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The scaling law, which involves the brute-force expansion of training datasets and
learnable parameters, has become a prevalent strategy for developing more robust
learning models. However, due to bottlenecks in data, computation, and trust, the
sustainability of the scaling law is a serious concern for the future of deep learning.
In this paper, we address this issue by developing next-generation models in a par-
simonious manner (i.e., achieving greater potential with simpler models). The key
is to drive models using domain-specific knowledge, such as symbols, logic, and
formulas, instead of relying on the scaling law. This approach allows us to build a
framework that uses this knowledge as “building blocks” to achieve parsimony in
model design, training, and interpretation. Empirical results show that our meth-
ods surpass those that typically follow the scaling law. We also demonstrate the
application of our framework in AI for science, specifically in the problem of drug-
drug interaction prediction. We hope our research can fostermore diverse technical
roadmaps in the era of foundation models.

1. Introduction
The learning techniques have progressed frommanual feature engineering to shallowmodels, then
to deep networks, and now to foundation models, achieving great success in the field of computer
vision, natural language understanding and speech processing. Specifically, large languagemodels,
like ChatGPT [1], as representatives of foundation model, has shown strong performance in versa-
tile learning, which can adopted in many different tasks. The belief is that larger models can be
more expressive, thus are likely to generalize better given sufficient training data [2, 3]. This gives
birth to the current roadmap, i.e., achieving stronger performance by aggressively scaling up the
size of data and models, which is also observed as scaling law [4].
However, such a roadmap potentially leads to serious problems (as shown in the left of Figure 1):
Data bottleneck—the scaling law relies on vast amounts of high-quality data, yet all available online
corpora are projected to be exhausted by 2028 [5]; Computational bottleneck—the exponentially grow-
ing number of parameters demands substantial high-performance computing power, yet the pace of
hardware development struggles to keep up with this rapid increase [6]; and Trust bottleneck—the
scaling law follows the data driven path, disregarding internal logical relationships, which leads
to opaque reasoning processes and severe hallucination issues [7]. These indicate that the current
roadmap is not sustainable, and motivates us to ask: where is the way if the brute-force scaling up fails?
To address this question, we look back to the fundamental principles that drive machine learning.
Albert Einstein famously stated, “Everything should bemade as simple as possible, but not simpler.”
This insight has inspired many AI researchers to develop learning techniques that embrace parsi-
mony, aiming to achieve “maximum output with minimal input” and “leveraging small inputs for
significant effects”. Traditional approaches to achieving parsimony learning have typically followed
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Figure 1: The data, computational and trust bottlenecks of LLMs (left), and the development of
parsimony learning (right).

statistical-driven and data-driven methods (as shown in the right of Figure 1). Statistical driven
methods are rooted in well-established statistical theories and principles. Example works are core
vector machines [8], compressed sensing [9], matrix completion [10] and Lasso [11]. These meth-
ods penalize complexity and encourage models to focus on essential features. Later on, data driven
methods gradually developed. Example works are Deep Sparse CNN[12], Speedup CNN [13],
Deep Compression [14], RL-NAS [15], DNP [16] and LoRA [17]. These methods model and make
predictions based on the data, rather than relying on explicit statistical assumptions. However, the
development of data driven approaches would still lead to the way of scaling law, which suffers
from the bottlenecks mentioned above.
Intuitively, humans accumulate knowledge in the form of symbols, concepts, rules, and principles,
which allows us to learn a wide range of subjects or skills, apply them across various tasks, quickly
adapt to new tasks with few or no demonstrations, and uncover the underlying reasons behind
different phenomena. Inspired by [18–20], which shows that neural networks can achieve human-
like systematicity with smaller models and achieve performance comparable to that of larger mod-
els, we propose knowledge driven methods that emphasize guiding machine learning models with
domain-specific knowledge, using it as “building blocks” to achieve parsimony in learning. This ap-
proach allows us to tackle the bottlenecks of scaling law, focusing instead on efficient model design,
training, and interpretation. We demonstrate the effectiveness of this framework in AI for science,
particularly in addressing the problem of drug-drug interaction prediction. Empirical results show
that our methods can outperform those limited by the scaling law.

2. Research Landscape
Our research landscape starts from relational graphs. Different from images, natural language and
speech, relational graphs are a way to represent knowledge using nodes and edges, which symbol-
izes human knowledge in a structured form. The application of graphs are widely spread in real-life
scenarios, such as designing and planning of urban networks, prediction of molecular properties,
reasoning from knowledge graphs, and recommendation systems [21, 22].
Our key innovation lies in enabling parsimony learning through knowledge-aware approaches.
Specifically, knowledge, i.e., symbolic logic and physical laws, is ubiquitous in real-world scenar-
ios and coexists with data. As illustrated on the left side of Figure 2, the diverse colors found in
nature can be derived from three primary colors (i.e., red, blue, and green). Building on this, we
propose the concept of the “duality of knowledge and data”, which posits that data is both numer-
ical and knowledge-based. Based on this concept, we design a framework capable of learning from
both data and knowledge simultaneously, thereby effectively achieving parsimony in learning. As
shown on the right side of Figure 2, the framework first identifies symbolic logic and physical laws
at the knowledge level, then performs combinatorial generalization of this knowledge at the data
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Figure 2: The three primary colors (left) and the knowledge-aware parsimony learning framework
(right).

level. By treating knowledge as “building blocks” and focusing on its learning and generalization,
the framework leverages simple knowledge to solve complex problems.
To efficiently address these bottlenecks, we introduce domain-specific knowledge into our frame-
work to achieve greater potentialwith smallermodels. Specifically, we implementmodel parsimony,
leveraging simple architectures to overcome computational bottleneck. Additionally, training par-
simony is employed to reduce training costs, tackling the data bottleneck. To address the trust
bottleneck, interpretive parsimony is used to identify key evidence. Finally, we apply this proposed
framework to the field of AI for science, demonstrating its significant potential.

• Parsimony onModel. The goal of architectural parsimony is to utilize simple architecture to achieve
the comparable performance of complex models. As introduced in [20], simple neural networks
can achieve human-like systematicitywhen optimized for compositional skills, offering the poten-
tial for smaller models to achieve performance comparable to that of larger ones. Following this
intuition, we proposeAutoBLM[23] andColdNAS [24], which utilize prior knowledge to stream-
line architectures. By achieving this, we can maintain high performance with simpler structures,
thereby efficiently addressing computational bottlenecks.

• Parsimony on Training. The purpose of training parsimony is to reduce the amount of training
data. Inspired by [25], which shows that task-related knowledge help to determine parameters
by simple arithmetic operations without training, we propose new approaches for learning parsi-
mony [26–28]. These approaches leverage knowledge to guide the fine-tuning process on specific
tasks under few-shot circumstances. By achieving this, we can efficiently utilize knowledge to
guide the optimization of related tasks with limited training data, thereby efficiently addressing
data bottlenecks.

• Parsimony on Interpretation. The parsimony on interpretation is to identify important evidence
in face to massive connections on graphs. Our primary approach is to encapsulate logical rules
within graphs as supporting evidence, utilizing the logical interpretation of knowledge to eluci-
date the reasoning processes of models [29, 30]. By achieving this, we can efficiently interpret
the model’s result with subgraph, thereby efficiently addressing trust bottlenecks.

• Potential in AI for Science. In above, we have elaborate howparsimony inmodel, training and inter-
pretation can be achieved individually following a knowledge-drivenway. Wewill combine these
idea and further show how they can help AI for science. Specifically, we will take drug-drug in-
teraction as an application, which predicts interactions between emerging and existing drugs. By
extracting path-based subgraphs and learning subgraph representation, we can efficiently reduce
the data and computational requirements and identify evidence with subgraphs.
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Figure 3: AutoBLM first sets up a search space by analyzing existing scoring functions and then
utilizes the bi-level optimization to extract semantics and relationships simultaneously.

3. Parsimony on Model

The goal of parsimony on model is to match the performance of complex models using a simpler
architecture. To achieve this, it is necessary to prune the network architecture or search the sim-
ple structure to guide the model simplification or semantic reorganization. Inspired by [20], which
highlights the potential of achieving superior performance with standard neural network architec-
tures through “knowledge-aware” meta-learning, we propose approaches to architectural parsi-
mony by leveraging knowledge as prior information to guide the search for alternative but simpler
structures in learning.

3.1. Automated Bi-linear Scoring Function Design

In knowledge graph learning, the scoring function is a key component that measures the plausi-
bility of edges [21]. Human experts often design various complex scoring functions to evaluate
edge plausibility, which can be redundant and inefficient in model design. To achieve parsimony
across different scoring functions, we proposeAutoBLM[23], which focuses on semantics and lever-
ages computational power to reconfigure simple architectural elements, enabling efficient learning
across diverse tasks. Specifically, AutoBLM employs a bi-level framework to simultaneously extract
semantic representations (i.e., the embeddings of entities and relations in knowledge graph) and
search the relations of entities, which is shown in Figure 3. The lower level learns representations
from the training dataset, while the upper level searches the knowledge space to discover semantic
relationships in a unified search space, using the validation dataset. Additionally, AutoBLM en-
ables the learning of new models that are better adapted to specific datasets through an efficient
evolutionary search algorithm, enhancing transferability.

Table 1: MRR performance comparison of AutoBLM and
neural models (Interstellar and CompGCN).

Model WN18RR FB15k237 YAGO3-10
Interstellar 0.48 0.32 0.51
CompGCN 0.479 0.355 0.421
AutoBLM 0.490 0.360 0.571

The performance of AutoBLM is eval-
uated with knowledge graph reason-
ing benchmarks. The results, eval-
uated with mean reciprocal ranking
(MRR) metric, are shown in Table 1.
Compared with the complex neural
network models Interstellar [31] and
CompGCN [32], AutoBLM gains significant improvement on the three datasets. In particular, it
recombines the simple relation to simulate complex structure and outperforms the deep neural net-
work models, which often have better expressiveness with higher computational costs.
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Figure 4: PAR meta-learns a property-aware network to improve sample efficiency (left). PACIA
introduces GNN adapter to achieve efficient hierarchical adaptation (right).

Figure 5: ColdNAS uses a hypernetwork to map each user’s history interactions to user-specific
parameters which are then used to modulate the predictor, and formulate how to modulate and
where to modulate as a NAS problem.

3.2. Symbolized Architecture Search for Recommendation

User cold-start recommendation problem targets at quickly generalize to new tasks (i.e. personal-
ized recommendation for cold-start users) with a few training samples (i.e. a few interaction his-
tories). A number of works [33–35] adopt the classic gradient-based meta-learning strategy called
model-agnostic meta learning (MAML) [36], which learns a good initialized parameter from a set
of tasks and adapts it to a new task by taking a few steps of gradient descent updates on a limited
number of labeled samples. This line of models has demonstrated high potential of alleviating user
cold-start problem. However, gradient-based meta-learning strategy require expertise to tune the
optimization procedure to avoid over-fitting. Besides, the inference time can be long. To address
these challenges, we propose ColdNAS [24], which searches for proper modulation structures to
adapt user-specific recommendations as shown in Figure 5. The core of ColdNAS is to utilize a hy-
pernetwork that maps user interaction history to personalized parameters, which are then used
to modulate the predictor model. Specifically, ColdNAS formulates a unified search space and
optimizes the modulation functions as part of a differentiable neural architecture search (NAS).

Table 2: Test performance (%) obtained on benchmark
datasets. The best results are highlighted in bold and the
second-best in italic. A smaller value is better.

Dataset Metric MAMO TaNP ColdNAS
MovieLens MSE 90.20(0.22) 89.11(0.18) 87.96(0.12)

MAE 75.34(0.26) 74.78(0.14) 74.29(0.20)
Book MSE 14.82(0.05) 14.75(0.05) 14.15(0.08)
Crossing MAE 3.51(0.02) 3.48(0.01) 3.40(0.01)
Last.fm MSE 21.64(0.10) 21.58(0.20) 20.91(0.05)

MAE 42.30(0.28) 42.15(0.56) 41.78(0.24)

By adopting a symbolic search
approach instead of deep learning-
based fitting methods, ColdNAS
significantly reduces the search
space and improves efficiency. Fur-
thermore, models that are better
suited for specific datasets can be
learned through an efficient and
robust search algorithm, achieving
adaptability across datasets.
The performance of ColdNAS is evaluated on multiple benchmark datasets (i.e., MovieLens [37],
Book-Crossing [38] and Last.fm [39]), and measured with metrics such as MSE and MAE, are
shown in the Table 2. Compared with existing state-of-the-art cold-start models (i.e., MAML and
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TaNP [39]) demonstrates significant improvements on all datasets. In particular, it automatically
identifies the optimal modulation structures that outperform fixed modulation strategies, yielding
superior performance while maintaining computational efficiency.

4. Parsimony on Training
In AI-assisted scientific research, particularly in molecules and biomedicine, the scarcity of labeled
data presents significant challenges. Motivated by [40], which utilizes the symbolic structure be-
tween parameters obtained from different tasks for downstream tasks prediction, we propose ap-
proaches to learning parsimony by leveraging task-related knowledge to guide the fine-tuning on
downstream tasks. In molecules properties prediction, we have developed meta-learning learn-
ing techniques that enforce parsimony on learning. These approaches ensure that parameters can
be efficiently adapted in relation to functional groups, optimizing their use and enhancing model
adaptability.

4.1. Property-Aware Relation Networks
Our first work towards this problem is the property-aware relation networks (PAR) [26, 27].
PAR uses a property-aware molecular encoder to transform the generic molecular embeddings to
property-aware ones. To fully leverage the supervised learning signal, PAR learns to estimate the
molecular relation graph by a query-dependent relation graph learningmodule, inwhichmolecular
embeddings are refined w.r.t. the target property. Thus, the facts that both property-related infor-
mation and relationships among molecules change across different properties are utilized to better
learn and propagate molecular embeddings. Besides, we propose a selective update strategy for
handling generic and property-aware information. In the inner-loop update, only the property-
aware information is updated, while both generic and property-aware information are updated
simultaneously in the outer-loop. We use gradient descents to update parameters in both loops.
Through the selective update strategy, the model can capture generic and property-aware informa-
tion separately in the training procedure.
The results are reported in Table 3. From the results, we observe that PAR obtains the best per-
formance among methods using graph-based molecular encoders learned from scratch. The out-
performing results can be attributed to the combination of metric-based and optimization-based
method in the design of PAR method. In terms of average improvement, PAR obtains significantly
better performance than the best baseline learned from scratch (e.g. EGNN) by 1.59%, showing
enhanced performance.

Method Tox21 SIDER MUV ToxCast
10-shot 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot 1-shot

MAML 79.59(0.33) 75.63(0.18) 70.49(0.54) 68.63(1.51) 68.38(1.27) 65.82(2.49) 68.43(1.85) 66.75(1.62)

IterRefLSTM 81.10(0.10) 80.97(0.06) 69.63(0.16) 71.73(0.06) 49.56(2.32) 48.54(1.48) - -
PAR 82.13(0.26) 80.02(0.30) 75.15(0.35) 72.33(0.47) 68.08(2.23) 65.62(3.49) 70.01(0.85) 68.22(1.34)

ADKF-IFT 82.43(0.60) 77.94(0.91) 67.72(1.21) 58.69(1.44) 98.18(3.05) 67.04(4.86) 72.07(0.81) 67.50(1.23)

PACIA 84.25(0.31) 82.77(0.15) 82.40(0.26) 77.72(0.34) 72.58(2.23) 68.80(4.01) 72.38(0.96) 69.89(1.17)

Table 3: Test ROC-AUC (%) obtained on MoleculeNet. The best results are bolded, second-best
results are underlined.

4.2. Parameter-Efficient GNN Adapter
We further introduce parameter-efficient graph neural network (GNN) adapter (PACIA) [28]. By
adopting this approach, PACIA significantly reduces the risk of overfitting. Moreover, it offers the
advantage of faster inference speeds, as the adapted parameters are generated through a single
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forward pass rather than through iterative optimization steps. Additionally, initializing the function
g(·)with neural networks allows formore flexible forms of updates compared to traditional gradient
descent methods. Further, we design a hierarchical adaptation mechanism in the framework: Task-
level adaptation is achieved in the encoder since the structural features inmolecular graphs needs to
be captured in a property-adaptivemanner, while query-level adaptation is achieved in the predictor
based on the property-adaptive representations. To adapt GNN’s parameter-efficiently, we design
a hypernetwork-based GNN adapter to generate a few adaptive parameters to modulate the node
embedding and propagation depth, which are essential in message passing process. No further
fine-tuning is required.
Table 3 shows the prediction performance. Our analysis reveals that methods utilizing pretrained
graph-based molecular encoders generally outperform those with encoders learned from scratch.
This underscores the effectiveness of pretrained encoders in capturing rich, generic molecular in-
formation, subsequently providing superior molecular embeddings. In further evaluations, meta-
learning methods that learn relational graphs—specifically EGNN, PAR, and PACIA—demonstrate
enhanced performance. Notably, PACIA consistently achieves the highest ROC-AUC scores, fol-
lowed closely by PAR. In summary, PACIA establishes itself as the new state-of-the-art for predicting
molecular properties. It not only delivers superior predictive accuracy but also features significantly
faster adaptation speed and requires fewer adaptive parameters.

Given graph R-digraph

Application: drug discovery
Tapentadol

binds
CYP2D6 (P450)

bins_inv
Dolasetron

Supporting path

Figure 6: RED-GNN makes use of dynamic
programming to recursively encodes multiple r-
digraphs with shared edges, and utilizes query-
dependent attention mechanism to select the
strongly correlated edges.

Figure 7: Visualization of the learned struc-
tures. Dashed lines mean inverse relations.
The query triples are indicated by the red
rectangles.

5. Parsimony on Interpretation
Interpretability is important for understanding the result. In many fields, experts need to interpret
and understand the results of models in order to make informed decisions. GNNs, though effective
in learning from relational graphs, is very challenging to provide interpretable inference when fac-
ing a massive amount of associated information on graphs. For graph learning, the core problem
in achieving model interpretability lies in accurately capturing strong logical relationships and ex-
hibiting inference process with evidence. To achieve interpretability on graphs, our key idea is to
capture the logical rules inside graphs as supporting evidence and use the logical interpretation of
knowledge to clarifymodels’ reasoning process. In the following, we introduce the idea of subgraph
learning for interpreting and show the interpretable inference process with the learned subgraphs.

5.1. Interpreting with Subgraph Learning
The relational graph structures are complex and hard to understand directly. In comparison, rela-
tional paths with multiple connected edges are more interpretable [41, 42]. Based on this observa-
tion, RED-GNN [30] introduces a new relational structure, called relational di-graph (r-digraph)
as illustrated in Figure 6. The r-digraphs generalize relational paths to subgraphs by preserving
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Table 4: Performance comparison on knowledge graph reasoning tasks. The best results are bolded
and the second-best underlined.

Model WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

DRUM 0.486 42.5 58.6 0.343 25.5 51.6 0.531 45.3 67.6
RNNLogic 0.483 44.6 55.8 0.344 25.2 53.0 0.554 50.9 67.3
CompGCN 0.487 44.3 54.6 0.355 26.4 53.5 0.421 39.2 57.7
NBFNet 0.551 49.7 66.6 0.415 32.1 59.9 0.550 47.9 68.6

RED-GNN 0.564 50.2 67.8 0.418 32.9 59.0 0.584 50.9 71.3

the overlapped relational paths and structures of relations for reasoning. By leveraging the GNN
model with attention mechanism to propagate information over the subgraph, significant perfor-
mance improvement has been achieved and logical paths in r-digraphs can be captured.

Figure 8: GSRmodels the formula skeletonwith a
message-passing flow, which helps transform the
discovery of the skeleton into the search for the
message-passing flow. Then, the formulas can be
identified by interpreting component functions of
the searched message-passing flow, reusing clas-
sical symbolic regression methods.

The effectiveness of subgraph learning meth-
ods are evaluated on general knowledge graph
reasoning benchmarks. As shown in Table 4,
the subgraph learning methods NBFNet [43]
and RED-GNN [30] show significant advan-
tage over the embedding-based methods. We
visualize an exemplar learned r-digraphs by
RED-GNN on the Family dataset. Figure 7
shows one triple that DRUM fails. Chain-
like structures alone, such as id-1482

nephew−−−−→
id-1432 brother−−−→ id-1480

identify−−−−→ id-1480 or
id-1482

nephew−−−−→ id-1432 father−−−→ id-1249 uncle−−→
id-1480, can only imply that id-1482 is the
son or nephew of id-1480. These two chain-
like structures together provide the evidence
that id-1432 and id-1480 are the only brother
of each other, which is crucial in inferring that
id-1482 is the son of id-1480.

5.2. Symbolic Regression on Graphs

Figure 9: Learned formulas for pedestrian dy-
namics.

Graph-structured physical mechanisms are
commonly found in various scientific domains,
where variables such as mass, force, and
energy interact through relationships on a
graph. Traditional symbolic regression (SR)
methods have been used to discover formulas
from input-output data pairs but struggle to
handle graph-structured inputs. We present
the GSR [29] as shown in Figure 8, which is
designed to extend symbolic regression to
graph-structured physical mechanisms. By in-
tegrating prior knowledge in the form of symbolic logic and physical laws, the proposed approach
transforms the discovery of formula skeletons into a search for efficient message-passing flows
in GNNs. The framework enables the model to balance accuracy and simplicity by identifying
Pareto-optimal flows that generalize well across different physical domains. Through knowledge-
guided symbolic learning, the model captures essential relationships within graph-structured data,
achieving parsimony on interpretation.
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The learned formulas and the corresponding physical meanings are reported in Figure 9, which
demonstrates that our model can learn different skeletons and formulas that are more precise than
the social force model with explicit physical meanings.

6. Potential in Drug Development
In the ever-changing world of pharmaceuticals, the intersection of scientific advancements and reg-
ulatory changes has led to a significant breakthrough, particularly in the rapid development of new
drugs aimed at treating rare, severe, or life-threatening diseases [44, 45]. Machine learning models
have become powerful tools for predicting drug interactions, capable of comprehensively captur-
ing intricate relationships on the interaction graphs. Our work EmerGNN [46] takes this a step
further by introducing a graph learning framework that predicts interactions between emerging
and existing drugs by integrating drug-drug interaction (DDI) and biomedical networks, extract-
ing path-based subgraphs, and learning subgraph representations.
The general idea of EmerGNN is illustrated in Figure 10. Emerging drugs typically have limited
interactions with existing drugs. To address this issue, EmerGNN utilizes biomedical network and
extracts subgraph GL

u,v from it to connect emerging drug u with existing drug v. Drawing inspira-
tion from the subgraph learningmethods [30, 43], EmerGNNproposes a flow-basedGNN g(GL

u,v;θ)
with an attention mechanism to encode pair-wise subgraph representations for drug pairs. These
subgraph representations are then used to directly predict the interaction of the drug pair. This
approach enables a more nuanced understanding of interactions involving emerging drugs, incor-
porating knowledge from the interconnected network of biomedical entities and their relationships,
and providing interpretable insights.

Figure 10: (a) EmerGNN learns pairwise representations of drugs by extracting the paths be-
tween drug pairs, propagating information from one drug to the other, and incorporating the rel-
evant biomedical concepts on the paths. (b) Visualization of the structure learned by EmerGNN.
DB006204 (Tapentadol) is an existing drug, and DB00757 (Dolasetron) is an emerging drug. (c)
Performance comparison on DDI prediction tasks. The best results are bolded and the second-best
underlined.

The results are shown in Table 10(c), from the results, we find that the proposed EmerGNN outper-
formsCSMDDI [47] that directly uses drug features to predict, HINDDI [48] that countsmeta-paths
from biomedical network for prediction, KG-DDI [49] that learns drug embeddings, and DeepLGF
[50] that models with GNN in both benchmarks and both settings. Furthermore, we show a case
studywith the visualized subgraph in Figure 10(b) by selecting important paths according to the at-
tention values. The path connecting two drugs through the binding protein Gene::1565 (CYP2D6),
which is a P450 enzyme that plays a key role in drug metabolism, for example, shows a way to in-
terpret the inference process with supporting evidence. From the empirical comparison and case
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studies, we conclude that subgraph learning can not only achieve improvements in representation
learning, but also interpret the inference process with supporting evidence.

7. Future Works
Finally, we talk about our ongoing future works from theory, method and application.

• Theory: Knowledge quantization. One key area for further research is the development of a the-
oretical foundation for knowledge quantization. Current machine learning frameworks heavily
depend on large-scale data and complex models; however, incorporating mechanisms to distill
knowledge intomore compact and efficient forms can result inmodels that are bothmore efficient
and parsimonious. Future work will focus on quantifying howmuch domain-specific knowledge
is necessary to drive model performance while reducing the need for large datasets. This will
involve formalizing the concept of “knowledge as a resource” and developing algorithms that
can optimize the utilization of knowledge while maintaining performance across various tasks.
A theoretical framework for knowledge quantization will pave the way for more efficient inte-
gration of symbolic logic, physical laws, and other forms of structured knowledge into learning
models.

• Methods: Integrating with LLMs. As large language models (LLMs) continue to dominate AI re-
search, finding efficient ways to integrate themwith specialized knowledge and smallermodels is
crucial. Our future work will focus on creating methods that allow seamless integration of LLMs
with domain-specific frameworks. Instead of scaling up models indefinitely, the focus will be
on using LLMs as modular components that can be fine-tuned or adapted based on task-specific
knowledge. This approach will involve the development of techniques for aligning the outputs
of LLMs with symbolic and logical reasoning systems, enhancing the ability of these models to
perform in specialized fields such as bioinformatics or physics. Furthermore, exploring ways to
reduce the computational footprint of LLMs while maintaining their versatility will be a key area
of focus.

• Applications: AI for Science. The application of AI for scientific discovery remains one of the most
promising areas for further exploration. Future research will focus on leveraging the proposed
parsimonious learning framework to tackle more complex challenges in drug discovery, molec-
ular property prediction, and other areas within AI for science. In drug-drug interaction predic-
tion, the intricate nature of molecular interactions typically demands significant computational
resources. By applying parsimony to the model, neural networks can be simplified, enabling effi-
cient predictions while reducing computational load. In protein structure prediction, the scarcity
of labeled data often makes training challenging. Parsimony in training leverages domain knowl-
edge, thereby reducing the reliance on large datasets and enabling accurate predictions evenwith
limited data. In molecular property prediction, understanding the reasoning behind model pre-
dictions is crucial for advancing scientific research. Parsimony in interpretation allows for the
extraction of key insights from complex data, improving both the transparency of the model and
the trustworthiness of its predictions.

8. Conclusion
This paper introduces an alternative way to develop next-generation learning techniques instead
of scaling law. By leveraging the duality between data and knowledge, our method extracts sym-
bolic logic and physical laws during the learning process and applies combinatorial generalization
to various tasks. This approach effectively overcomes the limitations of traditional scaling methods.
Experimental results demonstrate that our framework significantly improves model performance,
showcasing its ability to achieve parsimony on model, training and interpretation. These findings
underscore the potential of integrating knowledge intomachine learningmodels, offering a promis-
ing direction for future research and applications.
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