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ABSTRACT

Time series are common in a wide range of domains and tasks such as stock market
partitioning, sleep stage labelling, and human activity recognition, where segmen-
tation, i.e. splitting time series into segments that correspond to given categories,
is often required. A common approach to segmentation is to sub-sample the time
series using a sliding window with a certain length and overlapping stride, to cre-
ate sub-sequences of fixed length, and then classify these sub-sequences into the
given categories. This reduces time series segmentation to classification. How-
ever, this approach guarantees to find only approximate breakpoints: the precise
breakpoints can appear in sub-sequences, and thus the accuracy of segmentation
degrades when labels change fast. Also, it ignores possible long-term dependen-
cies between sub-sequences. We propose a neural networks approach SegTime
that finds precise breakpoints, obviates sliding windows, handles long-term de-
pendencies, and it is insensitive to the label changing frequency. SegTime does
so, thanks to its bi-pass architecture with several structures that can process in-
formation in a multi-scale fashion. We extensively evaluated the effectiveness of
SegTime with very promising results.

1 INTRODUCTION

Time series are ordered sequences of data values and they are ubiquitous in a wide range of domains.
An important tasks for time series analytics is time series segmentation (TSS) (Wolf et al., 2006;
Gensler & Sick, 2014). It refers to the split of data into a number of non-overlapping time segments
of possibly different length where each segment corresponds to a given label, that is, data in segments
with the same label is similar or follows a similar pattern. Consider an example in Figure 1a where
the data are generated as sinusoidal signals and can be split in several segments, where each segment
has a frequency and is marked with a predefined colourful label.

TSS is essential in various impactful domains, e.g. stocks trajectories partitioning (Chakraborty
et al., 2016), speaker diarisation (Wang et al., 2018), sleep stage labelling (Perslev et al., 2019),
and human activity recognition (Chavarriaga et al., 2013; Roggen et al., 2010). In essence, TSS is a
step-level extension of a well known time series classification problem where the latter is regarded
by many as one of the most challenging problems in data mining (Yang & Wu, 2006; Esling &
Agon, 2012). Indeed, TSS requires to classify segments that are not predefined in advance and there
are exponentially many possible segments of a given time series.

The common approach to address TSS (Wang et al., 2018; Perslev et al., 2019; Lee et al., 2018) is to
sub-sample the time series using a sliding window of a certain length and overlapping stride, to create
sub-time-series of equal length, and then classify these sub-time-series into the given categories.
Figure 1b exemplifies this approach by splitting the left part of the input data (Figure 1a) into 4 blue
overlapping segments (windows) that slide with the given stride, and then classified each segment
into dark blue, orange and brown categories. After that, these sub-time-series are concatenated
together in order to determine the breakpoints between the different categories. The breakpoints are
then used to segment the time series according to their categories. In this way, the problem of TSS
is reduced to time series classification.

This approach is promising when the segment labelling does not change frequently, i.e., the changing
frequency of segment labelling is relatively low compared to sampling rate of measuring sensors as
it is in sleep staging where the segment labels are given to every 30s while the sensors sample at
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Figure 1: (a) Time series segmentation; (b) sliding
window approach; (c) our approach

100 Hz in electroencephalography (Perslev
et al., 2019). However, this approach guar-
antees to finds only approximate breakpoints
since the precise breakpoints can appear in the
sub-times-series. The quality of classification
with such approach highly depends on the size
of the sliding window and the stride, which
are difficult to tune (Yao et al., 2018). Observe
in Figure 1b that the prediction differs a lot
from the ground truth (the breakpoints do
not match) since the windows are large, e.g.,
larger than the first segment of the ground
truth labelling. Thus, if the segment labelling
changes relatively frequently compared to the
signal sampling rate, which is quite common
in e.g. human activity recognition, industrial
machines, driving behaviour detection, then
the accuracy will drop drastically.

In this work we address the TSS problem and propose a novel neural network approach, SegTime,
that can segment time series at time step level and excel both for fast changing labels (once per tens
of samples) and slow changing labels (one per thousands of samples). This makes SegTime unique,
since existing methods are typically tailored towards either fast or slow change but not for both.
SegTime has many architectural highlights. We evaluated SegTime extensively against state-of-the-
art baselines. To summarise, our contributions are as follows:

• Conceptual framework. We have several conceptual novelties: (1) we treat TSS as stepwise clas-
sification problem to achieve precise results, while in the literature TSS was commonly treated as
time series classification by divide-classify-concatenate; (2) we discuss the problem of TSS for
two scales of data: fast changing labels (once per tens of samples) and slow changing label (one
per thousands of samples) while existing methods are typically tailored to of them only.

• Bi-pass architecture. We propose a bi-pass architecture with following distinguished features:
(1) two core modules: our novel multi-scale skip-LSTM (long short-term memory) networks and
very deep convolutional neural networks (CNN) that both are capable of capturing long-term de-
pendencies; (2) several multi-scale pooling (depthwise separable and atrous pooling) and skipping
structures in the CNN and LSTM that can process information in a multi-scale fashion, that empir-
ically preserves the frequency-invariant representations; this enables SegTime to cope with time
series of a wide spectrum of frequencies; (3) a stepwise segmentation module to replace the com-
mon practice of sliding window for TSS with step-level prediction of label sequences (Figure 1c).

• Evaluation scheme: (1) we propose a non-trivial transfer of a popular DeepLabv3+ net originally
designed for the task of semantic segmentation to a 1D dimension for TSS, which serves as a
baseline as well as part of our ablation study1; (2) we demonstrate benefits of our approach with
three highly-optimised and sophisticated baselines on two popular datasets.

This paper is organised as follows: Sec. 2 reviews related work. Sec. 3 introduces our approach;
Sec. 4 elaborates on the evaluation; Sec. 5 concludes the paper and previews future directions.

2 RELATED WORK

Impact and History. Time series segmentation is commonly used for a wide range of highly-valued
domains (Bartschat et al., 2019; Waczowicz et al., 2015; ITU, 2012), and has been studied since
decades. Early as 2001, Keogh et al. proposed an online algorithm for TSS applied in aeronautics
and cardiography. In 2004, Keogh et al. surveyed TSS approaches for data of radio waves, exchange
rate, manufacturing, civil engineering, space engineering, etc. Such studies are ubiquitous in e.g.
finance industry (Yin et al., 2011; Chakraborty et al., 2016), music structure analysis (Serra et al.,
2014), hydrology (Shao et al., 2010), ecology (Meschenmoser et al., 2020; Li et al., 2021), etc.

1Note this transfer of successful networks from another domain to TSS can bring significant benefit and it is
non-trivial. Indeed, observe that a similar transfer of fully convolutional networks to their 1D version (U-Time)
has been published in Perslev et al. (2019) and forms the core contribution of that work.
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TSS Reduced to TSC. Surprisingly, despite of the wide range of applications and long history of
study, few recent studies based representation learning (RL) directly target on precise TSS, as well
as its evaluation on a step level (Gensler & Sick, 2014). Instead, TSS is often reduced to time series
classification (TSC) problem (Wang et al., 2018; Perslev et al., 2019; Lee et al., 2018). The reason
can be that precise TSS is extremely demanding, which in essence requires a step-level time series
classification. Considered as one of the most challenging problems in data mining (Yang & Wu,
2006; Esling & Agon, 2012), TSC has received extensive attention in the community.

RL-Based TSS on Data with Slow Changing Labels. A series of RL-based works in such dividing-
classification-concatenation manner are applied to the problem of sleep staging, which is to segment
time series of Electroencephalogram (EEG) and electrooculogram (EOG) and label each segment
with categories of sleep stage names like wake, N1, N2, rapid eye movement. The proposed method
include CNN-LSTM-based networks (Supratak et al., 2017), CNN-based encoder-decoder (Perslev
et al., 2019; 2021), etc. A similar problem is speaker diarisation, where the time series of speech
needs to be segmented and labelled with different speaker identities. Many architectures are pro-
posed, such as RNN-based method (Zhang et al., 2019), LSTM-based method (Wang et al., 2018),
LSTM-based encoder-decoder (Fujita et al., 2019). These methods may work well on labels of low
frequency change. The sampling rate of EEG/EOG signals are 100 Hz while the label is assigned
to each 30min of fragment, which means the fastest label change will be slower than once per 3000
time steps. In speaker diarisation, the signal sampling rate is even higher (8kHz).

RL-Based TSS on Data with Fast Changing Labels. Another series of RL-based works are ap-
plied to the human activity recognition (HAR), where the label change is of higher frequency. Here
the time series need to be split and human activities are assigned to each segment, such as running,
walking, standing, sitting, lying, opening or closing the door, turning on or off the light (Chavarriaga
et al., 2013). The signal sampling rate can be as low as 30Hz, while the label changes can be as
fast as once per 20 time steps, since an action of e.g. turning off the light can happen within a
short time. Methods on this topic include Classic ML, e.g. k-Nearest Neighbours, Nearest Centroid
Classifier (Gjoreski et al., 2016), CNN-based (Yang et al., 2015; Gjoreski et al., 2016), CNN-LSTM-
based (Wang et al., 2020; Ordóñez & Roggen, 2016), etc. Although the label change frequency is
higher, they still divide the time series into fixed-length windows and perform TSC on each window.

More Precise TSS. A recent line of work in segmentation aims at avoiding sliding window by
segmenting and classifying directly on the input time series via representation learning. Chambers
& Yoder (2020) do so with a fully-connected CNN as the first layer. Another attempt (Yao et al.,
2018) relies on classic ML (e.g. support vector machines) and fully-connected CNN, but the
segmenting accuracy is sub-optimal and the test set here has labels of lower high frequency changes
compared to the training set.

Inspiration from Semantic Segmentation. Studies on semantic segmentation shed light on TSS.
As a dense structured prediction task, semantic segmentation predicts pixel-level labels for an im-
age (Chen et al., 2019). This is very much in line with our goal of step-level labelling. Modules for
semantic segmentation like spatial pooling pyramid (Chen et al., 2018) and ResNet (He et al., 2016)
give us good inspirations. Yet, semantic segmentation is still very different, since some time series
are extremely dense (e.g. 8kHz for speech). We still need to rely on time series processing modules,
e.g. LSTM (Gers et al., 2000).

In summary, no prior work has investigated time series segmentation in two scales: labels of high
frequency and low frequency change. Few works are dedicated a precise segmentation with step-
level accuracy. These goals are achieved with our solution, SegTime.

3 OUR APPROACH: SEGTIME

We now formulate the problem of time series segmentation, and introduce our approach SegTime.

Definitions and Problem Statement. A (univariate) time series X = [x1, ..., xL] is an ordered
sequence of real numbers, where xt is the value at the time step t, and L is the total length.
We use the term sequence interchangeably with time series when it is more convenient. X can
have a stepwise corresponding label sequence y = [y1, y2, ..., yL], which assigns a sequence
of label values to X; here yt is the label corresponding to xt. Continuing with the example in
Figure 1(a), it can be represented with a time series X of length, say 106, where the first 100
elements xis correspond to the fragment of the sinusoidal signal which is marked with blue and
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Figure 2: (a) Architecture of SegTime (An expanded overview is given in Appendix Figure 2);
(b) Multi-Scale Skip LSTM Net (MSS-LSTM). Blue rounded rectangles indicate complex neutral
networks, and green rounded rectangles indicate simple layers. In the skip-LSTMs, k is the skipping
factor. When k = 1, a skip-LSTM is equal to a normal LSTM.

thus all corresponding yis from 1 to 100 are equal to “blue”. A multivariate time series of size
M , XM = [X1,X2, ...,XL], consists of M univariate time series. XM can have a stepwise
corresponding label sequence y, where Xt = [x1

t , x
2
t , ..., x

M
t ] is the vector of values xi

t of all M
time series at time step t, which corresponds to the label yt at time step t.

The goal of time series segmentation is to perform a stepwise classification of X (or XM ) using a
predefined set of labels yjs that yields the label sequence y. This in particular allows to precisely
determine breakpoints, that is, the values of j such that yj 6= yj+1.

Figure 3: The 1D-encoder-decoder structure

Architectural Overview. SegTime consists of
five modules and they are organised in a bi-pass
architecture (Figure 2a). The input sequence
go through two passes: an MSS-LSTM Net
(Multi-scale skip LSTM) and a 1D-encoder-
decoder module. The latter one consists of
three sub-modules: a 1D-DS-ResNet (depth-
wise separable), a AMSP (atrous multi-scale
pooling) (these two form the encoder), and the
decoder. The outputs of the encoder-decoder
module and MSS-LSTM Net are then concate-
nated. Then they go through our stepwise Seg-
mentation module, which can predict the output
labels in the step-level, thus achieving precise
time series segmentation.

MSS-LSTM Net. We propose the MSS-LSTM
Net (Multi-Scale Skip LSTM, Figure 2b). In
MSS-LSTM, the input sequence goes through
multiple LSTM units, which have different
scales of skipping (inspired by Lai et al.
(2018)). We use the hyper-parameter k to in-
dicate the skipping factor (it can also be under-
stood as a down-sampling rate), namely by every k value the Skip-LSTM takes one value. The out-
puts of the multiple skip-LSTM are upsampled and concatenated, and then go through an optional
dropout layer. Note that the numbers of skip-LSTMs of different skipping factors are independent
hyper-parameters. They can be tuned to target on data of different scales. For example, if the la-
bel changes are of high frequency, i.e. when the input sequence are sampled with relatively low
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frequency, we can use more skip-LSTMs of smaller skipping factors k. On the other hand, if the
label changes are of low frequency, i.e. when the input sequence are sampled with relatively high
frequency, we can use more skip-LSTMs of larger skipping factors. One of important reasons for
the excellent property of SegTime to handle time series of two scales is due to the MSS-LSTM net,
since it has two important functions: (1) automatic adaption of the weights to focus on the more
important frequency scale of input-output sequence pairs; (2) representation learning of temporal
dependencies within the data.

1D Encoder-Decoder. The encoder-decoder structure (Sutskever et al., 2014) is a proven approach
in various fields and has great success in the 2D problem semantic segmentation. We adopt a 1D
encoder-decoder (Figure 3) with the 1D-DS-ResNet and AMSP (explained later) as the encoder and
two convolutional layers as the decoder (inspired by Chen et al. (2018)). From the encoder two
levels of features come out to the decoder: (1) low-level features from the early layers of 1D-DS-
ResNet; (2) the output features after the AMSP. These two levels of features exploit the multi-scale
information and thus contribute to the property of SegTime of handling multi-scale frequencies of
data. Note that the encoder has a very deep architecture (in 1D-DS-ResNet) while the decoder
has only several layers. This is because this structure can learn the representation efficiently and
compresses them in a bottleneck layer.

Figure 4: The stepwise segmentation. 1D-
Conv: 1D convolutional layer, l: length of
the sequence, c: cardinality of the labels.

1D Depthwise Separable and Atrous Convolu-
tion. A 1D depthwise separable (DS) convolu-
tion (Howard et al., 2017) separates a 1D normal
convolution to two steps (Appendix Figure 1b and
c): first a depthwise convolution that computes in
each channel independently; the a pointwise convo-
lution that aggregates the different channels together.
Atrous convolution (a.k.a. dilated convolution, Yu
& Koltun (2016)) one computes dilated convolution
with skipped values (Appendix Figure 1d).

1D-DS-ResNet. We adopt a 1D-ResNet with depth-
wise separable convolutions as part of the en-
coder (Figure 3a). In the bi-pass architecture, we
have used LSTM in the other “pass”. Thus, we
would like to rely on CNN here. The receptive fields
in CNN are usually of limited size. Thus they often
can only model local temporal patterns. To model
long-term “memory” as LSTM does, normally more layers are required. The ResNet (He et al.,
2016) is an established convolutional networks in image processing, and has been often used as a
module for semantic segmentation. More importantly, ResNet can provide very deep layers of CNN,
effectively mitigating the gradient vanishing problem in deep architectures.

Atrous Multi-Scale Pooling (AMSP). The AMSP (Figure 3c, inspired by Chen et al. (2018)) fol-
lows the same idea of handling information with multiple scales of frequency as that is in MSS-
LSTM. In AMSP, a series of sequences (Figure 3b) that are down-sampled at different scales by
dilation are concatenated and processed by a further 1D-convolutional layer. The output sequence
serves as the high-level features, together with the low-level features, are fed into different compo-
nents in the decoder to help the network automatically adapt to the unknown frequency in data.

Stepwise Segmentation. We adopt a 1D convolution layer followed by a an average pooling layer
and a softmax layer. The number of neurons of the 1D convolution layer c is equal to the cardinality
of output labels, whose outputs can be seen to represent the latent labels. Note the pooling factor of
the average pooling layer is dependent on the label change frequency in the output. For example,
the label change in HAR can be as fast as one label for 20 time steps, and thus the pooling factor is
set to 1, namely no pooling is performed. On the other hand, the label in sleep staging is assigned to
every 3000 time steps, so the pooling factor can be 3000.

In summary, SegTime has several advantages: (1) it can handle time series segmentation in two
scales, fast and slow changing labels, thanks to the multi-scale structures in MSS-LSTM, 1D-
encoder-decoder, and AMSP; (2) SegTime reduces parameters and computation via multiple mech-
anisms of depthwise separable convolution, atrous convolution, and skip-LSTMs; (3) it incorporates
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the long-term dependencies via MSS-LSTM and very deep architecture of 1D-DS-ResNet; (4) it
allows a precise label prediction at step-level, which is due to the previous points and the stepwise
segmentation module.

4 EVALUATION

This section first describes the datasets, then explains the experiment design, and present and dis-
cusses the results. We evaluated SegTime extensively on public datasets covering two time scales:
both fast and slow changing labels. On each time scale, SegTime beats their corresponding state-of-
the-art baselines, or at least achieves comparable performance.

4.1 DATA DESCRIPTION Table 1: Data statistics. Average segment length is the to-
tal number of time steps divided by the total number of seg-
ments. The smaller it is, the faster the label changes. Minimal
segment length is the length of the shortest segment.

Dataset #Time
steps

Sampling
rate

Average
segment
length

Minimal
segment
length

Opportunity Drill 114257 30Hz 102 1
Sleep-EDF-39 123723k 100Hz 26045 3000

An overview of the data statistics is given
in Table 1. It can be seen the Opportunity
Drill datasets have relatively fast changing
labels, and the Sleep-EDF datasets have
relatively slow changing labels (More de-
tails see Appendix Table 8 and 8).

Opportunity Drill. The opportunity
dataset is a popular variation of Human
Activity Recognition Dataset (Roggen et al., 2010; Chavarriaga et al., 2013) extensively studied
for the task of HAR (Nweke et al., 2018; Yao et al., 2018; Gjoreski et al., 2016). It contains of 243
time series measured from wearable, object, and ambient sensors with a frequency of 30 Hz, includ-
ing accelerometers, location sensors, switches, inertial measurement units, etc. We have chosen 113
sensors among them as a common practice in the literature (Roggen et al., 2010; Chambers & Yoder,
2020). The dataset has two groups of data, the activity of daily life (ADL) set and the drill set. The
former one is recorded when the subjects are doing normal daily life activities in the morning, and
the it has slower changing label (average segment length 194), while the latter one is recorded dur-
ing a series of designed experiments, where the activities change intensively, thus resulting in faster
label changes (average segment length 102). We select the opportunity drill set of subject 3 and 4,
since many input signals of subject 1 and 2 are missing. The dataset has 7 output label sequences of
body locomotion (stand, lie, sit, walk), activities (relaxing, clean up, etc.), arm gestures (cut, clean,
release, etc.) and objects in the arms (bottle, salami, bread, etc.). Among which, we choose locomo-
tion, right arm gestures, aright arm objects, and both arm gestures for evaluation, because the other
label sequences almost do not change, and thus reporting on them does not bring too much. In all
label features, there exists a background class (i.e. null class) where no relevant action is performed.
The dataset is collected from 4 subjects, each contributed six subsets of different experiment runs.
The time series lengths in these subsets range from about 25000 to 70000 time steps.

Sleep-EDF. This is taken from a public PhysioNet datbase (Kemp et al., 2000; Goldberger et al.,
2000) often used for benchmarking sleep staging algorithms. We choose the Sleep-EDF-39 dataset,
sleep-cassette subset of 39 whole-night polysomnographic sleep recordings of healthy Causasions
(taking no sleep-related medication) from age 25 to 101, because it is extensively studied in the
literature (Perslev et al., 2019; 2021; Samiee et al., 2015). In sleep staging, the continuous EEG
and EOG signals are segmented and the segments are categorised into stages like “Awake”, “N1”,
“N2”, “N3”, and “REM”. We follow the convention of sleep staging problem: we only consider the
signals starting from 30min before to 30min after the first and last non-wake sleep stage; meanwhile
we merge the sleep stages S3 and S4 into a single stage N3, according to the American Academy of
Sleep Medicine characterisation (Conrad & AASM, 2007).

4.2 EXPERIMENT DESIGN

We now explain our experiment design for evaluating SegTime. We conduct experiments on
popular datasets with two time-scales: fast changing labels (Opportunity Drill) and slow changing
labels (Sleep-EDF). We select one baseline for each of the time-scale. In addition, we adapt a
state-of-the art neural network for the 2D problem of semantic segmentation. Thus, there exist four
architectures to test: three baselines and SegTime. We test the four architectures on the two dataset
against three performance metrics, and obtain 8 models in total.
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Baselines. Based on the datasets of the different time scales, we select CNN Yao et al. (2018) for
the Opportunity dataset (HAR task) and U-Time (Perslev et al., 2019) for the Sleep-EDF dataset
(sleep staging task). In addition, we select a popular architecture for segmantic segmentation, the
DeepLab (Chen et al., 2018), and adapt it to a 1D version for the time series segmentation.

DeepConvLSTM. This is a popular CNN-LSTM networks highly-optimised for the opportunity
dataset (Ordóñez & Roggen, 2016). It has four convolutional layers and two LSTM layers. The
work (Ordóñez & Roggen, 2016) adopted the common sliding window approach and tested Deep-
ConvLSTM with both ADL and drill datasets. We reimplement the DeepConvLSTM and test on the
drill datasets.

U-Time. U-Time is a feed-forward CNN-based encoder-decoder neural networks created based on
U-Net (Ronneberger et al., 2015), designed to classify fixed length signals for sleep staging. U-
Time has achieved state-of-the-art performance on the Sleep-EDF dataset, according to Perslev et al.
(2019). It follows the classic divide-classify-concatenate strategy, and is focused on datasets with
two input signals and one sequence of output labels of low frequency change (i.e. high sampling
rate for input signals, 100Hz – 521Hz).

SegTime∗. This is a transfer and adaptation from DeepLabv3+, which is a state-of-the-art approach
for semantic segmentation (Chen et al., 2018). It also adopts a CNN-based encoder-decoder ar-
chitecture. In addition, it merges the depthwise separable convolution with atrous spatial pyramid
pooling, and thus can exploit multi-scale information. DeepLabv3+ was not defined for time series
segmentation, but we consider it very promising. Thus, we adapt its third version to a 1D architec-
ture, adding a stepwise segmentation module with average pooling for merging outputs. We use it
as one of our baselines. We name it as SegTime∗ since it does not have the MSS-LSTM module.

Performance Metrics. We have selected three performance metrics: accuracy, weighted F-score,
weighted IoU to evaluate the stepwise prediction of output label sequences.

Accuracy (Acc). Suppose the ground-truth label sequence is y = [y1, ..., yL], and the predicted
label sequence is ŷ = [ŷ1, ŷ2, ..., ŷL]. Construct the evaluation sequence z = [z1, z2, ..., zL], where
zt = 1 if yt = ŷt, otherwise zt = 0. The Acc for each single label class is: (TP + TN)/(P +N).

Weighted F-score (Fw). We use this metric as previous work (Roggen et al., 2010; Chambers &
Yoder, 2020) have used it. For each label class, the F-score is calculated as TP/(TP + 1

2 (FP +
FN)), where TP refers to true positive prediction, FP refers to false positive prediction, and FN
refers to false negative prediction. The Weighted F-score Fw is an average of the F-score of each
label class. For the class c, the number of labels in the ground-truth label sequence that belong to c
is indicated as Nc. Thus the sum of all number of labels is L, i.e. L =

∑
c Nc. Weighted F-score is

then calculated the weighted average of F-scores of all label classes as: Fw = 1
L

∑
c NcFscorec.

Weighted IoU (IoUw). Weighted Mean of Intersection over Union IoUw is a common evaluation
metric for semantic image segmentation (Long et al., 2015). We introduce it for time series segmen-
tation. For each label class, the IoU is calculated as TP/(TP + FN + FP ), the weighted IoU is
then calculated as IoUw = 1

L

∑
c NcIoUc.

Cross Validation and Hyper-Parameter Selection. We conducted 20-fold cross validation for the
baselines and SegTime on the datasets. On the Sleep-EDF datasets, we follow the convention in the
literature (Perslev et al., 2019): to split the data on a per-subject basis, namely to put the samples
belong to the same test subject to the same train/validation/test set. We selected the hyper-parameters
based on the model performance on the validation set. We set the maximum training epoch as 200,
and adopt an early-stopping training strategy, when the loss on the validation set does not decrease
any more for consecutive 20 epochs. The hyper-parameter selection follows a mixed scheme of
limited grid search (varying one and fixing others) and human heuristics.

Optimisation and Implementation Details. Since the number of labels are highly imbalanced (Ap-
pendix Table 8 and 9), we adopted a on-the-fly training scheme to counter the class-imbalance issue:
for each epoch, we first define the percentage Pc (the chance of being sampled) for each class, and
then we sample K sub-sequence in total during the random sampling process, with at least K ∗ Pc

sub-sequences contains the class c. Further more, we randomly add global and regional Gaussian
noise to further increase the robustness of the methods. The source code is attached in the supple-
mentary materials. The code is based on Python (Van Rossum & Drake, 2009) and Pytorch (Paszke
et al., 2019). We ran all experiments on Amazon SageMaker with NVIDIA Tesla K80 GPU clusters.
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Table 2: Results on the Opportunity Drill dataset (HAR). Loc.: locomotion, Ges.(R): gesture of the right
arm, Obj.(R): object in the right arm, Ges.(B): gesture of both arms, Meanw: weighted mean value of the
corresponding metric.

Methods Metrics Opportunity Drill with Background Opportunity Drill without Background
Loc. Ges.(R) Obj.(R) Ges.(B) Meanw Loc. Ges.(R) Obj.(R) Ges.(B) Meanw

Deep-
Conv-
LSTM

Acc 0.84 0.86 0.87 0.88 0.86 0.91 0.81 0.83 0.83 0.85
Fw 0.80 0.86 0.87 0.87 0.85 0.91 0.84 0.87 0.88 0.88
IoUw 0.72 0.77 0.78 0.78 0.76 0.84 0.73 0.79 0.79 0.79

U-Time
Acc 0.89 0.83 0.93 0.79 0.86 0.89 0.75 0.92 0.68 0.81
Fw 0.89 0.83 0.93 0.78 0.86 0.90 0.78 0.95 0.70 0.83
IoUw 0.80 0.73 0.87 0.68 0.77 0.81 0.66 0.91 0.59 0.74

SegTime∗
Acc 0.90 0.85 0.90 0.87 0.88 0.89 0.77 0.87 0.84 0.84
Fw 0.90 0.85 0.90 0.87 0.88 0.90 0.80 0.91 0.87 0.87
IoUw 0.81 0.74 0.82 0.77 0.79 0.81 0.68 0.84 0.79 0.78

SegTime
Acc 0.89 0.88 0.88 0.89 0.88 0.88 0.81 0.85 0.86 0.85
Fw 0.88 0.87 0.88 0.89 0.88 0.89 0.84 0.89 0.91 0.88
IoUw 0.80 0.78 0.80 0.81 0.80 0.80 0.74 0.82 0.84 0.80

We used the Adam optimiser (Kingma & Ba, 2019) with an adaptive learning rate strategy to reduce
the learning rate by a factor of 10 if the validation loss stops improving for more than onsecutive
20 epochs (Note that this is easily done with ReduceLROnPlateau in Pytorch). We minimise the
cross-entropy cost function with Kaiming class weights initialisation (He et al., 2015). We adopt a
batch size of 32 for the opportunity dataset and 128 for the Sleep-EDF dataset.

4.3 RESULTS AND DISCUSSION

We present and discuss the results on datasets of two time scales, and additionally the ablation study.

Time-Scale of Fast Changing Label. The results of four architectures tested on the dataset with
labels of high frequency change (Opportunity Drill) are shown in Table 2. The opportunity drill
dataset has six output label sequences: (1) locomotion, gesture of the (2) right arm and (3) left arm,
object in the (4) right arm and (5) left arm, (6) gesture of both arms. Among which, the output labels
of (3) and (5) almost do not change, and thus reporting on them does not bring too much. We there-
fore leave them out. Important to note, the opportunity drill set is very unbalanced, and has many
labels of background class (namely no activity label is assigned to the time steps). Ideally, a good
architecture should not learn the dataset particularity, and be insensitive to the background class.
Thus, it is also an important angle whether the network is insensitive to exclusion of background
class in performance calculation.

We first compare the model when the background class is considered in the performance calculation.
By looking at rows of accuracy and the column of Meanw (average weighted), it can be easily seen
that SegTime outperforms SegTime∗ by about 1%, and SegTime significantly outperforms U-Time
and CNN by 3% or more. By comparing the performance on the four output features, we see
although SegTime is not always the best, it achieves consistent good performance. By looking at the
output feature of Ges.(B), we see that the performance of U-Time drops drastically. We postulate the
reason is that, U-Time is tailored more to slower changing labels, while the label of Ges.(B) changes
very fast, and thus the performance of U-Time degrades significantly. The weighted F1-score and
weighted IoU are in accordance with Acc, and also demonstrate that SegTime can outperform the
state-of-the-art baselines for dataset with labels of fast frequency change.

We then look at the models with background class excluded from the performance calculation. We
still first look and the rows of accuracy and the column of Meanw, which shows all models have some
deterioration in performance. Yet, SegTime still outperforms all other baselines and has relatively
small deterioration, which means SegTime is more insensitive to the background class, as compared
to U-Time, whose performance is worsened by about 4% when the background class is removed
from calculation. If we look at the accuracy of the four output features, SegTime still has consistent
good results, while the other baselines have drastic degradation on one or more output feature.

Time-Scale of Slow Changing Label. The results of four architectures tested on the Sleep-EDF
datasets are shown in Table 3. We look at the rows of Fw and the column of Meanw. It can be seen
that the two variants of SegTime achieve comparable results to the most optimised baseline U-Time.

8
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Table 3: Results on the Sleep-EDF dataset for the task of sleep staging. W stands for the awake stage, REM
stands for rapid eye movement stage, N1, N2 and N3 stand for the three stages of non-REM sleep, and Meanw

stands for weighted mean value of the corresponding metric. The results of U-Time is directly taken from the
baseline reported in Perslev et al. (2019), which has two valid significant digits.

Dataset Model Metrics W N1 N2 N3 REM Meanw

Sleep-
EDF-
39

Deep-
Conv-
LSTM

Acc 0.28 0.00 0.91 0.17 0.14 0.51
Fw 0.41 0.00 0.68 0.21 0.19 0.44

IoUw 0.26 0.00 0.51 0.12 0.10 0.31

U-Time
Acc 0.90 0.46 0.88 0.83 0.84 0.83
Fw 0.87 0.52 0.86 0.84 0.84 0.82

IoUw 0.77 0.35 0.76 0.73 0.72 0.71

SegTime−
Acc 0.35 0.84 0.92 0.89 0.83 0.82
Fw 0.87 0.40 0.89 0.82 0.77 0.82

IoUw 0.77 0.25 0.79 0.70 0.63 0.71

SegTime
Acc 0.31 0.89 0.91 0.86 0.76 0.82
Fw 0.82 0.38 0.88 0.81 0.81 0.82

IoUw 0.70 0.24 0.78 0.68 0.69 0.70

Looking at the detailed accuracy on the sleep staging labels, we see that the baselines and SegTime
perform differently well on the labels. Note that both U-Time and SegTime∗ are adapted from
highly optimised and sophisticated architectures for semantic segmentation, which have achieved
outstanding performance in the highly competitive domain of semantic segmentation. The baseline
DeepConvLSTM is tailored to the opportunity dataset with fast changing labels. Its architecture
is not deep enough to model the long-term dependencies. It is thus not surprising to see a drastic
degradation of its performance on Sleep-EDF datasets. The work Perslev et al. (2019) used Mean
to compare the performance, but we consider the Meanw more appropriate than the simple mean
values for performance comparison, since the labels are highly unbalanced.

Table 4: Ablation study. Two major modules of Seg-
Time (MSS-LSTM and 1D-encoder-decoder) are in-
dependently tested. w/o: without.

Dataset Metrics w/o
MSS-
LSTM

w/o 1D-
encoder-
decoder

SegTime

Opportunity Acc 87.75% 86.58% 88.43%
Drill Fw 0.8763 0.8653 0.8831

Ablation Study. We conduct ablation study to
test the contribution of the two major modules of
SegTime that comprise the bi-pass architecture:
the MSS-LSTM and the 1D-encoder-decoder. Ta-
ble 4 shows the results. The column w/o MSS-
LSTM is SegTime without the MSS-LSTM net
module, it is namely the SegTime∗. The column
w/o 1D-encoder-decoder is SegTime without the
1D-encode-decoder module. It can be seem that
both modules can increase the performance of
SegTime. The SegTime∗ already achieves very good performance, while the MSS-LSTM module
further improves the performance by about 1%.

5 CONCLUSION

In this work, we propose a novel neural network architecture, SegTime, that allows to do time
series segmentation for datasets of a wider spectrum of time scales. We conducted experiments
of comparing SegTime and highly-optimised baselines on datasets with fast changing and slow
changing labels. The results show that SegTime can outperform the baselines or at least achieve
comparable performance on both time scales. SegTime has multiple architectural advantages: a
bi-pass architecture that combines LSTM and very deep CNN-based 1D-encoder-decoder, several
multi-scale structures, depthwise separable and atrous convolution, and a stepwise segmentation
module. We are very excited about our approach and its results: besides promising insights its
opens exciting avenues for further research and practical industrial solutions.
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6 REPRODUCIBILITY STATEMENT

To reproduce our results, we provide the following resources:

1. The source code, including the SegTime model details, layers, hyper-parameters, etc., link and
description of the datasets in the supplementary materials.

2. Detailed model topology, hyper-parameters of the models, data descriptions, and model illustra-
tions. In the Appendix, Table 1, 2 and 3 give a detailed view of the 1D-DS-ResNet module, Ta-
ble 4 gives a detailed view of the AMSP module, and Table 5 gives a detailed view of the Decoder
module, Table 6 gives a detailed view of the MSS-LSTM Net module for the SegTime evaluated
on the Sleep-EDF set. Table 8 and 9 give more detailed explanation of the output features and
labels for the opportunity dataset and Sleep-EDF dataset. Figure 1 schematically illustrates the
1D depthwise separable and atrous convolution. Figure 2 gives an expanded overview of the
SegTime architecture.

3. Our anonymous code repository:
https://anonymous.4open.science/r/SegTime-0546/.
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Tröster, José del R Millán, and Daniel Roggen. The opportunity challenge: A benchmark database
for on-body sensor-based activity recognition. Pattern Recognition Letters, 34(15):2033–2042,
2013.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In Proceedings of
the European conference on computer vision (ECCV), pp. 801–818, 2018.

Wuyang Chen, Xinyu Gong, Xianming Liu, Qian Zhang, Yuan Li, and Zhangyang Wang. FasterSeg:
Searching for faster real-time semantic segmentation. In International Conference on Learning
Representations, 2019.

Iber Conrad and AASM. The AASM manual for the scoring of sleep and associated events: rules,
terminology and technical specifications. American Academy of Sleep Medicine, Westchester, 1L,
2007.

Philippe Esling and Carlos Agon. Time-series data mining. ACM Comput. Surv., 45(1), December
2012.

Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi, Kenji Nagamatsu, and Shinji Watanabe. End-to-
end neural speaker diarization with permutation-free objectives. In INTERSPEECH, 2019.
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Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and LSTM recurrent neural
networks for multimodal wearable activity recognition. Sensors, 16(1):115, 2016.

11



Under review as a conference paper at ICLR 2022

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Mathias Perslev, Michael Hejselbak Jensen, Sune Darkner, Poul Jørgen Jennum, and Christian Igel.
U-time: a fully convolutional network for time series segmentation applied to sleep staging. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp.
4415–4426, 2019.

Mathias Perslev, Sune Darkner, Lykke Kempfner, Miki Nikolic, Poul Jørgen Jennum, and Christian
Igel. U-Sleep: resilient high-frequency sleep staging. NPJ digital medicine, 4(1):1–12, 2021.

Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster, Gerhard Tröster,
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A APPENDIX

Appendix Table 1: SegTime model topology - Module 1D-DS-ResNet of SegTime for the Sleep-EDF dataset,
Part I

----------------------------------------------------------------
Layer (type) Output Shape Param #

================================================================
Conv1d-1 [-1, 2, 52500] 14

BatchNorm1d-2 [-1, 2, 52500] 4
ReLU-3 [-1, 2, 52500] 0

MaxPool1d-4 [-1, 2, 26250] 0
Conv1d-5 [-1, 2, 26250] 4

BatchNorm1d-6 [-1, 2, 26250] 4
ReLU-7 [-1, 2, 26250] 0

Conv1d-8 [-1, 2, 26250] 12
BatchNorm1d-9 [-1, 2, 26250] 4

ReLU-10 [-1, 2, 26250] 0
Conv1d-11 [-1, 4, 26250] 8

BatchNorm1d-12 [-1, 4, 26250] 8
Conv1d-13 [-1, 4, 26250] 8

BatchNorm1d-14 [-1, 4, 26250] 8
ReLU-15 [-1, 4, 26250] 0

Bottleneck1D-16 [-1, 4, 26250] 0
Conv1d-17 [-1, 2, 26250] 8

BatchNorm1d-18 [-1, 2, 26250] 4
ReLU-19 [-1, 2, 26250] 0

Conv1d-20 [-1, 2, 26250] 12
BatchNorm1d-21 [-1, 2, 26250] 4

ReLU-22 [-1, 2, 26250] 0
Conv1d-23 [-1, 4, 26250] 8

BatchNorm1d-24 [-1, 4, 26250] 8
ReLU-25 [-1, 4, 26250] 0

Bottleneck1D-26 [-1, 4, 26250] 0
Conv1d-27 [-1, 4, 26250] 16

BatchNorm1d-28 [-1, 4, 26250] 8
ReLU-29 [-1, 4, 26250] 0

Conv1d-30 [-1, 4, 13125] 48
BatchNorm1d-31 [-1, 4, 13125] 8

ReLU-32 [-1, 4, 13125] 0
Conv1d-33 [-1, 8, 13125] 32

BatchNorm1d-34 [-1, 8, 13125] 16
Conv1d-35 [-1, 8, 13125] 32

BatchNorm1d-36 [-1, 8, 13125] 16
ReLU-37 [-1, 8, 13125] 0

Bottleneck1D-38 [-1, 8, 13125] 0
Conv1d-39 [-1, 4, 13125] 32

BatchNorm1d-40 [-1, 4, 13125] 8
ReLU-41 [-1, 4, 13125] 0

Conv1d-42 [-1, 4, 13125] 48
BatchNorm1d-43 [-1, 4, 13125] 8

ReLU-44 [-1, 4, 13125] 0
Conv1d-45 [-1, 8, 13125] 32

BatchNorm1d-46 [-1, 8, 13125] 16
ReLU-47 [-1, 8, 13125] 0

Bottleneck1D-48 [-1, 8, 13125] 0
Conv1d-49 [-1, 8, 13125] 64

BatchNorm1d-50 [-1, 8, 13125] 16
================================================================
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Appendix Table 2: SegTime model topology - Module 1D-DS-ResNet of SegTime for the Sleep-EDF dataset,
Part II

----------------------------------------------------------------
Layer (type) Output Shape Param #

================================================================
ReLU-51 [-1, 8, 13125] 0

Conv1d-52 [-1, 8, 13125] 192
BatchNorm1d-53 [-1, 8, 13125] 16

ReLU-54 [-1, 8, 13125] 0
Conv1d-55 [-1, 16, 13125] 128

BatchNorm1d-56 [-1, 16, 13125] 32
Conv1d-57 [-1, 16, 13125] 128

BatchNorm1d-58 [-1, 16, 13125] 32
ReLU-59 [-1, 16, 13125] 0

Bottleneck1D-60 [-1, 16, 13125] 0
Conv1d-61 [-1, 8, 13125] 128

BatchNorm1d-62 [-1, 8, 13125] 16
ReLU-63 [-1, 8, 13125] 0

Conv1d-64 [-1, 8, 13125] 192
BatchNorm1d-65 [-1, 8, 13125] 16

ReLU-66 [-1, 8, 13125] 0
Conv1d-67 [-1, 16, 13125] 128

BatchNorm1d-68 [-1, 16, 13125] 32
ReLU-69 [-1, 16, 13125] 0

Bottleneck1D-70 [-1, 16, 13125] 0
Conv1d-71 [-1, 8, 13125] 128

BatchNorm1d-72 [-1, 8, 13125] 16
ReLU-73 [-1, 8, 13125] 0

Conv1d-74 [-1, 8, 13125] 192
BatchNorm1d-75 [-1, 8, 13125] 16

ReLU-76 [-1, 8, 13125] 0
Conv1d-77 [-1, 16, 13125] 128

BatchNorm1d-78 [-1, 16, 13125] 32
ReLU-79 [-1, 16, 13125] 0

Bottleneck1D-80 [-1, 16, 13125] 0
Conv1d-81 [-1, 8, 13125] 128

BatchNorm1d-82 [-1, 8, 13125] 16
ReLU-83 [-1, 8, 13125] 0

Conv1d-84 [-1, 8, 13125] 192
BatchNorm1d-85 [-1, 8, 13125] 16

ReLU-86 [-1, 8, 13125] 0
Conv1d-87 [-1, 16, 13125] 128

BatchNorm1d-88 [-1, 16, 13125] 32
ReLU-89 [-1, 16, 13125] 0

Bottleneck1D-90 [-1, 16, 13125] 0
Conv1d-91 [-1, 16, 13125] 256

BatchNorm1d-92 [-1, 16, 13125] 32
ReLU-93 [-1, 16, 13125] 0

Conv1d-94 [-1, 16, 13125] 768
BatchNorm1d-95 [-1, 16, 13125] 32

ReLU-96 [-1, 16, 13125] 0
Conv1d-97 [-1, 32, 13125] 512

BatchNorm1d-98 [-1, 32, 13125] 64
Conv1d-99 [-1, 32, 13125] 512

BatchNorm1d-100 [-1, 32, 13125] 64
================================================================
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Appendix Table 3: SegTime model topology - Module 1D-DS-ResNet of SegTime for the Sleep-EDF dataset,
Part III

----------------------------------------------------------------
Layer (type) Output Shape Param #

================================================================
ReLU-101 [-1, 32, 13125] 0

Bottleneck1D-102 [-1, 32, 13125] 0
Conv1d-103 [-1, 16, 13125] 512

BatchNorm1d-104 [-1, 16, 13125] 32
ReLU-105 [-1, 16, 13125] 0

Conv1d-106 [-1, 16, 13125] 768
BatchNorm1d-107 [-1, 16, 13125] 32

ReLU-108 [-1, 16, 13125] 0
Conv1d-109 [-1, 32, 13125] 512

BatchNorm1d-110 [-1, 32, 13125] 64
ReLU-111 [-1, 32, 13125] 0

Bottleneck1D-112 [-1, 32, 13125] 0
Conv1d-113 [-1, 16, 13125] 512

BatchNorm1d-114 [-1, 16, 13125] 32
ReLU-115 [-1, 16, 13125] 0

Conv1d-116 [-1, 16, 13125] 768
BatchNorm1d-117 [-1, 16, 13125] 32

ReLU-118 [-1, 16, 13125] 0
Conv1d-119 [-1, 32, 13125] 512

BatchNorm1d-120 [-1, 32, 13125] 64
ReLU-121 [-1, 32, 13125] 0

Bottleneck1D-122 [-1, 32, 13125] 0
================================================================
Total params: 8,662
Trainable params: 8,662
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.40
Forward/backward pass size (MB): 151.41
Params size (MB): 0.03
Estimated Total Size (MB): 151.84
----------------------------------------------------------------

Appendix Figure 1: Depthwise separable convolution (conv.) and atrous convolution.

16



Under review as a conference paper at ICLR 2022

Appendix Table 4: SegTime model topology - Module AMSP of SegTime for the Sleep-EDF dataset

----------------------------------------------------------------
Layer (type) Output Shape Param #

================================================================
Conv1d-1 [-1, 8, 13125] 256

BatchNorm1d-2 [-1, 8, 13125] 16
ReLU-3 [-1, 8, 13125] 0

_AMSPModule-4 [-1, 8, 13125] 0
Conv1d-5 [-1, 8, 13125] 768

BatchNorm1d-6 [-1, 8, 13125] 16
ReLU-7 [-1, 8, 13125] 0

_AMSPModule-8 [-1, 8, 13125] 0
Conv1d-9 [-1, 8, 13125] 768

BatchNorm1d-10 [-1, 8, 13125] 16
ReLU-11 [-1, 8, 13125] 0

_AMSPModule-12 [-1, 8, 13125] 0
Conv1d-13 [-1, 8, 13125] 768

BatchNorm1d-14 [-1, 8, 13125] 16
ReLU-15 [-1, 8, 13125] 0

_AMSPModule-16 [-1, 8, 13125] 0
AdaptiveAvgPool1d-17 [-1, 32, 1] 0

Conv1d-18 [-1, 8, 1] 256
ReLU-19 [-1, 8, 1] 0

Conv1d-20 [-1, 8, 13125] 320
BatchNorm1d-21 [-1, 8, 13125] 16

ReLU-22 [-1, 8, 13125] 0
Dropout-23 [-1, 8, 13125] 0

================================================================
Total params: 3,216
Trainable params: 3,216
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 1.60
Forward/backward pass size (MB): 16.02
Params size (MB): 0.01
Estimated Total Size (MB): 17.64
----------------------------------------------------------------

17



Under review as a conference paper at ICLR 2022

Appendix Table 5: SegTime model topology - Module Decoder of SegTime for the Sleep-EDF dataset

----------------------------------------------------------------
Layer (type) Output Shape Param #

================================================================
Conv1d-1 [-1, 1, 26250] 4

BatchNorm1d-2 [-1, 1, 26250] 2
ReLU-3 [-1, 1, 26250] 0

Conv1d-4 [-1, 8, 26250] 216
BatchNorm1d-5 [-1, 8, 26250] 16

ReLU-6 [-1, 8, 26250] 0
Dropout-7 [-1, 8, 26250] 0
Conv1d-8 [-1, 8, 26250] 192

BatchNorm1d-9 [-1, 8, 26250] 16
ReLU-10 [-1, 8, 26250] 0

Dropout-11 [-1, 8, 26250] 0
================================================================
Total params: 446
Trainable params: 446
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 42057.04
Forward/backward pass size (MB): 13.42
Params size (MB): 0.00
Estimated Total Size (MB): 42070.46
----------------------------------------------------------------

Appendix Table 6: SegTime model topology - Module MSS-LSTM of SegTime for the Sleep-EDF dataset

----------------------------------------------------------------
Layer (type) Output Shape Param #

================================================================
_SkipLSTM-1 [-1, 3500, 2] 40
_SkipLSTM-2 [-1, 2100, 2] 40
_SkipLSTM-3 [-1, 1050, 2] 40
_SkipLSTM-4 [-1, 525, 2] 40

Dropout-5 [-1, 105000, 2] 0
================================================================
Total params: 160
Total params: 160
Non-trainable params: 0
----------------------------------------------------------------
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Appendix Table 7: Hyper-parameters of the SegTime for the opportunity dataset and Sleep-EDF dataset.
Parameter Value Comments
Loss function Cross entropy A classic loss function for classficiation.
Regularisation None
Class balancing Customised We tried to balance different classes, but not everyone, es-

peically for those that are under-represented in the datasets.
Optimiser Adam Kingma & Ba (2019)
Initial learning rate 1e−3, 5e−4 We adopt adaptive learning rate using ReduceLROnPlateau

in Pytorch. 1e−3 is the initial learning rate for the
opportunity dataset, and 5e−4 for the Sleep-EDF dataset.

β1 0.9
β2 0.999
ε 1e−8

Prediction resolution 1, 3000 1 for opportunity, 3000 for Sleep-EDF. This is determined
by the average pooling in the stepwise segmentation mod-
ule.

Input dimension 113, 1 113 for the opportunity dataset, 1 for the Sleep-EDF dataset
Input sequence length 600, 35*3000 600 for the opportunity dataset, 35*3000 for the Sleep-EDF

dataset
Conv. kernel size 1, 3 There exist various kernel size, please refer to the detailed

model topology
Conv. kernel dilation size 1, 12, 24, 36 Multi-scale dilated (atrous) convolution
Max-pooling kernel size 3
Average-pooling kernal size 1, 3000 1 for the opportunity dataset because it has fast changing

label, 3000 for the Sleep-EDF dataset because it
Padding Same
Up-sampling Nearest neigh-

bour
Activations ReLU
Back normalisation
Parameters 22m, 12k 22 million for the opportunity dataset, 12k for the Sleep-

EDF dataset
Normalisation Min-max,

robust
Min-max for the opportunity dataset, robust normalisation
for the Sleep-EDF dataset.

Batch size 128, 32 128 for the opportunity dataset, 32 for the Sleep-EDF
dataset.

Early stopping criteria Validation Ac-
curacy

Accuracy computed overl all time steps

Model selection criteria Validation Ac-
curacy

We set the maximum training epoch as 200, and adopt an
early-stopping training strategy, when the loss on the vali-
dation dataset does not decrease any more for consecutive
20 epochs.

Training epochs 200
Examples per epoch 1800, 800 1800 for the opportunity dataset, 800 for the Sleep-EDF

dataset
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Appendix Table 8: Details of the opportunity dataset
Output fea-
ture name

Encoding Description Label names

Locomotion Loc. The action of move-
ment of the subject.

Stand, walk, sit lie

Right arm
gesture

Ges.(R) The gesture of the right
arm of the subject.

Unlock, stir, lock, close, reach, open, sip, clean,
bite, cut, spread, release, move

Right arm
object

Obj.(R) The object held in the
right hand of the sub-
ject.

Bottle, salami, bread, sugar, dishwasher, switch,
milk, drawer3 (lower), spoon, knife cheese,
drawer2 (middle), table, glass, cheese, chair,
door1, door2, plate, drawer1 (top), fridge, cup,
knife salami, lazychair

Both arms
gesture

Ges.(B) The gesture of the both
arms of the subject.

Open door, close door, open fridge, close
fridge, open dishwasher, close dishwasher, open
drawer, close drawer, clean table, drink from
cup, toggle switch

Appendix Table 9: Details of the Sleep-EDF dataset. The Sleep-EDF-39 dataset is shorten as “39”
and the Sleep-EDF-153 dataset is shortened as “153”.

Label name Encoding Description
Wake W The condition when the subject is awake or drowsy. The

brain wave is at least 50% alpha waves.
Non-REM1 N1 Short and light sleep stage. The brain wave is dominated

by theta waves.
Non-REM2 N2 The brain wave is theta waves and intercepted by phe-

nomena named as sleep spindles.
Non-REM3 N3 The brain wave is theta waves with high amplitude.

REM R Rapid eye movement occurs, The brain wave is both theta
waves and alpha waves.
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Appendix Figure 2: Expanded overview of the SegTime architecture.
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