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Abstract

The development of language models have moved from encoder-decoder to decoder-only designs.
In addition, we observe that the two most popular multimodal tasks, the generative and contrastive
tasks, are nontrivial to accommodate in one architecture, and further need adaptations for down-
stream tasks. We propose a novel paradigm of training with a decoder-only model for multimodal
tasks, which is surprisingly effective in jointly learning of these disparate vision-language tasks.
This is done with a simple model, called MaMMUT. It consists of a single vision encoder and a
text decoder, and is able to accommodate contrastive and generative learning by a novel two-pass
approach on the text decoder. We demonstrate that joint learning of these diverse objectives is sim-
ple, effective, and maximizes the weight-sharing of the model across these tasks. Furthermore, the
same architecture enables straightforward extensions to open-vocabulary object detection and video-
language tasks. The model tackles a diverse range of tasks, while being modest in capacity. Our
model achieves the state of the art on image-text and text-image retrieval, video question answer-
ing and open-vocabulary detection tasks, outperforming much larger and more extensively trained
foundational models. It shows very competitive results on VQA and Video Captioning, especially
considering its capacity. Ablations confirm the flexibility and advantages of our approach.

1 Introduction

Vision-language learning has become critical in improving both visual-understanding and multimodal vision-language
tasks. Large foundational vision-language models, which are designed to be extended to multiple downstream tasks,
follow two main training strategies, typically exemplified by disjoint architectures. Some vision-language pre-training
approaches apply a contrastive loss, in a dual-encoder style architecture, e.g. CLIP, Align, Florence ( ,
; , ; , ). Contrastive training has been shown to produce strong backbones, which
lead to successful image understanding and cross-modal retrieval tasks, e.g. image-to-text or text-to-image retrieval.

Alternatively, the autoregressive and masked token modeling objectives, well known from language modeling, are very
popular with vision-language models for text generation. They are often referred to as split-captioning objectives. The
split-captioning training is typically beneficial to text-generative tasks e.g. VQA ( , ).

The most common architectures used in these scenarios are the encoder-decoder ones, which use a separate vision
and text encoders, or a joint vision-text encoder, before a joint decoder, applying decoding losses from language
learning ( s ; , ; s ; s ; ). Architectures with
cross-attention over frozen or partly frozen language models have also been popular ( , ).

Combining these two types of architectures and loss functions has proven to be challenging, with recent approaches

such as Align-Before-Fuse (ALBEF) and CoCa ( R ; R ; R ) requiring multiple

components or training stages, and special recipe to accommodate video tasks ( , ). Simultaneously,

many pure language-only models have adopted simple decoder-only architectures with great success ( , ;
s ; s ) and with the added benefit of significant parameter reduction ( , ).
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Figure 1: The MaMMUT model is a simple vision-encoder and text-decoder architecture, which serves as founda-
tional model for both image-language and video-language tasks. Despite its relatively small size, the model outper-
forms SOTA on many diverse tasks. Example results on Image-Text/Text-Image retrieval, Visual Question Answering
(VQA), Open-vocabulary detection, Video Question Answering (VideoQA) are shown.

We here propose a simple approach to unify contrastive learning, localization aware, and autoregressive captioning
pretraining, by using a single language decoder and an image encoder. Our formulation is more general and allows
maximal weight-sharing and parameter efficiency between the contrastive and generative tasks. To address the chal-
lenge of reconciling the unconditional sequence-level representation learning needed for contrastive learning with the
token-conditioned next-token prediction, we propose a two-pass learning strategy using the text decoder. In one pass of
the training, we utilize cross attention and causal masking to learn the caption generation task, where the text features
can attend to the image features and predict the tokens in sequence; in the other pass we disable the cross-attention
and causal masking, which learns the contrastive task without visibility into the image features. We further modify the
contrastive training objective to be localization-aware, further equipping the model for object detection tasks. With
this training strategy our model can address a diverse range of tasks, e.g. retrieval, text generative or detection. This
provides a simpler alternative to previous approaches (Li et al., 2021; Yu et al., 2022; Singh et al., 2022; Yuan et al.,
2021), where our model architecture is more compact and shared more broadly across tasks in the model. Furthermore,
our model allows us to apply this architecture to video by a seamless adaptation based on the TubeViT approach (Pier-
giovanni et al.,, 2023a). This allows us to address video-text tasks, such as Video Question Answering (VideoQA)
and Video Captioning successfully, outperforming prior large image-text or video foundatinoal models, such as 80B
Flamingo, by pre-training on image-and-text dataset only. Furthermore, we extend the approach to leverage the pre-
trained model for open-vocabulary detection, demonstrating the localization capabilities of the model. We call the
model MaMMUT.

Our model is simple, but at the same time represents a union of tasks that other models find it challenging to put
together, or need more specialized adaptations for. In comparison, many of the prior approaches, despite reporting
results on 10, 20 or more tasks or training bigger models (Chen et al., 2022; Singh et al., 2022; Alayrac et al., 2022;
Yuan et al., 2021), accommodate fewer categories of tasks than our model does. One of the largest models, PaLLI (Chen
et al.,, 2022) addresses only classification, VQA and image captioning task categories, but is not designed to handle
retrieval, detection, or video tasks. GIT (Wang et al., 2022b) extends the model to videos, but does not handle retrieval
or detection. FLAVA (Singh et al., 2022), Florence (Yuan et al., 2021), ALBEF (Li et al., 2021), BLIP (Li et al.,
2022a) which are based on constrastive learning, accommodate more tasks, but do not perform video-language or
object localization tasks, or need significant downstream adaptations to do so (Yuan et al., 2021). Flamingo (Alayrac
et al., 2022) is not able to do retrieval or object detection. With MaMMUT, we address all these tasks.
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Experiments on image-text, text-image retrieval, VideoQA and Open-Vocabulary Object Detection show above-SOTA
performances, outperforming much larger models. MaMMUT shows very competitive performance in Video Caption-
ing and Visual Question Answering (VQA), which is done in the challenging open-ended generation setting. We note
that our pre-training is done on image-text noisy pairs only and does not include video or labeled object localization
information or supervised labels. Ablation studies confirm the challenges and benefits of developing a simple and
flexible model to unify multiple tasks.

Our contributions are: (i) a simple, compact and extensible foundational vision-language model which addresses
multiple diverse multimodal tasks, such as image/text retrieval, Visual Question Answering, Open-Vocabulary De-
tection, Video Question Answering and Video Captioning; (ii) a novel two-pass learning method which trains jointly
reconciling the unconditional sequence-level representation learning needed for contrastive learning with the token-
conditioned captioning-like learning, using a single shared decoder-only model; (iii) a seamless extension to video
tasks with no additional pre-training needed, creating a powerful video-language model.

2 Related Work

Vision and language pretraining has gained considerable popularity, where many successful and wide-ranging ap-
proaches have been created. Following token masking or next-token prediction losses used in text modeling, image-
language pre-training methods extended these ideas for image and text inputs, where a language modeling loss is
applied to a model which considers i 1mage inputs ( R ; s ; , ; ;
, ; , ). This technique enables text-generative vision-and-language tasks, such as VQA, Image
Captioning or classification. Extensions to these approaches, where masking is done in the image space ( ,
), have also been considered. Some of the above-mentioned approaches also feature similar architecture as ours,
with a simple decoder e.g. GIT ( , ), but the tasks addressed are limited to the text generative ones.

Contrastive vision and language pretraining has been popularized by the CLIP and Align models ( , ;

, ), demonstrating that contrastive learning can produce powerful embedding for many downstream ap-
plications. While the contrastive loss has been widely applicable, e.g. in self-supervised learning ( , ),
the appeal of these methods is the ability to learn across two modalities and produce high quality embeddings from
large amounts of noisy image-language pairs which are harvested automatically from the web. Many generative pre-
training approaches have also subsequently leveraged such noisy and easily obtainable datasets for vision-language
pre-training purposes. Contrastive vision-language models are typically two-tower models, where nontrivial modifi-
cations are needed for downstream tasks ( R ).

Several prior works proposed approaches to combine contrastive and generative vision-language pre-training, on the
premise of two-tower models and cross-attention or cross-modal masking to align the modalities ( , ;

, ; , ; ; , ). ALBEF ( , ) applies a contrastive loss to an image and
text encoder models and adds a decoder for generative tasks. BLIP-2 ( , ) leverages an off-the-shelf frozen
image encoder and large language model for generative learning. Similar to ALBEF ( , ), CoCa ( ,

) uses a language generation rather than masked language modeling objective. Furthermore, a second decoder
uses cross-attention to connect image representations with text to generate the output text. In these approaches there
is a distinction of unimodal vs multimodal text model, and contrastive loss is only applied to the unimodal part.
Compared to CoCa, our approach differs in a few aspects: ours is a fully shared text model enabled by the proposed
two-pass learning paradigm; it achieves state-of-the-art performance on video and open-vocabulary detection tasks
which are not easily derived from language generation; has affordable computational cost for reproducibility; in terms
of zero-shot performance, it has state-of-the-art zero-shot image-text retrieval. Other approaches ( , ;

, ) unify understanding and generation tasks in the same sequence-to-sequence framework, spanning a
larger number of tasks, including tasks, such as, referring expressions ( , ). BEiT-3 ( s )
learns unimodal visual representation from image token reconstruction and finetunes the backbone for downstream
tasks.

A number of video foundational models have been proposed ( , ; , ; , ;

s iCs s ; s ). The Flamingo model ( s ) extends a large
frozen language model, with image and video inputs to deliver impressive results. VIOLET ( , ) uses
masked language and masked-video modeling for joint video-text learning. Other approaches extend a pre-trained
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Figure 2: MaMMUT model architecture with an image encoder and text decoder (left), compared to others. Many
encoder-decoder architectures (center) cannot handle the contrastive objective, for example ( s ;
, ). Approaches to combine contrastive and captioning (right), e.g. Align-Before-Fuse (ALBEF) ( ,
) or CoCa ( , ) develop more complex models and are hard to extend to video inputs or localization
tasks. Our architecture is simpler than previous approaches and is able to accommodate more tasks.

image-language model, adapting it to video ( , ; s ; s ), where a
common approach is to just accumulate features from individual frames of the video. Our model is mostly aligned to
the latter class of models, however, we instead directly process the spatio-temporal information of the video and do not
need to process the model by a single frame at a time. Our approach is more advantageous, as much of the temporal
information is lost in the sinlge-frame approaches. Florence ( , ) does an adaptation with 3D kernels to
the SWIN transformer ( , ), and OmniVL ( , ) uses the Timesformer model (

, ), which preserve the temporal information, however the adaptation is generally more complex. Combining
contrastive and captioning losses in video is also a popular technique. For example, InternVideo ( , )
proposed a combination of a masked video encoder-decoder and a cross-modal constrastive dual encoder in a video
foundational model. In contrast, while we perform only a light fine-tuning over a image-language pre-trained model,
our approach outperforms the above-mentioned more sophisticated and better-trained video models.

Object detection is available in some foundation models, for example VinVL ( , ) pre-train the vision-
language model in order to detect objects and attributes. Florence ( , ), adapt vision-language pre-
trained models to object detection tasks. At the same time, Open-Vocabulary Detection, which aims at detecting
novel categories of objects, is often overlooked by pre-trained vision-language models, where previous approaches
focused on detecting objects in a set of pre-defined classes. VILD ( , ), demonstrate that large vision-
language models are advantageous for detecting novel object categories. Inspired by this work, while taking a different
approach, we show that open-vocabulary detection is an easy extension to our model with strong performance.

3 Method

We introduce our model, called MaMMUT, which offers a simple architecture consisting of a single image-encoder
and a text-decoder (Figure 2, left). Our model combines the strengths of contrastive learning and autoregressive
next-token prediction in a more flexible architecture than existing works. For example, the model is able to train
and perform inference for those tasks with the same shared set of weights. Furthermore, one of the advantages of
this simple model is that it allows simple extensions to video where the exact same architecture is able to consume
directly video features. This is in contrast to prior work which adapt to video by processing individual frames or by
more complex mechanisms. Other important downstream tasks, such as open-vocabulary detection, can also be easily
added to this model.

3.1 MaMMUT Architecture

MaMMUT is an intuitive and simple architecture for multimodal tasks, which consists of a single vision-encoder and
a single text-decoder (see left of Figure 2). We encode the images into latent representation using a neural network
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Figure 3: MaMMUT two-pass learning. We compute the image features via the image encoder. Then we compute the
contrastive text features and loss by applying a non-causal masking to the language decoder, which makes it effectively
a text encoder (top). Finally we compute the generative text features and loss by applying causal masking and cross
attention with the image features (bottom). The decoder is visualized twice for clarity, its weights are fully shared.

encoder (such as ViT ( , )). The texts are both encoded and decoded with a Transformer-based
decoder-only model. The MaMMUT architecture utilizes cross attention to fuse visual representation with text features
anywhere in the decoder layers. This allows the whole decoder to produce both unimodal text representations (needed
for a forward pass for contrastive learning) and multimodal text representation (needed to fuse the visual features with
the text ones for vision+text tasks). This is done by a two pass joint training and we notably use a single combined
training objective (shown later in Equation 5). Below we delve deeper into different aspects of the MaMMUT model.

Decoder-only Two-Pass learning. The main challenge to unify contrastive learning and next-token prediction
is to unify the text representation, because the contrastive learning uses unconditional sequence-level representation,
whereas captioning optimizes the likelihood of each token conditioned on the previous tokens.

We propose a two-pass approach to jointly learn the two types of text representations by the same model. During the
first pass, to learn the contrastive task, we enable bi-directional masking within the decoder. The text features should
not see the image features (which characterizes dual-encoder contrastive learner), but can attend to all tokens at once to
produce the sequence-level representation. On the second pass, we utilize cross attention and causal masking to learn
the caption generation task. The text features can attend to the image features and predict the tokens in a sequence
(see Figure 3). As mentioned on the first pass we disable the cross-attention and causal masking in order to separate
the text and image features for contrastive learning. All text-decoder weights are shared and gradients are aggregated
from the two passes during training. The two passes are done interchangeably during training so their order is not
important. As the two passes can share identical image representation, MaMMUT achieves considerable computation
savings compared to training two separate models.

We use a vision transformer as image encoder, and project the output dimension of image encoder to that of text
decoder by a linear layer. The global image (v;) and text representation (I;) for contrastive learning are computed by
average pooling over spatial dimensions and the sequence length, respectively. We insert M cross-attention layers into
N text decoder layers, where M ~ % The ratio % represents a trade-off between model capacity and text-generative

capability, where higher M tends to benefit the text-generation tasks.

Somewhat surprisingly, MaMMUT requires no task-specific predictor heads to unify the two seemingly disparate
tasks other than a vocabulary embedding layer to map the decoder output features to text tokens. The same decoder
features are average-pooled to represent the whole sequence (I;). This is verified in our ablations as well. Compared
to contrastive captioner ( , ), MaMMUT allows more flexible fusion of image and text features anywhere
in the text decoder, and fully share the text-decoder parameters between contrastive and caption generation tasks.

Model simplicity. In contrast to other architectures, Figure 2, middle and right, we use a single vision encoder and a
single text decoder. Unlike encoder-decoder models ( , ; s ;) and contrastive alignment
and captioning ( s ; s ), this is simpler and more flexible architecture. While using an encoder-
decoder is popular, it comes with some disadvantages. For example, a pretrained visual encoder is required, and
contrastive tasks are usually not feasible. Contrastive alignment and captioning methods extend the encoder-decoder
models to handle retrieval, but that mechanism is not easy to adapt to video and creates a hard loss-balancing task.
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MaMMUT on the other hand works well for video-text tasks (Sec. 4) and can be seamlessly adapted without extending
the architecture, adding more encoders or having to use an encoder multiple times.

3.2 Pretraining Losses

Our model combines the strengths of popular vision-language pre-training losses, as are specifically described below,
including with our modifications.

Contrastive Loss. Compared to the fully supervised classification pretraining, the contrastive learning approach
uses separate image and text encoders to compute image and text embeddings of typically web-scale image-text
pairs ( s ; R ; , ; s ). This allows to model to learn from
the richer supervisory signal of free-form text than a fixed label set. The two encoders are trained jointly to minimize
the contrastive objective ( s ; s ; s ). As aresult of learning from free-form
text, the representation is very effective for zero-shot image classification, image-text retrieval, and robust to corrupted
or out-of-distribution images ( , ).

Image Captioning loss. Dual-encoder contrastive models treat the text as a single entity to be encoded, while the
encoder-decoder image captioner seeks a more detailed token-level understanding by predicting each word in sequence
(see middle of Figure 2). This is achieved through an encoder-decoder architecture, where the image encoder creates
a latent representation of the image using ViT ( , ) or ConvNet backbone. The text decoder
then generates the tokens autoregressively by maximizing the likelihood of each predicted token given the previously
generated tokens in the sequence, resulting in the following forward autoregressive formulation:

T

Lcaptioning = Zlogpe(yt|yl,2,...,t—17x)- (1)
t=1

To achieve maximum learning efficiency and parallelize computation, the encoder-decoder architecture is trained using
a technique called teacher-forcing, which trains the model to predict the tokens at all time steps in parallel.

Focal Contrastive Loss. Contrastive learning typically relies on large batch size to extract supervisory signal
from noisy image-text data. Our goal is to learn from the more informative and challenging examples than what is
possible with the standard cross entropy loss. The focal loss ( , ) presents a compelling alternative as it
allows us to finely tune the weights assigned to challenging examples, demonstrating improved performances for object
classification or detection scenarios. It has been recently shown, that applying focal loss achieves very competitive
performance with significantly smaller batch size for contrastive learning ( , ). More specifically the
focal loss is applied as follows: Let v; and /; be the normalized image and text embeddings, and the image-to-text
(I2T) focal contrastive loss be Lgoca. We can write Lgoc, mathematically as:

B B
1
Lfocal_comraslive = *E Z Z ]- — Di ’Ylog pz) (2)

where p; denotes the true class probability as below:

o J(’Uilj/’r) lf’L:J
p"_{l—o—(wzjm ifi % j ©)

Here o denotes the sigmoid function, v; and [; the normalized image and text embeddings, and 7 the learnable tem-
perature to scale the logits. The loss is summed over the number of elements in the batch B. where . For simplicity,
we use the non-alpha-balanced focal loss ( s ). The total loss is the sum of I2T and T2I losses as follows:

Lcontrastive = LIZT + LT2I~ (4)

The focal contrastive loss modification provides additional sensitivity to objects, which equips the model for down-
stream detection tasks so we prefer it to the classical contrastive loss in our model.



Published in Transactions on Machine Learning Research (08/2023)

Language
Encoder

Language
Decoder

Image <:> Language
Encoder Decoder

Video Text
patches Tokens
[ — T Image Per-frame inference of
ﬁﬁ - Sd Encoder the image encoder model
t Text T
Video Video

Figure 4: MaMMUT video model (left) efficiently and seamlessly extends the image-language model, by adding
learnable spatio-temporal features. The model is applied only once, as opposed to other models, processing each
individual frame independently (right). Our model uses image-text pre-training only.

Final loss Combining the losses above, our final loss is as follows. We note that while balancing of the losses is
needed as is typical, the losses are simply combined and are shared with the full model.

Ltotal = )\cachaptioning + )\focalLfocal_contrastive7 (5)

where Acap, Afocal, are loss balancing hyper-parameters.

Learning from Scratch with Noisy Image-Text Supervision. Unlike many existing methods that train model
components in multiple stages using different data sources or modalities ( s ; s ;
, ;b), MaMMUT is pretrained end-to-end from scratch, without relying on any prior training or

external sources. We use only a web alt-text dataset ( , ) for training. As the image encoder is typically
the computation bottleneck in contrastive learning ( , ), our pretraining approach incurs only a
relatively light overhead in training efficiency over a pure contrastive learner ( , ) (= 16%). This
is highly desirable as scaling up model and data size have shown consistent benefits in contrastive and captioning
pretraining ( s ; s ; s ).

Learned Positional Embeddings for Localization Awarenesss. Existing vision and language pretraining ap-

proaches and detection finetuning have a mismatch in how they use positional embeddings. Pretraining approaches
typically use full-image positional embeddings during training and apply the same embeddings for downstream tasks.
But for detection finetuning, recognition occurs at the region level, requiring the full-image positional embeddings to
generalize to regions not seen during pretraining. To address this gap, we adopted the Cropped Positional Embed-
ding ( , ). The idea is to up-sample the positional embeddings from the pretraining image size (e.g., 224)
to the detection task image size (e.g., 1024). Then, a randomly cropped and resized region from the up-sampled posi-
tional embeddings is used as the image-level positional embedding during pretraining. This method trains the model
to view each image not as a full image, but as a region crop from a larger, unknown image, which better matches the
downstream use case of detection where recognition occurs at the region level instead of the image level.

Implementation Details. Our model consists of a standard ViT-Huge ( , ;

, ) image encoder (of 650M parameters) and a transformer text decoder of 1B parameters. The cross
attention layers are applied every two decoder layers, where the model and hidden dimension follow the text decoder
(420M params). Ablation results are conducted with ViT-Base image encoder and a smaller text decoder using 128M
parameters, and a smaller 4K batch size. The optimal hyper-parameters are then used to run the large model. The
large model is trained for 500K steps using a batch size of 16K. We use AdamW optimizer with weight decay value
0.01. Our initial learning rate is 0.001, and both generative and contrastive loss weights are set to 1.0. We first resize
every image to 272x272 and randomly crop a 224x224 patch out for pretraining. We apply 10K warmup steps before
applying linear LR decay to the end of training. The temperature in contrastive learning is learnable and initialized to
1.0. We use the standard Sentencepiece tokenizer and set the text length to 64 following existing works ( , ;

, ). We use an alt-text dataset of 1.8B image-text pairs ( , ), as is common in prior methods.
The dataset is used for both contrastive and generative pretraining. To better match the downstream detection task, we
finetune the model for 100K iterations with the Cropped Positional Embedding for further localization awareness.
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image MS COCO (5K test set) Flickr30K (1K test set)

model image-to-text text-to-image image-to-text text-to-image
Method size¢ | R@l R@5 R@I0 R@l R@5 R@I0 | R@l R@5 R10 R@l R@5 R@I10
CLIP ( 302M | 584 815 88.1 378 624 722 88.0 98.7 99.4 68.7  90.6 95.2
ALIGN ( 408M | 58.6  83.0 89.7 456  69.8 78.6 88.6  98.7 99.7 7577 938 96.8
FLAVA ( 86M | 427 768 - 384 675 - 67.7  94.0 - 652 894 -
FILIP ( 302M | 61.3 843 90.4 459 70.6 79.3 89.8  99.2 99.8 750 934 96.3
Florence ( 637M | 64.7 859 - 472 714 - 90.9  99.1 - 76.7  93.6 -
CoCa-L ( , 303M | 654 856 91.4 50.1 738 81.8 91.4 992 99.9 79.0 95.1 97.4
CoCa ( 1B 66.3 862 91.8 512 742 82.0 925 995 99.9 80.4 957 97.7
MaMMUT (ours) 630M | 70.7 89.1 93.7 541 76.8 84.2 949 995 99.9 82.5 96.0 98.0

Table 1: Zero-shot image-text retrieval results on COCO and Flickr30K benchmarks (dual-encoder models).
We evaluate our pretrained model compared to other methods. We achieve state-of-the-art results by a margin the on
image-to-text / text-to-image retrieval benchmarks with comparable model capacity. (bold: best).

4 MaMMUT for Video Tasks

Our video model is an efficient and seamless extension to the main image-language model, based on the TubeViT
idea ( , ). It extracts video tubes which are then projected to patches similar to 2D image
projections (Figure 4, left). The model is applied only once. Some other image-language models adapted to video
by processing each individual frame by the image encoder, e.g. ( , ; , ;

, ) (Figure 4, right). This is a limitation as only a relatively small number of frames can be processed due
to memory and runtime constraints. There is also some evidence that for a large number of frames the number of
effective tokens becomes too large which leads to deteriorated performance ( , ).

We follow the TubeViT approach ( , ). However, we apply several changes. One main challenge
is that TubeViT requires fixed position embedding, whereas this does not match well with the learned positional
embeddings of the main encoder. Since the video tubes are sparse and can overlap, TubeViT found that the fixed
position embeddings were important. To enable those here, we propose using both position embeddings, and adding a
weighted connection to the newly added fixed embeddings. Next, we use the same 2D patches, but at a sparse temporal
stride, and finally add the tube projections following the settings used in TubeViT. All these tokens are concatenated
together, and passed through the shared ViT backbone. Our TubeViT adaptation to video is very lightweight and no
additional components or losses are needed. In comparison, previous approaches tend to exhibit higher complexity.
InternVideo ( , ) for example, supports a video masked encoder for MAE ( , ) losses in
addition to a module similar to ALBEF. Flamingo ( , ) is able to process either image and video
inputs, but it trains a separate image-encoder, the text part of which is discarded when integrating in the main model.
We note that we outperform these in our experiments on video tasks.

We note that this change does not need any additional video data pre-training, and all experiments conducted in the
paper are done by directly fine-tuning of the MaMMUT image-text model on a video dataset.

5 Experiments

5.1 Zero-Shot Image Retrieval Results

As Zero-shot image retrieval is a good indicator of the capability of the model without fine-tuning, we first evaluate
the performance of MaMMUT on Zero-shot image-text retrieval tasks. Table 1 shows the image-to-text and text-to-
image results, compared to the SOTA methods on two popular retrieval benchmarks MS COCO ( , )
and Flickr ( , ). As established by previous approaches, we evaluate both image-to-text and text-to-
image retrieval following the same evaluation protocol and compare with other published dual-encoder models. Our
approach significantly outperforms the state-of-the-art on both image-to-text and text-to-image retrieval by 2-4 points
on the recall@1 metrics. We note that these are challenging benchmarks many approaches have been evaluated on.

5.2 Visual Question Answering Results

We report the performance on the VQAv2 benchmark ( , ) in Table 2. Inspired by recent VQA
approaches ( s ; , ; s ), we conduct the experiments in the
open-ended text generative setting using an English vocabulary size of 256K. Most prior approaches ( ,
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Method Test-Dev | Test-Std
FLAVA ( , ) 72.8 -
METER ( , ) 77.7 77.6
Unified-10 ( , ) 77.9 -
OmniVL ( , ) 78.3 78.4
Florence ( R ) 80.2 80.4
SimVLM ( , ) 80.0 80.3
OFA ( s ) 82.0 82.0
CoCa ( s ) 82.3 82.3
BEiT-3 ( , ) 84.2 84.0
ALBEEF ( , ) 75.8 76.0
AnswerMe ( R ) 73.6 -
BLIP ( s ) 78.2 78.3
GIT ( R ) 78.6 78.8
Flamingo-80B ( N ) 82.0 82.1
BLIP-2-7B ( s ) 82.3 -
PaLI-3B ( , ) 79.3 -
PaLI-15B ( , ) 80.8 -
PaLLI-17B ( R ) 84.3 84.3
MaMMUT (2B) 80.7 80.8

Table 2: Visual Question-Answering (VQAv2). We benchmark the performance in an open-ended generation setting.
Approaches that perform VQA in closed-vocabulary settings are marked in gray. MaMMUT is very competitive
among existing open-ended generation methods given its modest model capacity.

Overall ‘ Yes/No  Number Other
80.84 ‘ 93.41 63.89 73.78

Table 3: Visual Question-Answering (VQAv2) analysis. Performance by question types on the test-std split.
"Yes/No" questions perform best, whereas questions about how many objects are present, are the most challenging.

; s ; s ;d) address the VQA task in the classification setting where the best answer is
selected from a predefined set of answers (typically of size 3K). Some recent works ( , ; ) train the
model in an open-ended settings but restrict the decoder to generate only the 3K candidate answers during inference.
In contrast, we allow the decoder to use the whole vocabulary during inference. The VQA-as-open-generation setting
poses two key challenges: firstly, the produced text must precisely match the expected answer in order to be considered
correct, and secondly, our vocabulary size is much larger than the ones utilized in the classification settings.

MaMMUT achieves 80.8 accuracy on this benchmark, which is very competitive among the open-ended generation
approaches. For example, MaMMUT outperforms the Pal.I-3B by 1.4 points, while using 1.5x fewer parameters
(2B total params). Compared to the PaLI-15B, ours achieves the same performance while being 7.5x smaller. In
addition, Flamingo and Pal.l use a combination of interleaved image-text, alt-text, human-annotated data sources for
training ( R ; s ), whereas we use only an alt-text dataset ( , ). Larger
models, such as PaLI-17B, outperform ours. Table 3 shows MaMMUT performance on VQA test-std set by question
types. MaMMUT performs the best on yes/no question type, and less well on questions that require counting.

5.3 Video Question Answering Results

In this section we present the results of our model on the Video Question Answering task, which is a challenging
task answering questions about activities, events, objects, or repetition counting within a video. Our VideoQA results
are obtained using the image-text pre-trained model, namely we directly fine-tune on a VideoQA dataset without any
video-text pre-training. This is in contrast with other works which use video data pre-training, and indicates that our
model is already very strong without additional video-text pre-training.

The results are presented in Table 4a, comparing to the state of the art on MSRVTT-QA ( , ) and
MSVD-QA ( , ) datasets. MaMMUT outperforms the best SOTA approaches, among which are both
video foundational models, e.g VIOLET, MERLOT, InternVideo, image-text models adapted to video e.g. GIT and
GIT2 ( s ), and large vision-language models, such as Flamingo ( s ). We note that,
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similar to the VQA results, our VideoQA results are conducted in the more challenging open-ended generation setting.
Our model is 2.5 times smaller than GIT2 (5B parameters), and 40 times smaller than Flamingo (80B parameters).

5.4 Video Captioning Results

Video captioning results on the MSRVTT ( s ) and MSVD ( s ; s )
datasets are presented in Table 4b. The results here too are obtained with image-text pre-training only. Our approach
performs well related to SOTA. It outperfoms prior approaches on the MSVD benchmark by large margins, and
outperforms most others with the exception of GIT/GIT2 on the MSRVTT video captioning dataset.

Method MSRVTT-QA | MSVD-QA
Just Ask ( ,2021) 415 463 Method MSRVTT | MSVD
gliii];/OLT( : 0220) : 131: i 510 ORG-TRL ( ,2020) 50.9 952
VindLU ( ' ) 44.6 ) OpenBook ( , ) 52.9 -

. ’ ' SWINBert ( ,2022) 53.8 120.6
ffl’lr ative Co-Tok ( : ) ig; ig'i VIOLETV2 ( ,2023) 58.0 130.2
Videlz—(ér(l)eca(\ ( , ) : 46'3 56.9 MV-GPT ( , ) 60.0 -
VIOLET ( ’ ) 439 479 Vid2Seq ( »2023) 64.6 146.2
VIOLETV2 (Fu* et ) s e Video-Coca ( , 2022) 732 ]

: ’ ' : GIT ( , ) 73.9 180.2
Dynamic Pretr. ( ’ ) 4.1 471 GIT2 ( , ) 75.9 185.2
ggz( ( L, )) jfé:z 22:2 MaMMUT (ours) 73.6 195.6
InternVideo ( s ) 47.1 55.5
Flamingo ( , ) 474 _ (b) Video Captioning Results. MaMMUT performs
MaMMUT (ours) 495 60.2 well on both MSRVTT and MSVD Video Caption-

ing Benchmarks, outperforming SOTA on MSVD
(a) Video QA Results. MaMMUT outperforms the SOTA on both b-‘g’ large margm.s. CIDEr scores are. shown. As for
MSRVTT-QA and MSVD-QA datasets. We note that image-language VldeOQA. experlmer?ts, we use only image-language
pre-training is the only one used here. MaMMUT outperforms video-first pre-training, and directly fine-tune the model on
models e.g. VIOLET, InternVideo, image+video models, e.g. Flamingo, each dataset.

and large pre-trained image-text models adapted to video, e.g. GIT2.

Table 4: Video Question Answering (VideoQA) and Video Captioning results.

5.5 Open-vocabulary Detection Results

The Open-Vocabulary detection task refers to the ability to detect and name objects (providing bounding boxes) of
categories that are unknown to the model. We evaluate our work on the challenging LVIS dataset ( , )
which features 1200+ different object categories. We report performances using the Average Precision (AP) metrics
for rare classes, as previously established in the literature ( s ; s ). The open-vocabulary
detector is initialized with the pretrained ViT backbone during finetuning. It adopts the simple feature pyramid and
windowed attention to handle higher resolution images (e.g., 1024) as proposed in ViTDet ( , ), and Mask
R-CNN heads and class-agnostic box/mask heads as in ( , ; , ; , ;
, ). The model is trained with base categories, and tested to detect novel category objects at inference.

Table 5 presents our results on Open-Vocabulary detection which evaluates how well it does on detecting novel,
previously unseen object categories. MaMMUT achieves 31.0 AP,., which outperforms the existing ViT-based method
OWL-VIiT by 5.4 points. We also report AP performance for all classes for context, but note that our model is not
optimized for detection AP, as is for example OWL-ViT which is a detection-only model.

6 Ablation studies

We here present ablation studies to understand the model characteristics and its design choices. We use a ViT-Base
image encoder and a 128M language decoder, training on 4K batch size for 500K iterations unless noted otherwise.

Cross-task benefits. We first explore cross-task benefits between contrastive and text-generative pretraining. We find
that joint training is generally favorable to tasks, but it affects tasks differently (Table 6). Compared to the contrastive-
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Method APr AP
DetPro-Cascade ( N ) 20.0 27.0
Detic-CN2 ( R ) 24.6 324
RegionCLIP ( s ) 22.0 323
ViLD-Ensemble ( s ) 21.7 29.6
ViLD-Ensemble ( s ) 26.3 29.3
VL-PLM ( s ) 17.2 27.0
Rasheed et al. ( s ) 21.1 25.9
OWL-VIiT ( s ) 23.3 353
OWL-VIiT ( R ) 25.6 34.7
MaMMUT (ours) 31.0 32.8

Table 5: Open-Vocabulary Detection Results. MaMMUT performs well on detecting novel objects, scoring much
higher on the Average Precision (AP) of rare objects AP,

MS COCO Flickr30K VQA

Contrastive Generative 2T T2I 12T T21 Acc.
v 54.8 38.2 82.6 67.1 63.5

v - - - - 69.9

v v 54.3 38.7 80.6 67.5 71.7

Table 6: Cross-task benefits. Combining the contrastive and generative objectives yield benefits for generative task
in our setup, while maintaining the performance of discriminative tasks.

only pretraining, joint training achieves signficantly better VQA performance by +8 points, which is expected. Joint
training improves text-to-image retrieval. This is likely because the generative modeling enhances text representation,
and while remaining very competitive on the image-to-text retrieval, it is not as beneficial, which can indicate potential
competition of tasks (please see our later experiments which explore this). Compared to the generative-only pretrain-
ing, joint training outperforms on VQA by +1.8 points, likely because the contrastive learning helps to improve the
joint image-text representation. We attribute this to better representation learning rendered from contrastrive training,
also evidenced by other works ( , ; , ). More importantly, joint training model is able to
tackle retrieval tasks, not supported by the generative pretraining, and achieving satisfying performance overall.

Cross-attention Design. Another key exploration is the role of cross-attention mechanisms in the proposed joint
training and how they affect various tasks. Cross-attention provide an efficient means for communication between the
two modalities. We find that tasks indeed perform better under different circumstances. Specifically, cross-attention is
preferred for text generative tasks, but not as much for contrastive ones. Table 7 shows that while denser cross-attention
connections (e.g. 4) benefit the VQA task, one or few layers (e.g. 2) are sufficient for retrieval task.

Balancing contrastive-vs-generative losses. We here explore how to train the joint objectives, so that the tasks benefit
fully from joint training. We do observe a potential competition of these tasks, thus a balance between losses needs
to be obtained. Table 8 shows the performance trade-off when training jointly. The experiment is done on a smaller
model and fewer steps, as mentioned above. We observe that the two objectives indeed have competitive behaviors. In
the rest of the experiments, we pick equal weights over these two losses, as we observe that it gives more advantage to
the VQA performance, whereas the retrieval does not suffer as much. This experiment provides an insight as to how
to tune these parameters, depending on the requirements of the application.

Scaling Image Encoder. Effects of model scale on vision-language tasks have been explored in prior works (
, ; , ). We present the results of scaling image encoder in Table 9, where we confirm increasing

MS COCO Flickr30K VQA

# Cross-Att. 2T T21 2T T21 Acc.
1 55.3 39.6 81.7 67.2 68.7

2 56.6 40.1 81.9 67.6 70.8

4 55.7 39.9 82.2 67.3 71.5

Table 7: Cross-attention Design. Denser cross-attention layers are beneficial for the VQA task, whereas few cross-
attention layers are sufficient for retrieval tasks.
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MS COCO Flickr30K VQA
weights 12T T2 12T T21I Acc.
(2.0,0.5) 56.71 40.77 82.52 67.77 70.08
(2.0, 1.0) 56.7 40.27 81.84 67.25 70.84
(1.0, 1.0) 56.25 39.73 81.74 67.50 71.48
(1.0,2.0) 55.39 39.09 81.54 65.64 72.27
(0.5,2.0) 52.05 37.32 78.32 62.73 71.79

Table 8: Balancing the losses. Zero-shot retrieval results on COCO and Flickr30K benchmarks (R@1 shown) and
VQA accuracy. Weight coefficients for the contrastive and generative loss are denoted as (constrastive, generative).
We observe a clear trade-off between retrieval vs VQA tasks. We chose (1.0, 1.0) to balance the two objectives.

MS COCO Flickr30K
Image Tower Size 12T T2I 12T T21
86M 62.0 442 84.6 71.1
300M 66.4 494 91.2 78.8
630M 70.7 54.1 94.9 82.5

Table 9: Model scaling. We show clear improvements on image-text retrieval with increasing image tower capacity.

the capacity of image encoder yields consistent improvement. We note that text encoder size of the last row has 1B
parameters as opposed to 128M in the rest of the table. We use 16K batch size in this ablation.

Video Model Ablations. In Table 10, we compare the different design choices for adaptation of the video model.
We explore the effects of removing gated connections, the fixed embeddings and even the video feature inputs. As
seen, their importance increases in that order, where the addition of video tubes to process the video are of highest
importance. This is not surprising as they learn the spatio-temporal video information. These ablations are done with
the smaller ViT-L model.

7 Broader impacts

Developing vision-language models is very beneficial as they have many potential uses and applications, being able to
understand both visual and language inputs better and to more accurately respond to questions. Some aspects of the
model, specifically the text generative components might exemplify certain risks of generating off-topic, stereotypical,
unwanted or other types of outputs, for which further investigation is needed. Our model has been trained on the same
image-text dataset as many other previous works ( s ; , : , ;

, ; , ) and is collected as noisy image-language pairs in a similar fashion to an even broader set
of methods in the literature ( ; s ; s ). We developed the model for
exploring novel research capabilities and have only used it for evaluation and visualization purposes in this paper.

8 Conclusions

We present the MaMMUT model which is a vision-encoder text-decoder model capable of multiple vision-language
tasks. We propose two-pass learning which allows us to train jointly for retrieval and text-generative tasks with fully
shared weights. The model is easy to adapt to video-language and object detection tasks. Our model accommodates
a set of diverse tasks, such as image-text and text-image retrieval, novel (or open-vocabulary) object detection, VQA,
VideoQA and Video Captioning, obtaining very strong performance on them with respect to the state-of-the art.

MSRVTT-QA MSVD-QA
MaMMUT- Full Model 42.1 45.8
No Gated Connection 41.8 45.5
No Fixed Embeddings 41.5 45.1
No Tubes 40.3 42.6

Table 10: Video Tubes Adaption Experiments. Comparing different effects of adapting the model to video.
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A Appendix

A.1 Additional ablations

We here include additional ablation experiments which can provide further introspection into the model.

Language pre-training effects. As shown in this paper, a purely language model can be easily adapted for multiple
image-language tasks. We here explore the effects of language pre-training on the vision-language tasks. Our re-
sults show that language-only pre-training is beneficial for image-text retrieval benchmarks, but the effects are minor
(Table 11).

MS COCO Flickr30K
pre-training? 12T T2I 12T T2I
No 54.2 38.9 80.5 66.5
Yes 54.9 389 82.4 67.3

Table 11: Effects of language-side pre-training. Zero-shot image-text retrieval results on COCO and Flickr30K
benchmarks, R@1 shown. Language pre-training provides small but consistent improvements.

Projections and attention pooling. Table 12 experiments with additional projections and attention pooling. We find
that they are not needed for joint learning, indicating that the text decoder can be fully shared between tasks, which is
a surprising finding. We only train for 100K iterations here.

Bi-directional masking is important for contrastive learning. Since here we are using a single language decoder
to perform tasks of various characteristics e.g. retrieval and VQA, it is important to understand how to construct
the language decoder for such tasks. We evaluated the effect of bi-directional or causal masking on a contrastive
learning task on the Flickr dataset. We note that with these tasks, our model has to accommodate retrieval tasks which
tend to process data with short text, whereas generative tasks tend to generate longer-text queries. We find that bi-
directional masking benefits the contrastive learning much more than causal (Table 13), which is not surprising as the
text associated with retrieval tasks is fully available before final feature representation is generated.
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image-to-text text-to-image
Att. Pool/Proj | R@1 R@5 R@10 | R@l R@5 R@I0
N/N 5332 80.57 8691 | 39.86 67.7 7746
Y/N 5244 7871  86.33 393 66.62 7691
N/Y 51.37 7881 86.13 | 39.49 6697 77.05
Y/Y 50.78 7695 8574 | 3859 66.54  76.07

Table 12: Projection and attention pooling. Our conclusions are that they are not needed to realize joint training.
Retrieval performance on Flickr30K is shown.

MS COCO Flickr30K
Masking 2T T2I 2T T2I
Causal 53.0 37.5 78.1 62.5
Bi-directional 54.9 38.8 82.4 67.3

Table 13: Bi-directional masking. Contrastive learning clearly benefits from Bi-directional masking in the decoder
language model.

A.2 Total Train Compute Usage

We present the total compute used to train MaMMUT models in comparison with other foundational models by using

the approximation technique in ( ). Some compute estimates are taken from ( ) e.g.
PaL.I ( s ), Flamingo ( s ), GIT-2 ( R ) while others are estimated based
on the paper details e.g. CoCa ( , ). The total train compute usage of MaMMUT is significantly lower than

existing foundational models, for example, 3.4x cheaper than PalLl, 5.5x than CoCa, 10.3x than Flamingo, or 41.2x
than GIT-2. Notably, MaMMUT is trained from scratch while some existing methods e.g. PaL.I and Flamingo rely on
pretrained image encoders either from contrastive learning or image classification.
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