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Abstract

We introduce a framework for Thompson sampling (TS) contextual bandit algo-
rithms, in which the algorithm’s ability to quantify uncertainty and make decisions
depends on the quality of a generative model that is learned offline. Instead of
viewing uncertainty in the environment as arising from unobservable latent param-
eters, our algorithm treats uncertainty as stemming from missing, but potentially
observable outcomes (including both future and counterfactual outcomes). If these
outcomes were all observed, one could simply make decisions using an “oracle’
policy fit on the complete dataset. Inspired by this conceptualization, at each
decision-time, our algorithm uses a generative model to probabilistically impute
missing outcomes, fits a policy using the imputed complete dataset, and uses that
policy to select the next action. We formally show that this algorithm is a generative
formulation of TS and establish a state-of-the-art regret bound. Notably, our regret
bound depends on the generative model only through the quality of its offline
prediction loss, and applies to any method of fitting the “oracle” policy.

)

1 Introduction

Recent advances in machine learning have transformed our ability to develop high quality predictive
and generative models for complex data. This work introduces a framework for developing decision-
making algorithms, specifically for contextual bandit problems, that can take advantage of these
machine learning advances. By design, we assume the algorithm developer is able to apply these
techniques (e.g., minimize a loss via gradient descent) and employ these methods as subroutines
in our decision-making algorithm. Moreover, our theory formally connects the quality of effective
(self-)supervised learning via loss minimization to the quality of decision-making.

Classically, Thompson sampling (TS) algorithms form a parametric model of the environment and
consider the decision-maker’s uncertainty as arising from unknown latent parameters of that model
[Thompson, 1933, Russo et al., 2020]. The primitive operations used by TS include i) specifying an
informative prior for the latent parameter using domain knowledge, ii) sampling from the posterior
distribution of the latent parameter, and iii) updating the posterior distribution as more data is collected.
Unfortunately, it is well known that all three of these operations are non-trivial to perform with
neural networks [Tran et al., 2020, Goan and Fookes, 2020]. In this work, we view missing, but
potentially observable, counterfactual outcomes as the source of the decision-maker’s uncertainty.
This perspective allows us to replace the primitive operations required in the classical view with new
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ones that are more compatible with neural networks, namely the ability to i) effectively minimize
an offline prediction loss, ii) autoregressively generate from a learned sequence model, and iii) fit a
desired policy given access to a complete dataset (outcomes from all actions and decision-times).

In the missing data view of uncertainty, if we had a complete dataset, there is no uncertainty because
we could simply use the entire dataset to fit a desired “oracle” policy to use to make optimal decisions
for that task. Inspired by this idea, at each decision time our algorithm imputes missing outcomes
using a pretrained generative model, fits a desired policy using the imputed complete dataset, and
selects the best action according to the fitted policy. We show that this algorithm is a generative
implementation of TS. We demonstrate empirically how to learn a generative model to impute missing
outcomes using standard machine learning tools in meta-bandit settings, where the algorithm learns
from data from previous tasks to perform well on a new task from the same distribution.

We prove a state-of-the-art regret bound for generative TS with three key properties, which each have
significant practical implications. First, the generative model used to impute missing outcomes only
affects our bound through the offline prediction loss of the model. This means that our theory is
applicable to any imputation model architecture, and that the quality of the generative model can be
easily optimized for and evaluated via offline training and validation. Second, our bound is unique in
that it applies to any procedure for fitting a desired “oracle” policy. This allows one to easily adapt
TS to decision-making problems with constraints, e.g., for fairness or balancing. Finally, our proof
approach makes important improvements to previous information theoretic analyses, which may be
broadly applicable: i) we accommodate infinite policy classes directly without discretization, and ii)
our bound quantifies the benefit of prior task information, such as side information on the actions.
Our results hold quite generally and do not require restrictions on generative model or policy class.
We demonstrate a practical implementation of our framework in Sections 4 and 6.

2 Problem formulation

Meta-contextual bandit problem. Let bandit tasks 7 be sampled from an unknown distribution p*:

TNp*a where 7 = {Z7'7X1:T,{Y1(a)a"'7Y’1('a)}a€¢47}a (1)
where each bandit task 7 consists of prior task infor-
mation Z,, action space A, context vectors Xi.p = -
{X(l,). . ,XT(},) and potential outcomes {Yl(fé,z}aeAT = AR I
a a . .

{1, ..., Y2 }oeca. [Rubin, 2005]; see F(1ag)ure 1 for a 72 Y1(2) YZ(Z) Y3(z) Y4(2) YT(z)
depiction. We omit subscripting X; and Y, with 7 to
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reduce clutter. Note, in contrast to the design-based in- 4 LR Su O A O

ference literature [Neyman, 1992], which conditions on
the potential outcomes and treats them as non-random, we
assume the potential outcomes 7 are drawn from a task
distribution p*. Informally, the agent’s objective is to se-
lect actions to maximize the total expected reward for each encountered task. At the start of a task, the
agent observes prior task information Z,. For each timestep ¢ € [1: T, the agent observes context

Figure 1: Potential outcomes table for a
task 7.

X, selects action A; € A, observes outcome Y; = K(At), and computes reward R(Y), for a fixed,
known function R in [0, 1]. The history, H; = {Z;, (X1, 41,Y1),...,(Xt—1,4:-1,Y:-1), X},
includes the current context X;. In contrast to much of the Bayesian contextual bandit literature
[Lattimore and Szepesvari, 2019, Russo et al., 2020], we do not make parametric assumptions
about the distribution of outcomes Y conditional on contexts X and prior task information Z.

The agent is able to learn both online within a single task (i.e., over the 1" total decision times), as
well as meta-learn across different tasks (e.g., learning how task prior information Z, may inform the

distribution of {Yl(:aT) }aea.). The algorithm has access to training data collected from previous tasks,
sampled from (1). These previous bandit tasks can be used by the algorithm to meta-learn across
tasks, i.e., learn about the distribution p* itself to improve decision-making quality. Our algorithm’s
decision-making quality depends on how accurately the agent is able to model the task distribution,
as well as the policy fitting procedure the algorithm designer chooses. Rather than relying on strong
assumptions on the environment structure, we put the onus on the algorithm designer to i) learn
a generative model that accurately captures the environment structure of the meta-bandit task at
hand, and ii) choose a meaningful method for fitting a desired “oracle” policy, assuming access



to a complete dataset. Since generative models learned offline routinely perform much better than
expected according to existing theory, our theory focuses on formal reductions of decision-making
quality to offline learning.
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Figure 2: News recommendation meta contextual bandit problem.

Motivating example: News recommendation. As depicted in Figure 2, a motivating meta-contextual
bandit problem is cold-start news recommendations. Each day, a new set of articles 4, is released,
which the agent recommends to users who arrive throughout the day. In contrast to Li et al. [2010],
our algorithm meta-learns across news recommendation tasks and uses the article text to improve cold-

start decisions. We use 7, = ( Zﬁa))ae A, to denote the task-specific prior information; for example,

for article a € A, Zq(-a) could be the news article text or other article meta-data (category, style, etc.).
The context variables X, consist of user-specific features, and Y; are recommendation outcomes
observed following the ¢*" decision. The modern challenge in this setting is that incorporating news
article text Z, can greatly improve the recommendation system’s decisions, but a foundation model
is needed to process this high dimensional text and inform decision-making. This motivates us to i)
make very minimal structural assumptions on the relationship between prior information Z, context
features X, and outcomes Y3, and ii) develop an algorithm that can leverage foundation models.

Policy fitting. The algorithm designer specifies a procedure for fitting a desired “oracle” pol-
icy given access to a complete bandit task dataset 7. This fitting procedure outputs policies in a
function class IT where each w € II defines a mapping from contexts X; to an action a € A,
that does not vary over time. For notational simplicity, the policies in II are assumed to be
non-stochastic. Note that we do not require that this policy class is “correct”. For a particu-
lar task 7, we use 7*(-;7) to denote a “best-fitting” policy 7* € II, where the fitting criterion
is defined by the algorithm designer. For example, consider a simple least squares criterion:

argminﬂ_en % ZZ;l {R(}/‘t(ﬂ'(Xf))) — MaXge A, R(K(a))}2

One should think of 7*(-;7) as the policy one would implement if abundant task data, 7, were
available. This could involve fitting a model, adding prompt tokens to condition a language model, or
maximizing hindsight performance. This policy fitting can also incorporate constraints on the policy,
e.g., to ensure fairness. We aim to match this policy’s performance via efficient interactive learning.

Regret. We consider a best-in-class style regret objective, which is common in the contextual bandit
literature [Foster et al., 2020, 2019, Langford and Zhang, 2007, Agarwal et al., 2017]. The objective
of the agent A is to make decisions to minimize the per-period regret against the best-in-hindsight
policy 7*(+; 7):
1 d T (XyT Ay

A(A) E[TZ{R(Y;( ey _ R(vy ))H. @)
The "best-fitting" or "best-in-hindsight" policy 7*(-;7) is well-defined and is a well-established
concept in the bandit literature, representing a generalization of the optimal policy. Refer, for
example, to Section 2 of Beygelzimer et al. [2011] and Chapter 4 of Bubeck et al. [2012] for very
analogous objectives. We emphasize that our algorithm does not have access to the best-fitting policy,
which would trivialize the problem. They have access to a means to compute the best-fitting policy if
they had 7, i.e., observed rewards of every arm in every context.

The expectation in (2) averages over tasks 7 ~ p* and any randomness in how the algorithm selects
actions. A(A) is the long-run per-period regret if the algorithm was deployed across many tasks.
Note, increasing the complexity of the policy class II increases the average reward under the best-
fitting policy, E[ % 37, R(Yt(7T (X“T)))] . However, this increased complexity also means that large
sample sizes are required to learn 77*( - ; 7) accurately and will worsen our regret bound (Section 3.2).



3 Generative Thompson Sampling: General algorithm and regret bounds

Posterior sampling via imputing missing data. In this work, we view missing data as the source
of the decision-maker’s uncertainty. This contrasts the classical approach of considering unknown
model parameters as the source of uncertainty. As we will explore in the following sections, the
missing data viewpoint is very amenable to modern deep learning methods, which can be used to train
models that are able to impute missing data probabilistically in a calibrated fashion. First, consider
an idealized setting in which we have the true meta task distribution p*. Using p* we can form exact

posteriors sample for task outcomes 7 = {Z,, X1.1, {Yff;) +} given the history H,:
T~ pt (T e | Hy). 3

Above, we probabilistically generate values in 7 that have not yet been observed in the history H;;
This consists of future contexts, future outcomes, and outcomes from previous timesteps for actions
that were not selected. We discuss how to practically implement such sampling in Section 4. Note,
even when p* is known, 7; is simply a calibrated posterior sample and is not equivalent to the true 7.

With this exact posterior sample, 7;, we can form
posterior samples of any statistic computed using 7;.
In particular, we are interested in sampling from the
posterior distribution of the fitted policy 7*( - ; 7),
which can be computed by finding the fitted policy
for the sampled task dataset 74, i.e., 7*(-; 7¢). Pos-
terior sampling of a best-fitting policy is a common
subroutine used in Bayesian decision-making algo- = oy
rithms [Kaufmann et al., 2012, Russo and Van Roy, Figure 3: Th? agent imputes missing ou'tcomes
2018, Ryzhov et al., 2012]. Thus, our posterior and uses the imputed dataset to fit a policy.
sampling approach can easily integrate with these existing Bayesian algorithms.

171(1) Yz(l) 173(1J }74(1)
) 52) y@ 5@
Z: RO AR AR AR

}71(3) )72(3) }73(3) )74(3)

In this work, we focus on Thompson sampling [Russo and Van Roy, 2016, Thompson, 1933], i.e.,
probability matching, which selects actions according to the posterior probability that they are optimal.
Thompson Sampling (TS) can be implemented with a single posterior sample per decision time. In
our generative implementation of TS (Algorithm 1) at decision time ¢, after sampling 7; as in (3), TS
fits the policy 7*( - ; 7¢), and selects the action A; < 7*(Xy; 7). See Figure 3 for a depiction. Our
algorithm generalizes TS by replacing the true reward-maximizing policy with a best-fitting policy
under a given policy class II. A more "standard" TS algorithm is recovered when the best-fitting
policy is correctly specified. See the discussion below display (2) for more on the best-fitting policy.

Algorithm 1 Generative Thompson Sampling

Require: Imputation model p, actions A, task input 7.
1: fort € {1,...,T} do
2:  Observe context X; and append it to H;
3:  Generate / sample 7y ~ p(T € - | Hy)
4:  Fit the policy 7*( - ;7¢)
5 Select the action A; + 7*(X¢; 7¢)
6:  Observe outcome Y; < Yt(At)
7:  Update history Hy1 < Hy U {(Xy, Ar, Y7) }
8: end for

Under our generative TS Algorithm 1, the polices in II that are best-in-class optimal under some
likely generation of 7; have a chance of being selected. Once no plausible sample of missing
outcome 7 could result in an action being optimal, it is essentially written off. We formalize that
our generative algorithm aligns with the abstract definition of Thompson Sampling (probability
matching) in Proposition 1 below when using the correct model p*. See Chapter 36.5 of Lattimore
and Szepesvari [2020] for further discussion of the probability matching definition of Thompson
Sampling.

Proposition 1 (Algorithm 1 Implements Thompson Sampling). Algorithm I with imputation model
p* implements Thompson Sampling (probability matching), i.e., the following holds almost surely:

P(A; =a | Hy) =P(n" (X3 7) = a | He).



A key to proving Proposition 1 is showing that P(7*(Xy; 7) = a | Hy) = P(n* (X3 7t) = a | Hy),
which holds when 7; is sampled from the true meta task distribution p* as in (3). See Appendix A.2
for our proof.

3.1 Regret when using a perfectly calibrated imputation model p*.

We develop a novel analysis of contextual TS, which is applicable to infinite policy classes II with
finite VC dimension. Our VC dimension bound resembles those from adversarial bandits, but for
the first time, we show we can derive this using an information theoretic analysis. We first present a
regret bound for Algorithm 1 with a perfectly calibrated imputation model, p* from (1), and extend to
approximate imputation models in Section 3.2. Note that assuming p* is known is akin to assuming
the prior and likelihood of a Bayesian model are known, which is standard in Bayesian regret analyses.

Notation. Let w* (X;.7) := {7*(X;; 7)}Z_, be the best fitting policy evaluated at contexts X1.7. Let
H(Y | X) denote the conditional entropy of " (discrete) given X; note H(Y | X) = —E[}_, P(Y =
y | X)logP(Y =y | X)dy| is a constant. Let I(Y; X | Z) be the mutual information between Y’
and X conditional on Z; note I(Y; X | Z) marginalizes Z and is also a constant.

Theorem 1 (Regret bound for Generative TS with a perfectly calibrated imputation model p*). For
Algorithm 1 with imputation model p*, Ars_Gen(p*),

A(ATsten(p*)) S % . H(W*(XI:T) | Z‘r)

Moreover, A(Ars_gen(p*)) < \/; -H(m*(X1.7) | Z,), where T bounds the information ratio

- EIR(Y ™" (X6 _ gy (Ae)y 9,12
[Russo and Van Roy, 2016], i.e., I" > max; I'y a.s. for 'y := [ (I(:r*(Xt;T);i)Q(At(),;\):IH)zl) d

Note I' can be smaller than |.A,|/2 when feedback from one action informs learning about other
actions (Appendix A.6). The entropy, H(7w*(X1.7) | Z;), quantifies the benefit of using prior
information Z. Our bound automatically applies to infinite policy classes since it only depends on
the entropy of the optimal policy evaluated at a finite number of contexts, 7* (X1.7).

Upper bounding the condition entropy using VC dimension. We can construct a coarse upper
bound for the entropy H (7*(X1.7) | Z;) using the VC dimension of the policy class II. The VC
dimension is a worst-case quantity that has to with the total number of possible assignments of
actions given contexts. In contrast, entropy reflects uncertainty based on the task distribution (learned
from past tasks) and the information Z (e.g., article texts), as many assignments may be extremely
unlikely to be optimal. Since VC dimension is only defined for binary functions, we use the multiclass
generalization Nataranjan dimension [Natarajan, 1989] when |A.| > 2.

Proposition 2 (Complexity bound on entropy). For policy class 11 over action space A, with
Nataranjan dimension d (equivalent to VC dimension when |A;| = 2),

H(m"(Xvr) | Z7) < H(7"(X1.7)) = O(d - 1og(T - | A ).

Note, our bound above depends on the Natarajan dimension of the policy class II, not the Natarajan
dimension of the generative sequence model p*. Furthermore, the Natarajan dimension of II does not
change with T for stationary policies. A feature of our result is that our bound, when combined with
Theorem 1, can be used to derive regret bounds for a wide range of policy classes II.

Using Proposition 2, our regret bound (Theorem 1) resembles adversarial regret bounds that depend
on VC dimension [Beygelzimer et al., 2011], showing for the first time how such a result can be
established through information theoretic arguments.

Benefits of our approach and relationship to related work. Regret bounds for contextual TS
bandits with infinite policy classes have been of great interest in the literature. The predominant
approach to generalizing information-theoretic analyses for TS beyond multi-armed bandits requires
discretizing a latent parameter space [Dong and Van Roy, 2018, Gouverneur et al., 2024, Neu et al.,
2022, Min and Russo, 2023] and uses cover-number arguments; our proof approach notably does not
require any discretization. Furthermore, our bound can be applied broadly, while existing approaches
like Neu et al. [2022], Min and Russo [2023] depends on the entropy of a latent environment
parameter, which is only applicable to parametric bandits. By Proposition 2, our result can directly
be applied to infinite policy classes by leveraging existing VC dimension bounds, e.g., for decision



trees [Asian et al., 2009]. In parametric, stationary bandit settings, our result approximately matches
(up to log factors) existing Bayesian regret bounds for linear logistic bandits [Neu et al., 2022] and
matches up to a factor of v/d and log factors bounds for linear non-contextual bandits [Russo and
Van Roy, 2018, Dong and Van Roy, 2018] (Appendix A.6). Finally, though we do not explore it
much in this work, since we make minimal assumptions on p*, Theorem 1 applies to nonstationary
bandit environments. While the oracle policy m* cannot be time-varying, 7* can effectively vary over
time by including the timestep ¢ as a context feature in Xj.

3.2 Regret when using an approximate imputation model py.

We now present a regret bound for generative TS with an approximate generative model pg. The
result is notable because py only affects the regret bound through its offline prediction loss, which
means the result can be applied to any model class. Specifically, our regret bound will depend on the
following population-level loss (the expectation below averages over the task distribution p*):

U(py) = —E[log po (X 1.1, (V{4 Yaca, | Z;)]. @
In Section 4, we discuss training and sampling from learned generative imputation models in practice.

Theorem 2 (Regret bound for Generative TS with an approximate imputation model). For Algorithm
1 with imputation model pg, Ars_Gen(po),

Abrsanon) < 2t (i) | 2+ PT@I—T) . ©)

Penalty for sub-optimal prediction

Regret bound for Thompson sampling

What is particularly novel about Theorem 2 is that the analysis holds even when the imputation model
pp is misspecified and does not correspond to proper Bayesian inference in any way. Comparing
Theorem 2 to Theorem 1 from earlier, we can interpret the “cost” of using an approximate model pgy

as \/2{l(py) — £(p*)}; This penalty depends on how well pp approximates p*.

Scaling of loss penalty. While tight theoretical bounds for the penalty term £(pgy) — £(p*) currently
do not exist for complex models like neural networks, we can draw intuition from simpler settings.
Consider a stationary, stochastic, Bayesian bandit problem. In this setting, for parametric Bayesian
models, where pg and p* are exchangeable, posterior predictive distributions [Fortini and Petrone,
2023], classic results by Clarke and Barron [1990] show that the gap ¢(ps) — ¢(p*) scales like log T,
under mild regularity conditions. This sublinear growth occurs because in this stationary setting,
the Bayesian model py is better able to approximate the next outcome as it observes more data (a
phenomenon closely related to Bayesian consistency [Kleijn and Van der Vaart, 2012] and how
the effect of the prior eventually washes out). The difference ¢(pg) — ¢(p*) also scales with the
amount of data used to learn py; This is closely linked to empirical Bayes methods, i.e., approaches
to meta-learn a prior distribution from data. When py and p* correspond to posterior predictive
distributions of Bayesian models with correctly specified likelihoods, py and p* differ only in their
initial prior distributions. Existing works bounding the regret of TS with misspecified priors are not
directly comparable, as Simchowitz et al. [2021] analyzes a modified version of TS that requires
multiple posterior samples per decision time, and Liu and Li [2016] bounds the frequentist regret.

Related work on generative TS algorithms. Wen et al. [2021] consider a non-contextual, multi-
armed TS algorithm that incorporates a generative outcome model. However, they require modeling
latent environment parameters, and their bound requires a history-dependent KL divergence term
to be small, which differs from our prediction loss penalty. Cai et al. [2024] proves a regret bound
with a similar prediction loss penalty generative TS algorithm with misspecified models for a much
simpler multi-armed, non-contextual setting. They do not introduce the concept of a general “oracle”
policy fitting procedure, and their result does not apply to infinite policy classes. Moreover, we were
not able to directly build on their proof approach because they critically rely on the fact that under p*,
unobserved outcomes Y are exchangeable given the history. In contrast, our result does not require
exchangeability at all and technically applies even if p* is not exchangeable (e.g., nonstationary).

Flexibility and advantages of Generative TS. Generative TS requires the algorithm designer to
choose an imputation model py and a policy class II. The modularity of these two components
allows one to easily extend T'S to more complex, less standard decision-making problems, e.g., (i)
Nonstationarity can be accommodated with a py that models trends over time (see discussion before
Section 3.2); (ii) Correlated outcomes can be modeled using a py that captures dependencies between



outcomes across actions or over time; (iii) Constrained decision-making can be done by choosing a
policy class II satisfying such constraints, e.g., to ensure fairness one can use standard constrained
optimization approaches to learning decision rules [Corbett-Davies et al., 2017] (Appendix B.9).

4 Practically implementing generative Thompson Sampling

We now introduce an example of how to learn py  ( Gather | (- Train sequence model offline | Deploy |
and implement generative TS. Our overall frame- | offline ‘ Then input to online policy Poi}cy
work is depicted in Figure 4: In step 1, we use of- 3@ ) (] A

fline data from previous tasks to learn a pg model; | .

Then in step 2, we use the learned pg model to - \ [~m: ) Learn("
. > . | Task . Offline Data| py
implement generative TS. Here, pg is a sequence Z,, (Y,

model that we meta-learn by pretraining on his- [ \ T
torical data from previous tasks. As our theory [magk’

accommodates any py architecture, our approach '

can take advantage of recent advances in genera- Figure 4: Offline meta-learning and online
tive sequence models [Vaswani etal., 2017] decision_making aCross multlple tasks.

Model py
Policy 7 (pg)

4.1 Step 1: Offline learning for generative model py.

We now describe learning a generative, sequence model pg from historical data. Our goal is to
minimize the loss £(py) from (4). First note that by rules of conditional probabilities, £(py) =

T
-E [ >~ {108 p0(Xil Zr, X1, AV Faea,) + 108 po (1Y baea | 2o X1y V(L 1 Jaea,) |
t=1

To make learning pp more practical, the model can make a variety of simplifying approxima-
tions. For example, pyp could model contexts as evolving independently of past outcomes, i.e.,
po( Xt | Zr, X141, {Yl(:ill}aeAT) = po(X¢ | Z7, X1.4—1), or model contexts as i.i.d. over time,
ie, po(Xt | Zr, X141, {Yl(fz)_l}aeAT) = pp(Xy). Additionally, py could model outcomes in-
dependently across actions, i.e., po({Y; Yaca. | Zr, X1, AV Yaca,) = [Taca. po (Vi |
78 X1, V" ), where Z, = (Z)) 44 for action-specific task features Z(@).

Under the chosen simplifying modeling approximations, one can use gradient descent to optimize pg

to minimize an empirical loss. For example, in our experiments, our pg makes several simplifying
assumptions, and we minimize the following empirical loss to approximately minimize ¢(pp):

Dofﬂme| > Z{logpe Xo)+ > logpe (1Y aca, | 247, Xy, Vi) 1)} ©6)

T e Doffline t= 1 ac A,

Above, D°Min¢ jdeally consists of bandit tasks 7 ~ p* as described in (1). In practice, one may

not have “complete” task datasets 7 = {Z,, X1.T, {Yl(a)7 e ,YT(G)}GE A, }» but instead have some
partial datasets, e.g., {Z;, (X1, A41,Y1),..., (X, Ap,Y7)}, collected by a behavior policy. In
our experiments, we use several heuristics to construct approximate complete tasks 7 from the
partial datasets. We use these approximate task datasets to form Dofine — (7 7 7 . . 1. To
form 7, we make a simplifying modeling assumption that the tuples (X7, Yl(a)), ey (X YT(Q)) are
exchangeable over time. We then use bootstrap sampling to form approximate complete task datasets
7; see Appendix B.2.2. In this appendix, we also formalize all the simplifying modeling assumptions
we make and show how they match standard stochastic contextual bandits with independent actions.

Algorithm 2 Offline training of a sequence model

Require: Training data D°Mi"® model class {py }oco
1: while not converged do
2:  Sample a mini-batch of tasks pmini-baich — poffline
3:  Compute loss in (6) using tasks 7 € Dmini-batch
4:  Backpropagate and take a gradient step to update pgy
5: end while




Algorithm 3 Posterior sampling via autoregressive generation
Require: Sequence model py, actions A, current timestep ¢, current task history
1: Foreacha € A,, define M(@) as the set of times 4 € [1: T] where Yl-(a) was not observed in H;

2: For each a € A, define the ordering <, so that all observed outcomes precede unobserved ones
3: Set Xl;t < Xj.+ and sample Xt+1, . ,XT from pg
4: fora € A, do

5: forie {l,...,T} in order of <, do

6: if i ¢ M@ then

7. Yi(a) “ Yi(a)

8: else A o .
9: Sample V') ~ po(- | Z,{X;, Y, }j<,0. X2)
10: end if

11:  end for

12: end for

13: Return: 7 « {ZT,XLT, {ﬁ(;‘})}aeAT}

4.2 Step 2: Online decision-making using the learned generative model py.

After the sequence model py is trained offline, it is deployed and used for online decision-making. No
additional training of py is needed. Instead, the sequence model learns from recent online observations
“in-context” by conditioning [Brown et al., 2020]. Specifically, to implement the generative step of
Generative TS (line 3 of Algorithm 1), we use py to sample future contexts X and missing outcomes
Y to form 7. We refer to this procedure as posterior sampling via autoregressive generation; this is
depicted in Figure 5 and formalized in Algorithm 3 below.

In Algorithm 3, we use M, C {1,...,T} to denote the timesteps ¢ for which Yt(a) has not been
observed. When generating outcomes in 7; for arm a, we permute pairs of contexts and outcomes
(X,Y) so that observed outcomes always precede missing ones; this way, we always condition on
all observed outcomes (and corresponding contexts), matching Figure 5. We use <, to denote this
ordering for an action a € A.; we use i <, j whenever either (a) ¢ < j or (b) i ¢ M, but j € M,.

Part 2: For each row with missing entries,
.7 autoregressively generate missing outcomes

g ---- )
y(z) ? .y(z) ? . .
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Figure 5: Posterior sampling via autoregressive generation (Algorithm 3).

5 Related work

Decision-making with generative models. Many recent methods use generative models in decision-
making that involve imitation learning, i.e., from demonstrations learn to mimic an expert’s actions
[Chen et al., 2021, Janner et al., 2021, Hussein et al., 2017]. Lee et al. [2023] discuss how these
approaches can be used even without access to expert demonstrations, as long as one is able to fit
an approximate “oracle” policy from offline bandit environments. Our work differs significantly
from Lee et al. [2023] and other imitation learning based works because our sequence models are
used to sample future outcomes, instead of predicting optimal actions. Several recent works also
use generative models to model future rewards [Mukherjee et al., 2024, Nguyen and Grover, 2022,
Miiller et al., 2022x, Garnelo et al., 2018, Liu and Li, 2016]. Most previous work on decision-
making with sequence models that predict future rewards does not use autoregressive generation



to quantify uncertainty [Mukherjee et al., 2024, Nguyen and Grover, 2022, Miiller et al., 2022x,
Garnelo et al., 2018]; Instead, their algorithms only consider uncertainty in the single next timestep’s
reward under each action, e.g., using softmax sampling [Mukherjee et al., 2024]. We find empirically
that alternative (non-autoregressive) ways of sampling from the sequence model can lead to inferior
decision-making performance (Figure 6).

(Approximate) TS with neural networks (NN). Implementing TS with NN has been a longstanding
challenge. Riquelme et al. [2018] investigated TS with a variety of Bayesian uncertainty quantification
techniques for NN; they found that linear TS with the last layer of a NN as context outperformed
many more complex methods. While some TS algorithms directly model uncertainty in NN weights
[Zhang et al., 2020, Wang and Zhou, 2020], the foremost approach in the literature implement TS
with deep ensembles [Qin et al., 2022, Lu and Van Roy, 2017, Dwaracherla et al., 2020, Osband et al.,
2023, Osband and Van Roy, 2015, Osband et al., 2023, Li et al., 2024]. Our generative TS algorithm
is critically different from ensembling because a) through offline meta-training we are able to learn
informed priors from complex task-specific information Z (like text) with benefits that are explicitly
reflected in our bound, and b) our approach allows the generative model to learn in-context avoiding
retraining online using gradient updates on sub-sampled data, which is sensitive to learning rates.

Meta-bandits. In the bandit literature, many algorithms have been proposed for meta-learning
settings. Many prior works focus on a different setup, where bandit tasks are encountered sequentially
and leveraged for learning across tasks [Lazaric et al., 2013, Basu et al., 2021, Kveton et al., 2021,
Wan et al., 2021, Moradipari et al., 2022]. In contrast, our approach uses in-context learning, where a
single algorithm adapts to a variety of new task it could, it encounters (see Figure 4). Also, unlike
much of the meta-bandit theory literature—which focuses on simple models, e.g., linear [Cella
et al., 2020, Cella and Pontil, 2021, Moradipari et al., 2022] or TS with parametric Bayesian priors,
including mixture models [Wan et al., 2021, Kveton et al., 2021, Hong et al., 2022]—our method
accommodates complex sequence models py with low loss and any policy class with finite VC
dimension. A notable exception is Boutilier et al. [2020], which directly optimizes a non-contextual
bandit policy from historical data via gradient descent, but their approach only works for learning
differentiable, soft-max based soft-max based algorithms.

6 Experiments

Problem setting. Throughout, 7' = 500, |.A| = 10,' outcomes Y are binary, R(y) = y, and Z has
separate components Z(®) € R? for each action. Our SYNTHETIC setting uses a Bayesian logistic
regression data-generating process with contexts X € R®. Our SEMI-SYNTHETIC setting mimics
a cold-start, news recommendation setting using the MIcrosoft News Dataset [Wu et al., 2020];
Z(@) consists of article headline text, contexts X € R are user features, and Y € {0, 1} represents
whether user click on a recommendation. See Appendix B.1 for details.

Bandit algorithms. We use Generative TS (TS-Gen) as described in Section 4. For py, we use a
simple recurrent neural network which takes in prior information Z, history H;_1, and current context
X, and outputs a distribution over Y. In the SEMI-SYNTHETIC setting, pg embeds the article headline
Z using DistilBERT [Sanh et al., 2019]. We use a logistic regression-based policy class II for the
SYNTHETIC setting and a multi-layer perceptron (MLP) policy class for the SEMI-SYNTHETIC setting.
For baselines, three algorithms use the same py model as TS-Gen, but select actions differently: 1)
GREEDY deterministically selects the action predicted by py to have the greatest next reward. 2)
EPSILON-GREEDY employs GREEDY with probability 0.9 and otherwise selects an action uniformly
at random. 3) TS-NEURAL-LINEAR, which uses the output of the last layer of the pg model as
the context for a linear TS algorithm with a multivariate Gaussian prior; we consider variants with
an uninformative prior and a prior fit using historical data. We also compare to a standard linear
TS [Agrawal and Goyal, 2013], where X, is used as the context, as well as LinUCB [Li et al., 2010].

Results. As seen in Figure 6, TS-Gen outperforms other algorithms in both the SYNTHETIC and
SEMI-SYNTHETIC settings. TS-Gen’s superior performance compared to other algorithms that use
the same py model (GREEDY, EPSILON-GREEDY, TS-NEURAL-LINEAR) validates the benefit of
our generative approach to uncertainty quantification and decision-making. We conjecture TS-Gen’s
advantage compared to LinUCB and TS-Linear is attributable to our pretraining procedure and the

'Recommendation options are often from a pre-filtered set [Davidson et al., 2010, Covington et al., 2016].
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Figure 6: Cumulative regret averaged over 500 bandit tasks. Regret is against the best fitting policy
in IT (logistic for synthetic and MLP-based for semisynthetic). TS-Gen outperforms methods that use
the same py model (Greedy, e-Greedy, TS-Neural-Linear). Error bars (barely visible) denote £1 s.e.

better use of prior information Z. We also found, as suggested by Theorem 2, the lower the offline
prediction loss of py, the lower the regret of TS-Gen; see Appendix B.4.1.

Computational costs. For our semi-synthetic experiments, the generation and policy fitting times per
decision were 4.2 and 2.2 seconds, respectively, on CPU (Appendix B.8). Various approaches could
be investigated to speed up the algorithm. Distillation: Policy distillation, transferring knowledge
from one policy to another, is commonly used to speed up computation. These approaches could distill
TS-Gen into a policy that maps the current context X, and recent task history ; to a distribution
over actions [Czarnecki et al., 2019]. Generation: Generation could be sped up by truncating or
reducing the number of outcomes generated per timestep. For sequence models more broadly, there
is great interest in speeding up inference time through architecture changes [Tay et al., 2022] and
optimizing around hardware constraints [Aminabadi et al., 2022, Dao et al., 2022]. Policy fitting:
Policy fitting could be done incrementally instead of being refitted from scratch at each decision time.

7 Discussion

We introduce a generative TS algorithm for contextual bandits that is compatible with any generative
model with low offline prediction loss and a policy fitting procedure with low VC dimension. We
prove a regret bound for our algorithm that allows for misspecification of the generative model,
and provides insights into information theoretic analyses for contextual bandits that may be of
independent interest. Open directions include i) developing methods to guide how to choose an
appropriate policy class II [Foster et al., 2020], ii) quantifying how much offline data is needed to
train a high quality generative model (including settings where offline data is collected by a behavior
policy), iii) exploring if the generative approach to modeling uncertainty can be extended to more
difficult decision-making settings, like Markov decision processes, and iv) investigating methods to
reduce computational cost.

Limitations. We evaluate our generative TS algorithm in only two experimental settings. As a result,
our experiments are primarily a proof-of-concept for the viability of the generative TS approach.
Additionally, in practice, our approach requires training a generative model py to approximate
complete task datasets, but in practice one may not have access to complete task datasets. We describe
heuristic approaches we use to approximate complete task datasets from partial task datasets in
Section 4.1. Further work is needed to assess practical feasibility in more complex settings and
to formalize how well our heuristic approaches perform theoretically. Finally, our generative TS
algorithm may also be computationally costly, especially when implemented with complex generative
models. We discuss potential approaches to improve computation cost at the end of Section 6.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction do accurately reflect the paper’s
contributions and scope. We propose a generative version of Thompson sampling for
contextual bandits, provide regret bounds, and include empirical demonstrations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the Discussion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Yes, all assumptions are stated, and proofs are in Appendix A.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. We describe our experiments thoroughly in Section 6 and Appendix B.
We also provide code in the supplementary materials and at https://github.com/
namkoong-lab/ts-gen.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17


https://github.com/namkoong-lab/ts-gen
https://github.com/namkoong-lab/ts-gen

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include code for our experiments in the supplementary materials and also
athttps://github.com/namkoong-lab/ts-gen.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We include some details in Section 6 and remaining details in Appendix B.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide standard error bars for our results that represent & s.e. in our
experiments, with standard errors calculated assuming normality, and we describe over what
population they are averaged (500 bandit environments, drawn IID).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss the compute resources we used in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the NeurIPS code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The primary contribution of our paper is a very general methodology for
contextual bandits, accompanied by a similarly general theoretical analysis, and an empirical
demonstration. Because of the nature of our contribution it is unlikely that there are
significant societal impacts.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks. It is a general method for contextual bandit
settings.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The only assets we use are the MIND dataset [Wu et al., 2020], DistilBERT
[Sanh et al., 2019], and two pre-trained text classifiers from huggingface. For all of these we

ensure we follow their license agreements (see Appendix B for more information on their
URLs, usage, and licenses).

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code along with our submission in the supplementary material and
in https://github.com/namkoong-lab/ts-gen. There are no other new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not use human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not use human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are not used as a core part of our methods.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theory

A.1 Notation

* Throughout, we use [E; to denote expectations conditional on H;, i.e., we use
Ee[-]=E[- | He. )

* We use H(Y') to denote the entropy of a discrete random variable Y, i.e., H(Y) =3 P(Y =

y)log P(Y = y)dy. We also use H;(Y) = H(Y | H.) to denote the entropy of Y conditional
on H;; Note that is standard in information theory, H;(Y") is not a random variable, rather, it
marginalizes over H;:

H(Y) = H(Y | Hy) = [ZP — | He) log P(Y = y | Hy)dy|

Above, the outer expectation marginalizes over the history ;.

* We also use I(Z;Y) to denote the mutual information between some random variables Z and
Y.ie, [(Z;Y) = [, [,P(Z = 2,Y = y)log sty dzdy. We further use I,(Z;Y) to
denote the mutual 1nf0rmat10n between Z and Y conditional on H; (which we then marginalize
over Hy), i.e.,

L(Z:Y) = 1(Z:Y | Hy)

_ _ P(Z:z,Y:y|’Ht) .
E[// _Z’Y_ylﬂt)logP(Zz|’Ht)]P’(Yy7-Lt)dxdy}’ (®)

Above, the outer expectation marginalizes over the history H;.
* Finally, we use Dx. (p(Z | X) || p'(Z | X)) to denote the KL divergence, i.e.,

Dua (o2 | X) 11421 ) = - [ (2] X100 EZL0).

Above, the outer expectation marginalizes over X.

A.2 Showing Algorithm 1 implements Thompson Sampling (Probability Matching)

Proposition 1 (Algorithm 1 Implements Thompson Sampling). Algorithm I with imputation model
p* implements Thompson Sampling (probability matching), i.e., the following holds almost surely:

P(A; =a | H) =P(r* (Xg;7) = a | Hy).

Proof. Recall that Algorithm 1 selects actions as follows:
P(A; =a | H) =P(r* (Xy;7) = a | Hy).

Since 7 ~ p*(7 € - | H¢) and from Eq (1) 7 ~ p*, the distributions of 7 and 7 are equal given H,.
Hence, with probability 1 for any j:

P(F =3 He) = P(r =3 | Ha).
The above implies that
P(r*(Xe;7) = a | He) = P(r"(Xe;7) = a | Hy).

Combining the above statements gives the result. O

A.3 Bounding the conditional entropy by VC dimension

Proposition 2 (Complexity bound on entropy). For policy class 11 over action space A, with
Nataranjan dimension d (equivalent to VC dimension when | A, | = 2),

H(m*(Xvr) | Z7) < H(w"(X1r)) = O(d - 1og(T - | A ).

23



Proof. The first inequality H (w*(X1.7) | Z;) < H(w*(X1.7)) holds by the chain rule for entropy.

Note that w*(X1.7) is a random vector of dimension 7" where each dimension can take |.A, | different
values. By a generalization of the Sauer-Shelah lemma [Sauer, 1972, Shelah, 1972], specifically
Theorem 2 and Corollary 3 in [Haussler and Long, 1995], if a multi-class function that can take
on |.A,| different values has Nataranjan dimension d, then that function class can produce at most

Z?:o (?) (JA;| —1)" = O(T9|.A,|%) different labelings of any T points. Thus, since a coarse upper
bound on the entropy of a random variable is the log of the number of unique values that variable can

take, we get that H (7 (X1.7)) < log Z?:o (D) (A = 1)i = O(d - log(T - |A,])). O
A.4 Regret bound for Generative TS with an approximate imputation model

A4.1 Lemma 1: To minimize loss py needs to approximate p*.

The next lemma is a standard result connecting the excess expected loss of a sequence model py
to its KL divergence from the true sequence model p*. The expected loss of a sequence model py
is denoted ¢(py); See (4). To minimize loss, py, the learner needs to closely approximate the true
sequence model p*.

Lemma 1 (Decomposing loss under py). For the loss ¢ as defined in (4),

L(pe) = £(p") + DkL (p* (Xlva {Y1(;aT)}aeAT | Zr) Il po (Xl:T7 {Y1(;aT)}aeAT | Z‘F)) .

Proof. By the definition of the expected loss in (4),
L(pg) — L(p*) = —E {Inge (XLT, {Yl(fz)_l}aeAT | Z‘f'):| +E {1ogp* (XLT, {Y1(:lz)—1}ae¢47 | ZT)}
= DkL (p* (Y1(;(;2aX1:T | Z:) | po (Yl(;aT)7X1:T | Z‘r))

Above, the final equality holds by the definition of the KL divergence. O

A.4.2 Lemma 2: Action selection under perfect vs. imperfect imputation models.

Lemma 2 (KL Divergence in next action distribution). For any t,

Dy (Py (7" (Xi57) = -) [| Pt (Ar =) < lpg) — £(p")-

Proof. Note the following:
Dir (Pr (7" (Xe57) =) | Pe (Ar =)
S D (B (X (VP e, | H0) [ By, (Kur (VYo | )
(a)

< Dt (Por (Xur, (Y Phaca | Z0) 1Py, (Xrr, (VD haca, | 2)) < po) — €0°):
(b) (e)

¢ Inequality (a) holds because 7* (X; 7) and A; are both are derived by applying the same function
to the contexts X ;.7 and outcomes {Yl(fr})}ae A, -

* Inequality (b) holds because by the chain rule for KL divergence,
DL (Pp* (X1, {Yl(:l;“)}aeAT | He) | Pyy (X1, { Y7 e, | Ht))

=Dt (P (X1, {Y{ P Yaca, | Z) By, (Xrr (Vi aea, | Z7))
+ DKL (]Pp* (Hta Xl:T | ZT) H ]Ppg (Hta XI:T | Z‘r)) )
and the KL divergence is non-negative.

* Inequality (c) holds by Lemma 1 (Decomposing loss under pyg).
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A4.3 Lemma 3: Mutual information equivalency.

Lemma 3 (Mutual information equivalency).
L (x* (X ) (V) A)
- E[ > P =a)Pi(n* (Xii7) = a) D (P(V | 7 (Xis7) = ) [ Py (v")) }

a,acA,
Proof. Note that

L(n* (Xe;7); (V) A) = Li(n" (X 1), Y | 4y)
(@)

(b) ac A, (¢) ac€A,

E| 3 Pudi=a) 3o Pu(r*(Xeir) = @)D (B | 7" (Xes7) = ) | (Y, “”M

(d) a€A, acA,

Above, equality (a) holds since 7*(X¢; 7) and A; are independent conditional on ;. Equality (b)

holds by the definition of conditional mutual information. Equality (c) holds because Yt(a) and
7m*(X; 7) are independent of A; conditional on #;. Equality (d) holds by the KL divergence form of
mutual information. O

A.4.4 Lemma 4: Mutual information bound for policies.

Lemma 4 (Mutual information bound for policies).

th (X7 (VY AY) < H(m* (X)) | Z7)

Proof.

T
ZA (Xer) (VM A)) < 30 I (X (Y, A0))

G =t
\:/Il (7*(X11); (Yt(At)a At)f:l)

@)
= (7*(X1.r)) — Hi (7% (X17) | (Yt(At)»At);le)
(i13)

< Hy(m*(X1.7))
(iv) (v)
* For inequality (i), note that for any random variables X7, X5, Y (where X7, X5 are discrete), by
properties of mutual information and entropy,
(X1, X2);Y) = H(X1, X)) — H(X1, X2 | V)
=H(X1)-H(X1 |Y)+H(Xy | X1) - H(X2 | Y, X1)
The above implies that I((X;, X5);Y) > I(X1;Y) since I(X2;Y | X1) > 0. Recall that
m*(X1.7) := {7*(X¢;7)}_ ;. Thus, since 7*(Xy; 7) € w*(X1.7) we have that
I (7" (Xa); (), A) 2 L (n* (X 7): (), Ap)).

* Equality (ii) uses the chain rule for mutual information.
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» Equality (iii) holds by the relationship between mutual information and entropy.
* Inequality (iv) holds since entropy is always nonnegative.
* Inquality (v) uses that Hy (7*(X1.7)) = H(7*(X1.7) | Z+, X1) < H(w*(X1.7) | Z;), where

the first equality holds by the definition of H; and the final inequality holds by the chain rule for
entropy.

A.4.5 Proof of Theorem 2

Theorem 2 (Regret bound for Generative TS with an approximate imputation model). For Algorithm
1 with imputation model pg, Ats_Gen(Do),

A(Ars-cen(po)) \/| H(m*(Xv7) | Z-)+ /2{l(pe) — L(p*)}

Penalty for sub-optimal prediction

Regret bound for Thompson sampling

Proof. Note that by the law of iterated expectations,

T T
]‘ * T + ﬂ_* pres .
A(AT1S.Gen) = E[T E R(Y;( (X3 ))) _ R(Y(A ) :| [ 2 : [ Y( (X ))) B R(Y;(A ))} ]

t=1

Consider the following for any ¢ € [1: T

E, [R(Y;”*‘X”% ~ B(Y{)]

Z (XuT)=a) E [R(yt(a)) | T (X 7) = a] _ Z Py(4; = a) - E, [R(Yt(a)) |4, = a]
e a€A,
\(/:_/ zf; Xt7 ) = Cl) E; [R(Y;(a)) I 7T*(Xt;7') = a] — a;;‘r ]P)t(At — CL) E, [R(}/t(a))]

Z \/IP’t (X 1) =a)P(Ar = a) (Et [R(Yt(a)) | 7*(X¢; 1) = a] —E; [R(Yt(a))})
acA,

+ ) (VP (Xiim) = a) = VPi(A; = a))

a€A,
(\/Pt (Xim) = B[RV | 7 (Xis7) = a] + v/Pi(Ar = ) [R(V,)])
\(é), ZA ™(Xy;7) = a)Pi(Ar = a) (Eq [R(Yt(a)) | 7 (Xy;7) = a] — K, [R(Yt(a))])
+ 3 P (Xe7) = @) = Py(A, = a)]
ac A,
A, i ] - -
(é,)/ |2§; Pu(A: =a) ZA By(m(Xei7) = @) - Die (B (V) | 7 (Xis7) = @) | B (V)
+ 3 P(m(Xe7) = a) — Pe(Ay = a)
a€A,
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Above, equality (i) holds since conditional on H;, the action A; and the outcome Yt(a) are independent.
Inequality (ii) uses that R takes values in [0, 1] in the second term. Inequality (iii) above holds because:

> VR (Xir) = oA = a) (B [R(Y) | 7 (Xei7) = o] — E[R(Y,")])
a€A,

Al Y B (Xes7) = )B4y = ) (B[RO | 7(X1:7) = ] ~ B [R()])
(a) acA,

Ml Y Py =a) Y Pilr(Xim) = ) (B[R(G) | 7 (Xis7) = @] — B [R(Yt(a))]f

(b) a€EA, acA,

Z Pi(Ay=a) Y Pi(r*(Xii7) = @) - D (P (1 | 7w (Xi7) = @) [ P2 (1))

(C) ac A, acA,

Inequality (a) uses Cauchy-Schwartz inequality. Inequality (b) uses an elementary equality of
summation. Inequality (c) uses Fact 9 of Russo and Van Roy [2016] (which uses Pinsker’s inequality).

Using the above result, averaging over ¢ and taking an expectation, we get

T
_mll (7" (X4i7)) (A1)
Atbrsoa) =B | B [ROYT ) RO

T
E[;Z |“L;T| Z P.(A; = a) Z Py(m*(X¢;7) = a) - Do (Pt(y;(a) | (X 7) = a) ||Pt( (a))):|

t=1 ac A, acA,

[ZZIR (X4 7) )—Pt(At:an]

t=1acA,
< E[l XT: [A-| Pi(Ar=a) Y Py(n*(Xy;7) =a) - Do (]P’t (Y | 7(Xy;7) = @) || Py (Yf‘l))) }
\(g/ Tt:1 2 ac A, acA,
1 T
E{TZ\/Q-DKL (P (m* (Xpi7) = ) || P (A = -))]
t=1
= V;‘ %ZI( (X5 71) (Yt(A‘),At)) —|—E[1Z\/2-DKL (Pe(m(Xps7) = - ) | Po(Ar = ))]
(4) t=1 t=1
< A 1 - * o). (v(Ae) 1 - * ) _
=R\ TZQ(W (Xe:7); (V7 4)) + TX;Q.DKL (B (7 (Xs57) = - ) | Py (Ar = -))
(#ii) t=1 t=

|A-| - H(m*(X1.7) | Z7) +
2T

2{t(pe) — L(p*)}
(iv)

* Inequality (i) uses Jensen’s inequality on the first term and Fact 9 of Russo and Van Roy [2016]
(which uses Pinsker’s inequality) on the second term.

* Equality (ii) uses Lemma 3 (Mutual information equivalency).

* Inequality (iii) uses Jensen’s inequality.

* The first term in inequality (iv) uses Lemma 4 (Mutual information bound for policies) and the
second term uses Lemma 2 (KL Divergence of next action distribution).

O
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A.5 Regret bound for Generative TS with a perfectly calibrated imputation model p*

Theorem 1 (Regret bound for Generative TS with a perfectly calibrated imputation model p*). For
Algorithm I with imputation model p*, A1rs_Gen(p*),

| A-|
2T

A(ATstcn(p*)) < . H(W*(XLT) | ZT)

Moreover, A(Ars_Gen(p*)) < \/; -H(m*(X1.7) | Z;), where T bounds the information ratio

]E[R(Yt(" (Xt:r)))fR(Y;At))l'Ht]Z
I(m* (Xt;T);Yt(At) VAL He)

[Russo and Van Roy, 2016], i.e., T > max; I'y a.s. for Ty :=

Proof. The first result that A(Ars_Gen(p*)) < ";—{1‘ - H(7*(X1.7) | Z;), holds as a direct corol-
lary of Theorem 2 by setting pg = p

We now show the second result that A(Ars_gen(p*)) < \/% - H(m*(X1.7) | Z7). It holds by a

very similar argument as Proposition 1 of [Russo and Van Roy, 2016].

T
1 T (XgT Ay
A(Arscen) = E [T 2 RO — RO U}

i) t=1

f r
< [ th “(Xi ,Y(A/),At)]s/ﬂ-H(w*(Xm|ZT>

~—

(#44) (iv)
Equality (i) holds by the law of iterated expectations. Equality (ii) holds by the definition of T';.
Inequality (iii) holds by Cauchy-Shwartz. Inequality (iv) holds by Lemma 4 (Mutual information
bound for policies). O

—
<

A.6 Comparison to existing regret bounds

Lemma 5 (Bounding information ratio for linear, non-contextual bandits). Suppose
E[R(Y;) | A; = a] = p(Ay) 70 for some 6% € R Let the policy class 11 be such that for any
m eI, m(a) = p(A;) "0 for some 6 € RY. Then, T, < 4 a.s.

Proof. This result follows by Proposition 5 of Russo and Van Roy [2016]. O

Generative TS regret bound for linear and logistic reward settings. By our Theorem 1, we

have that the per round average Bayesian regret is bounded by \/ 1A |H (7*(X1.7) | Z;). Note

that by Theorem 29.7 in Shalev-Shwartz and Ben-David [2014] a hnear multiclass predictor of the
form argmax . 4 07 o(x,a) for & € RY has Nataranjan dimension less than or equal to d. Thus,

by applying Proposition 2, we have that H (7*(X1.7) | Z,) < d -log(T - |.A-|), so the per round
Al | IOg(T' ‘ATD

average Bayesian regret is bounded by \/ oT
Alternatively we can use the second result Theorem 1 to conclude that the per round average Bayesian

regret is bounded by \/; -H(m*(X1.7) | Z;). By Lemma 5 we can choose ' = g, so by applying
the same Proposition 2 argument as above, we have that the per round average Bayesian regret is

bounded by 1/ & log(T - |A,]).
Thus, by combining the above two results, we have that

dmin(d, | A,
Albrs () < 1 L IAD g ©)
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Linear logistic bandits. We compare to Theorem 4 of Neu et al. [2022]. We only provide a brief
overview of their result here; Please see the paper for additional details. Additionally note that
their result applies to adversarial contextual bandits, whereas our result only applies for stochastic
contextual bandits.

In their problem setup, the rewards are generated using a logistic model where #* € R%:
R(Y:) | X¢, Ay ~ Bernoulli (expit (¢(X¢, At)Tﬁ*))

They show that cumulative Bayesian regret of Thompson sampling (with a correctly specified

Bayesian model) is bounded by \/2|A,|Td{log(2SCT + 1) + 1}, where ||6*|| < S and C i related
Lipschitz smoothness of the logistic function. This means that the per round average Bayesian regret

is bounded by \/ %{105;(25 CT + 1) 4 1}. Our result from (9) matches up to log factors.

Linear non-contextual bandits. We now compare to the result in Section 6.5 of Russo and Van Roy
[2018]. Again, we only provide a brief overview of their result here; Please see the paper for additional
details.

In their non-contextual problem setup, the rewards are generated using a linear model where * € R%:
E[R(Y;) | A = a] = p(A;) 0"

They show that cumulative Bayesian regret of Thompson sampling (with a correctly specified

Bayesian model) is bounded by 4/ 3 log(|.A-|)dT. This means that the per round average Bayesian

regret is bounded by |/ - log(|.A,|). Our result from (9) differs by a factor y/min(d, [A,[) and a
log(T) term.

The additional |.A| and log(T) factors, we believe, are not artifacts of our specific algorithm, but
rather are a consequence of the generality of our analysis.

* The log(T) term comes from our use of the Natarajan dimension, a generalization of the VC
dimension. This term is common in bandit regret bounds that rely on VC dimension-based analysis,
as seen in other work (e.g., Beygelzimer et al. [2011]). It appears to be an unavoidable consequence
of this type of generalized bound.

* The |.A| term is a consequence of the generality of our analysis, which does not utilize a shared
parameterization across actions. The Russo and Van Roy [2018] bound for linear bandits is tighter
because it leverages the linear structure, where E[R(Y;) | A; = a] = (a) T B. In this setting, the
parameter /3 is common to all actions, meaning information gained from observing an action can
be used to inform beliefs about the rewards of all other actions. Our analysis, however, does not
assume or utilize such a shared structure. Instead, our regret-bound scales with the number of
actions, similar to bounds for multi-armed bandits where the reward distribution for each arm is
learned independently. This makes our bound applicable to a broader class of problems, but also
looser for specific settings like linear bandits with shared parameters across actions.

While our result does not provide the tightest possible regret bound for a specific parametric model, we

present a general and robust theoretical framework that characterizes the performance of Thompson
Sampling variants that use modern generative sequence models and general policy classes.

B Experiment details

B.1 Data generating environment

B.1.1 Synthetic bandit setting.

We form samples of tasks 7 = {Z, (X4, Yt(a)}ae A, )E .} as follows. The task features Z for a given
bandit task consist of one feature per action, i.e. Z = {Z(®},c.4., where only Z(*) € R2. We

sample task features Z(*) ~ N(0q,I3) independently across all |A,| = 10 actions and contexts
X; ~ N(0s, I5) independently across time. We let R(y) = y and use the following generative model
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for Y,(*:

Yt(“) | Wt(a) ~ Bernoulli(a(Wt(a))), (10)
where
Wt(a) = U(fgﬁst + Uéa)Z(a) + U)((G)Xt + X;1;2Uc(rclc3ssz(a)v

for o(w) := (1 + exp(—w))~!. Above we use X; 1.2 to denote the first two dimensions of X;. The
latent variables are multivariate Gaussian: U%), ~ N(0,1), US) ~ N(13, I, - 0.252), U ~

N(15,I5-0.25%), and Uc(fgss is a diagonal matrix where the diagonal entries are drawn independently
from N (1,0.252).

B.1.2 Semi-synthetic setting.

We form samples of tasks 7 = {Z, (X4, Yt(a) Yaea, )L 1} as follows. We consider a semi-synthetic
news recommendation setting in which we use text headlines Z(®) for action a. We let R(y) = y and

use the following generative model for Yt(a)

v | W ~ Bernoulli(o:(W ")), (11)
where
Wi = U + UL 02(21) + UL 6 (X0) + ox (X0) [2Ulk62(2).

Above, ¢x(X;) € R* and ¢z(Z(®) € R? are complex nonlinear function of X;, Z(®), which
increases the difficulty of the learning task; We describe these functions in detail below. Note,
o x (X¢)1.2 denotes the first two dimensions of ¢ x (X;) € R2. The latent variables are multivariate

Gaussian: Uc(gr)lst ~ N(0,1), Ugl) ~ N(1g, I3 - 0.25%), U)((a) ~ N(14,0.25? - I), and the matrix
Uc(fo)ss is diagonal with diagonal entries drawn independently from N (1, 0.252).

Contexts and ¢ x. The contexts X; ~ N (05, I5) independently over time. We use
ox (Xt) = Xt,1:4 : Sign(Xt,s)),

i.e., ¢x multiplies the first four dimensions of X by the sign of the fifth dimension. Above, X 1.4
denotes the first 4 dimensions of Xj;.

Tasks features and ¢z. To form a task, we sample |A,| = 10 headlines Z(*) uniformly from
the MIND large dataset [Wu et al., 2020]. ¢ (Z(*)) € R? where the each dimension is the output
of a pre-trained binary classifier evaluated on the news article. The first dimension is the output
of probability output of a pre-trained sentiment classifier [Savani, 2022] and the second dimension
is the probability output of a pre-trained formality classifier [Babakov et al., 2023]; The outputs
are normalized to have mean 0 and variance 1 based on their distribution in the training set. Both
classifier models were obtained from huggingface.com.

B.2 Offline pretraining

B.2.1 Sequence model architecture

Synthetic setting. This architecture is described by Figure 7 except the X MLP head and Distil-
BERT head should be replaced by identity mappings. In the synthetic setting py is simple recurrent
neural network where the MLP takes as input Z (@), current context X ¢, as well as summary statistics
of the history H; (discussed below). Before being fed into the MLP head, the summary statistics are
then repeated 100 times and concatenated into a single vector. The Z(%), the current context X;, and
the repeated summary statistics of the history are fed into the final MLP head, which has 3 hidden
layers, each with width 100. Note that the MLP consists of a linear layer taking the input to the
first hidden layer, the 3 hidden linear layers, and finally a linear layer taking the output from the last
hidden layer to the output before the sigmoid, which is a total of 5 linear layers. The output of the
MLP head is fed through a sigmoid function to obtain a prediction for the probability that the next
outcome is 1 (rather than 0).
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Figure 7: Diagram of model architecture for pg, for semisynthetic settings. In synthetic settings, the
model architecture is the same, except that it does not include the DistilBERT [Sanh et al., 2019]
encoder to process text, or the MLP encoder to process contexts X;.

The summary statistic of #; only contains information about action a, i.e., {(X;,Ys) : s < t, A5 =
a}. For these summary statistics, we aggregate the context vectors X into a matrix X, where each
row is one element in { X : s < ¢, A; = a}. We do the same for {Y; : s < t, A, = a} to construct
vector Y. The X and Y, appear in X and Y in order according to timestep s. The summary statistics
are (XX + 1)~ tand X'Y.

Semisynthetic setting. This architecture is described by Figure 7. In the semisynthetic setting, py is
implemented to take as input action-specific task feature Z(*), current context X, as well as summary
statistics of the history H; (discussed below). As displayed in Figure 7, the model architecture is as
follows. We concatenate a DistilBert [Sanh et al., 2019] embedding of headline Z (@) with X, and a
summary statistics of the history (desribed below) that is repated 100 times. Then, this concatenated
vector is fed into the final MLP head (3 hidden layers, width 100). Finally, the output of the MLP is
fed through a sigmoid function to obtain a prediction for the probability that the next outcome is 1
(rather than 0).

The summary statistic of #; only contains information about action a, i.e., {(X;,Ys) : s < t, Ay =
a}. For these summary statistics, we aggregate a learnable MLP embedding qAS x (of depth 2 and width
100, labeled “X MLP Head” in Figure 7) of the context vectors ¢ x (X) into a matrix ¢ x (X), where
each row is one element in {¢x (X) : s < t, A, = a}. We do the same for {Y; : s < ¢, A, = a} to
construct vector Y. The qAﬁ x(Xs) and Y; appear in qB x(X) and Y in order according to timestep s.

B.2.2 Forming approximate complete task datasets from partial datasets

As described in Section 4, D°Min¢ jdeally consists of bandit tasks 7 ~ p* as described in (1).

In practice, one may not have “complete” task datasets 7 = {Z,, X1.1, {Yl(a), cee YT(a)}aeAT 1
but instead have some partial datasets, e.g., {Z,, (X1, A1,Y1), ..., (X7, A7, Y7)}, collected by a
behavior policy. In our experiments we use a several heuristics to construct approximate complete
tasks 7 from the the partial datasets. We use these approximate task datasets to form D°fine —
{%17%27%37 BRRE) }

The bootstrapping procedure we use makes several modeling simplifying assumptions, which are all
common in the bandit literature:

* Stationarity over time. We model the X,’s as being drawn i.i.d. from an unknown distribution.

Additonally, we model the (X, Y;(a)) as exchangeable over time, i.e., (X, Yt(“))te[h 7] D

(Xa(t)ayg(gg)))te[l: 7]-

 Independence across actions. For a given task 7, we model the outcomes Yl(f}) as i.i.d. con-

ditional on X.7 and Z. This means that the outcomes YI(ZE are not correlated with those from

other actions, given contexts and task features.
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Due the independence across actions assumption, instead of generating 7, we instead impute rows

7la) = {X1.1, }/1(;‘;“)} for individual actions a. We use a bootstrapping procedure to construct 7(%),
described in Algorithm 4 below.

Algorithm 4 Bootstrapping historical data to form 7(®)

Require: Historical data from action a, denoted S(*) « {(X;,Y;) : A; = a}
1: Sample (with replacement) 7" tuples from S(®):

5(%2/)

o <r(a o o (a a) t.i.d. 1
(a7, (R Vi) | 8@ o 37
(z,y)€eS(@)

2: return 7@ = {(th/l(a))a e (XT>?7(“G))}

B.2.3 Additional sequence model training details

Synthetic setting. For offline training of py, we sample 20k independent “task action” datasets
{Z@) Xy, Yl(‘;\),(a) } according to the data generating process from Appendix B.1.1; Specifically

we use N(@ = 1000 for all a. This dataset is split into training and validation sets where 10k
actions are in each set. The training set is used for training py via gradient descent for 100 epochs,
with loss from display (6); Note for approximating the distribution of X, we use the empirical
distribution of 1000 contexts X’s from the training set (no gradient descent training). In each training
batch, we use bootstrap resampling, specifically, Algorithm 4. The validation set is for choosing best
hyperparameters and training epoch. We optimize weights in py with the AdamW optimizer. We try
learning rates {0.1,0.01,0.001} and choose the learning rate with the lowest validation loss, which
is 0.01. We set weight decay to 0.01. The batch size is 500 actions a per batch.

Semi-synthetic setting. For offline training of py, we sample independent “task action” datasets
{Z(“), XN, Yl(f;\),(a) }. For Z(@)°g use 104k headlines from the MIND dataset [Wu et al., 2020];
20k are used for the training set, 10k are used for validation, and 74k are used for bandit evaluation.
The outcomes X and Y are generated according to the process described in Appendix B.1.2; Specif-
ically we use N(®) = 1000 for all a. The training set is used for training py via gradient descent
for 40 epochs, with loss from display (6); Note for approximating the distribution of X, we use the
empirical distribution of 1000 contexts X ’s from the training set (no gradient descent training). In
each training batch, we use bootstrap resampling, specifically, Algorithm 4. We optimize weights in
pep with the AdamW optimizer. We try learning rates {0.1,0.01, 0.001} and choose the learning rate
and also the training epoch with the lowest validation loss; the learning rate chosen is 0.01. We set
weight decay to 0.01. The batch size is 500. We do not fine-tune the DistilBERT encoder, i.e., its
weights are frozen.

B.3 Online learning

Bandit datasets are constructed as described in Appendix B.1. In the semisynthetic setting, the
headlines used are as described in Appendix B.2.3.

B.3.1 TS-Gen policy-fitting details

Here we describe additional details used to fit 7*( - ; 7¢) € II given an imputed task dataset 7. Using
74, for each action a € A,, we fit an action-specific model to predict (binary) outcome Y given
context X'; We use f(*)(X;7;) to denote this fitted action-specific model. Note that these models do
not incorporate task features Z(*). Then,

™ (x; 7)) = argmaxaeATf(a)(:z:; 7t).
In our experiments we choose f to be either a logistic regression function or an MLP.
* For logistic f, we use the default logistic regression implementation from scikit-learn [Pe-

dregosa et al., 2011].
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» For MLP-based policies, we use the default MLP classifier implementation (including hyperpa-
rameters), also from scikit-learn [Pedregosa et al., 2011]. This is an MLP with one hidden
layer of width 100, with ReL U activation, trained with Adam optimizer, with initial learning rate
0.001, and batch size 200. There is no early stopping or additional validation split.

B.3.2 Baseline bandit methods

The first three (Greedy, Epsilon-Greedy, and Softmax) are alternative ways to make decisions using
an existing pre-trained sequence model pg. The others (Linear Thompson Sampling, LinUCB) are
contextual bandit methods that do not use py.

Greedy. We use the samed trained sequence model py as used by TS-Gen. In the online step, at
time ¢, we feed the history 7{; (which includes the current context X;) into the model pg. We look at
the predicted mean reward E [R(Y}) | H:, A+ = a] for each action a according to py and select the
action with the largest predicted mean reward.

Epsilon-Greedy This algorithm also uses pg and at each decision time follows the Greedy policy
with probability 1 — € and selects an action uniformly at random from A; with probability €. We use
e=0.1.

Softmax sampling. Softmax sampling also uses the sequence model py to select actions. Just like
the Greedy algorithm, at time ¢, we feed the history H; (which includes the current context X;)
into the model py. We look at the predicted mean reward E [R(Y;) | H;, A; = a] for each action a
according to py and put these values through a softmax function with temperature b > 0. We then
sample the action A; according to the softmax probabilities. Note that softmax sampling is also
called Boltzmann sampling and is also called PreDeToR-7 in Mukherjee et al. [2024]. Following
Mukherjee et al. [2024], we set b = 0.05.

For lack of space, this is omitted in the main text but we compare PreDeToR-7 with Greedy and
Epsilon-Greedy later in this Appendix.

Linear Thompson Sampling (Isotropic Gaussian prior). We use Linear TS [Agrawal and Goyal,
2013] with the following Bayesian model with a non-informative prior. For each arm a € A, and
time ¢, outcomes are modeled as a linear function of X,

V@ =X B 4+ where B ~ N(1,%) and € ~ N(0,0?)
where e§“> is modeled as Gaussian with mean O and variance 1/4 (since the maximum variance of

a Bernoulli is 1/4). Note that unlike TS-Gen, linear Thompson sampling does not learn a rich and
flexible prior based on task features Z .

Linear Thompson Sampling (Fitted prior). We use Linear TS [Agrawal and Goyal, 2013] with
the following Bayesian model with a prior fit using historical data D" We use A°Mi" to denote
all actions across all tasks in D°Mi" We fit the following Bayesian linear regression model for each
action a € A°ffine;

YW =X[5@ 4 ¢ where @~ N(i,%) and ¢ ~ N(0,0?)

(a)
t

where ﬂ(“) are drawn iid across a, and €, ’ are drawn iid across a, t, so that

V| X, ~ N X, 0% + X, 2X,).

For fitting p, &, 02, we do the following:

» For each action a € A°M" in the available historical data (see Appendix B.2.3), we fit the

action-specific least squares model:

B@ = argmin Z(Yt(a) — X:6)?,
teTh

where 77 denotes the first 80% of timesteps in [1,2,...,T].
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* Then we set ji = W > ac Aoftine B(“) and 3 to be the sample covariance of the B(“) across

a € A°ffine  We set 52 to the sample variance of the residuals, i.e. the sample variance of

Yt(a) — XtB(a) across a and ¢, where a € A°M" and ¢ € T3, and where T3 denotes the final 20%
of timesteps in [1,2,...,T].

Linear Thompson Sampling Using Learned Features (Isotropic Gaussian prior) Here, we
propose a variant of Linear Thompson Sampling above, but using features extracted from the learned
sequence model py. Let ¢p(Z (@) X +) denote the last-layer feature embedding (using the output of
the last hidden layer) in the MLP head in the sequence model py used for TS-Gen (see Section B.2.1)
evaluated for the current context X, and action feature Z(®); note we do not feed any history into the
sequence model py when forming ¢g(Z (“), Xi).

We use the following Bayesian linear regression model, which is linear in ¢ (Z(*), X, ):
Y = (2 X)W + e where B ~ N(0,I;) and € ~ N(0,1/4).

where 3(®) are drawn iid across a, and ega) are drawn iid across a, t. Above, the noise variance is set
to 1/4, the maximum variance of a Bernoulli random variable. Note that while this version of linear
Thompson sampling does use pg to form the context ¢g(Z(*), X,), it does not utilize a fitted prior.

Linear Thompson Sampling Using Learned Features (Fitted prior) Here, we propose a variant
of the Linear Thompson Sampling Using Learned Features method above, but fit the prior using
historical data D", We use A°Mim to denote all actions across all tasks in D¢, We fit the
following Bayesian linear regression model for each action a € A°Mire:

Yt(a) = ¢g(Z ), X))@ + eﬁ“) where 3% ~ N(u,%) and eﬁ“) ~ N(0,0%)

(a)
t

where 5(%) are drawn iid across a, and €, are drawn iid across a, t.

For fitting p, 2, 02, we do the following:

* For each action a € A°M" in the available historical data (see Appendix B.2.3), we fit the
action-specific least squares ridge-regression model using the corresponding historical data from

Dofﬂine:
) = argming {313 + 30 (1) - 0u(21%) X))},
teT

where 77 denotes the first 80% of timesteps in [1, 2, ..., T]. We set the ridge parameter o = 0.1.
We add the ridge penalty term because ¢y(Z(®), X;) is 100-dimensional and we found that the
adding the ridge penalty leads to more stable coefficient estimates.

e Then WeA set I = W > ac Aotine B(a) and 3 to be the sample covariance of the B(a) across
a € A°fire: to ensure the covariance matrix is well-conditioned (to avoid numerical issues when
computing posteriors), we add 10~ - I; to the sample covariance. We set 52 to the sample variance

of the residuals, i.e. the sample variance of Yt(a) — g (Z(a)7 Xt)TB(“) across a and t, where
a € A°Mine and ¢ € T, and where 75 denotes the final 20% of timesteps in [1,2,...,7T].

LinUCB. We implement LinUCB-disjoint in [Li et al., 2010], on contexts X;. We set « = 0.1 as it
performs well in comparison to a small set of other values tried ({0.1,1,2}). Note that unlike TS-Gen,
LinUCB does not learn a rich and flexible prior based on task features 7.

B.4 Additional simulation results

B.4.1 Sequence loss vs. regret under TS-Gen (Figure 8)

We examine the relationship between sequence model loss #(pg) and regret of TS-Gen using py in
the SYNTHETIC setting. Our Theorem 2 suggests that the lower the loss of a sequence model py the
lower the regret of TS-Gen using that sequence model py. We examine this by varying the amount
of training tasks used to learn py and thus obtain sequence models with different losses. Indeed, in
Figure 8, models trained on more data tend to have lower sequence loss, which tend to have lower
regret.
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Figure 8: Sequence loss vs. bandit regret: We demonstrate the relationship between sequence loss
and regret for TS-Gen by pre-training our sequence models offline on varying dataset sizes in the
semisynthetic setting. As training dataset sizes are smaller, sequence loss (left) is higher (worse), and
bandit regret (right) is higher (worse). “Training rows” refers to the number of actions used in the
pool of actions to select from to form tasks (Appendix B.2.3). (Left): Prediction loss by timestep.
We plot an empirical estimate of the per-timestep (non-cumulative) loss from (4) by evaluating our
sequence models on an held-out validation set. Error bars represent £1 s.e. (Right): Cumulative
regret for TS-Gen using the corresponding sequence models, with logistic policy class, and relative to
the logistic “oracle”. Error bars represent 1 s.e. averaged over 500 re-drawn bandit environments.

B.4.2 Policy class for TS-Gen (Figure 9)

The choice of policy class II affects both the reward achieved by TS-Gen, and the “oracle”; see Figure
9. In the semisynthetic setting, TS-Gen has moderately greater reward using an MLP-based policy
than a logistic policy. In contrast, the “oracle” using an MLP-based policy is much better than the
“oracle” using a logistic policy.

Regret Over Timesteps: Semisynthetic Regret Over Timesteps: Semisynthetic
80 —— TS-Gen, logistic policy 30 —— TS-Gen, logistic policy
70 TS-Gen, MLP-based policy TS-Gen, MLP-based policy
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Figure 9: Varying policy classes in the semisynthetic setting. The same experimental results are
plotted on the left and the right. The plot on the right calculates regret relative to the logistic “oracle”,
while the left calculates regret relative to the MLP-based “oracle”. Error bars are £-1 s.e. across 500
bandit environments.

B.5 TS-Gen with truncated imputation horizon

TS-Gen imputes missing outcomes up to the horizon 7T'. In practice, one may want to truncate
the number of imputed timesteps in Algorithm 3 to a smaller number than 7" in order to reduce
computation cost in the decision-making step for TS-Gen, or to run TS-Gen when the total number of
timesteps 1" is unknown. Fortunately, regret does not degrade quickly when the imputation horizon is
truncated, which we observe in Figure 10.

B.6 TS-Gen with simpler sequence models

To understand how the regret for TS-Gen depends on the complexity of the sequence model pyg,
we compare TS-Gen with simpler sequence models. Specifically, we compare the regret results in
Section 6 with their counterparts where the final MLP head of the sequence model (Figure 7) is
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Figure 10: Regret for TS-Gen with truncated imputation horizon in the synthetic (left) and semisyn-
thetic (right) settings. Performance degrades slowly and smoothly with reduced number of imputation
steps. Error bars are &1 s.e. across 500 Monte Carlo repetitions.

replaced with an MLP with fewer layers. Recall that the usual TS-Gen has an input layer, 3 hidden

layers, and an output layer (Section B.2.1), adding up to 5 total layers. We compare regret for such
variants of TS-Gen in Figure 11.
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Figure 11: Regret for TS-Gen with simpler sequence models py in the synthetic (left) and semisyn-
thetic (right) settings. Error bars are £1 s.e. across 500 bandit environments.

B.7 Softmax Sampling vs. Greedy

Here we compare Softmax Sampling as described in Appendix B.3.2, with Greedy, and e-Greedy in
Figure 12. Softmax Sampling is another bandit algorithm that uses pg. Like e-Greedy, it “explores”

while using pg, but it does not adequately handle uncertainty as TS-Gen does, as evidenced by the
difference in regret.
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Figure 12: Regret for Softmax Sampling vs Greedy vs e-Greedy in the synthetic (left) and semisyn-
thetic (right) settings. Error bars are £1 s.e. across 500 bandit environments.
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B.8 Compute resources

Offline pretraining. Pretraining a single py for the semisynthetic setting took at most ~ 12
hours; We use a CPU cluster at Columbia GSB and request at most S0GB of memory per job. The
semisynthetic data generating process also involves evaluating two pre-trained text classifiers, and
then caching their outputs and/or embeddings (DistilBERT embeddings + text classifier outputs in the
semisynthetic setting); this was done once on a single GPU at negligible time cost (several minutes).

Online decision-making. For online decision-making, we also use a CPU cluster at Columbia
GSB and for each job we request at most 10GB of memory. Below is a sample of decision-making
time per timestep, across 20 sampled semisynthetic bandit tasks (10, 000 decisions total). Note that
we cache the DistilBERT embedding representing the news article text so this is not included in the
computation. In each sampled bandit task, we compute the average per-timestep time in seconds for
generation vs policy fitting; then, we report mean and variance of these quantities across the sampled
bandit tasks. We write these times below as mean =+ standard deviation across the 10, 000 decisions.

* TS-Gen, using logistic policies: 3.1 & 0.5 seconds for generating 7, 0.01 & 0.02 seconds for
policy fitting, 3.1 & 0.5 seconds total

* TS-Gen, using MLP-based policies: 4.2 & 0.5 seconds for generating 7, 2.2 &= 0.03 seconds
for policy fitting, 6.4 £ 0.5 seconds total

* Neural Linear Thompson Sampling: 1.9 & 0.2 seconds total

B.9 Constrained policy classes

Algorithmic fairness is a topic of general interest [Mehrabi and Wager, 2024, Mitchell et al., 2021],
and fairness can be thought of as a modeling constraint [Corbett-Davies et al., 2017]. Because our
proposed method takes a policy class as an input, results can be immediately adapted to settings that
require specific kinds of constraints, such as fairness or balancing constraints.

As a simple example, we could enforce the constraint that at any given timestep ¢, a fitted policy
7*(+; 7¢) must satisfy the condition that it would give a specific treatment to approximately the same
proportion of user contexts X; across two pre-specified groups. For example, these groups can be
two sets of specific individuals, representatively drawn from the population, where each group selects
individuals from a different geographic region, and where the groups are not related to contexts drawn
in 7¢. This kind of fairness constraint is essentially the notion of predictive parity [Verma and Rubin,
2018].

To implement such a policy class, we would modify the policy fitting procedure in Line
4 in Algorithm 1 as follows: Letting 7 be the imputed table, and letting G; =
(X11,X1,2,---,X1.n,) and Go = (X2,1,X2,2,...,X2 n,) be these predefined sets of user con-

texts X, we would be solving 7* = argmax_ Zthl Ytﬂ(x“ﬂ) subject to the constraint that

N% Zf\gl H{r(X1,) =a} — NLQ Zf\fl H{r(Xs,) = a}’ < € for some chosen € > 0.

B.10 Licenses

MIND news dataset We use the MIND news dataset [Wu et al., 2020]. It is under a Microsoft Re-
search License at https://github.com/msnews/MIND/blob/master/MSR%20License_Data.pdf, which
we comply with. The terms of use are at https://www.microsoft.com/en-us/legal/terms-of-use.

DistilBERT Our semisynthetic sequence models use DistilBERT [Sanh et al., 2019] from
https://huggingface.co/distilbert/distilbert-base-uncased. It has an apache-2.0 license, with license
and terms of use at https://choosealicense.com/licenses/apache-2.0/.

Text classifiers for semisynthetic setting We use text classifiers for the data generating process
in the semisynthetic experiment setting. We use a sentiment classifier [Savani, 2022], accessed
at https://huggingface.co/bhadresh-savani/distilbert-base-uncased-sentiment-sst2, and a formality
classifier [Babakov et al., 2023], accessed at https://huggingface.co/s-nlp/roberta-base-formality-
ranker. Both models were obtained from huggingface.com. The sentiment classifier is not associated
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with a paper and is under an Apache 2.0 license https://choosealicense.com/licenses/apache-2.0/,
which we comply with. The formality classifier is associated with a paper, as cited, and is under a
cc-by-nc-sa-4.0 license https://spdx.org/licenses/CC-BY-NC-SA-4.0, which we also comply with.
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