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ABSTRACT

In this paper, we introduce a novel framework to enhance the quality of synthetic
image-text pairs for multimodal models such as CLIP. Our approach, named
KnowData, integrates real-world knowledge explicitly into the generation of
text descriptions. It combines structured knowledge from knowledge graphs like
ConceptNet and unstructured knowledge extracted from Wikipedia, to ensure that
the generated text descriptions are both contextually rich and accurately reflective
of real-world knowledge. Additionally, we leverage Large Language Models for
the expansion, summarization, and refinement of the text descriptions to ensure
their coherence. These enriched texts are subsequently used to generate images
through advanced text-to-image models like Stable Diffusion and DALLE-3. CLIP
models are then fine-tuned with these synthetic data for downstream zero-shot
image classification tasks. Our experiments across 9 datasets demonstrate that
CLIP models fine-tuned with our knowledge-guided synthetic datasets outperform
6 state-of-the-art zero-shot CLIP methods (e.g., +11.23% on DTD and +4% on
EuroSAT based on ViT-B/16 model; +11.47% on CIFAR-100 and +7.99% on
DTD based on ResNet-50 model). These results showcase the improved out-of-
distribution robustness and adaptability of KnowData across a diverse set of data
domains. We further verify the design of KnowData through ablation studies,
revealing that the integration of knowledge in the text descriptions contributes to the
reliability, diversity, and detail orientation of the synthetic images, thereby offering
better data scaling laws for CLIP zero-shot image classification performance.

1 INTRODUCTION

Multimodal learning, particularly in image-text models such as Contrastive Language-Image Pre-
training (CLIP) (Radford et al., 2021) has witnessed transformative advancements in recent years.
These models excel in understanding and correlating the nuances of visual and textual data, leading
to applications in a wide range of domains. Despite their versatility, a critical aspect of their
development hinges on the quality and relevance of their training datasets. Traditional dataset
collection methods, predominantly based on extensive web crawling, could compromise on the
contextual richness and accuracy of text-image pairs due to the inclusion of noisy data on the
internet (Feng et al., 2024).

To fill in this gap, there have been several approaches proposed to improve the quality of image-text
pairs as training or fine-tuning data. For instance, to enhance data quality when building the powerful
DALLE-3 model, Betker et al. (2023) trained a bespoke image captioner to recaption the image
dataset. Also, it has been shown that merely enlarging the training data size or combining multiple
sources does not necessarily lead to better multimodal models, while the data quality plays the key
role (Nguyen et al., 2022; Fang et al., 2022). Existing studies mainly focus on using the implicit
knowledge in language models to improve the text quality of image-text pairs (He et al., 2023; Shipard
et al., 2023), which may lack factuality and diversity (Betker et al., 2023). In our work, we explore
the question: Can we explicitly integrate real-world knowledge to improve the quality of image-text
pairs and further improve the performance and robustness of multimodal models?

To explicitly leverage real-world knowledge to improve data quality, we propose a novel data genera-
tion framework KnowData (shown in Figure 1), which introduces a knowledge-guided approach to
generate text-image pairs with multiple knowledge sources, including large-scale knowledge graphs,
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tench

goldfish

Great white shark

A photo of a {},
and {} is belonging to {}

A photo of a {},
and {} is a type of {}

A photo of a {},
and {} is related to {}

Retrieve unstructured 
knowledge from knowledge 
bases such as Wiki

Expanded by GPT 

A photo of a tench, which is a 
freshwater fish belonging to the 
family Cyprinidae. Tench have a 
stocky, carp-like shape and are 
known for their olive-green skin, 
which is darker above and almost 
golden below. They have a square-
shaped tail fin and rounded fins…

Extract structured knowledge
Summarized and refined and by GPT 

Stable diffusion

d. Fine-tune downstream models

Diversity tricks
（guidance scale）

Filtered by clip scores

A photo of a tench, which is 
a freshwater fish belonging 
to the family cyprinidae
characterized by its olive-
green coloration and small 
scales.

Wiki knowledge: Tench. Morphology. 
Tench have a stocky, carp-like shape 
and olive-green skin, darker above 
and almost golden below. The tail fin 
is square in shape. The other fins 
are distinctly rounded in shape. The 
mouth is rather narrow and provided 
at each corner with a very small 
barbel… …

Generated text-image pairs

Input: class name

ConceptNet

GPT expansion

b. Text summarization and refinement

a. Knowledge-enabled text generation

Extract unstructured knowledge via RAG

c. Text-to-image generation with controllable diversity

A photo of a tench, which is 
a freshwater fish belonging 
to the family Cyprinidae. 
Tench have a stocky, carp-
like shape and are known 
for their olive-green skin, 
which is darker above and 
almost golden below. They 
have a square-shaped tail 
fin and rounded fins…

The photo depicts a majestic 
bald eagle, which is a 
specific type of eagle known 
for its distinctive bald head 
and fierce demeanor… The 
name ”bald” in bald eagle 
refers to the white head 
feathers of the adult bird, 
contrasting with its darker 
body…

The photograph depicts a 
Vizsla breed of dog, known 
for their distinctive short, 
rust-colored coat and their 
highly energetic and 
affectionate personality. 
Vizslas have a distinguished 
appearance and bearing, 
characterized by their lean  
and robust body structure 
with defined muscles…

Figure 1: The proposed KnowData framework consists of four components: a) knowledge-enabled
description generation, b) description summarization and refinement, c) image generation with
controlled diversity, and d) downstream model fine-tuning. Here yellow texts indicate structured
knowledge added through the knowledge graph (e.g., ConceptNet), blue texts signifies unstructured
knowledge augmented from knowledge stores (e.g., Wikipedia) through RAG, and green texts
represent knowledge expanded through LLMs.

Wikipedia knowledge stores, and Large Language Models (LLMs). In particular, (1) we first leverage
the structured knowledge from knowledge graphs such as ConceptNet (Speer et al., 2017) to generate
text that explicitly reflects basic object properties and relations (e.g.,“Vizsla is related to dog”). (2)
Furthermore, we use LLM to expand the structured knowledge sentences for more coherent descrip-
tions with supplementary details. (3) We then integrate the unstructured knowledge extracted from
external knowledge stores. We build a Retrieval Augmented Generation (RAG) pipeline to extract
related knowledge and description from Wikipedia (e.g., “The Hungarian Vizsla is a short-coated
hunting dog...The nose of the Vizsla will always have a reddish color that blends with the coat color.”).
(4) We then pass the text generated based on structured and unstructured knowledge to LLM to refine
and summarize it, which leads to texts following the real-world text data distribution while containing
multi-source knowledge. (5) Next, we use text-to-image models like Stable Diffusion (Rombach
et al., 2022) or DALLE-3 (Betker et al., 2023) to generate images based on the refined texts. For
each text input, we integrate different diversity constraints to generate multiple images, and select the
high-quality pairs based on certain criteria such as CLIP scores (Radford et al., 2021). (6) Finally,
we leverage our generated data to fine-tune the multimodal models. By integrating contextual and
domain-specific insights into the text generation process and diversity tricks into the image generation
phase, we aim to create high-quality training datasets, thereby enhancing the learning efficacy and
application potential of multimodal models like CLIP.

Our extensive experiments demonstrate that CLIP models fine-tuned with our knowledge-guided, syn-
thesized dataset outperform those trained with state-of-the-art (SOTA) data generation approaches (He
et al., 2023; Shipard et al., 2023) and other zero-shot techniques (Allingham et al., 2023; Menon
& Vondrick, 2023; Ge et al., 2023). We systematically evaluate KnowData across 9 datasets, high-
lighting its robustness and adaptability in various data domains. For instance, on ViT-B, we achieve
performance improvements of 11.23% on the DTD dataset and 4% on the EuroSAT dataset compared
to the SOTA. On RN50, we achieved improvements of 11.47% on the CIFAR-100 and 7.99% on
DTD. Furthermore, our ablation studies show that (1) by gradually adding more knowledge sources
for text descriptions, KnowData produces synthetic images with better reliability, diversity, and
accurate details; (2) KnowData benefits from stronger text-to-image generators; (3) KnowData
enables better data scaling law; (4) diversity in text knowledge and diversity in images both matter.

Our findings highlight the effectiveness of knowledge-infused synthetic data in enhancing CLIP
models’ generalization capabilities, suggesting a need to reevaluate dataset design strategies in
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multimodal learning. This study aims to present a new data generation pipeline and ignite further
research into knowledge-guided approaches for multimodal learning.

2 RELATED WORK

To demonstrate the capability of our knowledge-enabled data generation, we primarily evaluate our
generated data on improving CLIP zero-shot classification performance (i.e., without using real data).
Existing approaches to improving CLIP’s zero-shot performance include enhancing the per-class text
embedding with additional content, and fine-tuning CLIP model with synthetic data.

Enhancing the per-class text embedding with additional content. For vision-language models like
CLIP, the classification outcome is determined by finding the class label whose text embedding is most
similar to the image embedding. Enhancing text descriptions about class labels can improve CLIP
classification performance. For example, Allingham et al. (2023) use LLMs to generate additional text
prompt templates and perform weighted selection among these templates, while Menon & Vondrick
(2023) uses LLMs to derive descriptions for class names to obtain text embeddings. Ge et al. (2023)
supplements class names with hierarchical knowledge from WordNet to enhance text embeddings.
Despite leveraging knowledge, these methods lack systematic, explicit injection of diverse and
accurate knowledge, which may result in irrelevant or false information generated from LLMs. Our
approach uses multiple knowledge sources to ensure both diversity and accuracy. Moreover, the
aforementioned methods are limited to manual adjustments at the text embedding level. In contrast,
we use knowledge to generate synthetic text-image pairs and then fine-tune the model, which can
provide more flexible and thorough model adjustment.

Fine-tuning models with synthetic data. Existing studies employ various generation tricks for
diffusion models to enhance the diversity and quality of generated images and then finetune the
CLIP model, but they fail to effectively incorporate the relevant knowledge of the class itself into the
generation process (Shipard et al., 2023; Sarıyıldız et al., 2023). He et al. (2023) employs a word-
to-sentence T5 model to enrich prompts and generate images, but this approach merely randomizes
class expressions without systematically enriching class-related knowledge. Other studies, such
as Bansal & Grover (2023) and Trabucco et al. (2023), use synthetic data for data augmentation,
and Fan et al. (2023) explore the scaling laws of synthetic images for image classification tasks,
without enhancing the quality of generated data. In contrast, our knowledge-enabled data generation
framework produces higher-quality text descriptions and synthetic images with more detailed features,
enhancing CLIP zero-shot performance on downstream tasks.

Text-to-Image Diffusion Models. Diffusion models have significantly advanced text-to-image
generation by producing high-quality images from textual descriptions (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Nichol & Dhariwal, 2021). Notable models like Stable Diffusion (Rombach et al.,
2022), Imagen (Saharia et al., 2022), GLIDE (Nichol & Dhariwal, 2021), and DALLE-3 (Betker et al.,
2023) have demonstrated impressive capabilities in this domain. However, these models often lack
explicit knowledge utilization, leading to synthetic images that may miss certain detailed features.
This gap motivates our exploration of knowledge-enabled synthetic data generation.

3 KNOWDATA

In this section, we describe how we generate knowledge-enabled texts (Section 3.1 and Section 3.2),
create diverse images based on these texts by adding image diversity constraints (Section 3.3), and
utilize the synthetic data to fine-tune the downstream models (Section 3.4).

3.1 KNOWLEDGE-ENABLED DESCRIPTION GENERATION

Our knowledge-enabled description generation pipeline is designed to produce high-quality prompts
from a given class name. Subsequently, these prompts can be utilized by text-to-image diffusion
models to generate superior images. Our pipeline integrates diverse types of knowledge from various
sources. Specifically, we incorporate structured knowledge derived from large-scale knowledge
graphs, and unstructured knowledge from external knowledge stores via the Retrieval Augmented
Generation (RAG) framework and LLM, thereby enriching the details of the generated text.

Formally, let {c1, . . . , cK} be a list of targeted classes names, where K is the total number of classes.
We generally use x to denote the class description prompt used for image generation within the
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pipeline. The naive base prompt xbase
i can be “A photo of ci” for each class ci, where i ∈ [K]. Next,

we will elaborate on how we improve over the base prompt by incorporating diverse knowledge.

Extracting unstructured knowledge from knowledge graphs. Knowledge graphs are advanced
data structures that map out the connections between various entities, such as objects, people, places,
and concepts, to organize and integrate structured knowledge from multiple sources (Hogan et al.,
2021). Considering their comprehensive and interconnected representation of information, we first
supplement the classes with commonsense knowledge based on external knowledge graphs. The use
of external knowledge graphs does not rely on additional models and, most importantly, ensures the
correctness and broadness of the integrated knowledge. In this work, we choose ConceptNet (Speer
et al., 2017) for structured knowledge extraction. Unlike some other knowledge graphs, such
as ATOMIC (Hwang et al., 2021) that provides commonsense knowledge around human events,
ConceptNet is more focused on encyclopedic knowledge. This aligns well with the natural image
datasets we plan to evaluate, such as ImageNet.

Specifically, each node in ConceptNet represents one entity (e.g., object), and the edge represents the
relations between entities. We query the ConceptNet API with each class name ci as input, which
will return triplets of {head, relation, tail} where ci appears either in the head or tail. We consider
18 relations that may benefit our image recognition task, such as “RelatedTo”, “IsA”, “PartOf ”,
“LocatedNear”, and then only select triplets describing those relations. We then create templates to
convert these relations into more understandable sentences, e.g., replacing “{} RelatedTo {}” with
“{} is related to {}”. We defer the complete list of 18 chosen relations and corresponding alternative
templates to Appendix C. Then we concatenate the base prompt xbase

i with the ConceptNet sentence
(e.g., “A photo of ci, and ci is related to {}”) to obtain our description in the knowledge graph
enhancement stage of KnowData. We retrieve N such structured knowledge descriptions for each
class ci, denoted as xkg

i,j = KGj(x
base
i ) where KG denotes the knowledge graph, and j = 1, . . . , N .

Enhancing commonsense knowledge rule with LLM. After obtaining the basic commonsense
knowledge, we use GPT-3.5 (Ouyang et al., 2022) to introduce rich context descriptions. This
is because even after introducing related entities via ConceptNet relations, these commonsense
knowledge descriptions based on our templates remain too brief. The expansion by GPT-3.5 allows
for an enhanced expression of this common sense knowledge with higher quality vocabulary, syntax,
semantic coherence, etc. Furthermore, as GPT-3.5 is a model pretrained with a vast amount of
knowledge, it can also further supplement the knowledge in its generation, leading to descriptions
with richer details (see examples in Figure 1 green texts).

Concretely, denote the LLM (e.g., GPT-3.5) as L. For each ConceptNet knowledge xkg
i,j , j ∈ [N ] in

each class ci, we prompt LLM with “Rewrite the sentence to make the description more detailed:
{xkg

i,j}” to expand and supplement the sentences. We obtain xl
i,j = L(xkg

i,j) as LLM expansion output.

Retrieval Augmented Generation based on Wikipedia. We find that LLM-enhanced descriptions
still lack sufficient details about the class object and could contain hallucinated content. Therefore, we
utilize Retrieval Augmented Generation based on Wikipedia (Wikipedia, 2004), a reliable knowledge
store commonly used to fench factual knowledge, so as to add sufficient details about features of the
object. For instance, the pure class name “tench” lacks descriptions of its physical features, while the
explicit knowledge from Wikipedia can supplement it (see examples in Figure 1 blue texts).

In particular, we employ ColBERT (Khattab & Zaharia, 2020) for retrieval from a text corpus based on
their pre-built Wikipedia index and obtain related information given the query (Semnani et al., 2023).
To select related passages, a retrieval model employs an encoder function that projects texts into an
embedding space, and then identifies passages that closely resemble the query instance. In essence,
the retrieval function assesses the similarity between two textual instances within this embedding
space. Following this, a K-Nearest Neighbors (KNN) approach is utilized to identify the most similar
passages with high embedding similarity. Formally, let RAG be the retrieval model. For each LLM
expanded description xl

i,j for each class ci, we retrieve top Nrag relevant passages from Wikipedia
knowledge store through RAG, which are denoted as pragi,j,k = RAGk(x

l
i,j), k = 1, ..., Nrag.
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3.2 DESCRIPTION SUMMARIZATION AND REFINEMENT

For each class ci, given each LLM expanded commonsense description {xl
i,j} and each relevant

detailed knowledge description {pragi,j,k} retrieved from Wikipedia, we use the in-context learning
capabilities of GPT-3.5 to summarize these passages and refine the existing knowledge.

Specifically, we use prompt template “Context: {pragi,j,k}; Prompt_input: {xl
i,j}; Prompt_output:” to

combine the knowledge from Wikipedia passages and LLM-expanded descriptions together, and
induce the GPT-3.5 to provide summarization and refinement. Moreover, given the in-context learning
ability of recent LLMs, we provide few-shot demonstrations to improve the generation quality. In
particular, we add two polished demonstrations containing LLM-expanded description and Wikipedia
passages as input, as well as a concrete polished output displayed after “Prompt_output:”. With those
polished demonstrations, denoted as d, GPT-3.5 tends to perform better, as they help prevent the
model from generating irrelevant information. Examples of such manually optimized demonstrations
can be found in Appendix D. The final summarized and refined descriptions for each class ci are
denoted as xd

i,j,k = L(d, xl
i,j , p

rag
i,j,k) where j ∈ [N ], k ∈ [Nrag].

3.3 IMAGE GENERATION WITH CONTROLLED DIVERSITY

In this section, we use the final knowledge-enhanced class descriptions {xd
i,j,k} as the prompts for

text-to-image diffusion model to generate diverse images.

Image generation with enhanced diversity. We use diffusion model D, such as Stable Diffu-
sion (Rombach et al., 2022), GLIDE (Nichol & Dhariwal, 2021), and DALLE-3 (Betker et al., 2023),
to generate Nm images mi,j,k,q = Dq(x

d
i,j,k) for each prompt xd

i,j,k, where q ∈ [Nm].

To increase image diversity, we alter the parameter “guidance scale” (Rombach et al., 2022) in the
diffusion pipeline to control the balance between the precision of the generated image matching the
provided prompt and the generation diversity. Since knowledge-enabled prompts already possess
a considerable degree of diversity, and too much diversity could lead to noisy generation and hurt
performance (Fan et al., 2023), we do not employ additional methods to increase image diversity.
In fact, Shipard et al. (2023) suggests additional tricks for improving synthetic diversity, such as
generating stylized images. As their initial prompts are not good, they rely on more image generation
tricks to improve diversity. However, in our experiments, we found that adding more tricks is not
effective. For example, incorporating stylized images doubles the training dataset size, but the
accuracy does not significantly improve and rather decreases in some datasets (see Appendix E).

Selecting high-quality images. It is unavoidable that some extracted knowledge texts may not be rele-
vant to the targeted class, or some generated images may be of poor quality. Here, we utilize the CLIP
score (Radford et al., 2021) to filter out low-quality images. More specifically, for each generated im-
age mi,j,k,q , we use the CLIP text embedding xtemp

i for the corresponding class name ci, where xtemp
i

denote the OpenAI suggested prompt templates for CLIP zero-shot classification.1 Then, we calculate
its cosine similarity with the image embeddings as CLIP score. We filter out images with low scores
and obtain the filtered images for fine-tuning: {mi,j,k,q|cos(CLIP(mi,j,k,q),CLIP(x

temp
i )) ≥ θ} ,

where CLIP denotes the CLIP encoder for extracting text or image embedding, and θ is the threshold.

It is worth noting that our primary goal in using CLIP scores is not to perform precise quality ranking,
but rather to eliminate obviously mismatched samples or failed generations for the targeted class. We
observed that this filtering successfully removes two major types of low-quality samples. (1) Inade-
quate Text Refinement: GPT-3.5 occasionally fails to enhance the ConceptNet relations( Section 3.1)
due to errors in the knowledge text. This leads to responses like "This sentence is incorrect and does
not make sense", resulting in ineffective prompts and unusable synthetic images. (2) Failed Synthetic
Image Generation: Due to the randomness of diffusion model generation, synthetic images sometimes
fail to meet the specific dataset requirements. For example, synthetic images in the EuroSAT dataset
did not resemble actual satellite images. We provide examples of such failure cases on ImageNet
(Figure 4) and Eurosat (Figure 5) in Appendix F.

1https://github.com/openai/CLIP/blob/main/data/prompts.md
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3.4 DOWNSTREAM MODEL FINE-TUNING

We apply the knowledge-enabled synthetic data to improve downstream tasks. Notably, as no original
training data is used in our framework, our evaluation belongs to the zero-shot setting, demonstrating
the versatility applicability of KnowData that only relies on the targeted class names.

Zero-shot image classification setup. We focus on improving CLIP models on downstream tasks,
given the wide adoption of CLIP for multimodal learning. Considering the potential label space
mismatch between CLIP pre-training and the zero-shot downstream task, fine-tuning pretrained CLIP
models on our knowledge-enabled dataset can enhance the capabilities.

Fine-tuning method. Prior work suggests that finetuning a classifier head based on the frozen
pre-trained encoders is sufficient to adapt CLIP to a new task (Wortsman et al., 2022; He et al.,
2023). However, in our experiments, we find that we achieve better results by fine-tuning part of
the pre-trained image encoder parameters in addition to the classification head. In fact, we believe
that knowledge-enhanced data contains more information compared to other baseline synthetic data,
and merely fine-tuning the classification head is insufficient for the model to fully learn this content.
Therefore, more parameters must be unlocked for the model to learn the distribution. We believe that
with the increase in the amount of knowledge-enhanced synthetic data and the richness and accuracy
of the knowledge in the data, we will eventually be able to fine-tune the entire pre-trained encoder
with better results, which we leave for future work.

4 EXPERIMENT

4.1 SETUPS

Datasets. We use nine datasets, covering object-level, fine-grained, and robustness for zero-shot
image classification. (1) Object-level includes: (a) Cifar100 (Krizhevsky et al., 2009): extension of the
CIFAR-10 dataset to 100 classes, containing low-resolution images. (b) ImageNet (Deng et al., 2009)):
a large-scale dataset designed for use in visual object recognition software research, containing high-
resolution images (abbreviated as ‘IN-Val’). (2) Fine-grained includes: (a) DTD (Cimpoi et al.,
2014): a collection of textural images in the wild. (b) Eurosat (Helber et al., 2019): a collection of
satellite images covering 13 spectral bands and consisting of 10 classes. (3) Robustness includes: (a)
ImageNet-V2 (Recht et al., 2019): a reproduction of the ImageNet with distribution shift (abbreviated
as ‘IN-V2’). (b) ImageNet-Sketch (Wang et al., 2019): black and white sketches of ImageNet
(abbreviated as ‘IN-Sketch’). (c) ImageNet-R (Hendrycks et al., 2021a): renditions (e.g.,art, patterns,
etc.) of 200 ImageNet classes (abbreviated as ‘IN-R’). (d) ObjectNet (Barbu et al., 2019): real-world
objects from ImageNet with diversity. (e) ImageNet-A (Hendrycks et al., 2021b): ImageNet with
naturally occurring examples filtered (abbreviated as ‘IN-A’).

Models. We use GPT-3.5 (Brown et al., 2020) for generating and summarizing knowledge descrip-
tions. By default, we employ the Stable Diffusion (stable-diffusion-v1-5 endpoint) (Rom-
bach et al., 2022) for image generation, and we additionally evaluate GLIDE (Nichol & Dhariwal,
2021) and DALLE-3 (Azure OpenAI API) (Betker et al., 2023) in ablation studies. For fine-tuning
on the synthetic data for zero-shot classification, we use two pre-trained CLIP models: CLIP-RN50
based on ResNet-50 (He et al., 2016) and CLIP-ViT-B/16 based on ViT-B/16 (Dosovitskiy et al.,
2020). We fine-tune these models using cross-entropy loss, with a learning rate of 1e-5, a weight
decay of 0.1, and for 15 epochs. Specifically, we fine-tune the last 31 layers for CLIP-ViT-B/16
and the last 44 layers for CLIP-RN50 (details on selecting the layers to fine-tune are provided in
Appendix G.)

Synthetic dataset details. We generate 480k synthetic images based on ImageNet class names
to fine-tune the downstream models, and then evaluate the fine-tuned models on the ImageNet test
data and its out-of-distribution variants. We generate about 60k images for other datasets with fewer
categories, including CIFAR100, DTD, and EuroSAT. The detailed number of synthetic prompts and
images corresponding to each stage in our pipeline for different datasets can be found in Table 1. We
use 10 NVIDIA RTX A6000 to perform data generation. Generating 60k data requires 12 hours.

Baselines. We consider the OpenAI’s pretrained CLIP models and 5 state-of-the-art CLIP zero-shot
methods in the two categories discussed in Section 2 as our baselines. Specifically, (1) among
baselines that enhance the initial text embeddings, we evaluate: (a) ZPE (Allingham et al., 2023),
which establishes a pool of templates and then improves zero-shot results by using weighted selection
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Table 1: Synthetic dataset size at different stages in KnowData.

Dataset # class # prompts # images

after ConceptNet after GPT expansion after Wiki RAG after GPT summarization diffusion model generated after CLIP score filtering

CIFAR100 100 100× 100 = 10000 10000 2× 10000 = 20000 20000 4× 20000 = 80000 0.75× 80000 = 60000
DTD 47 100× 47 = 4700 4700 2× 4700 = 9400 9400 8× 9400 = 75200 0.8× 75200 = 60160

EuroSAT 10 100× 10 = 1000 1000 3× 1000 = 3000 3000 25× 3000 = 75000 0.8× 75000 = 60000
ImageNet&Variant 1000 100× 1000 = 100000 100000 2× 100000 = 200000 200000 4× 200000 = 800000 0.6× 800000 = 480000

Table 2: Zero-shot image classification results based on KnowData compared with SOTA methods.
The column S indicates the use of synthetic data, P denotes the use of pre-trained models, E represents
the incorporation of external knowledge, and IN-Avg is the average accuracy across ImageNet and its
variants. * denotes our reproduced results for baselines, and - means that the baseline method does
not support the evaluation setting. The highest accuracy across all methods is bolded3.

Model Method S P E CIFAR100 DTD EuroSAT IN-Val IN-V2 IN-R IN-A IN-Sketch IN-Avg

CLIP
ViT-B/16

OpenAI (Radford et al., 2021) ×
√

× 68.70 46.00 54.10 68.60 61.60∗ 77.57∗ 50.23∗ 48.23∗ 61.25

ZPE (Allingham et al., 2023) ×
√ √

66.63 46.28 53.82 68.60 62.21 77.62 49.63 47.99 61.21
Description (Menon & Vondrick, 2023) ×

√ √
− 45.59 48.82 68.03 61.54 75.00∗ 49.17∗ 47.08∗ 60.16

Hierarchy (Ge et al., 2023) ×
√ √

35.20 − − 68.86 62.00 60.62 31.07 48.26 54.16

Synthetic (He et al., 2023)
√ √ √

70.71 44.92 59.86 69.16 61.28∗ 76.41 48.25∗ 48.47 60.71
Diversity (Shipard et al., 2023)

√
× × 32.38 − 21.71 − − − − − −

KnowData (ours)
√ √ √

73.88 57.51 63.86 70.44 64.13 78.20 48.65 50.63 62.41

CLIP
RN50

OpenAI (Radford et al., 2021) ×
√

× 41.60 41.70 41.10 59.60 52.92∗ 60.53∗ 22.80∗ 35.38∗ 46.25

Description (Menon & Vondrick, 2023) ×
√ √

− 41.90∗ 37.58∗ 59.59∗ 53.02∗ 57.20∗ 23.55∗ 33.73∗ 45.42
Hierarchy (Ge et al., 2023) ×

√ √
− − − 59.76∗ 53.11∗ 42.59∗ 11.21∗ 35.55∗ 40.44

Synthetic (He et al., 2023)
√ √ √

45.69 43.19 55.37 60.78 51.14∗ 59.37 21.91∗ 36.55 45.95
Diversity (Shipard et al., 2023)

√
× × 45.63 − 39.92 − − − − − −

KnowData (ours)
√ √ √

57.16 51.18 57.19 61.73 54.67 60.67 19.75 37.74 46.91

among these templates to serve as the classification head. (b) Description (Menon & Vondrick,
2023), which uses the description of the label instead of the label name itself as the input for text
embedding for classification. (c) Hierarchy (Ge et al., 2023), which enhances labels through the
WordNet hierarchy for data with low confidence. (2) Among baselines that involve fine-tuning with
synthetic images, we evaluate: (a) Synthetic (He et al., 2023), which enhances labels with the T5
model, generates images using these enhanced labels with the GLIDE model and then fine-tunes only
the classification head of CLIP. (b) Diversity (Shipard et al., 2023), which utilizes images generated
with three different tricks to enhance diversity and fine-tunes a model with random initialization.

Evaluation metrics. We use three common metrics to evaluate the quality of our generated images.
(1) Accuracy. For a test image, we input it into the image encoder to get the image embedding. By
multiplying this with the classification head and taking the argmax, we can predict the label for
the image. The top-1 accuracy across all images is used to determine the final accuracy. (2) CLIP
score. Unlike the CLIP score used for filtering in Section 3.3, the text embeddings for the CLIP score
here are obtained from our knowledge-enabled prompts, rather than being derived from class names
combined with each dataset’s CLIP template. This metric reflects the reliability of the generated
image regarding the prompt. (3) Diversity score. Following Boutin et al. (2023), we compute the
standard deviation in the feature space (SimCLR image encoder (Chen et al., 2020)) for images from
every class, and then compute the average score across all classes as the diversity score. Specifically,
for a given category j, composed of M samples and a feature space f , the diversity σj is computed

as follows: σj =
√

1
M−1

∑M
i=1(f(v

j
i )− 1

M

∑M
i=1 f(v

j
i ))

2, where vji is i-the image of class j.

4.2 EXPERIMENTAL RESULTS

KnowData improves CLIP’s zero-shot performance. We evaluate KnowData on zero-shot
image classification tasks by fine-tuning CLIP ViT-B/16 and CLIP RN50 models on our generated
synthetic data. (1) The results in Table 2 show that, on ViT-B, compared to the best SOTA methods,
KnowData achieves 11.23% and 4% performance improvements on the DTD and EuroSAT datasets,
respectively. On RN50, the performance improvements were 11.47% and 7.99% on the Cifar100
and DTD datasets, respectively. (2) Besides significant improvements on fine-grained datasets, our
results on the ImageNet and its variants consistently surpassed those of SOTA methods. For example,
on In-Val dataset with CLIP ViT-B/16 model, the previous SOTA method, Synthetic (He et al.,
2023), only achieves 0.56% accuracy improvement over OpenAI CLIP baseline, whereas KnowData
reached 1.28% accuracy improvement. This demonstrates the effectiveness of our knowledge-
enabled data generation pipeline. Moreover, other SOTA methods performed poorly on individual
ImageNet variant datasets, failing to exceed the overall performance of OpenAI CLIP, while our
model, fine-tuned with the same set of synthetic data, showed better performance cross various
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ImageNet variant datasets, proving the out-of-distribution robustness of knowledge empowerment in
enhancing zero-shot capabilities.

It is noteworthy that, we have reproduced and compared results from various SOTA CLIP zero-shot
classification methods, unlike existing works (Allingham et al., 2023; Menon & Vondrick, 2023; Ge
et al., 2023; He et al., 2023) that only compare to OpenAI CLIP baseline. Our results set stronger
baselines for evaluation and enable a more comprehensive understanding of related research.

KnowData produces synthetic images with better reliability and diversity. In addition to the
accuracy evaluated above, we further evaluate the CLIP score and diversity score of synthetic images.
In particular, we focus on how different components of KnowData that aim to gradually improve the
text descriptions, affect the image quality metrics compared to the base prompt (“BP”). In Table 3,

Table 3: The components in KnowData improve
the CLIP score and the diversity of synthetic data.
BP: the baseline using base prompt “A photo of
{ci}”. The components of KnowData include:
CN, adding ConceptNet knowledge; GPT, adding
GPT expansion; WRAG, adding RAG based on
Wikipedia.

Method CLIP Score Diversity

BP 0.3274 31.13
CN 0.3409 31.93
CN+GPT 0.3641 33.73
CN+WRAG+GPT 0.3513 37.02

(1) the CLIP score reflects the alignment be-
tween the image and text, ensuring that the im-
age accurately represents the content intended
by the text. The results in Table 3 show that as
knowledge gradually enriches, the CLIP score
tends to increase, indicating that knowledge can
improve the reliability of synthetic data, en-
abling it to generate the content intended by
the text more accurately. We note that the
decrease when we add Wiki RAG knowledge
(“+WRAG”) is mainly due to the CLIP text en-
coder’s inherent limitation of handling inputs
within 77 tokens, leading to the truncation of
lengthy texts. (2) Furthermore, the diversity
score, calculated using the standard deviation in
the feature space for images, also increases as knowledge enriches, demonstrating that the addition of
knowledge can also serve as a diversity trick, allowing for generating more rich and varied images.

A photo
of a
Rhodesian
Ridgeback

BP

A photo
of a
Vizsla

CN+WRAG+GPT

A photo
of a
Rhodesian
Ridgeback

A photo
of a
Vizsla,
and vizsla
is related
to dog.

A photo depicting
a large,muscular
Rhodesian
Ridgeback breed
of dog with a
distinctive ridge
of hair running
along its back [9
words omitted]

The photograph
depicts a Vizsla
breed of dog,
known for their
distinctive short,
rust-colored coat
[7 words omitted]

A photo depicting a large, 
muscular Rhodesian Ridgeback, a 
breed of dog known for its 
distinctive
ridge of hair running alongits 
back....,with a light wheaten to 
red wheaten coat that is short, 
dense, sleek, and glossy in 
appearance.[63 words omitted] 

The photograph depicts a Vizsla 
breed of dog, known for their 
distinctive short, rust-colored 
coat..., characterized by their lean 
and robust body structure with 
defined muscles...One of the key 
features of a Vizsla is their reddish-
colored nose, which blends with 
their coat color.[56 words omitted]

Rh
od

es
ia

n 
Ri

dg
eb

ac
k

V
iz

sla

CN+GPTCN

A photo 
of a 
Weimara
ner

A photo 
of a 
Weimara
ner, and 
weimaran
er is a 
type of 
dog.

A photograph 
displaying a regal-
looking 
Weimaraner dog, 
which is a breed 
known for its 
striking grey coat 
and amber-
colored eyes.

A photograph displaying a regal-
looking Weimaraner dog, which is 
a breed known for its striking 
grey coat and amber-colored 
eyes...such as small lobes on the 
inside of the ear known as
”Harrasburg Horns” and very 
light-grey patches between the 
ears known as ”Grafmar’s 
Caps.”[58 words omitted]

W
ei
m
ar
an
er

Figure 2: Stable Diffusion generated images for three similar types of dogs (Weimaraner, Rhodesian
Ridgeback, Vizsla) given different prompts. KnowData incorporating the knowledge from Concept-
Net (CN), GPT-3.5 (GPT) and Wikipedia (WRAG) can generate images of complete objects with
better details. However, objects from different classes are less distinguishable under base prompt
(BP).

KnowData produces synthetic images with more accurate details and more diverse background.
In Figure 2 and Appendix Figures 6 to 8, we display pairs of image-text from different numbers of
knowledge sources and annotate helpful information in the prompt from each knowledge source. In
summary, we find that knowledge-enabled image generation can 1) provide a more complete view

3We have filled in the table as much as possible, and reproduced the results for datasets that are not included in
the original paper of previous methods to our best. Some dataset/method combinations are difficult to reproduce
due to the absence of crucial knowledge or prompts. We mark such cells with “-”.
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Table 4: KnowData achieves better results with stronger data generators.

Data generator IN-Val IN-V2 IN-R IN-A IN-Sketch ObjectNet Average

GLIDE 67.64 61.19 76.29 47.25 48.34 51.79 58.75
Stable Diffusion 69.85 63.48 78.16 49.24 49.87 55.10 60.95

DALLE-3 69.66 62.93 78.81 48.48 51.47 54.76 61.02

Table 5: Ablation study on diversity in knowledge sources and image generation. BP: using base
prompt “A photo of {ci}”, CN: adding ConceptNet knowledge, GPT: adding GPT expansion, Div:
using image diversity tricks, WRAG: using RAG based on external knowledge store Wikipedia.

Model Method DTD EuroSAT IN-Val IN-V2 IN-R IN-A IN-Sketch ObjectNet Average

CLIP ViT-B/16

BP 48.11 54.19 69.04 62.57 77.85 48.44 49.61 54.68 60.37
BP+Div 49.17 57.90 69.64 63.03 77.88 48.08 49.80 54.93 60.56
CN+Div 53.01 60.94 69.48 62.97 77.92 48.75 49.75 54.55 60.57
PureGPT+Div 53.84 55.91 69.89 63.31 77.93 48.40 49.93 54.47 60.66
CN+GPT+Div 55.85 62.30 69.63 63.08 78.07 48.68 49.82 54.86 60.69
CN+WRAG+GPT+Div 57.33 63.86 69.95 63.61 78.18 48.81 49.93 55.36 60.97

of the object, 2) present more accurate details to help differentiate similar classes, and 3) produce
more diverse backgrounds. Take Figure 2 with three similar dog species (Weimaraner, Rhodesian
Ridgeback, and Vizsla) as an example. We see that with the base prompt, the generated images can
distinguish Weimaraner but cannot differentiate between Rhodesian Ridgeback and Vizsla. However,
with the addition of knowledge, the generated images can differentiate them through the distinct coat
colors (Rhodesian Ridgeback with light wheaten or red wheaten coat, and Vizsla with rust-colored
coat) and the unique nose color of Vizsla (reddish-colored nose, which blends with their coat color).
Moreover, it is evident that the images generated by the base prompt have a very uniform style of dogs
(e.g., showing only the head), while with the addition of knowledge, their poses and backgrounds
become increasingly rich and the full body of the dogs are displayed, making the images more
realistic.

KnowData benefits from stronger data generators. In our experiments, we used open-source
Stable Diffusion for synthetic image generation. Here, we study the effect of data generators and
additionally evaluate DALLE-3 and GLIDE. We fine-tune CLIP-ViTB/16 with 60k images generated
by different text-to-image generators using KnowData and evaluate the accuracy on ImageNet-Val
and its 5 variant testsets. The results in Table 4 show that stronger data generators (Stable Diffusion
and DALLE-3 compared to GLIDE) improve zero-shot performance through knowledge-enabled data.
It demonstrates the potential of KnowData as the community builds stronger data generators. While
both DALLE-3 and Stable Diffusion offer strong performance, we primarily use the open-source
model Stable Diffusion in our experiments due to convenience and efficiency.

120K 240K 360K 480K
Data size

59.8

60.0

60.2

60.4

60.6

60.8

Ac
c

IN-Avg
KnowData
BP

12K 24K 36K 48K 60K
Data size

48

50

52

54

56

Ac
c

DTD
KnowData
BP

Figure 3: KnowData demonstrates better data scaling
law than the base prompt (BP) method in terms of average
accuracy on ImageNet (In-Val and 5 variants) and accuracy
on DTD.

KnowData utilizes data more efficiently
when scaling synthetic data size. To study
the data scaling law, from the synthetic data
filtered by CLIP score (Section 3.3), we ran-
domly sample 10% ∼ 100% (in 10% in-
crements) of the data to fine-tune the down-
stream model. The results on averaged accu-
racy on ImageNet and its variants (left) and
accuracy on DTD dataset (right) in Figure 3
show that KnowData not only surpasses the
base prompt method but also shows more no-
ticeable improvement as the volume of data
increases, demonstrating better data scaling
ability.

Diversity in knowledge and diversity in images both matter. In Table 5, we conduct ablation
studies on the components of KnowData. Here we fine-tune CLIP-ViTB/16 with 80k synthetic
ImageNet images, and 60k synthetic images for other datasets. (1) From using base prompts (BP), to
adding ConceptNet knowledge (+CN), then to incorporating GPT extensions and summaries (+GPT),
and finally to adding Wikipedia-based retrieval augmented generation (+WRAG), we see continuous
accuracy improvement, underscoring the importance of diverse knowledge sources and text quality in
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KnowData. (2) Additionally, the diversity of images is also crucial, as evidenced by the comparison
between using and not using diversity techniques (+Div) in the first and second rows. (3) Furthermore,
we consider the Pure GPT baseline where we directly prompt GPT-3.5 to generate descriptions about
classes (using prompts “write a detailed description about {ci}”). The results show that the Pure GPT
baseline performs worse than KnowData that incorporates external knowledge sources, including
ConceptNet and Wikipedia. It indicates that the descriptions generated by the GPT-3.5 could lack
authenticity and diversity due to the potential LLM hallucinations. Explicitly injecting structured
knowledge as in KnowData can help improve both accuracy and diversity.

Table 6: Evaluation on different sizes of downstream models.

Dataset Method ViT-B/16 ViT-L/14 ViT-G/14

CIFAR100
OpenAI (Radford et al., 2021) 68.70 78.30 83.97
ZPE (Allingham et al., 2023) 66.63 79.36 -
KnowData (ours) 73.88 83.42 85.70

KnowData can benefit downstream
models with difference sizes. In
addition to CLIP ViT-B/16, we con-
duct experiments on the larger down-
stream models such as CLIP ViT-
L/14 pretrained on WebImageText
(WIT) (Radford et al., 2021) and ViT-G/14 pretrained on LAION-2B (Schuhmann et al., 2022)
The results in Table 6 show that the model fine-tuned on KnowData generated synthetic data per-
forms better than pre-trained CLIP (+5.12%) and the SOTA method ZPE (Allingham et al., 2023)
(+4.06%) on ViT-L/14, and also surpasses pretrained CLIP (+1.66%) on ViT-G/144 It suggests that
even models pre-trained on large datasets with relatively high zero-shot accuracy can still benefit
from KnowData’s fine-tuning by a noticeable margin. This indicates that large pre-training datasets
might still lack relevant knowledge (e.g., images of certain knowledge might be rare on the internet
and thus insufficient in pre-training). KnowData retrieves a comprehensive set of knowledge from
ConceptNet, Wikipedia and LLM, and generates corresponding images to supplement the knowledge.

Table 7: Zero-shot performance of CLIP models on VQA
v2 (Goyal et al., 2017) and WinoGround (Thrush et al., 2022)
downstream tasks.

Model VQA v2 WinoGround

Accuracy Text score Image score Group score

Pretrained CLIP (Radford et al., 2021) 51.62 25.25 10.25 7.00
KnowData-finetuned CLIP 54.86 27.50 12.00 8.00

Fine-tuning CLIP on KnowData
improves downstream task perfor-
mance on VQA and WinoGround.
In addition to image-classification
task, KnowData can potentially bene-
fit other downstream tasks. We follow
the existing evaluation method (Shen
et al., 2021) to evaluate zero-shot per-
formance of CLIP model on VQA v2 dataset (Goyal et al., 2017). Specifically, we append each label
used in VQA v2 to the corresponding question in the format [Question]+[Label] and then calculate
zero-shot performance by matching the most similar label to the question’s [image] embedding.
Following (Shen et al., 2021), we evaluate the “yes/no” questions (with question type “Are these. . . ”)
on VQA v2 mini-eval. We compare the performance of pretrained ViT-B/16 CLIP against the CLIP
model finetuned using KnowData synthetic data generated from ImageNet class labels. As shown in
Table 7, KnowData-finetuned model can be more generalized with improved accuracy on VQA v2
task.

Besides, we evaluate KnowData on WinoGround benchmark (Thrush et al., 2022) which require
explicit composition abilities. As shown in Table 7, KnowData fine-tuned CLIP model improves text,
image, and group scores. It indicates that the fine-tuned encoders have enhanced composition abilities,
allowing them to better discern similar image-text pairs in WinoGround. Given the distinct nature
of the knowledge from ImageNet class labels and WinoGround tasks, the results reflect improved
generalization capabilities of the fine-tuned model.

5 CONCLUSION

In this work, we propose a knowledge-enabled image-text pairs generation framework, KnowData,
which leverages real-world knowledge from ConceptNet and Wikipedia, along with large language
models and advanced text-to-image models. Our extensive evaluation results show that our approach
leads to better CLIP zero-shot performance across various domains, highlighting the importance of
integrating diverse knowledge sources for enhancing multimodal learning models.

4The result of ZPE on ViT-G/14 is not available in its paper, and ZPE’s implementation is not open-sourced.
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A BROADER IMPACT

Positive Societal Impacts The framework presented in our paper, KnowData, offers several
positive societal impacts, particularly in advancing the capabilities of multimodal models such as
CLIP: (1) Enhanced Learning and Accessibility: By integrating real-world knowledge from sources
like knowledge graphs and Wikipedia, KnowData produces more contextually rich and accurate
text descriptions. This can improve the educational value and accessibility of AI-generated content,
making it more informative and beneficial for users. (2) Improved CLIP Performance: Our approach
enhances the performance of CLIP models in zero-shot image classification tasks, as demonstrated
by significant performance improvements across multiple datasets. This can lead to more robust
and adaptable CLIP-based systems that perform better in real-world applications. (3) Promotion of
Multimodal Research: The successful integration of structured and unstructured knowledge into text
descriptions can inspire further research in the integration of diverse data sources for multimodal
learning, fostering innovation and progress in the field.

Negative Societal Impacts and Mitigation Strategies KnowData integrate real-world knowledge
into text descriptions, thereby enhancing CLIP model performance compared to using purely LLM-
generated text descriptions. While knowledge sources like Wikipedia and ConceptNet are widely
acknowledged as reliable text sources, our framework still relies on LLMs to summarize and refine the
text descriptions. This reliance introduces the possibility that the LLMs may inadvertently introduce
biases or fairness issues affecting certain groups. To mitigate this, future work is needed to research
and apply techniques to detect and reduce biases in the generated content.

B LIMITATIONS AND FUTURE WORK

In our work, we use knowledge-enabled description to generate synthetic images, and use synthetic
images to fine-tune the CLIP models for zero-shot image classification tasks.

(1) As discussed in Section 3.4, we found that fine-tuning partial layers of the image encoder performs
better than fine-tuning the entire image encoder. Achieving higher quality image generation, which
might enable effective fine-tuning of the entire image encoder, still requires more comprehensive and
accurate knowledge integration in the future.

(2) The fine-tuning process incurs additional computation costs compared to using pretrained CLIP
models. If efficiency is a constraint, the knowledge-enabled texts generated by our KnowData can be
used to directly enhance per-class text embeddings for CLIP image classification without fine-tuning.
We leave the exploration of this approach for future work.

(3) Another future work would be comparing our generated text captions with normally collected
ones (e.g., web-crawled image captions). We note that crawling high-quality web image captions and
selecting the most relevant ones for each class label is a challenging and non-trivial task, which could
itself constitute a novel contribution and is a promising future research direction.

(4) While our work primarily focuses on evaluating generated synthetic data on downstream image
classification/VQA tasks, extending our evaluation to improve other vision-language capabilities of
CLIP, including text/image retrieval, is an important and exciting direction.

C CONCEPTNET KNOWLEDGE

We focus on 18 relations from ConceptNet: “RelatedTo”,“FormOf”,“IsA”,“PartOf”,
“HasA”,“UsedFor”,“CapableOf”, “AtLocation”,“HasProperty”,“CreatedBy”,“SymbolOf”, “De-
finedAs”,“LocatedNear”,“HasContext”,“SimilarTo”, “MadeOf”, “CausesDesire”,“ReceivesAction”.

To convert these relations into more understandable sentences, we use the templates: “{} is related
to {}”,“{} is a form of {}”,“{} is a type of {}”,“{} is a part of {}”,“{} has {} {}”,“{} is used for
{}”,“{} is capable of {}”,“{} is at the location of {}”,“{} can be described as {}”,“{} is created by
{}”,“{} symbolically represents {}”,‘{} and {} overlap considerably in meaning, and {} is a more
explanatory version of {}”,“{} and {} are typically found near each other”,“{} is a word used in the
context of {}”,“{} is similar to {}”,“{} is made of {}”,“{} makes someone want {}”,“{} can be done
to {}”.
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D IN-CONTEXT LEARNING METHOD FOR RETRIEVAL AUGMENTED
GENERATION

We use the following template to guide GPT in summarizing the content of passages retrieved and to
adjust and supplement the original prompt.

{example0}
{example1}
---------------------
Context:
{passage_input}
Prompt input:
{prompt_input}
Prompt output:

The examples were manually polished by us, totaling 20 in number. For each prompt, we randomly
select 2 to be incorporated into the aforementioned template, which, along with the sentence itself
and the passage retrieved, guide GPT in the generation process. Here, we showcase two of these
examples.

---------------------
Context:
Tincinae Tincinae is a subfamily of freshwater ray-finned fish from the family Cyprinidae, it consists of the tench
of Eurasia and the east Asian clod minnows. Tinca tinca is a freshwater tincinae fish that is found in the Danube
basin
Prompt input:
A photo of a tench, which is a freshwater fish belonging to the family cyprinidae characterized by its olive-green
coloration and small scales.
Prompt output:
A photo of a Tinca tinca, a freshwater tench from the Tincinae subfamily within the Cyprinidae family, characterized
by its olive-green coloration and small scales, native to the Danube basin in Eurasia.
---------------------
Context:
Goldfish The Goldfish (Carassius auratus) is a freshwater fish in the family Cyprinidae of order Cypriniformes.
Goldfish breeds vary greatly in size, body shape, fin configuration, and coloration (various combinations of white,
yellow, orange, red, brown, and black are known). Native to China, the goldfish is a relatively small member of the
carp family (which also includes the Prussian carp and the crucian carp). It is commonly kept as a pet in indoor
aquariums, and is one of the most popular aquarium fish. Goldfish released into the wild have become an invasive
pest in parts of North America. It was first selectively bred for color in imperial China more than 1,000 years ago,
where several distinct breeds were developed.
Prompt input:
A photograph capturing the image of a small, bright orange goldfish, a freshwater fish species belonging to the
family Cyprinidae known for their distinctive scales and long fins.
Prompt output:
A photograph capturing a small, bright orange Carassius auratus, commonly known as a goldfish, a popular freshwater
species from the Cyprinidae family, renowned for its distinctive scales and long fins, and a history of over 1,000
years of selective breeding for varied colorations in China.

The reason for this approach is that if we use designed prompts to guide GPT in generation, it can lead
to the production of some irrelevant information, as in the example below: “This sentence accurately
describes a goldfish.”

Goldfish The Goldfish (Carassius auratus) is a freshwater fish in the family Cyprinidae of order Cypriniformes.
Goldfish breeds vary greatly in size, body shape, fin configuration, and coloration (various combinations of white,
yellow, orange, red, brown, and black are known). Native to China, the goldfish is a relatively small member of the
carp family (which also includes the Prussian carp and the crucian carp). It is commonly kept as a pet in indoor
aquariums, and is one of the most popular aquarium fish. Goldfish released into the wild have become an invasive
pest in parts of North America. It was first selectively bred for color in imperial China more than 1,000 years ago,
where several distinct breeds were developed.
---------------------
Given the context information above, please extract the most related information for the following sentence:
"A photograph capturing the image of a small, bright orange goldfish, a freshwater fish species belonging to the
family Cyprinidae known for their distinctive scales and long fins.";
and please append the extracted information to the end of this sentence to provide more details for this sentence
while maintaining its semantic meaning.

This sentence accurately describes a goldfish, a freshwater fish in the family Cyprinidae known for their distinctive
scales and long fins. Goldfish breeds vary greatly in coloration, and some may be bright orange in color. The
goldfish is commonly kept as a pet in indoor aquariums and was first selectively bred for color in imperial China
over 1,000 years ago. However, goldfish released into the wild have become an invasive pest in parts of North America.

E CONTROLLING THE DEGREE OF IMAGE DIVERSITY

Given the final prompts from KnowData empowered with knowledge through ConceptNet, Wikipedia,
and GPT-3.5, we evaluate two image generation methods: (1) Random guidance scale: it is achieved
by randomly setting the “guidance scale” parameters in the Stable Diffusion pipeline to control
the balance between the precision of the generated image matching the provided prompt and the
generation diversity. (2) Stylization and random guidance scale: we further add stylization to
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diversify the prompts, which is achieved by adding corresponding style descriptions (such as photo,
painting, artwork, sketch, collage, poster, digital art image, rock painting, doodle, 3D rendering) to
the prompt templates, so as to enhance the diversity of image generation. The number of images
generated for these two methods are 0.6M and 1.2M, respectively.

The results in Table 8 show that the accuracy does not increase but decreases despite the doubling in
the size of the training dataset. To facilitate subsequent testing and achieve better results, we choose
to use the randomized guidance scale as our method to enhance image diversity.

Table 8: Adding stylization during image generation process does not necessarily improve the
overall synthetic image quality for ImageNet, as reflected by the zero-shot performance of fine-tuned
downstream CLIP RN50 models.

Model Method # Synthetic images IN-Val IN-V2 IN-R IN-A IN-Sketch ObjectNet

CLIP RN50 Random guidance scale 0.6M 61.33 54.17 60.61 23.04 35.89 47.01
Stylization + Random guidance scale 1.2M 61.10 53.89 60.63 22.75 36.00 46.87
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Figure 4: Five images with the lowest CLIP scores from synthetic ImageNet dataset before and after
applying CLIP score filtering.
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Figure 5: Five images with the lowest CLIP scores from synthetic EuroSAT dataset before and after
applying CLIP score filtering.
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F CLIP SCORE FILTERING RESULTS

We present the five images with the lowest CLIP scores from ImageNet (see Figure 4) and EuroSAT
(see Figure 5) before and after applying CLIP score filtering. We identify two major failure patterns
in low-quality images before filtering: (1) Inadequate Text Refinement: GPT-3.5 occasionally fails to
enhance the ConceptNet relations( Section 3.1) due to errors in the knowledge text. This leads to
responses like "This sentence is incorrect and does not make sense", resulting in ineffective prompts
and unusable synthetic images. (2) Failed Synthetic Image Generation: Due to the randomness of
diffusion model generation, synthetic images sometimes fail to meet the specific dataset requirements.
For example, synthetic images in the EuroSAT dataset did not resemble actual satellite images.

After applying CLIP score filtering, images that did not meet the overall dataset requirements (such as
the necessary satellite images in EuroSAT) and those generated from inappropriate text descriptions
(as in ImageNet) were effectively filtered out. This process significantly improved the quality and
relevance of the remaining images.

G DETAILS ON CLIP MODEL FINE-TUNING

We treat the number of model layers in the pretrained CLIP model to fine-tune as a hyperparameter.
Starting from the classification head, we gradually unfreeze more blocks in the image encoders to
fine-tune while keeping the remaining layers frozen. As shown in Table 9, the ViT-B/16 model
performs best when fine-tuning the last 31 layers (including the classification head) with a 480k
ImageNet synthetic dataset. Therefore, we choose to fine-tune the last 31 layers for evaluation on
the CIFAR, EuroSAT, and ImageNet variant datasets. Similarly, for the RN50 model, we choose to
fine-tune the last 44 layers.

It is noteworthy that although we select the layers to fine-tune based on the results from the ImageNet
validation dataset, the evaluation results on other ImageNet variant datasets show that the chosen
layers consistently yield better performance across multiple datasets.

Table 9: Performance on IN-Val, IN-V2, IN-R, IN-A, IN-Sketch and ObjectNet when fine-tuning
different numbers of layers in pretrained CLIP ViT-B/16 on KnowData generated synthetic ImageNet
data.

Model Number of fine-tuning layers Layers description IN-Val IN-V2 IN-R IN-A IN-Sketch ObjectNet

CLIP ViT-B/16

last 2 layers Classificaiton Head 69.64 63.01 77.83 50.81 49.11 54.71
last 7 layers LayerNorm+Classificaiton Head 68.98 62.15 77.44 49.51 48.22 54.20
last 19 layers 11th Block+LayerNorm+Classificaiton Head 70.22 63.39 77.87 49.04 49.44 54.93
last 31 layers 10-11th Blocks+LayerNorm+Classificaiton Head 70.41 63.95 78.25 48.84 49.70 55.00
last 43 layers 9-11th Blocks+LayerNorm+Classificaiton Head 70.34 63.40 78.49 48.41 49.98 54.87
last 55 layers 8-11th Blocks+LayerNorm+Classificaiton Head 70.15 63.04 77.58 48.00 49.70 54.22

Table 10: Performance on IN-Val, IN-V2, IN-R, IN-A, and IN-Sketch when fine-tuning different
numbers of layers in pretrained CLIP RN50 on KnowData generated synthetic ImageNet data.

Model Number of fine-tuning layers Layers description IN-Val IN-V2 IN-R IN-A IN-Sketch

CLIP RN50

last 2 layers Classificaiton Head 60.24 53.16 60.35 22.39 35.35
last 44 layers 4th Block+AttentionPool+Classificaiton Head 61.75 54.44 60.48 20.19 36.85
last 101 layers 3-4th Blocks+AttentionPool+Classificaiton Head 61.73 54.37 59.89 18.15 36.20
last 140 layers 2-4th Blocks+AttentionPool+Classificaiton Head 61.55 54.57 59.81 17.80 36.41
last 170 layers 1-4th Blocks+AttentionPool+Classificaiton Head 61.58 54.42 59.80 17.88 36.34

H EXAMPLES OF KNOWLEDGE-ENABLED GENERATION OF TEXT-IMAGE
PAIRS

In Figures 6 to 8, we display pairs of images and their corresponding text generated from varying
numbers of knowledge sources. Each prompt is annotated to highlight the helpful information
contributed by each knowledge source. We find that knowledge-enabled image generation can: 1)
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A photo of a tench

tench

A photo of a goldfish

goldfish

A photo of a great white shark

great white shark
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A photo of a tench, and tench is a type of cyprinid A photo of a goldfish, and goldfish is a type of
cyprinid

A photo of a great white shark, and A great white
shark is a kind of shark.
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A photo of a tench, which is a freshwater fish
belonging to the family cyprinidae characterized by

its olive-green coloration and small scales.

A photograph capturing the image of a small, bright
orange goldfish, a freshwater fish species belonging
to the family Cyprinidae known for their distinctive

scales and long fins.

The photo depicts a large and imposing great white
shark, which is a highly recognized species of shark

known for its fierce appearance and menacing
reputation.
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W
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G

A photo of a tench, which is a freshwater fish
belonging to the family Cyprinidae. Tench have a
stocky, carp-like shape and are known for their

olive-green skin, which is darker above and
almost golden below. They have a square-shaped
tail fin and rounded fins. The mouth of the tench
is rather narrow and has a small barbel at each

corner. While the maximum size of a tench can reach
up to 70 cm, most specimens are much smaller. The

eyes of the tench are small and red-orange in
color.

A photograph capturing the image of a small,
bright orange goldfish, a freshwater fish species

in the family Cyprinidae known for their distinctive
scales and long fins. Goldfish, native to China,

are popular pets that have been selectively bred for
color for over 1,000 years. They come in various

breeds with different sizes, body shapes, fin
configurations, and colorations, including white,

yellow, orange, red, brown, and black.

The photo depicts a large and imposing great white
shark, which is a highly recognized species of shark

known for its fierce appearance and menacing
reputation. This vulnerable species faces numerous

ecological challenges and is protected
internationally. It is also depicted in popular

culture as a ferocious man-eater, although attacks
on humans are rare. Due to their need for long-
distance travel and demanding diet, great white
sharks are not kept in captivity, and there are no

known aquariums housing live specimens.

Figure 6: Examples of generated image-text pairs for fish.

Provide a more complete view of the object. 2) Present more accurate details to help differentiate
similar classes. 3) Produce more diverse backgrounds.

In the example of fish (Figure 6), it can be seen that fish generated using KnowData can display their
complete form, while images generated from the base prompt only show the tail. In the example of
birds (Figure 7), it is evident that the background of the KnowData generated images becomes more
enriched as knowledge increases. In the example of non-animal objects (Figure 8), additional details
can also be seen in KnowData that distinguish between similar types, such as the Acoustic guitar
and the Electric guitar. These two types of objects initially have similar backgrounds, but later, the
Electric guitar includes an amplifier when Wikipedia knowledge is incorporated.
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A photo of a bald eagle

bald eagle

A photo of a American dipper

American dipper

A photo of a goldfinch

goldfinch
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A photo of a bald eagle, and bald eagle is a type of
eagle

A photo of a American dipper, and american dipper is
related to water ouzel

A photo of a goldfinch, and goldfinch is a type of
finch
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The photo depicts a majestic bald eagle, which is a
specific type of eagle known for its distinctive

bald head and fierce demeanor.

The photo depicts an American dipper, which is a
small, dark-gray bird related to the water ouzel and

commonly found along fast-flowing streams and rivers
in the western United States.

The photo depicts a beautiful goldfinch, which
belongs to the finch family of birds characterized
by a distinctive yellow plumage with black wings,

tail, and forehead.
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The photo depicts a majestic bald eagle, which is a
specific type of eagle known for its distinctive

bald head and fierce demeanor. The bald eagle
belongs to the genus ”Haliaeetus”, which includes
other sea eagles. The name ”bald” in bald eagle
refers to the white head feathers of the adult

bird, contrasting with its darker body. The
specific name of the bald eagle, ”leucocephalus”, is

Latinized and refers to its white head. The bald
eagle was originally described by Carl Linnaeus in

his work ”Systema Naturae” as ”Falco leucocephalus”.
The bald eagle forms a species pair with the white-
tailed eagle of Eurasia, both of which have a white
head, although the white-tailed eagle also has paler

brown body plumage.

The photo depicts an American dipper, which is a
small, dark-gray bird related to the water ouzel

and commonly found along fast-flowing streams and
rivers in the western United States. This bird is
characterized by its stocky build, dark grey

coloration with a sometimes brown-tinged head, and
white feathers on the eyelids that flash white as

the bird blinks. It has long legs, which it uses
to bob its whole body up and down as it feeds on the

bottom of fast-moving, rocky streams. With a
wingspan of and an average weight of , the American

dipper is well-adapted to its semiaquatic lifestyle.

The photo depicts a European goldfinch, also known
as the goldfinch (Carduelis carduelis), which

belongs to the finch family of birds. This small
passerine bird is native to Europe, North Africa,
and western and central Asia, but has also been
introduced to other areas such as Australia, New
Zealand, and Uruguay. The breeding male of the
European goldfinch has a red face with black

markings around the eyes and a
black-and-white head. It has a beautiful

yellow plumage with black wings, tail, and
forehead. The back and flanks are buff or

chestnut brown, and the wings have a broad
yellow bar. The tail is black and the rump
is white. While males and females are very
similar, females have a slightly smaller red

area on the face.

Figure 7: Examples of generated image-text pairs for birds.
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A photo of a acoustic guitar, and acoustic guitar is
a type of guitar

A photo of a electric guitar, and electric guitar is
a type of guitar

A photo of a violin
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This is a photo of an acoustic guitar, which is a
type of guitar with a hollow body that amplifies the
sound produced by the strings when they are played.

A photograph depicting an electric guitar, which is
a musical instrument that is similar to a
traditional guitar, but features electronic

amplification and pickups that enable it to produce
a louder and more versatile sound.

A photo depicting a wooden musical instrument with
four strings, typically played with a bow across its

strings and known as a violin.
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This is a photo of an acoustic guitar, a type of
guitar with a hollow body that amplifies the sound

produced by the strings when they are played.
Unlike electric guitars, acoustic guitars do not
rely on electromagnetic pickups or amplifiers to

produce sound. Acoustic guitars are commonly used in
jazz, blues, R & B, and rock and roll music. They
are known for their lower fretboard action, lighter
strings, and techniques such as tapping, legato,

pinch harmonics, volume swells, and the use of a
tremolo arm or effects pedals are less frequently

used on acoustic guitars.

A photograph depicting an electric guitar, which is
a musical instrument that is similar to a

traditional guitar, but features electronic
amplification and pickups that enable it to

produce a louder and more versatile sound. Unlike a
standard acoustic guitar, an electric guitar

requires external amplification to be heard at
typical performance volumes. It uses one or more
pickups to convert the vibration of its strings into

electrical signals, which are then reproduced as
sound by loudspeakers. This allows for the shaping

and alteration of the sound through various
amplifier settings and effects such as reverb and

distortion. The electric guitar has played a
significant role in the development of multiple

genres of music, including jazz, blues, rock and
roll, and heavy metal.

A photo depicting a violin, sometimes referred to as
a ”fiddle”, is a wooden chordophone in the

violin family. It is the smallest and highest-
pitched instrument in the family and is typically
played by drawing a bow across its strings. The

violin has a hollow wooden body and usually has
four strings tuned in perfect fifths. It can

also be played by plucking the strings with the
fingers (pizzicato) and by striking the strings with

the wooden side of the bow (col legno). Violins are
important instruments in a wide variety of musical

genres, including Western classical music, folk
music, jazz, and even rock music when used with

electric amplification.

Figure 8: Examples of generated image-text pairs for non-animal objects.
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