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ABSTRACT

Strategic interactions between a group of individuals or organisations can be
modelled as games played on networks, where a player’s payoff depends not
only on their actions but also on those of their neighbors. Inferring the network
structure from observed game outcomes (equilibrium actions) is an important
problem with numerous potential applications in economics and social sciences.
Existing methods mostly require the knowledge of the utility function associated
with the game, which is often unrealistic to obtain in real-world scenarios. To
address this limitation, we propose a novel transformer-like architecture which
correctly accounts for the symmetries of the problem and learns a mapping from the
equilibrium actions to the network structure of the game without explicit knowledge
of the utility function. We test our method on three different types of network
games using both synthetic and real-world data, and demonstrate its effectiveness
in network structure inference and superior performance over existing methods.

1 INTRODUCTION

Individuals or organizations cooperate with or compete against each other in a wide range of practical
situations. Strategic interactions between individuals are often modeled as games played on networks,
where an individual’s utility depends not only on their actions (and characteristics) but also on
those of their neighbors. In a network game (and games in general), the utility function is of
fundamental importance, as rational agents maximize their utilities when making real-life decisions.
The current literature on network games has primarily focused on the scenarios where the utility
function is predefined, and the structure of the network (represented by a graph) is known beforehand.
However, in practical settings, while it is common to observe the actions of the players, the underlying
interaction network and the utility function remain hidden. This makes it challenging to exploit
network information and utility function for behavioral predictions and network-based interventions
(e.g., marketing campaigns or information diffusion).

In this paper, we focus on the problem of inferring the structure of the interaction network from
observed equilibrium actions of a network game. A few recent studies have tackled similar problems
(Irfan & Ortiz, 2011; Honorio & Ortiz, 2015; Ghoshal & Honorio, 2017a;b; Garg & Jaakkola, 2016;
2017; Barik & Honorio, 2019; 2020; Leng et al., 2020); however, several major limitations remain.
First, all these methods require the explicit knowledge of the utility function to infer the underlying
network structure, which may be impractical to assume and may also change over time. The work
of Honorio & Ortiz (2015) considers a more general hypothesis space of games for linear influence
game, but they only focus on binary actions and linear payoffs. Second, the methodology in each of
these studies has been designed for the specific game under consideration, thereby limiting its scope
in handling a wide range of strategic interactions in real-world scenarios.

To address these limitations, we first summarise three common network games studied in the recent
literature in a generic form, which is based on both individual and network factors that impact one’s
utility and the corresponding equilibrium actions. Despite the different nature of the games, it permits
the relation between the equilibrium actions and network structure to be written in a unified manner.
This motivates us to propose a data-driven model where we learn the functional mapping between the
equilibrium actions and network structure without explicit knowledge about the utility function of
the game. Our model is based on an encoder-decoder approach where the encoder is a transformer
architecture and the decoder can be chosen flexibly, and is trained using pairs of actions and network
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Figure 1: Example actions for different types of games on a Barabási-Albert graph. Actions are
normalized to be in r´1, 1s and are displayed as colors on nodes.

structures. Once trained, the model can be deployed to infer the network structure from only observed
actions. Synthetic and real-world experiments demonstrate the superiority of our method against
several state-of-the-art approaches.

Main contributions. First, we compare three network games using a unified parameterization,
which helps reveal the different nature of these games and interpret the strategic interactions they
represent. Second, to our knowledge, our framework is one of the first to infer the network structure
behind the games without knowing the utility function. This capability is important in real-world sce-
narios where the nature of the interactions remains hidden or may even evolve over time. Finally, our
work contributes to the emerging field of data-driven structural inference by proposing a model based
on a novel permutation-invariant transformer architecture. Such a framework may find numerous
applications in diverse domains as transportation, social, biological, and financial network analysis.

2 SETTING

In this section, we start by analysing three commonly studied network games (Sections 2.1 and 2.2).
Based on the specific utility function of these games, we establish a generic relationship between the
equilibrium actions and network structure (Section 2.3), which eventually motivates the proposed
framework that learns network structure without any knowledge of the utility function (Section 3).

2.1 CONTINUOUS-ACTION NETWORK GAMES

Consider a network of N individuals represented by a weighted and undirected graph GpV, Eq, where
V and E denote the node and edge sets, respectively. For any pair of individuals i and j, wij =
wji ą 0 if pi, jq P E and wij “ wji “ 0 otherwise, where wij is the ij-th entry of the adjacency
matrix W. In this work, we assume the graph G is connected, and consider the normalized adjacency
matrix A “ D´ 1

2 WD´ 1
2 where D “ diagpW1q, where 1 is an N -dimensional vector of ones. In

a network game, the payoff ui of an individual i depends on their action xi as well as the actions
of neighbors j P Ni. We consider three commonly studied network games: linear quadratic games
(Ballester et al., 2006), a variation of the linear influence games developed in Irfan & Ortiz (2011),
and the graphical game studied in Barik & Honorio (2019) (which we will refer to as Barik-Honorio
or BH graphical game).

Linear quadratic games. Linear quadratic games are widely studied in the economics literature
(Jackson & Zenou, 2014; Ballester et al., 2006). In this game, a player i chooses their action by
maximizing the following utility function:

max
txiu

ui “ bixi ´
1

2
x2
i ` β

ÿ

jPNi

aijxixj , (1)

where bi represents the marginal benefit of i by taking action xi and β is the strength of dependencies
between actions of neighbors in the network, respectively. Note that this utility function can also be
thought of as a second-order approximation to non-linear utility functions of more complex games.
The pure-strategy Nash equilibrium (PSNE) of this game is

x˚ “
`

I´ βA
˘´1

b, (2)
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where x˚ and b areN -dimensional vectors collecting actions and marginal benefits for all individuals,
and I is theNˆN identity matrix. Under the assumption that |β| ă 1, the matrix inverse is guaranteed
to exist as the spectral radius of A is 1. Furthermore, when β ą 0, the game corresponds to a strategic
complement relationship (i.e., intuitively, the incentive of a player to take a higher action is increasing
in the number of their neighbors also taking a higher action); when β ă 0, it corresponds to strategic
substitute (i.e., intuitively, the incentive of a player to take a higher action is decreasing in the number
of their neighbors also taking a higher action).

Linear influence games. Inspired by the threshold model (Granovetter, 1978), Irfan & Ortiz (2011)
proposed the linear influence games, where an individual chooses the action that maximizes the
following utility function1:

max
txiu

ui “
ÿ

jPNi

aijxixj ´ bixi, (3)

where bi can be understood as a threshold parameter for i’s level of tolerance for negative effects.
Under the assumption that A is invertible, the PSNE satisfies the following condition:

x˚ “ A´1b. (4)

BH graphical game. Finally, in the specific graphical game introduced in Barik & Honorio (2019),
an individual maximizes the following utility function:

max
txiu

ui “ ´
›

›

›
xi ´

ÿ

jPV
aijxj

›

›

›

2
. (5)

This utility can be used to model games where an individual prefers to conform to the social norm
(actions of their neighbors), since their own utility decreases as their action deviates from those of
their neighbors. The PSNE for this game satisfies the following condition:

x˚ “ Ax˚. (6)
This suggests that x˚ is the eigenvector u1 of A which is associated with the largest eigenvalue
(which is 1). We consider actions from the set of ε-PSNE (Barik & Honorio, 2019), which are
obtained by adding noise independently per player. The observed actions x are: x “ x˚ ` e, where
e is sub-Gaussian noise2. Table 1: Parameterization of three network

games considered in the paper.
FpAq Hpbq

Linear quadratic pI´ βAq´1 b
Linear influence A´1 b
Barik-Honorio u1 1

By investigating equations equation 2, equation 4, and
equation 6, we can write the condition for the equilib-
rium actions x˚ in a generic form (we tacitly assume
that |β| ă 1 and A is invertible, see Table 1):

x˚ “ FpAqHpbq, (7)
where FpAq is a function of the network structure and Hpbq is a function of additional parameters
(if any) associated with the game. That is, FpAq accounts for the influence from the actions of
one’s neighbors in the network. Conversely, Hpbq is only affected by one’s idiosyncratic (individual)
characteristics.

2.2 MODELING OF INDIVIDUAL IDIOSYNCRATIC CHARACTERISTICS

Under the linear quadratic or linear influence games, the parameter b captures the marginal benefits
or tolerance levels as idiosyncratic characteristics of players in the corresponding games. In the
presence of the homophily effect (McPherson et al., 2001), we may assume that this parameter is
associated with the network structure. To this end, we propose to model b as follows:

b „ N p0,L:αq, Lα “ p1´ αqI` αL (8)
where L “ I´A is the normalized graph Laplacian matrix, and : represents pseudoinverse in case
the matrix is not invertible (this happens when α “ 1 as L has a smallest eigenvalue of 0). The
parameter α P r0, 1s controls the relation of the individual idiosyncratic characteristics to the network
structure. The two corner cases α “ 0 (for which we have L0 “ I), and α “ 1 (when L1 “ L)
correspond to independent idiosyncratic characteristics and homophilous idiosyncratic characteristics
(individuals with similar characteristics tend to be connected), respectively. By varying α from 0 to 1
we can achieve increasing levels of homophily.

1 The actions are discrete in the originally proposed game. We adapt the game to a continuous setting.
2Sub-Gaussian variables include Gaussian variables, any bounded random variable (e.g. Bernoulli, uniform),

any random variable with strictly log-concave density, and any finite mixture of sub-Gaussian variables.

3



Under review as a conference paper at ICLR 2022

2.3 ANALYSIS OF EQUILIBRIUM ACTIONS

With the conditions for equilibrium actions in Section 2.1 and the modeling of individual idiosyncratic
characteristics in Section 2.2, we can analyze explicitly the characteristics of these actions.

Linear quadratic games. Assuming b of the form equation 8 and using Eq. equation 2 and
L “ I´A, we have that the equilibrium actions x˚ follow a multivariate Gaussian distribution:

x „ N
´

0,
`

I´ βA
˘´1`

I´ αA
˘:`

I´ βA
˘´1

¯

“ N
´

0,UrpI´ βΛq2pI´ αΛqs:UJ
¯

, (9)

with the eigendecomposition A “ UΛUJ. Eq. equation 9 illustrates the relationship between the
actions x and the network structure A and motivates the learning framework proposed in the next
section. Furthermore, the covariance in Eq. equation 9 may be interpreted as a graph filter whose
frequency response 1

p1´βλq2p1´αλq may shed light on the behavior of the actions. For β Ñ 1 and
α Ñ 1, the action vector x tends to behave like the leading eigenvectors of A (‘low frequency’),
which are smooth on the graph3. An example of the filter response (with β “ 0.8 and α “ 0.8)
applied on the eigenvalues of an instance of a 20-node Erdős–Rényi graph is shown in Fig. 2 (blue).
This shows that in linear-quadratic games the actions are dominated by the leading eigenvector of A
which is smooth.

Linear influence games. Similarly, from Eqs. equation 4 and equation 8, we have that the equilibrium
actions x follow a multivariate Gaussian distribution:

x˚ „ N
´

0,A´1
`

I´ αA
˘:

A´1
¯

“ N
´

0,UrΛ2pI´ αΛqs:UJ
¯

. (10)

Interpreting Eq. equation 10 as a spectral filter of the form 1
λ2p1´αλq we can also conclude that

an α Ñ 1 leads to smoother actions on the graph. However, the behavior of actions in this case
depends on the magnitude of the eigenvalue of A closest to 0. Given that the spectrum of A lies in
the range of r´1, 1s, the actions are likely to behave like mid-spectrum eigenvectors, which are not
necessarily smooth signals on the graph. Similarly, this can be seen from the filter response, under
α “ 0.8, shown in Fig. 2 (red). This shows that in linear influence games the actions are dominated
by mid-spectrum eigenvectors which are not necessarily smooth.
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Figure 2: Interpreting actions of lin-
ear quadratic/influence games: the
equilibrium actions for the two
games are dominated by different
sets of eigenvectors.

BH graphical game. We see from Eq. equation 6 that the
equilibrium actions correspond to the largest eigenvector u1 of
A. Although in this setting the observed actions are ε-PSNE,
they will still be quite smooth on the graph.

In summary, our analysis in this section shows that the smooth-
ness of the equilibrium actions on the graph depends on β and
α in the linear quadratic game. The actions in linear influ-
ence game are likely to be nonsmooth, whereas those in the
BH graphical game are likely to be smooth. We empirically
validate this analysis in Section 5.1. Regardless of the smooth-
ness, the relationship between the equilibrium actions and the
network structure demonstrated in this section motivates us
to propose a learning framework in the next section to infer
network the structure from the observed actions.

3 PROPOSED APPROACH

Motivated by the analysis in Section 2.3, we propose a model that learns a direct mapping from the
observed actions to the network structure. Such a model is agnostic to the utility function of the game
and avoids strong assumptions on the utility function.

In our setting, we assume to have a training set D of action-graph pairs pXp`q,Ap`qq coming from
games with the same (but unknown) utility function. The model takes as input an N ˆK matrix X
containing the actions of N players over K independent games as columns, and outputs a predicted
N ˆ N adjacency matrix Â “ gΘpXq for the network game. Once trained, our model can then

3By ‘smoothness’ here we understand the Dirichlet energy of the features, tracepXJLXq.
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infer the network structure corresponding to previously unseen actions, as long as they are generated
following a similar utility function. Moreover, this framework makes our model generalizable to
learning networks with the number of nodes different from what was observed during training.

The model parameters are learned such that they minimize the cross entropy between the binary
ground truth adjacency matrix and the predicted continuous one:

LpΘq “
1

|D|
ÿ

pAp`q,Xp`qqPD

N
ÿ

i,j“1

a
p`q
ij plogpgΘpX

p`qqqqij ` p1´ a
p`q
ij qp1´ logpgΘpX

p`qqqqij . (11)

Binary cross-entropy is a standard loss function for link prediction tasks using graph neural networks
(Hamilton et al., 2017), of which our problem is an instance. We tried weighting the loss based on
the proportion of edges in the graph, but it did not change the performance of the model.

Our model follows an encoder-decoder architecture gΘpXq “ decpencpXqq, which is a standard
solution for link-prediction problems in graph neural networks (Kipf & Welling, 2016) since the
resulting number of parameters of the model is independent on the size of the graph, allowing for
more statistical efficiency, and for the same model to work on graphs of different sizes. The encoder
outputs an N ˆK ˆ F tensor Z “ encpXq, mapping each node i in game k to an F -dimensional
latent embedding zik. The decoder outputs the predicted N ˆ N adjacency matrix Â “ decpZq,
where the score âij for each edge pi, jq is computed using the K ˆ F -dimensional embeddings
Zi,Zj of the respective nodes.

Given that the ordering of nodes in the graph is arbitrary, the model has to be a permutation-
equivariant (Bronstein et al., 2021) function over the set of nodes: gΘpP1Xq “ P1gΘpXqP

J
1 ,

where P1 is an N ˆ N permutation matrix interpreted as reordering of the nodes of the graph.
Additionally, in the case where there is no correspondence between game k in one graph and game
k in another one (e.g. actions corresponding to user rating where however users in different graphs
have rated different items), the model should also be permutation-invariant over the set of games, i.e.
gΘpXP2q “ gΘpXq, where P2 is another K ˆK permutation matrix on the games. Overall, this
combined symmetry condition can be written as gΘpP1XP2q “ P1gΘpXqP

J
1 .

Encoder The input to our model is a variable-length set (of actions), which excludes using a
multi-layer perceptron (since it would not be able to handle the variable length) and sequence models
such as LSTMs (Hochreiter & Schmidhuber, 1997) or GRUs (Cho et al., 2014) (since they treat the
input as an ordered sequence, while it is an un-ordered set). Moreover, since the ground truth graph
between the players is not known a priori, but it is however important for the model to exchange
information between players (as the values of agents’ actions are meaningless if not compared to the
ones of the others), the encoder needs to perform message passing on the fully connected graph of
players. Therefore, we propose a Transformer-like (Vaswani et al., 2017) encoder (which we refer to
as Network Game Transformer or NuGgeT). NuGgeT processes a set of games happening on a given
network and outputs for each node a set of K different game-specific embeddings (one for each game
that happens on the network). In this architecture, the value of action xik of player i in game k is
never mixed with the actions of other players in a different game k1, if not for the computation of
an aggregated attention score αij that captures the overall similarity between players. Intuitively, in
settings where we are given the outcomes of multiple games played on multiple graphs, there is no
correspondence between such games. Thus, the value of an action does not bring any information
about the role of a node in a graph and the only useful information that needs to be exchanged across
games is the similarity of the nodes.

Specifically, for each node i “ 1, . . . , N and game k “ 1, . . . ,K, the embedding zik is computed as
follows:

yik “ ReLUpxikw ` bq w,b P RF

α
phq
ij “ softmaxj

´ K
ü

k“1

yJikW
phq
Q W

phq
K yjk

¯

W
phq
Q P RFˆF

1

,W
phq
K P RF

1
ˆF

zik “ ψ
´

yik,
N
ÿ

j“1

α
p1q
ij yjk, . . . ,

N
ÿ

j“1

α
pHq
ij yjk

¯

(12)

where
Ü

denotes a general permutation-invariant aggregation operator (e.g max, mean 1
K

řK
k“1

or sum
řK
k“1), ψ is some learnable function, w, b, W

phq
K , and W

phq
Q are learnable parameters, and
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h “ 1, . . . ,H denotes the attention heads. For a generic node i in game k, NuGgeT first expands i’s
action xik into a vector yik of F features, it then computes H attention scores (one for each head)
for each pair of nodes pi, jq via multiplicative attention on the expanded actions y.k

4 (aggregating
the unnormalized scores across games) and finally refines vector yik via a function ψ that processes
the H aggregated representation of the neighbors obtained from the attention mechanism.

Decoder In the case of directed graphs, there is no specific requirement for the decoder. If the graph
is undirected, and therefore the adjacency matrix is symmetric, the decoder should be symmetric w.r.t.
pairs of nodes (i.e., pi, jq and pj, iq treated the same way). Additionally, we impose invariance w.r.t.
ordering of the games. NuGgeT’s decoder computes the predicted adjacency âij by aggregating the
game-specific embeddings computed in (12) for a pair of nodes pi, jq using a general permutation-
invariant aggregation operator

Ô

, which is then passed through a learnable function ψ:

âij “ ψ
´ K
ô

k“1

zik d zjk

¯

. (13)

Here d denotes element-wise product, whose use ensures symmetry w.r.t. node pairs (since zik d
zjk “ zjk d zik), while the permutation invariant operator over k ensures invariance to the ordering
of games. We empirically observe this approach to work better compared to simpler permutation-
invariant functions such as the dot product of the concatenation of the games embeddings. In the SM
we prove that NuGgeT satisfies the symmetry conditions outlined above.

4 RELATED WORK

Network games, a class of problems in game theory, have been studied extensively in computer
science and economics. The majority of works in the network game literature study the characteristics
of games on a known and static graph (Ballester et al., 2006; Bramoullé et al., 2014). While these
studies are useful in understanding collective actions and designing interventions (Galeotti et al.,
2017), it is increasingly acknowledged that networks are difficult to obtain in practice. Furthermore,
the utility function associated with the game is usually unknown as well. We are interested in the
inverse problem of inferring the network structure based on observed actions. This inverse setting
is related to graph or network inference, a problem that has attracted interest in statistics (Koller &
Friedman, 2009; Friedman et al., 2008a), physics (Gomez-Rodriguez et al., 2010; Gomez-Rodriguez
et al., 2011), signal processing (Mateos et al., 2019; Dong et al., 2019). Our study differs from these
works in accounting for the strategic interactions and the game theoretical framework underlying the
observed data.

Deep learning models have been recently proposed for latent graph inference, e.g. structural learning
problem to infer a DAG from the observed actions (Yu et al., 2019; Zheng et al., 2020). However,
these approaches are limited to predicting acyclic graphs, whereas the graphs we are interested in are
often cyclic. Kipf et al. (2018) proposed a graph neural network (GNN) model to infer the interactions
of an underlying dynamical system from observational data. Differently from this work, their model
is trained on predicting the future state of the system, rather than the network interactions themselves.
In latent graph learning (Cosmo et al., 2020a;b; Wang et al., 2019), the graph is learnt jointly with
a downstream task, conversely to our scenario where there is no downstream task. The method of
Belilovsky et al. (2017) is the mostly related to ours, since they propose a supervised model to infer an
undirected graphical model from observed covariates using a series of dilated convolutions. However,
their model is not permutation-equivariant w.r.t. the order of nodes and the number of layers depends
on the number of nodes. Both issues cause the statistical efficiency of the model to scale poorly with
the size of the graph. Different from these studies, our framework aims to learn game-theoretical
relationships in a supervised manner, while also leveraging the structural symmetries of this problem.

Finally, there has been a recent stream of literature in learning network games from actions of players
(Irfan & Ortiz, 2011; Honorio & Ortiz, 2015; Ghoshal & Honorio, 2017a;b; Garg & Jaakkola, 2016;
2017; Barik & Honorio, 2019; 2020; Leng et al., 2020). Most of these methods focus on either

4For a given player i, using the expanded actions y.k rather than input scalars x.k allows the attention
mechanism to produce attention scores which are not necessarily linearly dependent on the value of neighbors
action xjk, thus producing richer attention scores (see Figure 12 in Appendix).
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a binary or a finite discrete action space. For continuous actions, Leng et al. (2020) formulate an
optimization problem to learn the structure and marginal benefits of linear quadratic games, while
Barik & Honorio (2019) are aimed at inferring the network structure from an action-conforming
graphical game. Our work differs from existing methods in the literature in that it does not assume a
particular game-theoretic structure. Instead, we build a Transformer-like model that learns a mapping
from the equilibrium actions to the network structure of the games without explicit knowledge of the
utility functions.

5 EXPERIMENTS

Our implementation of NugGeT uses the sum
řK
k“1 as the permutation-invariant functions

Ü

and
Ô

, and two different 2-layer MLPs for φ and ψ. We use the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.001, a batch size of 100 and a patience of 50 epochs. We did not perform any
particular hyperparameter tuning for our method, since we found it to be quite robust to the choice of
hyperparameters and perform well with standard choices (see Appendix). In all our experiments, we
report the mean and the standard error of the mean over the test graphs. Note that we ignore diagonal
elements of the adjacency matrix both for training and evaluation. Since they are always zero, the
model could easily memorize them, influencing the metrics. We use an AWS p3.16xlarge machine
with 8 GPUs. While the training of our model takes between 5 and 10 minutes on a single GPU, the
whole set of experiments conducted in the paper necessitate roughly 4 days of GPU time.

5.1 SYNTHETIC DATA

Data Generation We follow the setup in Leng et al. (2020) for generating the synthetic graphs
using three different random graph models: Erdos–Renyi (ER), Watts-Strogatz (WS), and Barabasi-
Albert (BA). More details and exact parameters for the synthetic data are provided in the Appendix.
All the graphs have N “ 20 vertices in our experiments. For each type of graphs above, we
simulate equilibrium actions for linear quadratic, linear influence, and BH graphical games using
their respective utility function. For linear quadratic games, once the graphs are constructed, we
compute β ą 0 such that the spectral radius ρpβAq varies between 0 and 1. For linear influence
games, when the adjacency matrix is not invertible we take its Moore-Penrose pseudoinverse. For
BH games, we use ε “ 0.2. The generated actions together with the groundtruth network structure
are used to train the model. We use 850 graphs in the training set, 50 graphs for validation and 100
graphs for testing and verify that there is no overlap between them.

Baselines We compare with the following general baselines: Correlation, Anticorrelation, Graph-
ical Lasso (Friedman et al., 2008b) and DeepGraph (Belilovsky et al., 2017). We also compare
to game-specific baselines: LinQuadOpt (independent) (Leng et al., 2020) and LinQuadOpt (ho-
mophilous) (Leng et al., 2020) for linear quadratic games, and BlockRegression (Barik & Honorio,
2019) for BH Graphical Games. A more detailed description of the baselines and how they are tuned
is provided in the Appendix.

Results Results for Linear Quadratic Games are reported in Figure 3. Columns are different types
of graphs (ER, WS, BA), rows are different values of the marginal benefits smoothness α (0, 1, results
on α “ 0.5 are presented in Figure 5 in Appendix), while the x-axis represents the spectral radius
ρpβAq. NuGgeT is on par or superior to other methods in all scenarios, with DeepGraph being the
runner-up competitor. We observe the largest gap when α “ 1, i.e. when the marginal benefits are
smooth over the graph. Interestingly, it can be observed in the left-most column that both NuGgeT
and DeepGraph performs well both in the case of strategic complements (ρpβAq ą 0, neighbors take
similar actions) and strategic substitutes (ρpβAq ă 0, neighbors take opposite actions), whereas other
baselines only perform well in one of the two cases.

For Linear Influence Games, we report the results in Figure 4. Each plot corresponds to a different
type of graph, and the x-axis represents the benefit smoothness α. As expected, all methods improve
their performance as α grows, since the actions become smoother over the graph (Section 2.3). Again,
NuGgeT outperforms the baselines in all scenarios. Interestingly, the performance on WS and ER
graphs seems to be much lower than for BA graphs. This can be understood empirically by analyzing
the eigenvalues of the normalized adjacency matrix A for different graphs. For WS and ER graphs,
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Figure 3: Results for linear quadratic games with varying α and spectral radius ρpβAq.
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Figure 4: Results on linear influence games when varying the smoothness α of the marginal benefits.

the smallest absolute (non-zero) eigenvalue of A is on average much smaller than for BA graphs
(Figure 7 in Appendix). As explained in section 2.3, eigenvalues with very small absolute values
will result in actions behaving like mid-spectrum eigenvectors. We verify this further in Figure 8
in Appendix, which shows the spectral coefficients of the actions for all combinations of graphs
and games. Linear Influence games on ER and WS graphs are indeed the only scenario where we
empirically observe large coefficients for mid-spectrum eigenvectors. On BA graphs we do not
observe this behaviour, and instead mid-spectrum eigenvectors are most often not represented at all
by the actions. This is due to BA graphs frequently having exactly zero eigenvalues for mid-spectrum
eigenvectors, which are discarded when taking the pseudoinverse.

Results for BH Graphical Games are reported in Figure 6 in Appendix. Since there are no parameters
controlling the game, we only have 3 configurations corresponding to different graph types. Again,
NuGgeT outperforms other methods in all configurations, with the gap being largest on BA graphs.
We also perform ablation studies on the number of games, number of training graphs and size of the
graphs. The results are presented and discussed in Appendix.

To conclude, the main advantage of our method comes from the ability of learning from data. While
learning the mapping from actions to network, the model will learn not only the utility function of
the games represented in the data, but also the typical structure of the networks. If all the networks
in the training data are Barabasi-Albert graphs, the prediction of the model will likely also be a
Barabasi-Albert graph. On the other hand, optimization methods such as LinQuadOpt are not able to
automatically bias their prediction to a particular class of graphs.

5.2 REAL-WORLD DATA

Players in real-world scenarios often act according to strategic interactions. It has been shown in the
sociology and game theory literature that people have an incentive to conform to social norms (Young,
2009; Montanari & Saberi, 2010) or be influenced by their social neighbors (Leng et al., 2020).
That is, individual utilities are higher if their behaviors are similar to that of their neighbors in the
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social network. Such a mechanism will lead to strategic complement relationships. Following this
assumption, we validate our model on two datasets, comparing with the baseline methods introduced
in section 5.1.

Indian Villages The Indian Villages dataset (Banerjee et al., 2013)5 contains data from a survey of
social networks in 75 villages in rural southern Karnataka, a state in India. Each village constitute a
graph, where nodes are households and edges are self-reported friendships. Following the setup in
Leng et al. (2020), we consider as actions the number of rooms, number of beds and other decisions
families have to make related to their house. We only consider the 48 villages for which we have
the ground truth actions and network. 40 are used for training, 3 for validation and 5 for testing.
Categorical actions are one-hot encoded, while numerical actions are treated as continuous features.
The resulting dataset has graphs with 10 actions and a number of nodes ranging between 77 and
356. It can be seen from Table 2 that NuGgeT outperforms all other methods by at least 5.01%.
DeepGraph fails to learn altogether on this dataset.

Yelp Ratings The Yelp Ratings dataset6 consists of rating of users to business, as well as the social
connectivity between user. From the raw data we extract 5000 sub-graphs representing communities,
where the actions are the average rating of users to 22 categories of businesses. The task is to
reconstruct the social connectivity of the users given their actions (ratings). 4250 graphs are used for
training, 250 for validation and 500 for testing. More details of the dataset construction are provided
in the appendix. On this dataset, NuGgeT outperforms all other baselines by at least 2.79%. Overall,
the results on real-world data show NuGgeT efficacy in cases where the game form is unknown and
common assumptions are unrealistic.

Model Indian Villages Yelp Ratings
Correlation 0.5816˘0.0135 0.6222˘0.0043
Anticorrelation 0.4184˘0.0135 0.3778˘0.0043
Graphical Lasso 0.5823˘0.0152 0.6523˘0.0038
Baraki and Honorio 0.5715˘0.0164 0.6786˘0.0032
LinQuadOpt (independent) 0.5557˘0.0108 0.6796˘0.0033
LinQuadOpt (homophilous) 0.5789˘0.0174 0.6310˘0.0036
DeepGraph 0.4965˘0.0143 0.6776˘0.0039
NuGgeT 0.6324˘0.0167 0.7057˘0.0035

Table 2: Test ROC AUC for the Indian Villages data and the Yelp Ratings data.

6 CONCLUSION AND FUTURE WORK

In this work, we propose a novel framework to infer the network structure behind the games from
their equilibrium actions. Unlike existing methods, we achieve so by learning a mapping from the
actions to the network structure without knowing the utility function of the game. This is especially
beneficial in real-world scenarios where the nature of strategic interactions between players of the
game remains hidden or may evolve over time.

Limitations and Future Work. The current work only deals with static games and networks.
Moreover, we do not deal with repeated games, i.e. where players have to take multiple actions
sequentially. A promising future direction is therefore to extend it to dynamic games and networks,
where both the utility function as well as the structure of the network may change over time, as well
as dealing with repeated games. In addition, our method cannot guarantee the uniqueness of the
learned network; indeed, the main focus of the study is to propose a first and efficient data-driven
learning framework without assuming the utility function and prior knowledge about the network
structure. We leave the identification of network structure for future work.

5The Indian Villages dataset can be accessed at https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/21538
6The Yelp dataset can be accessed at https://www.yelp.com/dataset
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Ethics Statement. Inferring networks of strategic interactions is of key importance to behavior
prediction and intervention in network settings. For example, the learned network may be useful for
stratification analysis via community detection, or designing efficient targeting strategies in marketing
via node centrality analysis. Both would inform decision-making in a wide range of socioeconomic,
business, and marketing scenarios.

Reproducibility Statement. The code and the data to replicate the experiments are provided as
part of the supplementary material. Inside the code folder, the README.md file contains detailed
instructions for running the experiments.
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Grids, groups, graphs, geodesics, and gauges. arXiv:2104.13478, 2021.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association
for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https://aclanthology.
org/D14-1179.

Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M. Bronstein. Latent-
graph learning for disease prediction. In Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov,
Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, and Leo Joskowicz (eds.),
Medical Image Computing and Computer Assisted Intervention - MICCAI 2020 - 23rd International
Conference, Lima, Peru, October 4-8, 2020, Proceedings, Part II, volume 12262 of Lecture Notes
in Computer Science, pp. 643–653. Springer, 2020a. doi: 10.1007/978-3-030-59713-9\_62. URL
https://doi.org/10.1007/978-3-030-59713-9_62.

Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M. Bronstein. Latent
patient network learning for automatic diagnosis. CoRR, abs/2003.13620, 2020b. URL https:
//arxiv.org/abs/2003.13620.

Inderjit S. Dhillon, Yuqiang Guan, and Brian J. Kulis. Weighted graph cuts without eigenvectors: A
multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 29
(0), nov 2007.

X. Dong, D. Thanou, M. Rabbat, and P. Frossard. Learning graphs from data: A signal representation
perspective. IEEE Signal Processing Magazine, 36(3):44–63, 2019.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432–441, 2008a.

10

https://doi.org/10.7910/DVN/U3BIHX
https://arxiv.org/abs/2004.01022
https://arxiv.org/abs/2004.01022
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://doi.org/10.1007/978-3-030-59713-9_62
https://arxiv.org/abs/2003.13620
https://arxiv.org/abs/2003.13620


Under review as a conference paper at ICLR 2022

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3):432–441, July 2008b. ISSN 1465-4644, 1468-4357. doi:
10.1093/biostatistics/kxm045. URL http://biostatistics.oxfordjournals.org/
content/9/3/432.

Andrea Galeotti, Benjamin Golub, and Sanjeev Goyal. Targeting interventions in networks.
arXiv:1710.06026, 2017.

Vikas Garg and Tommi Jaakkola. Learning tree structured potential games. In Advances in Neural
Information Processing Systems, pp. 1552–1560, 2016.

Vikas Garg and Tommi Jaakkola. Local aggregative games. In Advances in Neural Information
Processing Systems, pp. 5341–5351, 2017.

Asish Ghoshal and Jean Honorio. Learning graphical games from behavioral data: Sufficient and
necessary conditions. arXiv preprint arXiv:1703.01218, 2017a.

Asish Ghoshal and Jean Honorio. Learning sparse polymatrix games in polynomial time and sample
complexity. arXiv preprint arXiv:1706.05648, 2017b.

M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence.
In Proc. of the 16th ACM SIGKDD Inter. Conf. on Knowledge Discovery and Data Mining, pp.
1019–1028, Washington, DC, USA, 2010.

M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal dynamics of
diffusion networks. In Proc. of the 28th Inter. Conf. on Machine Learning, pp. 561–568, Bellevue,
Washington, USA, 2011.

Mark Granovetter. Threshold models of collective behavior. American journal of sociology, 83(6):
1420–1443, 1978.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Jean Honorio and Luis E Ortiz. Learning the structure and parameters of large-population graphical
games from behavioral data. Journal of Machine Learning Research, 16:1157–1210, 2015.

Mohammad Tanvir Irfan and Luis E Ortiz. A game-theoretic approach to influence in networks.
2011.

Matthew O. Jackson and Yves Zenou. Games on networks. Handbook of Game Theory, Vol. 4, Peyton
Young and Shmuel Zamir, eds., 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International Conference on Machine Learning, pp. 2688–
2697. PMLR, 2018.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. NIPS Workshop on Bayesian
Deep Learning, 2016.

D. Koller and N. Friedman. Probabilistic graphical models: Principles and techniques. MIT Press,
2009.

11

http://biostatistics.oxfordjournals.org/content/9/3/432
http://biostatistics.oxfordjournals.org/content/9/3/432
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


Under review as a conference paper at ICLR 2022

Yan Leng, Xiaowen Dong, Junfeng Wu, and Alex Pentland. Learning quadratic games on networks.
In International conference on Machine Learning, 2020.

G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro. Connecting the dots: Identifying network
structure via graph signal processing. IEEE Signal Processing Magazine, 36(3):16–43, 2019.

M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks.
Annual Review of Sociology, 27:415–444, 2001.

Andrea Montanari and Amin Saberi. The spread of innovations in social networks. Proceedings of
the National Academy of Sciences, 107(47):20196–20201, 2010.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon.
Dynamic graph cnn for learning on point clouds. ACM Trans. Graph., 38(5), October 2019. ISSN
0730-0301. doi: 10.1145/3326362. URL https://doi.org/10.1145/3326362.

H Peyton Young. Innovation diffusion in heterogeneous populations: Contagion, social influence,
and social learning. American economic review, 99(5):1899–1924, 2009.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. Dag-gnn: Dag structure learning with graph neural networks.
arXiv preprint arXiv:1904.10098, 2019.

Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric Xing. Learning sparse
nonparametric dags. In International Conference on Artificial Intelligence and Statistics, pp.
3414–3425. PMLR, 2020.

12

https://doi.org/10.1145/3326362


Under review as a conference paper at ICLR 2022

A PROOF OF NUGGET SYMMETRIES

We would like to show that the NuGgeT model g is permutation-invariant over the set of games and
permutation-equivariant over the set of nodes.

Starting with the first one, we need to show that gpXP2q “ gpXq, where P2 is a KˆK permutation
matrix on the games. For what concerns the encoder, we only need to prove that αphqij is invariant
w.r.t. permutation of the games. Let pk be the index of the non-zero entry of the k-th column of P2,
we have:

α
phq
ij “

K
ü

k“1

yJikW
phq
Q W

phq
K yjk

“

K
ü

k“1

yJipkW
phq
Q W

phq
K yjpk ,

since
ÜK

k“1 is chosen to be a permutation invariant operator. This shows that αphqij does not depend on
the particular permutation p chosen, i.e. it is invariant w.r.t. permutation of the games. Similarly, the
same holds for the decoder as

ÔK
k“1 is a permutation invariant operator and therefore

ÔK
k“1 zik d

zjk “
ÔK

k“1 zipk d zjpk for any permutation p.

Regarding the second part of the proof, we need to show that gpP1Xq “ P1gpXqP
J
1 , where P1 is

an N ˆN permutation matrix interpreted as reordering of the nodes of the graph. Letting pk be the
index of the non-zero entry of the k-th row of P1. Note that:

encpP1Xqik “ ψ
´

ypik,
N
ÿ

j“1

αp1qpipjypjk, . . . ,
N
ÿ

j“1

αpHqpipjypjk

¯

“ ψ
´

ypik,
N
ÿ

j“1

α
p1q
pij

yjk, . . . ,
N
ÿ

j“1

α
pHq
pij

yjk

¯

“ zpik

where the second equality stems from the fact that summation is a permutation invariant operator (i.e.
řN
j“1 xi “

řN
j“1 xpi for any permutation p). We then have:

´

P1 gpXqP
J
1

¯

ij
“ âpipj

“ ψ
´ K
ô

k“1

zpik d zpjk

¯

“ ψ
´ K
ô

k“1

encpP1Xqik d encpP1Xqjk

¯

“ gpP1Xqij .

Since this holds for all indices ij, it follows that gpP1Xq “ P1gpXqP
J
1 .

B EXPERIMENTS

B.1 SYNTHETIC DATA GENERATION

We generate the synthetic data from three different graph models: Erdos-Renyi (ER), Barabasi-Albert
(BA) and Watts-Strogatz (WS). In ER graphs, an edge is present with a probability of p “ 0.2,
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independently from all other possible edges. In WS graphs, we set the exact degree of the nodes to be
k “ log2pNq, with a probability of p “ 0.2 for the random rewiring process. Finally, in BA graphs,
nodes are added one at a time and each new node has m “ 1 edges which are preferentially attached
to existing nodes with already high degree.

B.2 YELP DATASET GENERATION

Starting from the raw data at https://www.yelp.com/dataset, we create a dataset by performing the
following steps:

1. We compute the rating for every user to every businesses category, by averaging the ratings
a user has given to all business of each category

2. We weight each edge in the original user-user graph with the fraction of common categories
the two users rated at least once

3. We cluster the above weighted graph using Graclus Dhillon et al. (2007) with the objective
of minimizing the normalized cut.

4. We discard all the clusters with less than 10 nodes, or with very sparse ratings (less than
25% of the categories with a rating for at least 25% of the users). The result of this step is
„27k graphs of different users.

5. We rank the clusters extracted above by their density of ratings and keep the 5000 most
dense clusters. Each cluster constitutes a graph associated with node attributes, which can
be used to train and test our model.

B.3 BASELINES

In both the synthetic and real-world data experiments we compare with the following baselines:

Correlation The Pearson correlation coefficient between the actions of two nodes. This works
particularly well when the actions are homophilous over the graph, i.e. nodes connected in the graph
tend to take similar actions. We implement this baseline ourselves.

Anticorrelation The negative of the Pearson correlation coefficient between the actions of two
nodes. This works well in case of strategic substitutes, i.e. when nodes connected in the graph tend to
take different actions. We implement this baseline ourselves.

Graphical Lasso Friedman et al. (2008b) Computes a sparse penalized estimation of the in-
verse of the covariance matrix. We use SKGGM7 QuicGraphicalLasso with empirical covariance
initialization for this.

LinQuadOpt Algorithm presented in Leng et al. (2020) which assumes the form of the game
to be linear quadratic. It has two version, one where the benefits are assumed to be independent
(LinQuadOpt (Independent)), and another for homophilous benefits (LinQuadOpt (Homophilous)).
We implement the algorithm ourselves (no public code was provided).

BlockRegression Algorithm presented in Barik & Honorio (2019), which has been designed
specifically for BH graphical games. We re-implement this baseline ourselves following the paper
(no public code was provided).

DeepGraph Algorithm presented in Belilovsky et al. (2017) which recovers the graph from the
covariance matrix using a series of dilated convolutions. We re-implement DeepGraph in PyTorch
ourselves taking as inspiration the public TensorFlow implementation of the authors.

All the baselines are tuned on the validation set. For both Graphical Lasso and BlockRegression
we tune the regularization parameter in the range 10k : k P r´5, 5s with an interval of one, whereas
for LinQuadOpt both regularization parameters are tuned in 10k : k P r´6, 1s, also with an interval

7https://github.com/skggm/skggm
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Figure 5: Results for linear quadratic games with α “ 0.5 and variable spectral radius ρpβAq.
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Figure 6: Results for BH graphical games.

of one. We train DeepGraph using the same hyperparameters used for NuGget (Adam optimizer,
learning rate of 0.001, batch size of 100 and a patience of 50), with rlog2pNmaxqs convolutional layers
(Nmax corresponds here to the maximum number of nodes of any graph in the dataset) and dilation
coefficient equal to dk “ 2k´1 for layer k as specified in Belilovsky et al. (2017).

B.4 NUGGET HYPERPARAMETERS

We do not perform any extensive hyperparameter tuning for the NuGgeT model, but instead use the
same standard choice of hyperparameters (reported in Table 3) for all experiments.

Hyperparameter Name Value
F 10
F 1 10
H (num of heads) 10
ψ’s num layers 2
ψ’s hidden dim 100

Table 3: Hyperparameters used for NuGgeT in all experiments.

B.5 ADDITIONAL RESULTS

Additional results on the linear quadratic and BH games are presented in Figure 5 and Figure 6,
respectively.

C SPECTRAL ANALYSIS OF THE GAMES

Figure 7 shows that the smallest absolute (non-zero) eigenvalues of the normalized adjacency matrix
A is on average much smaller for ER and WS graphs than for BA graphs. This results in the
corresponding eigenvectors having a large influence on the actions for the Linear Influence games,
where the Nash equilibrium actions satisfy x˚ “ A´1b. This is confirmed by Figure 8, which shows
the graph Fourier coefficients for different eigenvalue indexes: the actions of linear influence games
on ER and WS graphs are dominated by mid-range eigenvectors.
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Figure 7: Mean and standard deviation of the minimum absolute non-zero eigenvalue of the adjacency
matrix for different types of graph models. Statistics are computed over 1000 graphs with 20 nodes.
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Figure 8: Magnitude of coefficients of normalized action vectors for different games and graphs.
These are obtained by taking the Graph Fourier Transform of the actions, i.e. taking the inner product
between the action and each of the adjacency matrix eigenvectors.
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Figure 9: Results with varying number of games.

D ABLATION STUDIES

In Figure 9, we investigate how the performance changes with the number of games available. The
smaller the number of games, the less information to reconstruct the graph from. We use α “ 1 for
both linear quadratic and linear influence games, and a spectral radius of 0.6 for linear quadratic
games. In line with our expectations, all methods generally improve as more games are available. We
analyze the effect of larger graph sizes (Figure 10). The more nodes, the more edge combinations
exist and the harder the task becomes, which explains the decrease in performance of both methods
as the number of nodes increases. Interestingly, the magnitude of the drop depends heavily on the
combination of game and graph types, but NugGeT seems to be more robust than DeepGraph. We
also investigate the effect of the number on training graphs on the model performance (Figure 11).
NugGeT requires less training graphs compared to DeepGraph to obtain a similar performance.
Figures 9 and 10 show respectively the performance of various methods when varying the number
of games and the number of nodes respectively. We use α “ 1 for both linear quadratic and linear
influence games, and β “ 0.6 (strategic complements) for linear quadratic games. In line with our
expectations, all methods generally improve as more games are available. On the other hand, the
more nodes, the more edge combinations exist and the harder the task becomes, which explains
the decrease in performance of all methods as the number of nodes increases. Interestingly, the
magnitude of the drop depends heavily on the combination of game and graph types, but NugGeT
seems to be more robust than DeepGraph.

E NuGgeT ’S ATTENTION MECHANISM

We investigate the difference between a multiplicative attention mechanism operating directly on
scalar actions (i.e. with unnormalized attention coefficients of the form: α̃ij “ xixja with a a
learnable parameter), and one operating on transformed actions (i.e. α̃ij “ yJi WQWKyj , with
yi “ ReLUpxiw`bq). In Figure 12 we plot the non-normalized attention values of the two different
mechanisms for varying values of the input actions xi, xj . We use a positive and a negative value of
a for showing the capability of the simple scalar-based attention mechanism to identify correlation
and anti-correlation in the input actions x. and random coefficients drawn from a normal distribution
for WQ, WK , w, b for the attention mechanism used in NuGgeT. While the scalar attention always
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Figure 10: Results with varying number of nodes.

shows a linear trend for a fixed xi (or xj), the multiplicative layer operating on vectors is able to
produce richer non-linear attention patterns with maximum / minimum values for the interior points
of r´1, 1s.
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Figure 11: Results with varying number of training graphs.
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Figure 12: Top, attention values for a multiplicative attention layer directly operating on the input
scalars xi P r´1, 1s, xj P r´1, 1s with positive (left) and negative (right) coefficient. Bottom,
attention values for a multiplicative attention layer with random coefficients processing the expanded
actions yi, yj of xi, xj . The result is scaled to r0, 1s for visualization purposes.
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