approach most related to410

DeconICA is CDANN Li et al. (2018c), which411

also aims at domain-invariant features using ad-412

versarial learning. The difference is rooted in the413

deconfounding approach. CDANN proceeds by414

combining an alignment of the domains with Gra-415

dient Reversal Layer (GRL) Ganin and Lempitsky416

(2015) and category-conditioned domain discrim-417

ination, while DeconICA extracts mutually inde-418

pendent and domain-independent substitute hidden419

confounders. Empirically, DeconICA outperforms420

all baselines on two out of four domains on the421

VLCS benchmark, with the best average perfor-422

mance (Table 1). The Office-Home benchmark.423

the considered baselines include: FAR Jin et al.424

(2020), that aligns and repairs the data distribution425

to ensure a high generalization and discrimination426

capacity at the same time; CrossGrad Shankar et al.427

(2018), that trains a label and a domain classifier428

on examples perturbed by loss gradients of each429

other’s objectives, under various distribution as-430

sumptions; JiGen Carlucci et al. (2019), that pro-431

poses to solve jigsaw puzzles, to learn the spatial432

correlation, thus enforce good generalization capac-433

ity; CCSA Motiian et al. (2017), using a Siamese434

architecture to align the different domain distribu-435

tions; MMD-AAE Saito et al. (2018), aimed to436

align the domains via considering the discrepancy437

of domain classifiers.438

The proposed DeconICA follows the domain439

alignment approach, similar to CCSA Motiian et al.440

(2017) and MMD-AAE Saito et al. (2018), though441

with a quite different learning criterion. Table 2442

shows that DeconICA outperforms the state of the443

art on all but one domain.444

Methods Caltech101 LabelMe Sun09 VOC2007 Avg

ResNet-50 98.74 62.18 73.23 73.80 76.99

ICA Brakel and Bengio (2017) Alone 98.42 63.30 72.08 75.02 77.45
GCL Xiu et al. (2021) Alone 98.42 60.22 73.50 70.74 75.72
DeconICAw/o Attention 99.62 65.00 73.74 75.60 78.23
DeconICA(Full Model) 99.10 64.12 74.51 79.76 79.37

DeconICA(Kernel = 3) 98.46 64.04 73.83 75.06 77.85
DeconICA(Kernel = 5) 98.66 65.32 73.80 75.45 78.33
DeconICA(Kernel = 7) 99.10 64.12 74.51 79.76 79.37

DeconICA(λ = 0.5) 98.94 63.80 73.14 74.63 77.51
DeconICA(λ = 2) 98.82 63.50 73.10 74.14 77.39

DeconICA(α = 1) 98.58 65.12 74.06 76.93 79.17
DeconICA(α = 0.16) 99.10 64.12 74.51 79.76 79.37

DeconICAw/ DimV = 0.5× DimX 99.05 65.36 74.00 76.73 78.77

Table 5: DeconICA: Ablation Studies and sensitivity
w.r.t. hyper-parameters on the VLCS dataset. The full
DeconICA scheme has 1dconvolutional kernel of size
7, λ = 1 and dimV = dimX .

Lastly, the computational cost per iteration is 445

compared to that of the baselines in Table 6, show- 446

ing a moderate cost increase compared to ICA, 447

essentially due to the attention mechanism. 448

Methods Time(s)/Iteration

ResNet-50 0.20 s
ICA Brakel and Bengio (2017) 0.43 s
GCL Xiu et al. (2021) 0.30 s
DeconICAw/o Attention 0.44 s
DeconICA(Full Model) 0.50 s

Table 6: Training Efficiency on the VLCS Dataset.

5.1.2 Text Classification 449

The Multi-Domain Sentiment Dataset the con- 450

sidered baselines include: Roberta-Large Liu et al. 451

(2019), that directly apply the baseline model to 452

extract features and perform classification for do- 453

main generalization in the text;a Mean Maximum 454

Discrepancy approach Li et al. (2018b) (legend 455

MMD) that aligns the latent representation of all 456

domains (while using adversarial learning to make 457

the aligned distributions match a prior distribu- 458

tion); the MoE approach Guo et al. (2018a), uti- 459

lizes an approach of mixture-of-experts for the do- 460

main generalization and domain adaptation. In- 461

tra Wen et al. (2016b); Ye et al. (2020) proposes a 462

method for domain adaptation for language prob- 463

lems, with a feature adaptation method. The feature 464

adaptation method applies self-distillation to make 465

the pseudo labels of the target domain more ro- 466

bust, thus realizing a sample-level alignment; our 467

baseline model Tan et al. (2022b), which applies 468

self-supervised contrastive learning and a mem- 469

ory block to solve the domain generalization for 470

text classification. Empirically, DeconICA out- 471

performs all baselines on all four domains on the 472

Multi-Domain Sentiment Dataset benchmark, with 473

the best performance (Table 3). The PHEME Ru- 474

mour Detection Dataset The considered baselines 475

include: Roberta-Large Liu et al. (2019), which di- 476

rectly applies the baseline model to extract features 477

and perform classification for domain generaliza- 478

tion; a Mean Maximum Discrepancy approach Li 479

et al. (2018b) (legend MMD) that aligns the la- 480

tent representation of all domains; the MoE ap- 481

proach Guo et al. (2018a), utilizes an approach of 482

mixture-of-experts for the domain generalization 483

and domain adaptation. Intra Wen et al. (2016b); Ye 484

et al. (2020) utilizes the feature adaptation method 485

that applies the self-distillation to make the pseudo 486

labels of the target domain more robust, thus real- 487

izing a sample-level alignment; CL, our baseline 488
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model and the SCL with memory block for train-489

ing (SCL + M). Our method, as shown in Table 4,490

achieves the State-of-the-art performance among491

all the listed methods.492

5.2 Ablation Study on Text classification:493

Multi-domain Sentiment Dataset494

The impact of the different components in495

DeconICA is assessed using ablation studies on the496

Multi-Domain Sentiment Dataset. Impact of the497

DeconICA Scheme over baseline The standalone498

Roberta-Large backbone network trained on all499

domains yields the bottom performance). The non-500

linear ICA standalone Brakel and Bengio (2017)501

(DeconICAw/o Domain Invariance).). Impact of502

the Convolutional Kernel size on Text The impact503

of the kernel size in the 1d convolutional blocks is504

displayed in lines 9-10, showing a moderate sensi-505

tivity of the approach. Similar to the case of image506

classification, we find that 7 kernel size best fits the507

model. Impact of the Hyper-parameter λ λ con-508

trols the trade-off between the classifier loss and509

the deconfounder losses, displayed in lines 11-14.510

Impact of the Hper-parameter α The impact of511

setting the trade-off between the original features512

and the fused confounder features is shown in lines513

2-8, showing a moderate impact. Impact of the514

Batch Size The batch size, on the text classification515

task, is easier to increment, due to the task’s low516

computing resource requirement than image classi-517

fication. We find that batch size has a more obvious518

impact on the training of the proposed scheme, a519

batch size of 48, has the best performance.520

Methods DVD Electronics Kitchen Book Avg

Roberta-Large Liu et al. (2019) 90.00 93.95 93.40 92.65 92.50

DeconICAw/ α = 0.24 91.00 95.00 93.50 94.75 93.56
DeconICAw/ α = 0.20 90.75 95.25 93.75 94.25 93.50
DeconICAw/ α = 0.16 91.75 95.00 94.50 94.75 94.00
DeconICAw/ α = 0.12 89.50 93.75 94.75 94.00 93.00

DeconICA(Kernel = 3) 91.25 95.41 94.50 93.50 93.67
DeconICA(Kernel = 7) 91.75 95.00 94.50 94.75 94.00

DeconICAw/ λ = 2.5 91.75 95.00 94.50 94.75 94.00
DeconICAw/ λ = 2.0 91.75 95.00 94.50 94.00 93.81
DeconICAw/ λ = 1.5 91.75 95.00 94.50 94.00 93.81
DeconICAw/ λ = 1.0 91.75 95.00 94.50 94.00 93.81

DeconICAw/ bs = 96 90.75 95.50 90.5 91.00 91.94
DeconICAw/ bs = 48 91.75 95.00 94.50 94.75 94.00
DeconICAw/ bs = 24 88.75 90.25 93.75 93.75 91.63
DeconICAw/ bs = 12 87.75 89.50 89.75 93.00 90.00

DeconICAw/o Domain Invariance 90.25 90.33 94.42 93.25 93.06
DeconICAw/ Domain Invariance 91.75 95.00 94.50 94.75 94.00

Table 7: Training Efficiency on the VLCS Dataset.

Lastly, the computational cost per iteration is521

compared to that of the baselines in Table 6, show-522

ing a moderate cost increase compared to ICA,523

essentially due to the attention mechanism.524

Figure 4: Quality of the X representation on the
VOC2007 (Left) and LabelMe (Right) domains (VLCS
benchmark) using a t-SNE visualization. Top: represen-
tation learned by ResNet-50. Bottom: representation
learned by DeconICA.

5.3 Qualitative Evaluation: inspecting the 525

SHCs 526

We investigate the DeconICA factor representation 527

learned by DeconICA, compared to the baseline 528

representation learned by ResNet-50. Considering 529

the VOC2007 (Left) and LabelMe (Right) domains 530

of the VLCS benchmark. 531

We apply t-SNE Van der Maaten and Hinton 532

(2008) on the X representation of the data, avail- 533

able in both ResNet-50 and DeconICA. As shown 534

on Fig. 4, the DeconICA scheme induces well- 535

separated clusters of points (Fig. 4, bottom), as 536

opposed to ResNet-50 standalone (Fig. 4, top). 537

6 Conclusion 538

Domain generalization (DG) aims to improve the 539

generalization ability of a machine learning model 540

in an unknown domain. This paper solves the DG 541

task from a causal perspective, in which the poor 542

generalization ability is considered from the hidden 543

confounder. We model the ’dataset bias’, contain- 544

ing the background and domain bias as the hidden 545

confounder. Informed by the Deconfounder the- 546

ory, we choose a non-linear ICA method to fac- 547

torize the causes, representing the substitute con- 548

founder. These factors are subsequently trained to 549

be domain-invariant via adversarial learning, forc- 550

ing their identifiability. The proposed causal DG 551

framework is theoretically solid. The empirical 552

results on various classification tasks validate its 553

effectiveness. 554

Limitations 555

There are two limitations to this research: First, 556

more empirical results on large-scale datasets will 557

be included in the future. Second, an improvement 558
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over the identifiability of the proposed non-linear559

ICA method will be studied. The current method560

relies on auxiliary labels, i.e., the domain labels,561

to achieve identifiability. This weakness raises a562

question of the identifiability of this method for,563

e.g., the single-domain domain generalization task,564

where there are no diverse domain labels.565
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