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Abstract Automated machine learning (AutoML) significantly reduces human effort in developing

machine learning systems. However, automated feature engineering (AutoFE) for tabular

datasets, an important topic in AutoML, is still challenging because it requires exploiting

contextual knowledge, such as dataset descriptions and domain expertise. To address

this issue, previous work has introduced a framework that utilizes large language models

(LLMs) to generate code for feature engineering, taking contextual knowledge as input. Upon

evaluating this framework, we observed that LLMs often generate code that is non-executable.

This paper provides a novel dataset for fine-tuning LLMs to improve the stability of code

generation for feature engineering. We created candidate features by iteratively applying

predefined operations to input features in publicly available tabular datasets. Subsequently,

we evaluated the effectiveness of each candidate feature by training machine learning models

with the feature-appended datasets. The top features that improve predictive performance

for each dataset were selected and paired with metadata from the corresponding dataset.

In the experiment, we demonstrate that the fine-tuned LLMs using the proposed dataset

succeed in stably generating valid code for feature engineering. The experimental result

shows that smaller LLMs with fine-tuning exhibit better stability to their larger counterparts

without fine-tuning.

1 Introduction
Training prediction models from a tabular dataset appears in various real-world applica-

tions (Borisov et al., 2022) and is a typical problem in machine learning. Feature engineering (Zheng

and Casari, 2018) is a promising approach to improve the predictive performance of machine

learning models in tabular datasets. Feature engineering creates new features by composing and

transforming existing features in a given tabular dataset. Exploring new features by leveraging

meta-information and domain knowledge of a target tabular dataset, such as the description of

each feature, is an important process in feature engineering (Khurana, 2018).

Because themanual feature engineering process is laborious and difficult for non-experts, feature

engineering automation techniques have been investigated (Chen et al., 2021). Several existing

methods (Horn et al., 2020; Kanter and Veeramachaneni, 2015) exhaustively apply pre-defined

operations to raw features and then select promising aggregated features based on dimensionally

reduction techniques. However, the computational cost of these approaches increases as the

number of raw features increases because the number of candidate aggregated features depends on

the number of raw features. Another promising approach is to construct new effective features

without exhaustive search by leveraging domain knowledge. For instance, constructing a model

that generates new features from the meta-information of a target dataset can be considered.

As a method following above-mentioned approach, Hollmann, Müller, and Hutter (2023) pro-

posed an optimization framework named Context-Aware Automated Feature Engineering (CAAFE).

This framework uses large language models (LLMs) to iteratively generate features from meta-

information of the tabular dataset.

However, we have found the features generated by LLMs in the CAAFE framework are often

non-executable. Figure 1 shows the ratio of non-executable codes generated by CAAFE (and the

proposed model denoted with “SFT”. See Section 3 for detail). We observed that more than 75% and
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Figure 1: The count of non-executable code that each LLM model generates in evaluation.

28% of the feature engineering codes generated by Llama 2 (7B and 70B) and Llama 3 (8B and 70B)

were not executable, respectively. This phenomenon increases both the run time of the CAAFE

framework and the input text length for LLMs, which leads to higher costs.

To mitigate the instability in feature generation, we fine-tuned LLMs with a custom dataset that

contains meta-information of publicly available datasets and corresponding code for generating

effective additional features. These codes in our fine-tuning dataset were obtained by repeating

exhaustive search with pre-defined operations. We investigated the effects of supervised fine-tuning

(SFT) of CAAFE framework using our fine-tuning dataset and confirmed that our fine-tuning dataset

improved the stability of feature generation. Additionally, our fine-tuning dataset improved the

prediction performance with the Llama 2 series and maintained the performance with the Llama

3 series. Finally, the comparison with CAAFE applied to GPT models, which requires an API fee,

showed that our fine-tuned open models were a practical alternative.

2 Fine-Tuning Dataset for Feature Engineering

For improved stability in automated feature engineering with LLMs, we construct a fine-tuning

dataset containing metadata of existing tabular datasets and code for generating effective additional

features. Our search strategy for identifying effective additional features involves an iterative

process of exhaustive search. In each iteration, we generate the candidate features and evaluate

them with four machine learning models 𝑀 𝑗 ( 𝑗 = 1, . . . , 4). After three iterations, we determine

the top performing feature 𝐹𝑖, 𝑗 for each tabular dataset 𝑇𝑖 and model type𝑀 𝑗 . Since we used four

models and 672 datasets, our fine-tuning datasets D = ∪𝑖, 𝑗 {(𝐼𝑖 , 𝑀𝑗 , 𝐹𝑖, 𝑗 )} consist of 2,688 tuples of
metadata 𝐼𝑖 , model types𝑀 𝑗 , and effective additional features 𝐹𝑖, 𝑗 .

2.1 Datasets and Metadata used to Construct Fine-tuning Dataset

We found almost 5,000 tabular datasets and their metadata in OpenML (Vanschoren et al., 2013) and

collected tabular datasets satisfying all of the following conditions from those publicly available

datasets. First, we collected tabular datasets with more than 100 samples to stabilize the search

performance for effective additional features. Then, we reduced the number of samples to 5,000
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when the total amount of samples exceeded 5,000. Next, We selected the datasets with fewer than

15 features to reduce the training cost of machine learning models. After that, we checked the

data type of features and selected the datasets that contain at least one feature with the data type

appeared in Table 2 (shown in the Appendix). Finally, we obtained the target datasets by selecting

the datasets that contain a “description” of the dataset in the corresponding metadata provided by

OpenML. We also manually excluded the datasets whose contents are duplicated with 10 evaluation

datasets shown in Table 1. The total number of datasets satisfying all the conditions was 672. The

metadata corresponding to the obtained datasets contains an overview of the dataset, names of

features, and names of target variables.

2.2 Search Strategy for Effective Additional Features

We first evaluate the performance of the machine learning models without additional features as a

baseline. Next, we construct candidate features by applying the operations in Table 2 (shown in the

Appendix) to all features and all pairs of features that have compatible data types. Then, we evaluate

each candidate feature based on the performance of the machine learning model trained with it in

addition to the original features. We select the 20 features that lead to the highest performance and

iteratively construct the candidate features using both original and previously selected features. We

repeat this procedure three times, resulting in a total of 60 selected features. Finally, we select the

best candidate feature with the highest performance achieved through this search. By choosing only

the best feature, we ensure that our fine-tuning dataset contains only well-performing features.

We used the following four models to construct the fine-tuning dataset: linear model, decision

tree, 𝐾-nearest neighbor, and multi-layer perceptron. We selected these models to reduce the time

for creating the fine-tuning dataset while maintaining the diversity of the selected features. Note

that, as the linear model, we used a logistic regression model and a linear regression model for

classification and regression tasks, respectively. We implemented these models using scikit-learn
1.2.1 (Pedregosa et al., 2011) and used the default training setting for each model. We evaluated

the performance of the model using five-fold cross-validation, which was measured by RMSE for

regression tasks and accuracy for classification tasks.

In a previous study (Hollmann, Müller, and Hutter, 2023), LLMs were used to generate both code

for calculating additional feature values and comments explaining the properties of the generated

features. These comments included the name of the generated feature, a description of the feature,

its usefulness, and the names and sample values of existing features used to generate additional

features. To use the same content in fine-tuning, we make GPT-3.5 to generate the name of the

obtained feature and a description of usefulness. We provide the examples of generated content in

Figure 3 (shown in Appendix).

3 Experiment and Result

We ran the CAAFE framework with eight LLMs, including those fine-tuned with our dataset. First,

we compared the count of non-executable generated codes for feature engineering and confirm that

fine-tuning LLMs with our dataset increases the stability of feature generation. Next, we compared

the accuracy of tabular prediction tasks among features generated with different LLMs. We found

that supervised fine-tuning improves accuracy in the Llama 2 series and achieves comparable

results in the Llama 3 series. Finally, our comparison with GPT models suggests that our fine-tuned

models are a viable alternative to GPT models when considering the cost-accuracy trade-off.

3.1 Experimental Setting

We used TabPFN (Hollmann, Müller, Eggensperger, et al., 2023) as a machine learning model

for tabular prediction tasks in the evaluation of generated features, because it performs best in

Hollmann, Müller, and Hutter (2023). We evaluated each of 10 tabular datasets in three trials with
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different seeds, generating 10 features in each trial, following the CAAFE settings. These evaluation

datasets were excluded from the fine-tuning process. The seed only affects the LLM inference,

while the rest of stochastic components, such as splitting of tabular datasets and TabPFN inference,

are fixed with seed 0.

We chose Llama series (Touvron et al., 2023) as LLMs to measure the effect of supervised fine-

tuning (SFT). We ran the CAAFE framework with 7B, 70B, and 7B with SFT for Llama 2 Chat, and 8B,

70B, and 8Bwith SFT for Llama 3 Instruct. For comparison, we also ran the frameworkwith OpenAI’s

GPT models: GPT-3.5 Turbo (gpt-3.5-turbo-0125) and GPT-4 Turbo (gpt-4-1106-preview).
We fine-tuned the LLMs using low-rank adaptation (LoRA) (Hu et al., 2022) with the settings

shown in Table 3 (shown in the Appendix), and used the last checkpoint as the SFT model.

In the Llama series, we performed inference with top-p sampling, setting 𝑝 at 0.92 and the

temperature at 1.0, while limiting the maximum token generation to 500. We manually determined

these settings using non-evaluation tabular datasets by checking whether the generated code

appears natural to humans, based on typical hyperparameters. Additionally, we revised the original

CAAFE prompt format to a more structured one to enhance the understanding of prompts for

LLMs without changing the content from the original prompts in CAAFE as in Figure 2 (shown in

Appendix). All other settings followed those used in the previous study.

3.2 Result

Figure 1 shows the count of non-executable code in a total of 300 generated code for each model in

this experiment. It indicates that LLMs with supervised fine-tuning (SFT) are less likely to generate

non-executable code for feature engineering. Specifically, the error rate for the Llama 2 7B model

has decreased from 95.3 % to 69.0 %. This rate is lower than the 75.0 % observed in the more capable

70B model. Similarly, the rate for the Llama 3 8B model has fallen from 37.7 % to 7.0 %. This rate

is not only below 28.0 % in the 70B model but also 8.3 % in GPT-4 Turbo, one of the cutting-edge

LLMs.

Table 1 shows the mean test accuracies using the features generated by each LLM. Table 1

reveals that Llama 2 models with SFT outperform those without SFT. The result suggests that SFT

using our dataset effectively improves the accuracy of LLMs in certain cases.

For Llama 3 models, they exhibit similar performance levels, while there is a case where they

have achieved the highest performance among all models evaluated. Furthermore, when comparing

the GPT models to the Llama 3 8B SFT model, the GPT models generally show better accuracy.

As the GPT models require API fees to generate new features, open models, such as Llama 3, are

advantageous in terms of monetary cost.

4 Conclusion

To address the instability in feature generation, we fine-tuned LLM using a custom dataset including

meta-information of publicly available datasets and the corresponding codes for generating effective

additional features. Our investigation with the CAAFE framework demonstrated that supervised

fine-tuning using our fine-tuning dataset significantly enhanced the stability of feature generation.

Moreover, we observed an increase in accuracy within the Llama 2 series, whereas the fine-tuned

models achieved comparable performance in the Llama 3 series. Comparison with GPT models

revealed that our fine-tuned open models became a practical alternative.

5 Broader Impact Statement and Limitations

To fine-tune LLMs, considerable computational resources are required, which poses a significant

limitation in environments with limited computational resources. Additionally, creating a dataset

for training LLMs requires significant computational resources. Despite efforts to remove duplicate

tabular datasets during the preparation of our fine-tuning dataset, the possibility of contamination
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Table 1: The mean test accuracy across three trials for each dataset and LLM (standard deviation in

parentheses). The underline represents the higher mean accuracy between the SFT model

and the non-SFT model of the same size for each dataset. The bold indicates the highest mean

accuracy in each row.

Model Type Llama 2 (Chat) Llama 3 (Instruct) GPT (Turbo)

Model Name 7B 70B 7B SFT 8B 70B 8B SFT 3.5 4

Dateset Name

Airlines
0.6460

(0.0000)

0.6507
(0.0050)

0.6503

(0.0075)

0.6460
(0.0000)

0.6460
(0.0000)

0.6460
(0.0000)

0.6610
(0.0128)

0.6463
(0.0006)

Balance Scale
0.8340

(0.0000)

0.8340
(0.0000)

0.8847
(0.0558)

0.8340
(0.0000)

0.8513
(0.0012)

0.8367

(0.0023)

0.8800
(0.0745)

0.8613
(0.0067)

Breast W
0.9910

(0.0000)

0.9910
(0.0000)

0.9910
(0.0000)

0.9910
(0.0000)

0.9910
(0.0000)

1.0000
(0.0000)

0.9940
(0.0052)

0.9910
(0.0000)

Cmc
0.7300

(0.0000)

0.7307
(0.0006)

0.7300
(0.0000)

0.7333

(0.0000)

0.7320
(0.0000)

0.7300
(0.0000)

0.7323
(0.0021)

0.7327
(0.0015)

Credit G
0.8070

(0.0000)

0.8073
(0.0006)

0.8070
(0.0000)

0.8083
(0.0000)

0.8080
(0.0000)

0.8090

(0.0000)

0.8103
(0.0021)

0.8080
(0.0000)

Diabetes
0.8170

(0.0000)

0.8193
(0.0025)

0.8170
(0.0000)

0.8190
(0.0000)

0.8170
(0.0000)

0.8170
(0.0000)

0.8247
(0.0035)

0.8220
(0.0010)

Eucalyptus
0.9180

(0.0000)

0.9190
(0.0010)

0.9187

(0.0012)

0.9190
(0.0000)

0.9190
(0.0000)

0.9220

(0.0000)

0.9213
(0.0006)

0.9227
(0.0025)

Jungle Chess
0.9240

(0.0000)

0.9307
(0.0059)

0.9260

(0.0017)

0.9340
(0.0000)

0.9380
(0.0000)

0.9240
(0.0000)

0.9317
(0.0015)

0.9373
(0.0042)

Pc1
0.8810

(0.0000)

0.8827
(0.0029)

0.8817

(0.0012)

0.8930
(0.0000)

0.8880
(0.0000)

0.8850
(0.0000)

0.8853
(0.0025)

0.8887
(0.0029)

Tic Tac Toe
0.5970

(0.0000)

0.7250
(0.1119)

0.5970
(0.0000)

0.6123

(0.0000)

0.9310
(0.0000)

0.5970
(0.0000)

0.8050
(0.1079)

0.8707
(0.1290)

remains. This issue is not unique to our dataset; pre-training datasets used for LLMs, such as those

in the Llama series, may also be subject to contamination. For improved generalization, it would be

beneficial to expand the experimental results beyond the current 10 datasets. Including evaluation

datasets with more than 15 columns could offer valuable insights into extrapolation capabilities.

Moreover, it would be worthwhile to investigate whether error-free feature generation could result

in the meaningless easy-to-create features.

After careful reflection, the authors have determined that this work presents no notable negative

impacts to society or the environment.
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A Details of Search Strategy for Effective Additional Features

Table 2 shows the list of operations to generate candidate features in exhaustive search. The input

features x and y are assumed to be Series class in pandas (McKinney, 2010). The symbol const.
is given a value randomly selected in the range between the maximum and minimum values in

the corresponding column. The operations with single input are applied to all features with the

consistent data type to “Feature1”. The operations with two inputs are applied to all pairs of

features with the consistent data type to “Feature1” and “Feature2”, where one of the orders for

input features is applied when the target operation is symmetric (represented with the mark “✓” in
“Symm.”).

Table 3 shows the settings of the low-rank adaptation (LoRA) (Hu et al., 2022) in our SFT.

Table 2: List of operations to generate candidate features in exhaustive search.

Feature1 Feature2 Symm. Candidate Features

(pandas Series x) (pandas Series y) (const. is replaced with a randomly selected value)

numeric – –

x+const. x*const. x*x x/const.
-x 1/x x%const. x==const.
x!=const. x!=const. x>const. x>x.mean()
(x.mean()+x.std()>x)&(x>x.mean()-x.std())
x.abs() np.cos(x) np.sin(x) np.sqrt(x)
np.log(x)

datetime – –

x.dt.year x.dt.month x.dt.day
x.dt.hour x.dt.minute x.dt.second
x.dt.dayofyear x.dt.quarter x.dt.weekday
x.dt.is_year_start x.dt.is_month_start
x.dt.is_quarter_start x.dt.is_year_end
x.dt.is_month_end x.dt.is_quarter_end

category – – x.map(x.value_counts())

bool – – ~x

category numeric –

x.map(y.groupby(x).mean()) x.map(y.groupby(x).min())
x.map(y.groupby(x).max()) x.map(y.groupby(x).median())
x.map(y.groupby(x).sum()) x.map(y.groupby(x).std())
x.map((y>const.).groupby(x).sum())
y>x.map(y.groupby(x).mean())

category datetime – x.map(y.groupby(x).mean())

numeric numeric ✓ x+y x*y x==y x>y

bool bool ✓ x|y x&y

category category ✓ x.astype(str)+’-’+y.astype(str)

datetime datetime ✓ x-y x>y

timedelta timedelta ✓ x-y x>y

numeric numeric – x/y

category category –

x.map( y.groupby(x).apply(
lambda z: stats.entropy(z.value_counts(normalize=True))
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Table 3: LoRA Settings.

Name Value

Rank 1

Alpha 1

Dropout 0.1

Target Modules Wkey,Wquery,Wvalue,Wout

Learning Rate 0.001

Weight Decay 0.01

Epoch 1

Batch Size 4

Machine four A100 80GB PCIe GPU

You have a data f rame , df , l o aded in memory . Your t a s k i s to g ene r a t e a code s n i p p e t t h a t adds new columns to t h i s

da t a f r ame . These columns shou ld be i n f o rma t i v e f o r a downstream c l a s s i f i c a t i o n a lgo r i thm , such as XGBoost , which i s

p r e d i c t i n g " $ { p r e d i c t i n g } " . Below i s the metadata f o r the d a t a s e t , a d e s c r i p t i o n o f the e x i s t i n g columns , and o the r

r e l e v a n t i n f o rma t i on .

# Metadata

## Da t a s e t D e s c r i p t i o n

The d e s c r i p t i o n o f the d a t a s e t i s p rov ided wi th in t r i p l e quo t e s . Note t h a t the column da t a t ype s mentioned might be

i n a c c u r a t e .

" " "

$ { d a t a _ d e s c r i p t i o n _ unp a r s e d }

" " "

## Columns in ‘ df ‘

Here i s a l i s t o f the a c t u a l da t a t ype s o f the f e a t u r e s , with c a t e g o r i c a l d a t a encoded as i n t e g e r s .

" " "

$ { samples }

" " "

## Add i t i o n a l I n f o rma t i on

∗ The number o f samples ( rows ) in the t r a i n i n g d a t a s e t i s $ { l e n _ d f } .

∗ This code s n i p p e t i s deve loped by an exp e r t da t a s c i e n t i s t a iming to enhance p r e d i c t i o n accu ra cy .

# Code Format

Each code s n i p p e t shou ld s t a r t with " python " and end with " end " . You a r e to add only $ { how_many } column per s n i p p e t .

Each a d d i t i o n shou ld f o l l ow t h i s fo rmat :

‘ ‘ ‘ python

# ( F e a t u r e name and d e s c r i p t i o n )

# U s e f u l n e s s : D e s c r i p t i o n o f how t h i s f e a t u r e adds v a l u a b l e i n s i g h t s f o r c l a s s i f y i n g " $ { p r e d i c t i n g } " based on the

d a t a s e t d e s c r i p t i o n and a t t r i b u t e s .

# I npu t samples : Examples o f the columns used in the code ( e . g . , ’ $ { col_name_1 } ’ : $ { c o l _ v a l u e _ 1 } , ’ $ { col_name_2 } ’ : $ {

c o l _ v a l u e _ 2 } , . . . )

( The pandas code us ing columns l i k e ’ $ { col_name_1 } ’ , ’ $ { col_name_2 } ’ , e t c . , t o c r e a t e a new column f o r each row in d f )

‘ ‘ ‘ end

Use the f o l l ow i n g format f o r removing redundant columns :

‘ ‘ ‘ python

# Reason f o r dropp ing column XX

df . drop ( columns =[ ’XX ’ ] , i n p l a c e =True )

‘ ‘ ‘ end

## Gu i d e l i n e s

∗ I n t r o du c e a d d i t i o n a l columns t h a t add new seman t i c i n f o rma t i on , l e v e r a g i n g r e a l −world knowledge about the d a t a s e t .

∗ These new columns may i n c l u d e f e a t u r e combina t ions , t r a n s f o rma t i on s , or a gg r eg a t i on s , d e r i v e d from e x i s t i n g columns in

the d a t a s e t .

∗ The s c a l e and o f f s e t o f columns a r e i r r e l e v a n t .

∗ Ensure t h a t a l l columns you use a r e p r e s e n t in the d a t a s e t . Pay c l o s e a t t e n t i o n to the d e s c r i p t i o n s o f the columns ,

i n c l u d i n g da t a t ype s and the s i g n i f i c a n c e o f v a r i o u s c l a s s e s .

∗ This p r o c e s s may a l s o i n v o l v e dropp ing columns t h a t cou ld be redundant and p o t e n t i a l l y d e t r im en t a l t o the p r e d i c t i v e

per formance o f the subsequen t c l a s s i f i e r ( a p r a c t i c e known as f e a t u r e s e l e c t i o n ) .

∗ Removing columns can reduce the r i s k o f o v e r f i t t i n g , which i s p a r t i c u l a r l y b e n e f i c i a l f o r sma l l e r d a t a s e t s .

∗ The c l a s s i f i e r w i l l be t r a i n e d on the mod i f i e d d a t a s e t , i n c l u d i n g any newly gene r a t ed columns , and e v a l u a t e d on a

s e p a r a t e ho ldou t s e t .

∗ The pr imary e v a l u a t i o n me t r i c i s a c cu ra cy . The most e f f e c t i v e mod i f i c a t i o n w i l l be adopted .

∗ While you can use added columns in subsequen t code sn i pp e t s , dropped columns w i l l no l onge r be a v a i l a b l e .

Figure 2: Revised prompt format containing equivalent information as the original.
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Code :

d f [ " tmp0 " ]= d f [ " Ag e _ o f _ p a t i e n t _ a t _ t im e _ o f _ o p e r a t i o n " ] ∗ d f [ " Ag e _ o f _ p a t i e n t _ a t _ t im e _ o f _ o p e r a t i o n " ]

d f [ " tmp1 " ]= d f [ " Numbe r _ o f _ p o s i t i v e _ a x i l l a r y _n o d e s _ d e t e c t e d " ] / d f [ " tmp0 " ]

d f [ " new"]= − d f [ " tmp1 " ]

F e a t u r e Name :

i n f l u e n c e −of −age −on− s u r v i v a l

D e s c r i p t i o n :

Measure o f the impact o f p a t i e n t ’ s age on t h e i r s u r v i v a l s t a t u s

U s e f u l n e s s :

By c a l c u l a t i n g the r a t i o o f the number o f p o s i t i v e a x i l l a r y nodes d e t e c t e d to the squa re o f the p a t i e n t ’ s age a t the

t ime o f op e r a t i o n and a s s i g n i n g i t a n e g a t i v e s ign , t h i s f e a t u r e c a p t u r e s a p o t e n t i a l r e l a t i o n s h i p between age and

s u r v i v a l s t a t u s . The n e g a t i v e s i gn s u gg e s t s t h a t as t h i s r a t i o i n c r e a s e s , the l i k e l i h o o d o f s u r v i v a l may d e c r e a s e .

Consequent ly , i t p r o v i d e s v a l u a b l e i n s i g h t s i n t o how age i n f l u e n c e s the p a t i e n t ’ s s u r v i v a l s t a t u s , which can be c r u c i a l

f o r a c c u r a t e l y p r e d i c t i n g the l i k e l i h o o d o f a p a t i e n t s u r v i v i n g 5 yea r s or l onge r a f t e r undergo ing b r e a s t c ance r su rge ry

.

Code :

d f [ " new " ]= d f [ " Add r e s s _ b i t _ 1 " ] . a s t ype ( s t r ) + ’ − ’+ d f [ " Add r e s s _ b i t _ 2 " ] . a s t ype ( s t r )

F e a t u r e Name :

Address −Bi t −Combinat ion

De s c r i p t i o n :

Conca t ena t i on o f two add r e s s b i t s

U s e f u l n e s s :

Th i s new f e a t u r e , " Address −Bi t −Combination , " i s c r e a t e d by c on c a t e n a t i n g the v a l u e s o f " Add r e s s _ b i t _ 1 " and "

Add r e s s _ b i t _ 2 " columns . Based on the d a t a s e t d e s c r i p t i o n , i t seems t h a t t h e s e add r e s s b i t s may r e p r e s e n t c e r t a i n

c o n f i g u r a t i o n s or s t a t e s . By combining t h e s e two add r e s s b i t s i n t o a s i n g l e f e a t u r e , i t cou ld p o t e n t i a l l y c ap t u r e unique

p a t t e r n s or i n t e r a c t i o n s between the two . Th i s cou ld be v a l u a b l e f o r p r e d i c t i n g the t a r g e t v a r i a b l e " c l a s s " as i t

i n t r o d u c e s a new a s p e c t to the da t a t h a t may not be as e v i d en t when ana l y z i n g i n d i v i d u a l b i t s s e p a r a t e l y . The e xp e r t

da t a s c i e n t i s t l i k e l y b e l i e v e s t h a t t h i s f e a t u r e cou ld improve the model ’ s p r e d i c t i v e a c cu ra cy by p r ov i d i ng more nuanced

i n f o rma t i on f o r c l a s s i f i c a t i o n .

Code :

d f [ " tmp0 " ]= d f [ " INCOME " ] / d f [ " POP " ]

d f [ " tmp1 " ]= d f [ "YCOORD " ] / d f [ "XCOORD" ]

d f [ " tmp2 " ]= np . t an ( d f [ " tmp1 " ] )

d f [ " new " ]= d f [ " tmp0 " ] ∗ d f [ " tmp2 " ]

F e a t u r e Name :

a d j u s t e d _ i n c ome_d en s i t y

D e s c r i p t i o n :

C a l c u l a t e d a d j u s t e d income d en s i t y based on popu l a t i on and income

Us e f u l n e s s :

The new f e a t u r e " a d j u s t e d _ i n c ome_den s i t y " c a p t u r e s the r e l a t i o n s h i p between income and popu l a t i on d e n s i t y w i th in each

county . By mu l t i p l y i n g the income − to − popu l a t i on r a t i o with the t angen t o f Y s p a t i a l c o o r d i n a t e to X s p a t i a l c o o r d i n a t e

r a t i o , the f e a t u r e r e f l e c t s the s p a t i a l d i s t r i b u t i o n o f income a c r o s s c o un t i e s . Th i s can p rov i d e v a l u a b l e i n s i g h t s i n t o

how income l e v e l s a r e g e o g r a p h i c a l l y sp r ead and may he lp in p r e d i c t i n g the p r opo r t i on o f vo t e s c a s t i n the 1980

p r e s i d e n t i a l e l e c t i o n based on income and popu l a t i on f a c t o r s .

Code :

d f [ " tmp0 " ]= d f [ " bmi " ] + d f [ " s4 " ]

d f [ " tmp1 " ]= d f [ " s5 " ] + d f [ " tmp0 " ]

d f [ " new " ]= d f [ " bmi " ] + d f [ " tmp1 " ]

F e a t u r e Name :

d i s e a s e _ p r o g r e s s i o n _ i n d i c a t o r

D e s c r i p t i o n :

An i n d i c a t o r r e f l e c t i n g the combined e f f e c t o f b lood serum measurements on d i s e a s e p r o g r e s s i o n

U s e f u l n e s s :

By combining the impact o f serum measurements with BMI , the new f e a t u r e " d i s e a s e _ p r o g r e s s i o n _ i n d i c a t o r " p r o v i d e s a more

comprehens ive view o f how th e s e f a c t o r s c o l l e c t i v e l y c o n t r i b u t e to d i s e a s e p r o g r e s s i o n . Th i s can a i d in b e t t e r

unde r s t and ing the r e l a t i o n s h i p between p a t i e n t c h a r a c t e r i s t i c s and d i s e a s e s e v e r i t y , p o t e n t i a l l y improving the ac cu ra cy

o f p r e d i c t i n g d i s e a s e p r o g r e s s i o n one year a f t e r b a s e l i n e .

Figure 3: Examples of code explanations generated by GPT-3.5, including feature name, description,

and usefulness from the code and metadata.
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