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Abstract

In personalized prosthesis shaping, the desired shape remains typically unknown and has
to be estimated based on the individual pathological shape. This estimation is also called
pseudo healthy synthesis. One example application is the personalization of aortic root
prostheses during valve-sparing aortic root surgery. Even though several methods for pseu-
dohealthy synthesis were proposed during the last years, it might not always be necessary
to taylor a completely individual and unique prosthesis for each and every patient as this
introduces high costs and regulatory issues. Another option is to identify a set of pros-
thesis types that represents all natural healthy shapes in an adequate way. Then, the
pseudohealthy synthesis problem becomes a classification problem, aiming on predicting
the optimal prosthesis out of the set of candidates given a pathological shape. In this work,
we present a fully automized workflow of unsupervised shape typification and type classi-
fication based on pathological data for the example of personalizing aortic root prostheses
shapes. We provide a proof-of-concept study on an ex-vivo porcine data set, including a
thorough evaluation of the model’s hyperparameters and the number of identified shape
types. Our study lies the groundwork for a new branch of personalized prosthesis shap-
ing with a high potential of translation to clinical application: Discrete Pseudohealthy
Synthesis.

Keywords: clustering, representation learning, personalized prosthetics, valve-sparing
aortic root reconstruction

1. Introduction

The human body’s morphology, including the morphology of its organs, varies strongly
from patient to patient. All these individual organ shapes form a unique, fragile system
that is optimized to work well together. This specifically holds for the human heart (Ni
et al., 2018). Hence, if an organ or structure has to be replaced by a prosthesis, it is
highly desirable that this prosthesis mimics the original morphology as close as possible
to ensure optimal outcome for the patient. One example is the aortic root that shows an
extremely high inter-patient variability (Scharfschwerdt et al., 2010). Together with the
aortic valve leaflets that sit inside the root, a complex interplay ensures the prevention of
blood flowing back into the ventricle and an optimal circulation in the whole body. Hence, a
personalization of aortic root prostheses will help to keep this fragile system intact. However,
the degree of personalization necessary to resemble the original organ shape sufficiently is
unclear.
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One typical issue in personalized prosthesis shaping is that the desired shape remains
unknown as it can not be assessed using medical imaging. The only shape that can be
acquired is the pathological state of the structure that should be replaced. As aortic root
prostheses are mainly used for valve-sparing aortic root reconstruction (David and Feindel,
1992), the patient’s aortic root is pathologically dilated and hence, manufacturing a pros-
thesis in this pathological shape does not help the patient at all. Even worse, the desired
healthy shape remains unknown. Hence, it is necessary to estimate the individual healthy
shape based on information of the pathological one, leading to a pseudohealthy synthesis
problem.

The term pseudohealthy synthesis was introduced by (Bowles et al., 2016) and refers
to the estimation of an expected healthy state based on pathological information. During
the last years, several approaches were proposed to solve this problem (see 1.2). All these
approaches have in common that the pseudohealthy state is estimated from a continuum,
leading to a regression problem. However, tayloring a unique prosthesis for each and every
patient poses enormous challenges on the translation to clinical application. Not only comes
this completely individual tayloring with high costs and logistical efforts, but also does it
raise regulatory questions. To tackle these problems, we propose to provide only a specific
set of typical prosthesis shapes and estimate the optimal shape type for each patient, leading
to a classification problem. As all of these prosthesis types could be manufactured in high
numbers and could easily get regulatory certificates, such an approach is highly promising
regarding the clinical applicability of personalized prosthesis shaping. Accordingly, the
continuous pseudohealthy synthesis problem becomes a discrete classification problem to
estimate the optimal prosthesis type based on pathological information.

In this work, we present a framework for fully automatic shape typification as well as
type classification based on a pathological prior. We apply this method to the problem of
personalized aortic root prosthesis shaping and provide a proof-of-concept-study, including
an analysis of the hyperparameters.

1.1. Contribution of this Work

The contribution of this work is twofold. First, to the best of our knowledge, we present the
first approach to formulate pseudohealthy synthesis in a discretized way aimed at prosthesis
shaping. As the developed framework is not limited to aortis root prosthesis shaping, it
could be applied to a wide range of organ shape synthesis problems from a pathological
prior and hence provides a new method for pseudohealthy synthesis in general. Second,
we see a high clinical value of our study for the development of personalized aortic root
prostheses. The usage of a set of prosthesis types has a high potential for translation to
clinical application and hence is of high interest for prosthesis manufacturers as well as
clinicians.

1.2. Related Work

The term pseudohealthy synthesis was introduced by (Bowles et al., 2016) and refers to
the synthesis of an image showing an estimated healthy state of an organ only based on
surrogate information, which is typically given by the individual pathological state. Most
approaches for pseudohealthy synthesis use a form of representation learning, either utilizing
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autoencoders (Schlegl et al., 2017), (Baur et al., 2019), (Uzunova et al., 2019), (Chen and
Konukoglu, 2018) or by training generative adversarial networks (GANs) (Andermatt et al.,
2019), (Vorontsov et al., 2019), (Sun et al., 2020),(Xia et al., 2020). All these approaches
have in common that they solve a regression problem, i.e. synthesizing the optimal image
out of a continuous space. In contrast, we propose to only allow a finite set of discrete
shapes, leading to a classification problem. To the best of our knowledge, the only study
on pseudohealthy synthesis for aortic root prosthesis shaping also features a continuous
prediction, solving a regression problem (Hagenah et al., 2019Db).

The concept of shape typification by performing clustering in a latent space description
was proposed in (Hagenah et al., 2019a). However, this has never been applied to aortic
root shapes and, most of all, we present the first study to use this for type classification
aimed at personalized prosthesis shaping.

2. Material and Methods

In this section, we present the developed framework in detail. After a description of the
data set used in this study, we first focus on the automatic shape typification, followed by
an explanation of the type classification from a pathological prior. Fig. 2 in appendix A
shows an overview of our proposed framework.

2.1. Data Set

The data set used in this study was published in (Hagenah et al., 2016) and consists of ul-
trasound volumes of 24 ex-vivo porcine aortic roots. During data collection, the aortic root
was extracted from the heart, attached inside a water bassin and put under physiologically
realistic diastolic pressure. In this closed state, a 3D ultrasound image was acquired, mim-
icking a transesophageal echocardiography (TEE) examination. Afterwards, the root was
artificially dilated by performing vertical cuts along the three sinus and sewing in diamond-
shaped tissue patches, which is a common procedure for simulating aortic root aneurysms
(Labrosse et al., 2015). After this dilation, another image was acquired in the same setup.
Hence, for each of the 24 aortic root, the pathologically dilated as well as the healthy ground
truth state is known.

In the scope of this study, only the horizontal slice image through the root that shows
the commissure plane, i.e. the image plane that shows all three commissure points, is used.
For these 2D images, a manual segmentation of the aortic root shape is available for the
healthy roots, making a quantitative analysis more reliable. Previous studies showed the
high information content of this slice (Hagenah et al., 2018). The images were resized to
96 x 96 pixels with a resolution of 1.27;?;1. The gray values were scaled to lie in the interval
[0,1]. We will denote the images as I; and the pathological ones as I; with i = 1,...,24,
respectively. All images used in this study can be found in appendix D. We split the dataset
into Neegst = 5 aortic roots that served as a hold-out test set and 19 aortic roots for training
and validation, referred to as training images.
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2.2. Typification

The goal of the typification step is to identify a set of typical aortic root shapes that can serve
as prostheses shapes. To automate this task, unsupervised clustering of the healthy roots
could reveal these shape types. However, clustering directly in image space is insufficient
as images are comparably high-dimensional and the clustering algorithm faces the curse of
dimensionality (Assent, 2012). Thus, we follow the approach of clustering in a latent space
description as proposed in (Hagenah et al., 2019a). Consequently, a latent representation of
the healthy aortic root images is learned using a convolutional autoencoder. After encoding
all healthy images into this low-dimensional representation, a clustering can be performed
to identify typical shapes, i.e. the cluster centers, within the latent space. The desired
shape of these potential prostheses can be synthesized using the decoder network. Thus,
clustering can be performed in a meaningful representation while the similarity between
a specific prosthesis and a real aortic root can be directly assessed in image space using
typical metrics. The cluster centers, i.e. the prosthesis types, in latent space are denoted
as 25‘7 j=1,...,k, where k is the number of types. After decoding, the synthesized image

of the jth shape type is called f]c

To this end, we propose a general, parameterized autoencoder architecture. The encoder
enc(I), I € R9*9 with z; = enc(I;), consists of n. convolutional layers, each with n filters,
ReL U activation and followed by a 2 x 2 average pooling. After a flattening operation, a
dense layer follows where the number of neurons is the number of outputs of the last
pooling layer. Then, a dense layer with n; and linear activation forms the bottleneck layer
that outputs the latent representation z € R™. The decoder dec(z) with I; = dec(z;)
follows the mirrored encoder architecture using upconvolution and upsampling, where I; is
the reconstructed healthy image. For training, we used the adam optimizer (Kingma and
Ba, 2014), mean squared error loss, a batch size of 12 and we trained for 100 epochs.

To assess the influence of the hyperparameters n., ny and n;, we evaluated several
combinations of them regarding the performance of the resulting architecture on encoding
and reconstructing unknown aortic root images. Thus, we performed a 10-fold Monte-Carlo
crossvalidation on the training images (80% training, 20% validation) for each combination
of hyperparameters examined, given in Table 1(a). We trained on the autoencoder on the
training data, propagated the test data through the full network and computed the average
root mean square error (RMSE) between the output and the original test images in each
fold.

After identifying the optimal architecture, we examined the influence of the number
of cluster centers, i.e. prosthesis types, on the capability of covering the full variance of
observed root shapes by a small number of shape types. Following (Hagenah et al., 2019a),
we utilized k-means clustering in the latent space. We evaluated different values of k in a
10-fold Monte-Carlo crossvalidation (80% training, 20% validation) on the healthy training
images. Within each fold, the autoencoder was trained on the training data using optimal
hyperparameters, the training data was encoded to the latent space and k-means clustering
was performed to identify k shape types. Then, the N test images were encoded and
assigned to their respective clusters 2%, j = 1,..., k. Finally, images of the prosthesis types

1¢ were synthesized by propagating the cluster centers through the decoder and each test
image I;,i = 1,..., Ngst was compared to its corresponding prosthesis type image. We
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Table 1: Examined hyperparameter values for the autoencoder (a) and the classification
CNN (b). All combinations were assessed using 10-fold crossvalidation on the
training images. The optimal combination regarding the RMSE between the orig-
inal and the reconstructed image is marked in bold, respectively.

(a) (b)

Parameter Values Parameter Values
Ne 2,34 mp 3,4,5
ny 16, 32 Me 1,2,3
ng 20,40, 60, 80, 100, 120, 140 my 16, 32
mq 1,2,3
My, 50,100,150
performed this for £k = 1,...,20 and used four different metric for the image comparison:

The Jaccard Similarity, the Hausdorff Distance, the RMSE and the average symmetric
contour distance (ASCD). To compute Jaccard Similarity, Hausdorff Distance and ASCD,
the synthesized prosthesis image was segmented using thresholding (¢t = 0.31, corresponds
to a grayscale value of 80) and compared to the segmentation of the test image, respectively.
This holds for all calculations of these metrics within this work.

2.3. Type Classification

For discrete pseudohealthy synthesis, we propose to train a convolutional neural network
(CNN) to predict the individually optimal prosthesis type based on an image of the patho-
logical aortic root shape. As the decoder is known, it is possible to synthesize an image
of the predicted prosthesis shape. In this study, we trained the CNN in a supervised way,
where the ground truth label is retrieved by assigning each aortic root in the training set
its corresponding cluster in latent space. Hence, in its current form, our method assumes
that paired data is available, i.e. that for each patient in the training data set, the healthy
as well as the pathological shape is known.

Once again, we propose a parameterized architecture. It follows a VGG-like structure
(Simonyan and Zisserman, 2015) and consists of m; convolutional blocks, each consisting of
m,. convolutional layers with my and ReLU activation followed by a 2 x 2 average pooling
layer. After a flattening operation, mg fully-connected layers are following with m,, neurons
each and ReLU activation. Finally, the output layer is attached, featuring softmaz activa-
tion. The training was performed using the adam optimizer, binary crossentropy loss and
a batch size of 12.

We identified an optimal architecture by evaluating numerous combinations of the hy-
perparameters mp, me, my, mqg and my,. Thus, as for the typification, we performed a
10-fold Monte-Carlo crossvalidation over all training images (80% training, 20% validation)
for each combination of the hyperparameter values given in table 1(b). Within each fold, we
trained the autoencoder on the training data using the optimal hyperparameters identified
as described in section 2.2. We performed clustering as explained above with a fixed value
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Figure 1: (a) Example of a set of identified shape types for k& = 6. (b) Mean Similarity of
healthy root shapes and their assigned prosthesis shapes for different values of k&,
given as the ASCD (blue, left axis) and the RMSE (green, right axis).

of kK = 6 and assigned the optimal cluster centers to the training and the test images. Then,
we trained the CNN on the training data to predict the optimal cluster center based on a
pathological image. After training, we used the CNN to estimate the cluster centers for the
pathological test data and assessed the classification accuracy. Additionally, we compared
the healthy test images I;,7 = 1,..., Ngest to the synthesized image of the predicted prosthe-
sis f; where j is the classification result, respectively, once again using Jaccard Similarity,
Hausdorff Distance, RMSE and ASCD as metrics.

It is important to note that due to the random data splitting during crossvalidation,
the training dataset is typically imbalanced, i.e. some typical shapes and hence classes
occur more often than others. To overcome this class imbalancing issue, we oversampled
the minority classes in the training dataset so that all classes, i.e. prosthesis shapes, are
represented equally (Gosain and Sardana, 2017).

3. Results and Discussion

As the data set used in this study contains paired data, a quantitative analysis is presented in
addition to a qualitative analysis of the predicted and reconstructed images of the prosthesis
shapes. The presentation of the results and their discussion is divided into typification and
type classification, followed by an outlook focusing on practical challenges aiming on clinical
application.

3.1. Typification

The hyperparameter analysis revealed that an architecture with n. = 2, ny = 16 and
n; = 20 provides the best image reconstruction accuracy with an RMSE of 0.09 4+ 0.03.
Fig. 1(a) exemplarily shows the synthesized images of a set of identified prosthesis shapes
with & = 3. All of them look realistic and they complement each other well, indicating
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that an automatic typification of aortic root shapes using clustering in latent space is
possible. Given the optimal architecture of the autoencoder, Fig. 1(b) shows the capability
of approximating all healthy test images by their respective prosthesis in dependency of
the number of prosthesis shapes k. As expected, the RMSE decreases with increasing k.
However, the ASCD increases, indicating that, regarding the shape, a smaller number of
prosthesis types leads to better results. We identified £k = 6 as an optimal value to assure
reasonable values in both metrics. Average results for all metrics are given in Tab. 2. A
visual assessment of the identified shape types is given as a t-SNE embedding in Appendix
C.

3.2. Type Classification

Based on the optimal autoencoder architecture, the highest classification accuracy achieved
during hyperparameter analysis for the CNN was 77.5 & 17.5% with the parameters

my =4, me = 1, my = 16, mqg = 3 and m,, = 150. With a value of 67.1%, the classifica-
tion accuracy was slightly lower on the holdout test dataset. Table 2 shows the similarity
between the test images and the predicted prosthesis types for all four metrics. For com-
parison, the latter one is also given for the typification, i.e. with an optimal prosthesis
choice. The classification accuracy indicates that the model is able to learn a relationship
between the individual pathological root and the desired prosthesis shape. Additionally,
the small difference between the classification model and the typification with optimally
assigned prosthesis types shows that the classification works robustly and that most of the
error relates to the discretization of the prosthesis shapes. Overall, the Jaccard-Similarity
is low. This is most likely due to the relatively thin aortic root wall in the images. Even if
a prosthesis approximates a root shape sufficiently, the overlap might still be quite small.
Hence, the Hausdorff distance and the ASCD might be more meaningful on this data set.
With an ASCD of around 4.5 pixels and a Hausdorfl-Distance of around 8 pixels, the pre-
dicted prosthesis shapes seem to fit the desired root shapes adequately. Example prediction
results can be found in appendix B. As a benchmark, we compared the discrete approach
to a continuous, regression-based approach presented in (Hagenah et al., 2019b). Our pro-
posed method outperforms the regression model by far. We assume that this is due to the
implicit constraint to realistic and typical shape types. hence, no out-of-bag-predictions
are possible in the discrete approach, making it more robust than the flexible regression
approach.

3.3. Outlook

Overall, our results indicate that discrete pseudohealthy synthesis for personalized pros-
thesis shaping is possible. Specifically, the type classification seems to work adequately
accurately, while most of the errors are introduced by the typification. This might be due
to the very small dataset, as only 14 training samples are available within each fold. A big-
ger dataset might provide better typification results. Hence, data collection should be an
important part of future work. Additionally, the transfer to human data is of high interest
regarding clinical application.

Even though discrete pseudohealthy synthesis outperformed a regression approach on
this dataset, the method is barely capable of dealing with out-of-bag samples, e.g. shapes
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Table 2: Results of the comparison of healthy images and their corresponding prosthe-
sis shapes for typification (optimal prosthesis) and type classification (estimated
prosthesis) with & = 6, given as ASCD [pixel], Hausdorff Distance [pizel], Jaccard
Similarity and RMSE. For comparison, the results are also given for the continuous
approach proposed in (Hagenah et al., 2019b).

Method ASCD Hausdorff Jaccard RMSE
Typification on validation set 4.68 £4.04 14.48+8.62 0.39+0.11 0.13£0.05
Type Classification on test set 4.48 + 2.59 8.03 + 7.60 0.43+0.09 0.12+0.03

Continuous benchmark on test set 24.39 +39.07 26.544+38.51 0.174+0.11 0.16 £ 0.01

that are very different from the identified typical ones. For these cases, a robust regression-
based shape prediction might be a better choice.

As mentioned above, the classification method presented in this study assumes that
the model can be trained on paired training data. With an increasing number of long-term
screening studies with large cohorts, like for example the SHIP study (John et al., 2001), it is
likely that paired data is available for a wide range of applications. However, extending our
framework to be capable of dealing with unpaired data is an interesting research question
and should be addressed in future work. Additionally, it might be possible to generalize
from our study on the given small, paired dataset to larger, unpaired ones using transfer
learning.

In this proof-of-concept study, the reliable error quantification was possible due to the
available ground truth segmentation on the 2D image slices. Our method is easily extendable
to also work on 3D volumes by only adding another dimension to all convolutional layers
in the autoencoder as well as in the classification network. One might also think about
utilizing geometric deep learning to process pointclouds instead of volumetric data. The
framework stays the same, highlighting the flexibility of our approach.

4. Conclusion

In this work, we presented a novel approach for personalized prosthesis shaping, called
discrete pseudohealthy synthesis. Thus, we proposed a framework for fully automatic shape
typification and developed a type classification approach to estimate the optimal prosthesis
type for a given pathological morphology. Furthermore, we provide a proof-of-concept study
on personalized aortic root prosthesis shaping, including a vast hyperparameter analysis.
Our results indicate that approximating the variance of natural aortic root shapes using
a specific set of prosthesis types is possible and that the pathologically dilated aortic root
shape carries enough information to classify the optimal prosthesis type only based on this
dilated shape. As regulatory challenges and manufaction costs are way lower for a finite
set of typical prostheses instead of fully personalized ones, our study presents an important
step towards clinical application of personalized prosthetics.
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Figure 2: A sketch of the proposed method. The healthy images are encoded to a latent
space representation. Previously published predict this latent representation con-
tinuously (top). In contrast, we propose to perform clustering in latent space to
identify typical aortic root shapes (bottom). To compute the optimal prosthesis
type for an individual patient, the shape type is classified based on an image
of the pathological state and the corresponding image of the prosthesis can be
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Appendix B. Qualitative Results

Fig. 3 shows qualitative results for two example folds.
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Figure 3: Qualitative results of type classification for the test images of two random folds (a)
and (b). For each valve, the pathologically dilated shape, the predicted prosthesis
shape as well as the healthy ground truth is shown.
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Appendix C. Cluster Assessment

Fig. 7?7 show the tSNE embedding of the healthy training images as well as their identified
shape type, respectively, for K = 6. In general, the clusters are consistent and homogeneous.
However, some shape types, e.g. cluster 1 or cluster 3, only appear very rarely, which might
be due to the small dataset.

400 % o Cluster
300 e o 1
2
[ )
200 ° ° S
e 4
~ 100 ® 5
£ e 6
©
0 o )
o
-100 -
_200 () e
i °
-600 -400 =200 0 200 400
dim1

Figure 4: tSNE embedding of the healthy training images, separated by their respective
cluster, i.e. shape type.
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Appendix D. Dataset

Fig. 5 shows the full dataset used in this study.
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Figure 5: Full Dataset as it was used in this study.
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