
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PLANNING-DRIVEN PROGRAMMING: A LARGE LAN-
GUAGE MODEL PROGRAMMING WORKFLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

The strong performance of large language models (LLMs) on natural language
processing tasks raises extensive discussion on their application to code genera-
tion. Recent work suggests multiple sampling approaches to improve initial code
generation accuracy or program repair approaches to refine the code. However,
these methods suffer from LLMs’ inefficiencies and limited reasoning capacity.
In this work, we propose an LLM programming workflow (LPW) designed to
improve both initial code generation and subsequent refinements within a struc-
tured two-phase workflow. Specifically, in the solution generation phase, the
LLM first outlines a solution plan that decomposes the problem into manage-
able sub-problems and then verifies the generated solution plan through visible
test cases. Subsequently, in the code implementation phase, the LLM initially
drafts a code according to the solution plan and its verification. If the generated
code fails the visible tests, the plan verification serves as the intended natural lan-
guage solution to consistently inform the refinement process for correcting bugs.
We further introduce SLPW, a sampling variant of LPW, which initially generates
multiple solution plans and plan verifications, produces a program for each plan
and its verification, and refines each program as necessary until one successfully
passes the visible tests. Compared to the state-of-the-art methods across various
existing LLMs, our experimental results show that LPW significantly improves
the Pass@1 accuracy by up to 16.4% on well-established text-to-code generation
benchmarks, especially with a notable improvement of around 10% on challeng-
ing benchmarks. Additionally, SLPW demonstrates up to a 5.6% improvement
over LPW and sets new state-of-the-art Pass@1 accuracy on various benchmarks,
e.g., 98.2% on HumanEval, 84.8% on MBPP, 64.0% on APPS, and 35.3% on
CodeContest, using the advanced LLM GPT-4o as the backbone.

1 INTRODUCTION

Code generation, also known as program synthesis, studies the automatic construction of a pro-
gram that satisfies a specified high-level input requirement (Gulwani et al., 2017). Recently, large
language models (LLMs) pre-trained on extensive code-related datasets (Brown et al., 2020; Meta,
2024; Li et al., 2023; Roziere et al., 2023; Achiam et al., 2023; Muennighoff et al., 2023) have
shown success in code-related tasks, such as code generation from natural language descriptions,
also named as text-to-code generation (Chen et al., 2021; Austin et al., 2021; Li et al., 2022), code
translation (Pan et al., 2024; Yang et al., 2024), and code completion (Izadi et al., 2024). However,
LLM-based code generation remains challenging due to stringent lexical, grammatical, and seman-
tic constraints (Scholak et al., 2021). To overcome these challenges, multiple initial programs are
generated (Chen et al., 2021; Chowdhery et al., 2023), followed by different best-program selection
strategies to improve code generation performance over LLMs (Li et al., 2022; Chen et al., 2023a;
Zhang et al., 2023; Ni et al., 2023).

Code generation substantially benefits from the empirical insights of human programmers. In prac-
tice, human programmers develop high-quality code by consistently identifying and rectifying er-
rors through the analysis of test case executions, rather than a single effort (Huang et al., 2023c;
Chen et al., 2023b). Different studies have refined programs based on execution results and LLM-
generated information such as code and error explanation (Tang et al., 2023; Shinn et al., 2023;
Madaan et al., 2023). Recent work further optimizes refinement (debugging) methods by performing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Problem
Description

Plan
Verification

passincorrect

correct

Phase 1: Solution Generation Phase 2: Code Implementation

(a)

failed

Solution
Plan

(b)

Initial
Code

(e) Code
Explanation

(g)

Execution
Trace

(h)

Error
Analysis

Refined
Code

Final
Code

(l)
(c)

(f)

Visible
Tests

Code
Execution Visible

Tests

Plan
Verification

Failed
Test n

Failed
Test n

Failed
Test n(Then evaluating (l) on hidden tests.)

Verification
Check

(d) pass

failed

(i)

(j)

(k)

Visible
Tests

((i) is identical to (c).)

Figure 1: The pipeline of LPW, a large language model programming workflow, where the com-
ponents highlighted in red are exclusive to LPW. LPW consists of two phases. In the solution
generation phase, LPW initially creates a solution plan (block (b)) for a problem (block (a)), along
with the plan verification (block (c)) for each visible test. If the plan verification infers the accurate
output for each visible test based on the solution plan (block (c)) and no incorrect logic is found in
the verification check process (block (d)), LPW uses the generated plan and plan verification to help
LLMs draft the initial program (block (e)) at the beginning of the code implementation phase. If the
initial program passes all visible tests after execution (block (f)), it is used as the final code (block
(l)) and then assessed with hidden tests. Otherwise, the LLM-generated code explanation (block
(g)) and error analysis (block (j)) serve as debugging inputs to refine the error program (block (k)).
The LLM-generated error analysis involves comparing the execution trace (block (h)) with the plan
verification (block (i)) on the failed visible test to identify logic flaws in the code implementation
and provide repair suggestions. The refined program is reevaluated on the visible tests to determine
the necessity for further debugging iterations.

rubber duck debugging processes (Chen et al., 2023b) and leveraging control flow graph information
to assist LLMs in locating bugs (Zhong et al., 2024).

Software development models such as Waterfall and Scrum underscore the importance of commu-
nication among various development roles in the production of high-quality software (Davis, 2012;
Schwaber, 2004; Andrei et al., 2019). Motivated by this principle, several studies (Lin et al., 2024;
Qian et al., 2024; Dong et al., 2023b) have employed LLM instances as customized agents, assign-
ing them diverse development roles and facilitating their collaboration. Multi-agent collaborative
code generation emphasizes the distinct workload for each LLM agent, e.g., requirement analyst,
architect, programmer, and tester (Lin et al., 2024). Additionally, various communication strategies
have been proposed to ensure program quality. For example, Hong et al. (2024) introduced a com-
munication protocol to ensure efficient interactions. Qian et al. (2024) described a communicative
dehallucination mechanism to encourage high-quality communication among LLM agents.

However, all the aforementioned methods have certain weaknesses. Multiple sampling approaches
suffer from sampling inefficiency and conflict with human programming strategies. In code refine-
ment, feedback messages often lack precise correction instructions, leading to numerous refinements
that deviate from the intended solution. Additionally, refining programs that significantly diverge
from the problem description remains an open challenge (Tian & Chen, 2023). In multi-agent col-
laborative code generation, ineffective feedback mechanisms degrade communication quality. This
issue is exacerbated when an excessive number of agents are involved, resulting in increased token
consumption (Huang et al., 2023a).

In this work, we propose LPW, a large language model programming workflow, specifically for text-
to-code generation, addressing the aforementioned limitations. LPW involves two phases for code
generation: the solution generation phase for plan and plan verification creation, and the code im-
plementation phase for initial code development and subsequent refinements. The pipeline of LPW
is depicted in Figure 1. LPW leverages various information, including LLM-generated solution plan
(Jiang et al., 2023) (block (b)), LLM-generated code explanation (Chen et al., 2023b) (block (g)),
and runtime information from program execution (Zhong et al., 2024) (block (h)) to boost the code
generation performance, and efficiently incorporates them into an end-to-end framework. In LPW,
aside from runtime information, all other messages are autonomously generated by LLMs using
few-shot prompting, without the need for annotated corpora or additional training.

A unique feature of LPW is the incorporation of the plan verification (block (c) in Figure 1) as the
natural language intended solution for visible tests to derive the reliable program solution. LPW

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

initially produces a solution plan that decomposes complex programs into several tractable sub-
problems (intermediate steps) (Cheng et al., 2023; Zelikman et al., 2023; Jiang et al., 2023). LPW
then verifies the solution plan against visible tests to assess its correctness, known as plan verifi-
cation. For a visible test, the verification includes a text-based, step-by-step analysis to derive the
output for each intermediate step and the final output, ensuring that the final output is consistent with
the visible test result. Additionally, each inferred intermediate output is reviewed by LLMs (block
(d) in Figure 1) to maintain logical consistency throughout the verification.

Different from other approaches that exclude the solution plan entirely from the code generation
(Chen et al., 2023b; Zhong et al., 2024), LPW incorporates the LLM-generated plan and its verifi-
cation in the initial code development to clarify the programming logic. This approach ensures that
the initial code closely aligns with the problem description, thus reducing the need for subsequent
refinements. The plan verification encompasses comprehensive conditions and logical specifica-
tions for solving visible tests, eliminating potential misunderstandings before code generation. This
is akin to Test-Driven Development, where human developers validate the intended solution with
test cases (Beck, 2022). Furthermore, LPW consistently integrates plan verification in the subse-
quent refinements. In contrast to previous studies (Chen et al., 2023b; Zhong et al., 2024; Shinn
et al., 2023) that query LLMs to infer errors in the generated code when it fails a visible test, LPW
prompts LLMs to compare the expected output of each intermediate step for solving the failed vis-
ible test, as recorded in the plan verification, against the execution trace on the failed visible test to
identify discrepancies and further produce an error analysis (block (j) in Figure 1). This approach is
more straightforward and reduces uncertainty. These discrepancies assist LLMs in accurately locat-
ing bugs and identifying logic flaws in the code implementation, and generating detailed refinement
suggestions, as documented in the error analysis. Then, the error analysis when integrated with the
code explanation serves as feedback to refine the code in LPW, surpassing conventional scalar or
vector rewards and thereby improving the efficiency and accuracy of the refinement process.

We further explore a sampling variant of LPW named as SLPW. SLPW leverages the Upper Con-
fidence Bound (UCB) algorithm (Auer et al., 2002) to balance the exploration and exploitation in
debugging multiple generated code samples for optimizing overall performance. We evaluate LPW
and SLPW on four text-to-code generation benchmarks: HumanEval (Chen et al., 2021), MBPP
(Austin et al., 2021), and their extended test case variants, HumanEval-ET and MBPP-ET (Dong
et al., 2023a). We conduct experiments on the proprietary LLM GPT-3.5 (Achiam et al., 2023), and
open-source LLMs, Llama-3 (Meta, 2024) and Phi-3 (Abdin et al., 2024). The Pass@1 accuracy
(Chen et al., 2021) is reported. The experiment results demonstrate that LPW and SLPW consis-
tently improve text-to-code generation performance across all benchmarks and LLM backbones.
Compared to the state-of-the-art LLM debugger, LDB (Zhong et al., 2024), LPW improves Pass@1
accuracy by around 4% across all benchmarks with the GPT-3.5 backbone and achieves up to 16.4%
improvement on MBPP when using Llama-3 as the backbone. SLPW shows an additional 1% im-
provement over LPW with GPT-3.5 and increases accuracy by up to 5.6% over LPW on MBPP with
Phi-3. When tested with the advanced GPT-4o (OpenAI, 2024) backbone, LPW and SLPW maintain
their advantages, and SLPW achieves new state-of-the-art performance across all benchmarks. No-
tably, on two challenging benchmarks, APPS (Hendrycks et al., 2021) and CodeContests (Li et al.,
2022), LPW and SLPW improve Pass@1 accuracy by around 10% and 5%, respectively, compared
to LDB with the GPT-4o backbone.

We outline the key contributions in this paper as follows:

• We introduce an end-to-end large language model programming workflow, LPW, that draws in-
spiration from conventional software development models while streamlining and tailoring them
specifically for text-to-code generation. LPW significantly improves the code generation accuracy
over the state-of-the-art methods.

• In LPW, we derive the intended solution for visible tests, represented by the plan verification,
through querying LLMs to validate the correctness of the LLM-generated solution plan on visible
tests before code implementation. The plan verification clarifies all conditions, flow logic, arith-
metic operations, and punctuation specifications required to solve the visible tests for the given
problem, thereby increasing the LLMs’ confidence during both the initial program generation and
subsequent debugging processes.

• We investigate SLPW, a sampling variant of LPW, and show that debugging across multiple pro-
gram samples can further enhance performance and set new state-of-the-art results.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• We conduct extensive experiments across six text-to-code generation benchmarks to validate the
performance of LPW and SLPW with various LLM backbones, provide a comprehensive analysis
of their performance and failure cases, and highlight the existing challenges.

2 PROBLEM FORMULATION

We follow the problem formulation for text-to-code generation as outlined in Jiang et al. (2023),
Chen et al. (2023b), and Zhong et al. (2024). The text-to-code generation problem is formulated as a
tripleP = ⟨Q,Tv, Th⟩, where Q represents the problem specifications described in natural language,
and Tv and Th are sets of visible and hidden tests, each containing input-output pairs (ti, to) ∈ T =
Tv ∪ Th. The goal is to leverage the LLMM to generate a program function f ,M→ f , that maps
each input ti to its corresponding output to for all pairs in T , i.e., f(ti) = to, for (ti, to) ∈ T . We
note that Th remains hidden during both solution generation and code implementation phases and
only becomes visible if the generated f passes Tv . In LPW, for all components shown in Figure
1, the problem description Q is, by default, concatenated with task-specific prompts to produce the
desired response from LLMs.

3 WORKFLOW STRUCTURE

Output
Information

[Plan Verification for ...]
1. Sort [-3, -4, 5] in descending order, which is [5, -3, -4].
2. Return the first 3 elements in reverse order, which are [-4, -3, 5].
[Results Compare]
The correct output is [-4, -3, 5]. The analysis output is [-4, -3, 5].
[-4, -3, 5] = [-4, -3, 5]. So the plan is correct.
[Correct Plan]

[Problem Description]
def maximum(arr, k):
"""Given an array arr of integers and a positive integer k, return a
sorted list of length k with the maximum k numbers in arr."""
[Visible Tests]
maximum([-3, -4, 5], 3) == [-4, -3, 5]

[Solution Plan]
1. Sort the input array in descending order.
2. Return the first k elements of the sorted array in reverse order.

[Verification Check]
- Sort ... is correct.
- Returning .. which are [-4, -3, 5] is correct.
- The comparison between the test output [-4, -3, 5] and the
analysis output [-4, -3, 5] is correct.
[Correct Plan Verification]

(1)

(2)

(3)

(4)

(5)

Problem
Description

Solution Plan

Verification
 Check

Visible Tests

Plan
Verification

(a) (b)
Figure 2: (a): An illustrated workflow of the solu-
tion generation phase in LPW. (b): Example mes-
sage fragments corresponding to each workflow
component for a HumanEval problem (120th)
with the GPT-3.5 backbone. The detailed mes-
sages are available in Section 6.

In this section, we first detail the two phases of
LPW separately and then elaborate on the iter-
ative update strategies used in each phase.

Solution Generation. Figure 2 displays the
overall workflow of the solution generation
phase in LPW (part (a)), with an example pro-
gramming problem for illustration (part (b)).
LPW leverages the self-planning approach in-
troduced by Jiang et al. (2023) to abstract and
decompose the problem description Q into a
strategic and adaptable plan Π at the start of
the solution generation phase. For a problem
in HumanEval described by block (1) in Fig-
ure 2, its example solution plan is illustrated at
block (3). However, the LLM-generated plan
Π may occasionally be incorrect, misguiding
subsequent program generation. To avoid this,
LPW queries the LLM to verify Π against all
visible tests Tv . The LLM-responded plan ver-
ification A(Π, Tv) delivers a step-by-step anal-
ysis, including all intermediate results and final derived outputs for all visible tests Tv based on Π.
For each tv ∈ Tv , its verification A(Π, {tv}) compares the derived output to

′

v with the ground-truth
output tov to assess the correctness of Π, as outlined at block 4 in Figure 2. If Π is successfully veri-
fied on all visible tests, where in A(Π, Tv), to

′

v = tov,∀tv ∈ Tv , then the plan verification A(Π, Tv)
is reviewed by the LLM again to ensure the accuracy of all intermediate results, since each inter-
mediate step result is used in locating bugs and providing refinement suggestions when compared
with the code runtime information on the failed visible test. If all intermediate outputs in A(Π, Tv)
are validated as correct by the LLM as shown at block 5 in Figure 2, A(Π, Tv) is treated as the
intended solution for Tv . The plan Π and its verificationA(Π, Tv) serve as the output of the solution
generation phase, guiding code development and refinements in the code implementation phase.

Code Implementation. Figure 3 shows the overall workflow of the code implementation phase in
LPW (part (a)), using the same problem from Figure 2 as an illustration (part (b)). LPW develops
an initial program f by prompting the LLM with the problem description Q (block (1) in Figure 2),
along with plan Π and its verification A(Π, Tv) from the solution generation phrase. Subsequently,
LPW queries the LLM to add print statements for each line in f , resulting in fp, and then executes
fp on visible tests Tv . If fp successfully solves Tv , LPW validates it on the hidden tests Th to report
Pass@1 accuracy. Otherwise, LPW collects the runtime information on the first failed visible test

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

t̄v , indicating that the implementation in f deviates from the specifications in A(Π, {t̄v}). Blocks
1-3 in part (b) of Figure 3 depict an initial program f (block (1)) that fails on a visible test t̄v
(block (2)) and its execution trace (block (3)) on t̄v after adding print statements. We omit fp
from Figure 3 to keep the discussion concise. LPW instructs the LLM to conduct an error analysis
by identifying inconsistencies between the intermediate outputs recorded in the execution trace of
t̄v and the expected outputs documented in the verification A(Π, {t̄v}), analyzing the causes, and
offering refinement suggestions (block (4)). Subsequently the error analysis and code explanation
for f generated by the LLM (block (5)) are concatenated as the prompt to generate the refined
program f ′ (block (6)). The code explanation helps the LLM align the text-based error analysis with
the code implementation. LPW replaces f with the refined program f ′ and revalidates the updated
f against the visible tests Tv to assess the necessity for further refinements.

[Execution Trace for ...]
...
[Plan Verification for...]
...
[Error Analysis]
... but there's a discrepancy: the execution trace returns [5, -4,
-3] not the expected [-4, -3, 5], indicating the list wasn't
reversed after descending sort.

def maximum(arr, k):
 arr.sort(reverse=True)
 return arr[:k][::-1]

[Refinement Explanation]
... adding [::-1]to reverse the sublist of the first k elements.

[Code Explanation.]
- arr.sort(reverse=True): Sorts the arr in descending order.
- return arr[:k]: Returns the first k elements of arr.

def maximum(arr, k):
 arr.sort(reverse=True)

return arr[:k]

[Initial Code] (1)

(4)

(5)

(6)

[Execution Trace for...]
Sort the input array in descending order: [5, -3, -4]
Return maximum 3 number: [5, -3, -4]

Initial Code

Execution Trace
for the Failed Test

Code Explanation

Refined Code

Hidden Test

Visible Tests [Visible Tests]
maximum([-3, -4, 5], 3) == [-4, -3, 5]

(2)

(3)

Plan Verification
for the Failed Test

Error Analysis

(a) (b)

[Refined Code]

Figure 3: (a): An illustrated workflow of the code
implementation phase in LPW. (b): Example mes-
sage fragments extending from Figure 2 and cor-
responding to each workflow component. See
Section 6 for detailed messages.

Iterative Updates. LPW includes two update
steps in the solution generation phase to enable
self-correction as indicated by the red arrows in
Figure 2: 1) when the plan verification inferred
ultimate output differs from the ground-truth
output for a visible test, where to

′

v ̸= tov,∃tv ∈
Tv in A(Π, Tv), a revised solution plan Π′ is
included in the LLM response to substitute the
original plan; 2) when the LLM detects any in-
correct intermediate values in A(Π, Tv) e.g.,
contextual inconsistencies, mathematical mis-
calculations, or logical reasoning errors, LPW
prompts the LLM to regenerate the plan verifi-
cation. These update methods ensure that the
solution plan Π and its verification A(Π, Tv)
achieve the necessary precision, as well-formed
Π andA(Π, Tv) are essential for the subsequent
code generation accuracy (Jiang et al., 2023).
In the code implementation phase, the code re-
finement process acts as an update mechanism,
replacing the program f with the refined program f ′ when f fails the visible test Tv as highlighted
by the red arrow in Figure 3. Overall, for a problem P , LPW iteratively revises the generated plan
Π and its verification A(Π, Tv), in the solution generation phase, until A(Π, Tv) infers the correct
outputs for all visible tests Tv and no error intermediate outputs are present in A(Π, Tv). Other-
wise, LPW reports a failure for P when reaching the maximum iterations. Similarly, in the code
implementation phase, LPW iteratively refines the generated program f if bugs exist. This process
continues until a refined f successfully solves Tv , followed by Pass@1 accuracy calculation on
hidden tests Th, or LPW reports a failure for P upon reaching the maximum iteration limit.

4 LPW WITH SAMPLING

Text-to-code generation benefits from both multiple sampling and debugging. These two approaches
have evolved orthogonally. We propose a sampling variant of LPW, referred as SLPW. SLPW fol-
lows the same workflow and update mechanism as LPW but incorporates multiple plan samples
{Π1, . . .Πk} and program samples {f1, . . . fq}. SLPW generates k plan samples at the beginning
of the solution generation phase. For each iteration, SLPW leverages the UCB algorithm to compet-
itively select a plan Π with the highest upper confidence interval. Then, SLPW performs the same
verification process as LPW for Π. When SLPW verifies Π over each visible test and the verifi-
cation fails on a visible test, it uses the number of visible tests where the plan verification derives
an accurate final output as a reward to update the confidence interval of Π, and Π is replaced with
the revised plan Π′. Alternatively, when SLPW checks the correctness of intermediate outputs in
the plan verification for each visible test and encounters erroneous values, it uses the number of
visible tests where the plan verification contains correct intermediate outputs as a reward to update
the confidence interval of Π. SLPW outputs the first q, where q ≤ k, solution plans along with
their verifications for the subsequent code implementation phase when solution plans and their ver-
ifications are confirmed as correct within the iteration threshold. Otherwise, SLPW provides [0, q)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

HumanEval HumanEval-ET MBPP MBPP-ET

Acc ↑ ∆ ↑ SD Acc ↑ ∆ ↑ SD Acc ↑ ∆ ↑ SD Acc ↑ ∆ ↑ SD
Baseline 74.4 - 0.8 66.5 - 1.3 67.4 - 0.5 52.8 - 0.3
SP 77.4 3.1 0.8 69.5 3.1 0.8 69.2 1.8 0.4 52.4 -0.4 0.2
SD 81.1 6.7 1.0 72.0 5.5 1.0 71.2 3.8 0.3 56.0 3.2 0.1
LDB 82.9 8.5 1.0 72.6 6.1 1.0 72.4 5.0 0.3 55.6 2.8 0.2
LPW (ours) 89.0 14.6 0.8 77.4 11.0 0.8 76.0 8.6 0.2 57.6 4.8 0.1

GPT-3.5

SLPW (ours) 89.6 15.2 0.6 77.4 11.0 0.6 77.2 9.8 0.3 58.2 5.4 0.2
Baseline 73.2 - 1.0 61.0 - 1.0 44.0 - 1.0 35.4 - 1.0
SP 78.0 4.9 2.0 65.2 4.3 1.0 48.6 4.6 1.4 38.4 3.0 1.4
SD 81.7 8.5 1.3 68.3 7.3 0.8 63.6 19.6 1.2 50.0 14.6 1.3
LDB 84.1 11.0 1.7 72.0 11.0 0.8 57.2 13.2 1.6 44.8 9.4 1.4
LPW (ours) 88.4 15.2 1.6 76.2 15.2 1.2 73.6 29.6 1.3 56.4 21.0 1.2

Llama-3

SLPW (ours) 89.0 15.9 1.6 76.2 15.2 1.3 75.0 31.0 1.2 57.2 21.8 1.0
Baseline 36.0 - 1.0 32.3 - 1.0 39.0 - 1.3 33.2 - 1.4
SP 40.9 4.9 1.4 34.8 2.4 0.9 46.4 7.4 1.4 37.6 4.4 1.4
SD 51.2 15.2 1.2 45.7 13.4 1.0 45.8 6.8 1.2 36.6 3.4 1.2
LDB 65.9 29.9 1.6 54.9 22.6 0.9 52.4 13.4 1.6 42.8 9.6 1.4
LPW (ours) 76.8 40.9 1.3 62.8 30.5 1.2 64.0 25.0 1.2 48.4 15.2 1.2

Phi-3

SLPW(ours) 81.1 45.1 1.2 67.1 34.8 1.2 69.6 30.6 1.4 52.2 19.0 1.2

Table 1: Comparisons of Baseline, Self-Planning (SP), Self-Debugging (+Expl) (SD), LDB, LPW
and SLPW in terms of Pass@1 accuracy (Acc) and improvement (∆) with respect to Baseline across
benchmarks HumanEval, HumanEval-ET, MBPP, and MBPP-ET with LLMs GPT-3.5, Llama-3,
and Phi-3. Acc and ∆ are measured in percentages. The standard deviation (SD) is calculated and
reported based on three runs. Results for LPW and SLPW are in bold, and the best results are
highlighted in red.

solution plans and their verifications as the output after reaching the iteration threshold. In the code
implementation phase, SLPW initially generates a program for each plan and its verification. If no
initial program solves Tv , SLPW applies the UCB algorithm to optimize refinements across multiple
programs. It selects a program f , refines it, and updates the confidence interval of f based on the
number of passed visible tests, until a refined program addresses Tv and reports the Pass@1 accu-
racy on Th. Otherwise, the process terminates with a failure upon reaching the iteration threshold.
The algorithm details are available in the Appendix A.1.

5 EXPERIMENTS

Benchmarks. We evaluate LPW and SLPW on the well-established text-to-code benchmarks Hu-
manEval, MBPP, HumanEval-ET, and MBPP-ET, where the given context outlines the intended
functionality of the program to be synthesized. HumanEval-ET and MBPP-ET introduce approxi-
mately 100 additional hidden tests, covering numerous edge cases for each problem in HumanEval
and MBPP, thus being regarded as more reliable benchmarks for code evaluation (Dong et al.,
2023a) . In HumanEval and HumanEval-ET, we treat the test cases described in the task description
as visible tests, typically 2-5 per task. For MBPP, we consider its test set that contains 500 problems
with 3 hidden tests per problem. We set the first hidden test as the visible test and treat the other two
as hidden, consistent with studies (Chen et al., 2023b; Zhong et al., 2024; Ni et al., 2023; Shi et al.,
2022). MBPP-ET uses the same set of problems and visible tests for each problem as MBPP.

Experimental Setup. We compare LPW and SLPW with the representative code generation ap-
proaches Self-Planning (SP) (Jiang et al., 2023) , Self-Debugging (+Expl) (SD) (Chen et al., 2023b)
and Large Language Model Debugger (LDB) (Zhong et al., 2024). SP relies solely on the LLM-
generated solution plan to produce the program solution in a single attempt without refinements. SD
uses a rubber duck debugging approach in LLMs, where LLMs are prompted to provide explanations
of generated programs as feedback for debugging. LDB, a state-of-the-art LLM debugger, segments
generated programs into blocks based on the control flow graph, which facilitates bug detection and
the refinement of each program block using runtime execution information in LLMs. A detailed
comparison between the baseline methods and our methods are summarized in Tables 14 and 15 in
the Appendix. We generate the seed programs with the same prompts and parameters introduced

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

HumanEval HumanEval-ET MBPP MBPP-ET APPS CodeContests

Acc ↑ SD Acc ↑ SD Acc ↑ SD Acc ↑ SD Acc ↑ SD Acc ↑ SD
Baseline 91.5 0.3 81.7 0.3 78.4 0.4 62.6 0.2 41.7 0.3 28.0 0.5
LDB 92.1 0.0 81.7 0.0 82.4 0.3 65.4 0.0 53.2 0.3 29.3 0.3GPT-4o LPW (ours) 97.0 0.3 84.1 0.3 84.8 0.2 65.8 0.1 62.6 0.3 34.7 0.3
SLPW (ours) 98.2 0.0 84.8 0.0 84.8 0.3 66.0 0.1 64.0 0.3 35.3 0.3

Table 2: Pass@1 accuracy for Baseline, LDB, LPW, and SLPW on the same benchmarks in Table
1, as well as APPS and CodeContests when using the LLM GPT-4o (2024-05-13) as the backbone.
SD stands for the standard deviation.

by Chen et al. (2023b) for SD and LDB and label the performance of seed programs as Baseline.
We note that SD and LDB only perform refinements on seed programs that fail the visible tests.
We experiment with various LLMs with different parameter sizes, including GPT-3.5 (turbo-0125,
≥175B), Llama-3 (70B-Instruct), and Phi-3 (14B-Instruct) to evaluate performance and demonstrate
that both LPW and SLPW are model-independent.

We use the Pass@1 accuracy as the evaluation metric. We apply 2-shot prompting in both LPW and
SLPW, with maximum 12 iterations for the solution generation phase and the code implementation
phase, respectively. Similarly, we set the maximum number of debugging iterations to 12 for SD and
LDB. In SLPW, k is configured as 6, and q is set to 3. For instance, the solution generation phase
initially produces 6 plan samples. Subsequently, first 3 solution plans along with their verifications
are returned within 12 iterations, or [0, 3) solution plans and their verifications are provided as the
output upon completing 12 iterations. All following experiments adhere to these parameter settings
unless otherwise specified. Empirical discussion on parameters is available in Appendix A.2.

Main Results. Table 1 presents the Pass@1 accuracy for Baseline, SP, SD, LDB, LPW, and SLPW,
along with their respective improvements over Baseline. Overall, LPW and SLPW consistently
outperform all competing methods across all benchmarks and with various LLM backbones, show-
casing the effectiveness of the proposed workflow and demonstrating the model-independent benefit
of LPW and SLPW. Compared to LDB, LPW improves Pass@1 accuracy by 6.1%, 4.9% 3.6%, and
2%, on HumanEval, HumanEval-ET, MBPP, and MBPP-ET, respectively, with the GPT-3.5 back-
bone and achieves up to 16.4% improvement on MBPP when using Llama-3 as the backbone. LPW
achieves the same performance as SLPW on HumanEval-ET when leveraging GPT-3.5 and Llama-3
as the backbones. SLPW slightly surpasses LPW by around 1% across all benchmarks, and achieves
the best accuracy: 89.6% for HumanEval, 77.4% for HumanEval-ET, 77.2% for MBPP and 58.2%
for MBPP-ET with GPT-3.5. Moreover, when using Phi-3 as the backbone, SLPW shows the highest
improvement up to 5.6% over LPW on MBPP and up to 45.1% over Baseline on HumanEval. Com-
pared with HumanEval and MBPP, all approaches perform worse on HumanEval-ET and MBPP-ET
across different LLM backbones as thorough edge cases are contained in the hidden tests. This result
is consistent with previous work (Dong et al., 2023b; Lin et al., 2024; Mu et al., 2023). The detailed
failure analysis is available in the Appendix A.4.

Results on Advanced LLM with Competitive Benchmarks. To further demonstrate the effec-
tiveness of LPW and SLPW, we evaluate their performance against LDB on the same benchmarks
presented in Table 1, as well as on two competitive benchmarks, APPS and CodeContests, using the
advanced LLM GPT-4o as the backbone. For APPS and CodeContests, we use subsets of 139 and
150 problems, respectively. APPS and CodeContests are unstructured benchmarks where visible
tests are intermingled with the problem statements and function signatures are excluded. To align
input data structure across benchmarks, we instruct GPT-4o to derive the optimal function signa-
ture and identify visible tests for each problem prior to conducting experiments. The experiment
results are shown in Table 2 and the Pass@1 accuracy is reported. Similarly, the performance of
the seed programs for LDB is referred to as Baseline. LPW outperforms Baseline and LDB across
all benchmarks, achieving the same 84.8% accuracy as SLPW on MBPP. SLPW further improves
performance and establishes new state-of-the-art Pass@1 accuracy across all benchmarks, notably
achieving 98.2% on HumanEval. The outstanding performance of SLPW indicates that sampling
and debugging are mutually complementary in enhancing code generation performance. For APPS
and CodeContests, LPW and SLPW achieve over 62% and 34% accuracy, respectively, surpassing
LDB by around 10% and 5% accuracy, highlighting the advantages of LPW and SLPW in tackling
challenging benchmarks. GPT-4o is considered as a more powerful LLM. Baseline achieves 91.5%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

and 28% accuracy on HumanEval and CodeContests without debugging, while LDB shows a neg-
ligible improvement of only 0.6% and 1.3% compared to Baseline on these two benchmarks. This
underscores the limitations of debugging with coarse feedback. In contrast, the intended solution
with respective to visible tests represented by the plan verification allows LPW and SLPW to clar-
ify issues before code generation and efficiently correct bugs overlooked by LLMs. Appendix A.7
discusses problems GPT-4o fails to address and structured examples from APPS and CodeContests.
LPW and SLPW consume additional tokens to generate plan and plan verification. However, LPW
and SLPW demonstrate cost efficiency on the challenging HumanEval and CodeContests bench-
marks. For a detailed analysis, see Appendix A.8.

MBPP-ET ↑ MBPP-ET-3 ↑ ∆ ↑
SD 56.0 59.2 3.2
LDB 55.6 57.6 2.0
LPW (ours) 57.6 62.0 4.4
SLPW (ours) 58.2 63.4 5.2

Table 3: The impact on Pass@1 accuracy
with additional visible tests using the GPT-
3.5 backbone. MBPP-ET-3 includes two
more visible tests per problem than MBPP-
ET. ∆ represents the accuracy improvement
of MBPP-ET-3 over MBPP-ET. Pass@1 ac-
curacy and ∆ are measured as percentages.

Learning from Test. We further investigate the im-
pact of the number of visible tests on SD, LDB,
LPW, and SLPW that use visible tests to refine
code. We propose a variant of MBPP-ET, denoted
as MBPP-ET-3. In MBPP-ET-3, each problem’s
visible tests are the three hidden tests from MBPP,
while the hidden tests are the extended test cases in-
troduced in MBPP-ET. In other words, each prob-
lem in MBPP-ET-3 contains two more visible tests
than in MBPP-ET, thereby providing informative
feedback for better bug identification and program
refinement in LLMs. Table 3 compares the Pass@1
accuracy of SD, LDB, LPW and SLPW on the
MBPP-ET-3 benchmark with the GPT-3.5 backbone. LPW and SLPW dominate in both accuracy
and improvement. SLPW achieves the highest accuracy of 63.4% on MBPP-ET-3 and the largest
improvement of 5.2% over MBPP-ET. LPW and SLPW exploit visible tests by producing the step-
by-step solutions for each visible test to clarify initial code logic and inform subsequent refinements,
demonstrating superior efficiency in utilizing visible tests among the evaluated methods.

H
um

an
Ev

al
 P

as
s@

1
A

cc
ur

ac
y

(%
)

Figure 4: The impact on Pass@1 accuracy with
the increased number of code implementation it-
erations/debugging iterations on the HumanEval
benchmark when leveraging GPT-3.5 as the LLM
backbone.

Performance Analysis. Figure 4 evaluates the
Pass@1 accuracy of LPW and SLPW when
considering different numbers of code imple-
mentation iterations on the HumanEval bench-
mark when using GPT-3.5 as the backbone. For
SD and LDB, we allocate the same number of
debugging iterations. We note that all evalu-
ated approaches start from iteration 0, repre-
senting the Pass@1 accuracy before debugging.
Specifically, for SD and LDB, this reflects the
seed program (Baseline) accuracy, while for
LPW and SLPW, it indicates the accuracy af-
ter generating a program for each plan and its
verification produced from the solution gener-
ation phase. In Figure 4, Baseline and SP are
plotted as straight lines with 74.4% and 77.4%
accuracy, respectively, due to no debugging in-
volved. Baseline and SP serve as the control group to illustrate when debugging methods surpass
no-debugging methods. SD and LDB refine incorrect programs in Baseline, surpassing SP after
two iterations. LPW starts debugging from an initial 79.9% accuracy, while SLPW begins from
84.8%. Both are higher than the 77.4% for SP, highlighting the importance of plan verification in
initial code generation. LPW surpasses the best performance of SD and LDB after only one itera-
tion, demonstrating its efficient code refinement strategy. The initial debugging accuracy of SLPW,
84.8%, exceeds the best performance of SD and LDB, showcasing the advantages of sampling. LPW
and SLPW gradually refine the code and reach the highest Pass@1 accuracy by the 10th iteration.

Ablation Study. Table 4 shows the Pass@1 accuracy of different variants of LPW and SLPW
on the HumanEval and MBPP benchmarks with GPT-3.5. The suffix -V denotes the exclusion of
plan verification in both solution generation and code implementation phases; -S stands for the
LPW variant that excludes the solution generation phase; while -C represents the removal of the
code implementation phase, specifically omitting code refinements. For each problem, LPW-V

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Plan Verification
[Plan Verification for maximum([-3, -4, 5],
3) == [-4, -3, 5]]
1. Sort [-3, -4, 5] in descending order, which
is [5, -3, -4].
2. Return the first 3 elements, which are [5,
-3, -4].
[Results Compare]
The correct output is [-4, -3, 5]. The
analysis output is [5, -3, -4]. [-4, -3, 5] is not
equal to [5, -3, -4]. So the plan is incorrect.
[Incorrect Reasons]
The plan is incorrect because the returned
list should be in ascending order instead of
descending order.
[Revised Plan]
1. Sort the input array in descending order.
2. Return the first k elements of the sorted
array in reverse order.

Problem Description

1. Sort the input array in
descending order.
2. Return the first k elements
of the sorted array.

Visible Tests
maximum([-3, -4, 5], 3) ==

[-4, -3, 5]

[Plan Verification for ...]
1. Sort [-3, -4, 5] in descending
order, which is [5, -3, -4].
2. Return the first 3 elements in
reverse order, which are [-4, -3, 5].
[Results Compare]
The correct output is [-4, -3, 5]. The
analysis output is [-4, -3, 5]. [-4, -3,
5] = [-4, -3, 5]. So the plan is correct.
[Correct Plan]

[Plan Verification for ...]
1. Sort [-3, -4, 5] in descending order,
which is [5, -3, -4].
2. Return the first 3 elements in
reverse order which are [-4, -3, 5].
[Execution Trace for ...]
Sort the input array in descending order:
[5, -3, -4]
Return maximum 3 numbers: [5, -3, -4]
[Error Analysis]
 ... but there's a discrepancy: the
execution trace returns [5, -4, -3] not the
expected [-4, -3, 5], indicating the
list wasn't reversed after descending sort.Solution Plan

Plan Verification Error Analysis

Refined Code
def maximum(arr, k):
 arr.sort(reverse=True)
 print(f"sort the input array in "
 f"descending order:{arr}")
 print(f"return maximum {k} numbers:{arr[:k]}")
 return arr[:k]

def maximum(arr, k):
 arr.sort(reverse=True)
 return arr[:k][::-1]

(a)

(c)

(b)

(d) (e) (g)

(h)

def maximum(arr, k):
"""
Given an array arr of integers and a
positive integer k, return a sorted list
of length k with the maximum k
numbers in arr. Example 1: Input: arr
= [-3, -4, 5], k = 3 Output: [-4, -3, 5] ...
"""

Code with Print (f)

Figure 5: A case study of LPW on the 120th problem in HumanEval, extending from Figures 2 and
3, using GPT-3.5. We omit certain components in Figures 2 and 3, e.g., the plan verification check
and the initial code, and present incomplete prompts and responses to save space.

generates the initial program based on the unverified plan and repairs the program leveraging only
code explanations and runtime information. LPW-S repairs the seed program that fails visible tests
from Baseline, leveraging code explanations and runtime information but without plan and plan
verification. LPW-C generates the program solution based on the plan and its verification without
refinements. SLPW-S, SLPW-V, and SLPW-C maintain the same k = 6 and q = 3 settings as
SLPW. SLPW-V generates q programs, each derived from a corresponding unverified plan, and
subsequently refines each program following the LPW-V framework. SLPW-S follows the same
refinement approach as LPW-S to repair q seed programs, generated in the same way as Baseline.
SLPW-C employs the same strategy as LPW-C to create a program for each plan and its verification,
but without applying refinements.

HumanEval MBPP

Acc ∆ Acc ∆

LPW 89.0 - 76.0 -
LPW-V 86.0 -3.0 73.2 -2.8
LPW-S 86.0 -3.0 73.0 -3.0
LPW-C 79.9 -9.1 72.2 -3.8
SLPW 89.6 - 77.2 -
SLPW-V 86.0 -3.6 74.6 -2.6
SLPW-S 86.0 -3.6 74.4 -2.8
SLPW-C 84.8 -4.8 73.8 -3.4

Table 4: Pass@1 accuracy (Acc) for
different variants of LPW and SLPW
with GPT-3.5. ∆ denotes the de-
crease against LPW and SLPW. Acc
and ∆ are measured in percentages.

In Table 4, the performance decline of LPW-V and SLPW-V
demonstrates the significance of plan verification. This con-
firms our hypothesis that plan verification serves as the in-
tended solution for visible tests, improving the performance
of LLMs in both initial code generation and subsequent re-
finements. Compared with LPW-S and SLPW-S, LPW-V
and SLPW-V consider the unverified plan when drafting ini-
tial programs. However, the effect of the unverified plan is
limited, as only the performance of LPW-V and SLPW-V
on MBPP is improved compared with the results of LPW-S
and SLPW-S. Besides, the removal of either phase in LPW
or SLPW results in diminished performance, indicating that
both the solution generation phase and the code implemen-
tation phase are crucial for optimal performance. For MBPP,
both phases exhibit a similar impact in LPW and SLPW. In
contrast, LPW-C experiences a significant 9.1% decrease on
the HumanEval benchmark compared to LPW, as debugging plays a crucial role in reaching the accu-
rate solution given the large number of visible tests in HumanEval. This also underscores the benefit
of debugging for maintaining code quality when sampling is omitted. Meanwhile, the smaller 4.8%
decrease for SLPW-C compared to SLPW on HumanEval demonstrates the advantage of sampling
in the absence of debugging. See Appendix A.3 for additional ablation study.

6 CASE STUDY

Figure 5 illustrates example message fragments from LPW in the 120th problem of HumanEval
using the GPT-3.5 backbone. LPW successfully generates the correct program, while Baseline, SP,
SD, and LDB all fail. This problem requires to return a sorted array with the maximum k numbers.
However, in the problem description (block (a)), the unspecified order in the output array introduces
ambiguity, confusing other methods. LPW struggles at the initial solution plan (block (c)), while the
issue is clarified in the [Revised Plan], during plan verification (block (d)). The visible test (block
(b)) delineates the reverse order in the return array after sorting in descending order. The initial code
with print statements (block (f)) fails on the visible test since the array is not reversed. Subsequently,
its execution trace is compared with the plan verification (block (e)) to identify this bug, as described

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

in the [Error Analysis] in block (g). The refined code, which first sorts the array in descending order
and then reverses the first k elements into ascending order, successfully addresses this problem.

7 RELATED WORK

Program Synthesis. Program synthesis remains an open challenge of generating a program within a
target domain-specific language (DSL) from given specifications. One prevalent approach involves
searching the large space of possible programs. For example, generalized planning whose solution
is formalized as a planning program with pointers (Segovia-Aguas et al., 2024; Lei et al., 2023) has
demonstrated promising results in synthesizing program solutions for abstract visual reasoning tasks
(Lei et al., 2024) when the DSL is carefully designed. However, hand-crafted DSLs often suffer from
limited generalization capacity, and the huge search space diminishes its effectiveness. Recently,
large language models trained on vast corpora have excelled in natural language processing (NLP)
tasks and have been extended to code generation e.g., GPT-series (Achiam et al., 2023; OpenAI,
2024), Llama-series (Meta, 2024; Roziere et al., 2023; Touvron et al., 2023), and Claude-series
(Anthropic, 2024). LPW and SLPW leverage the strengths of LLMs in NLP tasks to generate
intended solutions in natural language. These text-based solutions demonstrate high-quality logical
reasoning steps and satisfactory accuracy, thereby effectively aiding subsequent code generation.

Prompting Techniques. To imitate the logical chain in human brain when tackling reasoning tasks,
prompting methods direct LLMs to decompose problems into solvable sub-problems (Jiang et al.,
2023; Zhou et al., 2023; Lightman et al., 2024; Dhuliawala et al., 2023) and progressively infer
the correct answer with intermediate outputs, as exemplified by chain-of-thought prompting (Wei
et al., 2022; Kojima et al., 2022). Inspired by these studies, LPW and SLPW decompose a text-
to-code problem into several sub-problems described by the solution plan and follow the chain-of-
thought prompting idea to verify the solution plan against visible tests with step-by-step analysis.
The generated plan and its verification provide step-by-step natural language instructions for code
generation, aiding LLMs in both the initial code development and subsequent refinements.

Code Refinement. Accurate program solutions often require iterative refinements due to model lim-
itations (Zhong et al., 2024; Chen et al., 2023b; Shinn et al., 2023). Various interactive approaches
have been proposed to optimize debugging performance in LLMs, such as human feedback Chen
et al. (2024); Le et al. (2022); Wu et al. (2023), trained models (Huang et al., 2023b; Le et al., 2022;
Yasunaga & Liang, 2021), LLM-generated explanations (Chen et al., 2023b; Madaan et al., 2023;
Shinn et al., 2023; Tang et al., 2023), and execution results (Zhong et al., 2024; Holt et al., 2024;
Tian & Chen, 2023). Current state-of-the-art LLM debuggers, such as Self-Debugging and LDB,
repair various seed programs to create the program solution. However, they encounter difficulties
when the initial code substantially deviates from the original intent. Besides, without safeguard-
ing, the refined code frequently diverges from the problem specifications. In contrast, LPW and
SLPW develop initial code that adheres to the validated intended solution through plan verifica-
tion, minimizing deviations from the problem description. The plan verification further guides code
refinement, ensuring alignment with the problem specifications.

8 CONCLUSION

We propose LPW, a large language model programming workflow, for text-to-code generation tasks,
which enables LLMs to accurately draft an initial program and effectively correct bugs. LPW uses
various advanced code generation techniques and efficiently incorporates them into a two-phase
development model. We further present SLPW, a sampling variant of LPW, where multiple initial
programs are generated and then competitively refined as necessary. We evaluate LPW and SLPW
on well-established text-to-code generation benchmarks across various LLMs. LPW significantly
improves code generation accuracy compared to other existing approaches. SLPW achieves new
state-of-the-art Pass@1 accuracy, with 98.2% on HumanEval, 84.8% on MBPP, 64.0% on APPS,
and 35.3% on CodeContests benchmarks using GPT-4o as the backbone. These results highlight
the effectiveness of our workflow in generating high-quality code and underscore the benefits of
incorporating sampling and debugging. In the future, additional visible tests automatically generated
by LLMs (Chen et al., 2023a) can be explored to improve the performance of LPW and SLPW.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Bogdan-Alexandru Andrei, Andrei-Cosmin Casu-Pop, Sorin-Catalin Gheorghe, and Costin-Anton
Boiangiu. A study on using waterfall and agile methods in software project management. Journal
of Information Systems & Operations Management, 14:125–135, 2019.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. Anthropic AI Hub, 2024. URL
https://claudeaihub.com/claude-3-models-compared/. Accessed: 2024-07-
18.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Kent Beck. Test driven development: By example. Addison-Wesley Professional, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th Advances
in Neural Information Processing Systems, NeurIPS, pp. 1877–1901, 2020.

Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R.
Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. Trans-
actions on Machine Learning Research, 2024.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In Proceedings of the 11th International
Conference on Learning Representations, ICLR, pp. 1–19, 2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023b.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. Binding language models in symbolic
languages. In Proceedings of the 11th International Conference on Learning Representations,
ICLR, pp. 1–27, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24:1–113,
2023.

Barbee Davis. Agile practices for waterfall projects: Shifting processes for competitive advantage.
J. Ross Publishing, 2012.

11

https://claudeaihub.com/claude-3-models-compared/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz,
and Jason Weston. Chain-of-verification reduces hallucination in large language models. arXiv
preprint arXiv:2309.11495, 2023.

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo Li, and Zhi Jin. Codescore: Evaluating code
generation by learning code execution. arXiv preprint arXiv:2301.09043, 2023a.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. arXiv
preprint arXiv:2304.07590, 2023b.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4:1–119, 2017.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with APPS. In Proceedings of the 35th Advances in Neural Information Processing
Systems, NeurIPS, 2021.

Samuel Holt, Max Ruiz Luyten, and Mihaela van der Schaar. L2MAC: Large language model
automatic computer for extensive code generation. In Proceedings of the 12th International Con-
ference on Learning Representations, ICLR, pp. 1–61, 2024.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent collab-
orative framework. In Proceedings of the 12th International Conference on Learning Represen-
tations, ICLR, pp. 1–29, 2024.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010,
2023a.

Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and Yuqing Zhang.
An empirical study on fine-tuning large language models of code for automated program repair.
In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE, pp. 1162–1174, 2023b.

Kai Huang, Zhengzi Xu, Su Yang, Hongyu Sun, Xuejun Li, Zheng Yan, and Yuqing Zhang. A
survey on automated program repair techniques. arXiv preprint arXiv:2303.18184, 2023c.

Maliheh Izadi, Jonathan Katzy, Tim Van Dam, Marc Otten, Razvan Mihai Popescu, and Arie
Van Deursen. Language models for code completion: A practical evaluation. In Proceedings
of the 46th IEEE/ACM International Conference on Software Engineering, ICSE, pp. 1–13, 2024.

Xue Jiang, Yihong Dong, Lecheng Wang, Fang Zheng, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin
Jiao. Self-planning code generation with large language models. ACM Transactions on Software
Engineering and Methodology, pp. 1–28, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large lan-
guage models are zero-shot reasoners. In Proceedings of the 36th Advances in neural information
processing systems, NeurIPS, pp. 22199–22213, 2022.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. In Pro-
ceedings of the 36th Advances in Neural Information Processing Systems, NeurIPS, pp. 21314–
21328, 2022.

Chao Lei, Nir Lipovetzky, and Krista A. Ehinger. Novelty and lifted helpful actions in generalized
planning. In Proceedings of the 16th International Symposium on Combinatorial Search, SoCS,
pp. 148–152, 2023.

Chao Lei, Nir Lipovetzky, and Krista A Ehinger. Generalized planning for the abstraction and
reasoning corpus. In Proceedings of the 38th AAAI Conference on Artificial Intelligence, pp.
20168–20175, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia LI, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier, Joao Monteiro, Nicolas
Gontier, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo
Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan
Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite,
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and
Harm de Vries. Starcoder: may the source be with you! Transactions on Machine Learning
Research, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378:1092–1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In Proceedings
of the 12th International Conference on Learning Representations, ICLR, pp. 1–24, 2024.

Feng Lin, Dong Jae Kim, et al. When llm-based code generation meets the software development
process. arXiv preprint arXiv:2403.15852, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. In Proceedings of the 37th Advances in Neural Information Processing Sys-
tems, NeurIPS, pp. 46534–46594, 2023.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI., 2024.
URL https://ai.meta.com/blog/meta-llama-3/. Accessed: 2024-07-18.

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Binquan Zhang, Chenxue Wang, Shichao Liu,
and Qing Wang. Clarifygpt: Empowering llm-based code generation with intention clarification.
arXiv preprint arXiv:2310.10996, 2023.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruc-
tion tuning code large language models. arXiv preprint arXiv:2308.07124, 2023.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In Proceedings of the
40th International Conference on Machine Learning, ICML, pp. 26106–26128, 2023.

OpenAI. Hello gpt-4o. OpenAI, 2024. URL https://www.openai.com/index/
hello-gpt-4o. Accessed: 2024-07-18.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,
Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost
in translation: A study of bugs introduced by large language models while translating code. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, ICSE,
pp. 1–13, 2024.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and
Maosong Sun. Chatdev: Communicative agents for software development. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics, ACL, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. Picard: Parsing incrementally for con-
strained auto-regressive decoding from language models. arXiv preprint arXiv:2109.05093, 2021.

13

https://ai.meta.com/blog/meta-llama-3/
https://www.openai.com/index/hello-gpt-4o
https://www.openai.com/index/hello-gpt-4o

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ken Schwaber. Agile project management with Scrum. Microsoft press, 2004.

Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Generalized planning as heuristic
search: A new planning search-space that leverages pointers over objects. Artificial Intelligence,
330:104097, 2024.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I. Wang. Natural
language to code translation with execution. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP, pp. 3533–3546, 2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Proceedings of the 37th Advances in
Neural Information Processing Systems, NeurIPS, pp. 8634–8652, 2023.

Zilu Tang, Mayank Agarwal, Alexander Shypula, Bailin Wang, Derry Wijaya, Jie Chen, and Yoon
Kim. Explain-then-translate: an analysis on improving program translation with self-generated
explanations. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp.
1741–1788, 2023.

Zhao Tian and Junjie Chen. Test-case-driven programming understanding in large language models
for better code generation. arXiv preprint arXiv:2309.16120, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Proceed-
ings of the 36th Advances in Neural Information Processing Systems, NeurIPS, pp. 24824–24837,
2022.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training. In Proceedings of the 37th Advances in Neural Information Processing
Systems, NeurIPS, pp. 1–26, 2023.

Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma,
Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in automated
code translation. In Proceedings of the 2024 ACM International Conference on the Foundations
of Software Engineering, FSE, pp. 1–23, 2024.

Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised learning for program repair. In
Proceedings of the 38th International conference on machine learning, ICML, pp. 11941–11952,
2021.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber. Parsel: Algorith-
mic reasoning with language models by composing decompositions. In Proceedings of the 37th
Advances in Neural Information Processing Systems, NeurIPS, pp. 31466–31523, 2023.

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike Lewis, Wen-tau Yih, Daniel Fried, and Sida
Wang. Coder reviewer reranking for code generation. In Proceedings of the 40th International
Conference on Machine Learning, ICML, pp. 41832–41846, 2023.

Li Zhong, Zilong Wang, and Jingbo Shang. Ldb: A large language model debugger via verifying
runtime execution step-by-step. arXiv preprint arXiv:2402.16906, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables
complex reasoning in large language models. In Proceedings of the 11th International Conference
on Learning Representations, ICLR, pp. 1–61, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

Algorithm 1: SLPW: Solution Generation Phase
Input: A problem description Q, large language mold backboneM, visible tests Tv , maximum iterations

for solution generation Is, k plan samples, q output solution plans and their verifications.
Output: A set of plans with their verifications Soutput = {(Π1,A(Π1, Tv)), . . . , (Πq,A(Πq, Tv))}.

1 // plan generation
2 plans←M(Q, k, t = 0.4) ; // generate k initial plans = {Π1, . . .Πk} with temperature t = 0.4

3 Soutput ← ∅;
4 is ← 0 ; // set current iteration is to 0

5 InitialUCB(len(plans)) ; // initialize UCB algorithm with len(plans) arms

6 while is < Is do
7 Π← SelectArm(plans); // select an arm Π in plans leveraging UCB algorithm

8 // plan verification generation
9 A(Π, Tv)←M(Q,Π, Tv);

10 n,Π′ ← A(Π, Tv) ; // number of visible tests n where the plan verification derives an

accurate final output, revised plan Π′

11 if n = len(Tv) then
12 // verification intermediate output check
13 z ←M(Q,A(Π, Tv),Π) ; // number of visible tests z where the plan verification

contains correct intermediate outputs

14 if z = len(Tv) then
15 Soutput ← Soutput ∪ (Π,A(Π, Tv)) ; // save (Π, A(Π, Tv)) if no error in A
16 Delete(plans,Π) ; // delete arm Π from plans in UCB

17 if len(Soutput) = q then
18 break ; // return first q solution plans and their verifications

19 else
20 UpdateConfidence(Π, z) ; // update the confidence interval of Π with reward z

21 else
22 plans(Π)← Π′ ; // replace Π in plans with revised plan Π′

23 UpdateConfidence(Π, n) ; // update the confidence interval of Π with reward n

24 is ← is + 1;
25 if len(Soutput) = 0 then
26 return {}; // return empty set if neither a valid plan nor its verification is created

27 return Soutput;

A.1 SLPW PSEUDO-CODE

Algorithms 1 and 2 present the pseudo-code for the solution generation phase and code implemen-
tation phase in SLPW. In Algorithm 1, SLPW initially generates k plan samples, plans, on Line
2 with a temperature of t = 0.4. For all other LLM queries, t is set to 0 by default to improve
reproducibility. Lines 6-24 repeatedly select a plan Π from plans (Line 7), conduct verification
(Line 9), and check the intermediate step outputs in the verification (Line 13) to generate q solution
plans along with their verifications as the output (Lines 14-18) when the plan verification and its
intermediate outputs are successfully validated. In the solution generation phase, SLPW utilizes the
UCB algorithm to select a plan Π for further processing. SLPW treats each plan Π as an arm and
updates the confidence interval of Π on Line 23 leveraging the number of visible tests n where the
plan verification derives an accurate final output, when verification fails on a visible test on Line
10, resulting in n being smaller than the number of Tv (Line 11). Additionally, SLPW updates the
confidence interval of Π on Line 20 using the number of visible tests z where the plan verification
contains accurate intermediate outputs, when erroneous intermediate values in the verification are
detected on Line 13, leaning to z being smaller than the number of Tv (Line 14). The revised plan
Π′ is empty (Line 10) when the plan verification confirms consistency between the derived outputs
and the ground-truth outputs across all visible tests. We note that, unlike the standard multi-armed
bandit problem where the distribution for each arm remains stable, SLPW replaces each plan Π
with the revised plan Π′ (Line 22) before updating confidence (Line 23) if the verification fails on
a visible test and a revised plan Π′ is generated (Line 10). We hypothesize that Π′ remains closely
related to Π, as typically only a few lines are changed. Therefore, the performance of Π can offer
valuable guidance for Π′.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2: SLPW: Code Implementation Phase
Input: A problem description Q, solution generation output Soutput, large language mold backboneM,

visible tests Tv , maximum iterations for code implementation Ic.
Output: Final code f .

1 programs← ∅;
2 ic ← 0 ; // set current iteration ic to 0

3 // initial code generation
4 for plan Π, verification A(Π, Tv) in Soutput do
5 f ←M(Q,Π,A(Π, Tv)); // generate an initial program f for each Π and A(Π, Tv)

6 solved← Exe(f, Tv) ; // return a boolean result solved after executing f on Tv

7 if solved then
8 return f ; // return f when f passes Tv

9 programs← programs ∪ (f,A(Π, Tv)) ; // record (f, A) for further refinements

10 InitialUCB(len(programs)) ; // initialize UCB algorithm with len(programs) arms

11 while ic < Ic do
12 f,A(Π, Tv)← SelectArm(programs); // select an arm (f, A) using UCB algorithm

13 fp ←M(Q, f,A(Π, Tv)) ; // add print statements in f resulting in fp

14 n, t̄v, T (f, t̄v),← Exe(fp, Tv) ; // the number of solved visible tests n, execution trace T
on the first failed visible test t̄v after executing fp on Tv

15 if n = len(Tv) then
16 return f ; // return f when f passes Tv

17 else
18 // error analysis
19 O(A, T)←M(Q, f,A(Π, t̄v), T (f, t̄v)) ; // error analysis O by comparing A with T
20 // code explanation
21 E(f)←M(Q, f) ; // generate explanation E for program f

22 // code refinement
23 f ′ ←M(Q, f, E(f),O(A, T)) ; // generate refined program f ′

24 programs((f,A(Π, Tv)))← f ′ ; // replace f in programs with refined program f ′

25 UpdateConfidence((f,A(Π, Tv)), n) ; // update confidence of (f,A(Π, Tv)) with reward n

26 ic = ic + 1
27 return None ; // return none when no f passes Tv after reaching Ic

Iters
q 1 2 3 4 5

12 89.0 89.0 89.6 89.6 89.0
20 89.0 89.6 90.2 90.2 89.6

Table 5: Pass@1 accuracy of SLPW on HumanEval with GPT-3.5 varies by iterations (Iters) in both
the solution generation phase and the code implementation phase, as well as by the number of output
plans along with verifications, q, in the solution generation phase.

Algorithm 2 summarizes the code implementation phase. During this phase, SLPW takes the output
of the solution generation phase as input to generate a set of initial programs, programs, on Lines
4-9. Lines 11-26 repeatedly select a program f (Line 12), add print statements to f resulting in fp
(Line 13), execute it on visible tests Tv (Line 14), and return f for further assessment on the hidden
tests when fp solves visible tests Tv (Lines 15-16). Otherwise, SLPW generates the refined program
f ′ (Line 23) with the error analysis O (Line 19) and the code explanation E (Line 21) when fp fails
on Tv and t̄v is the first failed visible test (Line 14). The code implementation phase follows the same
confidence interval update strategy as the solution generation phase due to the same hypothesize that
the refine program f ′ is closely related to f . It uses the UCB algorithm to competitively refine each
program f while replacing f with the refined f ′ (Line 24) and updating the confidence interval of f
with the number of solved visible tests n (Line 25).

A.2 PARAMETER STUDY

SLPW involves four hyper-parameters: (1) the number of iterations in the solution generation phase,
(2) the number of iterations in the code implementation phase, (3) the number of plan samples k, and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Missing Conditions Logic Errors Differ from Intended Solution No Code Others
LPW 33.3 0 5.6 50.0 11.1
SLPW 23.5 5.9 5.9 47.1 17.6

Table 7: The percentage of different failure reasons for LPW and SLPW on the HumanEval bench-
mark with GPT-3.5 as the backbone. Missing Conditions and Logic Errors arise from the same
issues in the plan and plan verification. Differ from Intended Solution indicates the plan and plan
verification are manually classified as correct, while the generated code deviates, resulting in failure.
No Code represents the absence of valid plan and plan verification in the solution generation phase,
leading to failure after reaching the maximum number of iterations. Others denotes error program
solutions caused by various reasons that differ from the previously listed categories.

SD LDB LPW SLPW
HuamEval 22.6 28.6 44.4 47.1
MBPP 36.1 37.7 36.7 43.9

Table 8: The percentage of problems where
Self-Debugging (+Expl) (SD), LDB, LPW, and
SLPW generated programs solve the visible
tests but fail the hidden tests, out of total failed
problems for each method on HumanEval and
MBPP, with GPT-3.5 as the backbone.

SD LDB LPW SLPW
HuamEval 4.3 4.9 4.9 4.9
MBPP 10.4 10.4 8.8 10.0

Table 9: The percentage of problems where
Self-Debugging (+Expl) (SD), LDB, LPW, and
SLPW generated programs pass the visible
tests but fail the hidden tests, out of a total of
164 problems in HumanEval and 500 problems
in MBPP, with GPT-3.5 as the backbone.

(4) the number of output plans along with verifications q for further code implementation. We use
the same iterations for the solution generation and code implementation phases to simplify analysis.
To identify the optimal parameters for SLPW to achieve the best performance, we vary q from 1 to
5, set the number of iterations to 12 and 20, and configure k = 2 × q to ensure that sufficient plan
samples generate enough verifications for further code implementation. The results in Table 5 reveal
that larger iterations and q values generally improve performance on the HumanEval benchmark.
However, an excessive number, q = 5, has a detrimental effect on performance compared to q = 3
and q = 4 with the same number of iterations. For the same q settings, increasing the number
of iterations tends to improve performance but consumes additional token resources. A larger q
value results in a greater number of initially developed programs in the code implementation phase,
thereby raising the probability of passing visible tests. However, it also increases the risk of failing
hidden tests due to less specific consideration on how to handle test cases during the initial program
generation. Compared to q = 3, setting q = 5 results in a 2.4% improvement in instances where
the generated program solves only the visible tests but fails the hidden tests, out of a total of 164
problems, with 12 iterations.

A.3 ADDITIONAL ABLATION STUDY

HumanEval MBPP

Acc ∆ Acc ∆

LPW 89.0 - 76.0 -
LPW-E 87.8 -1.2 75.6 -0.4
SLPW 89.6 - 77.2 -
SLPW-E 89.6 0 77.0 -0.2

Table 6: Pass@1 accuracy (Acc) for the
variations of LPW and SLPW with the
GPT-3.5 backbone. Other metrics remain
consistent with those in Table 4.

Table 6 shows the performance of the variants of LPW
and SLPW on the HumanEval and MBPP benchmarks
using GPT-3.5 as the LLM backbone. The suffix -E
denotes removing the code explanation in LPW and
SLPW when generating the refined program in the code
implementation phase. The code explanation facilitates
LLMs in aligning text-based error analysis with code
implementation when locating and refining incorrect
program lines. It shows a greater impact in LPW com-
pared to SLPW, as evidenced by the results of LPW-E
and SLPW-E in Table 6.

A.4 ANALYSIS OF UNSOLVED PROBLEMS FOR GPT-3.5

Figure 7 compares the Pass@1 accuracy of LDB, LPW, and SLPW across different difficulty levels,
Easy, Medium, and Hard, on the HumanEval benchmark using GPT-3.5. We apply the method de-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

def cal_electbill(units):
"""
Write a function to
calculate electricity bill.
"""

Problem Description

Visible Tests
cal_electbill(75)==246.25

136th Problem
def month_season(month, days):
"""
Write a function to print the
season for the given month and
day.
"""

Problem Description

Visible Tests
month_season
('January', 4)
==('winter')

159th Problem

Figure 6: Example problems in MBPP.

scribed in Zhong et al. (2024) to generate the difficulty annotation in Figure 7 by querying GPT-3.5
with problem descriptions and canonical solutions. LPW and SLPW display convincing perfor-
mance, exceeding 85% accuracy across all difficulty levels. For the Hard level, LPW and SLPW
achieve 85.7% and 90.5% accuracy, in contrast to competing approaches whose performance notably
degrades to below 70%.

\

H
um

an
Ev

al
 P

as
s@

1
A

cc
ur

ac
y

(%
)

Easy (66) Medium (77) Hard (21)

H
um

an
Ev

al
 P

as
s@

1
A

cc
ur

ac
y

(%
)

Figure 7: Pass@1 accuracy of Baseline, Self-
Planning (SP), Self-Debugging (+Expl) (SD),
LDB, LPW and SLPW across different difficulty
levels, Easy, Medium, and Hard on the Hu-
manEval benchmark when leveraging GPT-3.5 as
the LLM backbone.

LPW and SLPW achieve state-of-the-art per-
formance among evaluated methods and show
dominance compared to other LLM debuggers.
We categorize the failure reasons for LPW and
SLPW on HumanEval with GPT-3.5 into 5
types. Table 7 compares the percentage of dif-
ferent failure reasons out of the total unsolved
problems for LPW and SLPW based on au-
thors’ manual review. Approximately half of
the errors result from the No Code type, where
the generated solution plan fails to be verified
on the visible tests, or the resulting verification
includes incorrect intermediate outputs in the
solution generation phase, leading to failure af-
ter reaching the maximum iteration threshold.
The second most common reason is Missing
Conditions, originating from the same issues in
the plan and plan verification. Notably, LPW generated program solutions contain no logic errors,
whereas SLPW produces only one program with a logic error. Both SLPW and LPW fail in the 91st
problem, where the generated programs are unable to solve the hidden tests due to deviations from
the plan and plan verification (Differ from Intended Solution). The plan verification clearly specifies
splitting the input string into sentences using delimiters “.”, “?” or “!”, but the generated code only
handles the full stop case and ignores “?” and “!”.

Tables 8 and 9 show the percentage of problems where Self-Debugging (+Expl) (SD), LDB, LPW,
and SLPW generated program solutions pass the visible tests but fail the hidden tests, out of respec-
tively failed problems and the total number of problems in the HumanEval and MBPP benchmarks
using GPT-3.5 as the backbone. In Table 8, more than 40% of failures in LPW and SLPW result
from solving the visible tests only on the HumanEval benchmark, since except for the No Code
category, other reasons discussed in Table 7 could contribute to this issue. In contrast, less than
30% of problems in SD and LDB experience this issue on HumanEval as the larger number of failed
problems in these two methods. In Table 8, all evaluated approaches show similar percentages on
the MBPP benchmark, with the remaining failures arising from different reasons. We note that all
methods tend to address visible tests only on the same set of problems in both the HumanEval and
MBPP benchmarks, resulting in the similar percentage in each benchmark out of the total number
of problems, as shown in Table 9. Meanwhile, all methods are prone to addressing visible tests only
on MBPP rather than on HumanEval as indicated in Table 9. Compared to the detailed problem
descriptions in HumanEval, the problem descriptions in MBPP are concise but lack clarity. For ex-
ample, Figure 6 illustrates two problems in MBPP where LPW and SLPW generated solutions are
tailored to the visible tests but deviate significantly from the canonical solution.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Plan and Plan Verification Correct Plan Correct Plan Verification
LPW 94.5 92.7 92.7
SLPW 95.1 93.9 93.3

Table 10: Percentage of problems where the LLM successfully generates the valid plans and plan
verifications in the solution generation phase (first column); percentage of problems where the LLM-
generated plans are manually classified as correct (middle column), considering no plan cases; and
percentage of problems where the LLM-generated plan verifications are manually classified as cor-
rect (last column), considering no plan verification cases. SLPW generates multiple plans and plan
verifications for each problem, and we consider them correct only when all are classified as correct.
All percentages are reported using GPT-3.5 as the backbone on the HumanEval benchmark, with a
total of 164 problems.

A.5 ACCURACY OF SOLUTION PLANS AND PLAN VERIFICATIONS USING GPT-3.5

We manually investigate the accuracy of solution plans and plan verifications generated by GPT-3.5
on the HumanEval benchmark, and the results are presented in Table 10. Overall, GPT-3.5 generates
the correct solution plans and plan verifications in natural language for majority of problems. In
LPW and SLPW, GPT-3.5 successfully produces plans and plan verifications for more than 94% of
the problems. GPT-3.5 generates the correct plans for around 93% of the problems and achieves
the similar accuracy for plan verifications. One common issue in the LLM-generated plan is the
omission of certain conditions. For example, solution plan frequently overlooks uppercase situations
and negative numbers. We note that the LLM-generated plan verification closely adheres to the
solution plan. When the plan is accurate, the verification process strictly follows the plan logic,
resulting in a correct analysis. Conversely, if the plan contains logical errors or omits edge cases,
the verification process replicates these mistakes. Specifically, for LPW, all correct plans lead to
accurate plan verifications, and vice versa. For SLPW, there is a single instance (68th) where the
plan is correct, but the plan verification is classified as incorrect due to minimal logical flaws during
inferring intermediate outputs.

We further manually explore the relationship between plan verification and program solution on
the HumanEval benchmark with GPT-3.5. Table 11 evaluates the conditional probabilities between
wrong code and wrong plan verification, as well as between correct code and correct plan verifica-
tion. Typically, in LPW and SLPW, accurate plan verification significantly contributes to an accurate
program solution, and vice versa. In LPW and SLPW, GPT-3.5 generates program solutions based
on plans and plan verifications. Therefore, any accurate descriptions or mistakes, including missed
conditions, in the plan and plan verification are propagated to the code. For SLPW, the 68th prob-
lem’s verification is classified as wrong, while the subsequently generated program is correct due to
the sound underlying logic in the plan verification. This results in the value in the first column being
less than 100%. When plan verifications are accurate, over 95% of program solutions are correct in
LPW and SLPW. The remaining incorrect code instances result from unclear condition statements
for hidden tests in plan verification, leading to an error program solution.

The results from Tables 10 and 11 highlight the impressive capabilities of LLMs in tackling text-to-
code generation tasks when outputs are represented in natural language. Plan and plan verification
generation accuracy is typically higher than code generation accuracy, underscoring the rationale
behind LPW and SLPW, which produce the high-quality program solution by leveraging plan and
plan verification. It is worth exploring methods to help LLMs overcome the challenges of trans-
lating natural language solutions into programs, given the strict lexical, grammatical, and semantic
constraints. Additionally, exploring other types of natural language solution representations could
improve code generation accuracy.

A.6 REFINEMENT CONSISTENCY IN LPW AND SLPW

LPW and SLPW allow multiple rounds of debugging to refine code based on error analysis generated
by comparing the code execution trace and plan verification on the failed visible test. Additionally,
LPW and SLPW query LLMs to generate refined code accompanied by a refinement explanation,
detailing the modifications implemented to address the errors identified in the error analysis. For
instance, Figures 12 and 5 illustrate two HumanEval problems where LPW successfully generates

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Wrong Code←Wrong Plan Verification Correct Code← Correct Plan Verification
LPW 100 96.1
SLPW 90.9 95.4

Table 11: The relationship between LLM-generated code solutions and plan verifications on the
HumanEval benchmark with GPT-3.5. The first column shows the percentage of problems where
the LLM generates incorrect code solutions when plan verifications are incorrect; the second column
shows the percentage of problems where correct code solutions are generated when plan verifications
are correct. For SLPW, only the plan verification used to generate the final output code is manually
evaluated.

the correct program through refinements informed by the error analysis using the GPT-3.5 backbone.
We note that in LPW and SLPW, if the refined code is irrelevant to the error analysis, the entire
debugging process degrades to a simple sampling approach, contradicting our original intent. As
a result, we manually evaluate the debugging consistency among the generated error analysis (part
(e)), the refined code (part (f)), and the refinement explanation (part (g)), as exampled in Figure 12.
In LPW, only one refined code deviates from the error analysis yet still produces the correct solution,
across all problems solved through debugging. SLPW achieves perfect consistency between the
error analysis and the refined code. These results validate the effectiveness of the debugging steps
in the code implementation phase for both LPW and SLPW, where the meaningful error analysis
enables LLMs to produce the correct program with precise refinements.

A.7 ANALYSIS OF UNSOLVED PROBLEMS FOR GPT-4O

A.7.1 HUMANEVAL

SLPW achieves 98.2% Pass@1 accuracy on HumanEval with the GPT-4o backbone, indicating only
3 unsolvable problems. We further investigate the reasons behind GPT-4o’s failures on the 91st,
132nd, and 145th problems as shown in Figures 13, 14, and 15, and attempt to generate the correct
program solutions. The 91st problem fails since GPT-4o misinterprets the linguistic distinction
between the word and the letter; the 132nd problem’s ambiguous description challenges GPT-4o;
and the incomplete description of the 145th problem leads to failed plan verifications. GPT-4o
successfully generates correct program solutions for 2 out of 3 problems, achieving 99.4% Pass@1
accuracy, by involving an additional visible test to validate the intended solution for the 91st problem
and providing a comprehensive problem description for the 145th problem.

Figure 13 illustrates the 91st problem in HumanEval, where the GPT-4o generated code (part (c))
contains an incorrect condition. The code verifies if the sentence starts with the letter “I”, which
is inconsistent with the problem description (part (a)) that requires the sentence to start with the
word “I”. The provided visible tests (part (b)) fail to clarify the correct condition, resulting in the
error program passing the visible tests only. Inspired by the superior learning-from-test capacity
discussed earlier, we convert a failed hidden test into a visible test, highlighted in red in part (d).
Consequently, GPT-4o successfully generates the correct program, as shown in part (e).

Figure 14 displays the 145th problem, where the incomplete problem description (part (a)) results in
incorrect plan verification on visible tests (part (b)), leading to a failure after reaching the iteration
threshold. The problem description requires returning a list sorted by the sum of digits but omits
the specification regarding the sign of negative numbers. This omission confuses GPT-4o, resulting
in consistently incorrect sorting when verifying the solution plan on the first visible test. We refine
the problem description with a detailed explanation on handling both positive and negative numbers
(part (c)), leading to the correct program solution, as shown in part (d).

Figure 15 illustrates the 132nd problem, where ambiguity in the problem description (part (a)) chal-
lenges GPT-4o. The problem description lacks clarity on “a valid subsequence of brackets” and
fails to specify the meaning of “one bracket in the subsequence is nested”. We deduce the intended
problem description by prompting GPT-4o with a canonical solution (part (d)). However, the LLM-
generated description remains unclear and results in various erroneous programs. Furthermore,
adding typically failed hidden tests to the visible tests (part (b)) is also ineffective in clarifying the
correct logic. We acknowledge that a clearer description might contribute to the correct program.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

LDB LPW SLPW
APPS 23.1 23.1 24.0
CodeContests 27.4 29.6 29.9

Table 12: The percentage of problems where
LDB, LPW, and SLPW generated programs
solve the visible tests but fail the hidden tests,
out of total failed problems for each method in
APPS and CodeContests, with GPT-4o as the
backbone.

LDB LPW SLPW
APPS 10.8 8.6 8.6
CodeContests 19.3 19.3 18.7

Table 13: The percentage of problems where
LDB, LPW, and SLPW generated programs
pass the visible tests but fail the hidden tests,
out of a total of 139 problems in APPS and 150
problems in CodeContests, with GPT-4o as the
backbone.

However, some problems are inherently difficult to describe accurately in natural language without
careful organization, posing challenges for LLMs.

A.7.2 APPS AND CODECONTESTS

Introductory (47) Interview (46) Competition (46)

A
PP

S
Pa

ss
@

1
A

cc
ur

ac
y

(%
)

Figure 8: Pass@1 accuracy of Baseline, LDB,
LPW and SLPW across different difficulty levels,
Introductory, Interview, and Competition, on the
APPS benchmark when using GPT-4o as the LLM
backbone.

We preprocess problem descriptions in APPS
and CodeContests, as shown in Figures 16 and
17, to maintain consistency in the input data
structure. LPW and SLPW demonstrate sig-
nificant improvements on APPS and CodeCon-
tests, exceeding around 10% and 5% Pass@1
accuracy, respectively, compared to LDB with
GPT-4o. However, in contrast to their perfor-
mance on the HumanEval and MBPP bench-
marks, where LPW and SLPW achieve over
97% and 84% Pass@1 accuracy, the 62% ac-
curacy on APPS and 34% accuracy on Code-
Contests indicate that even for the advanced
LLM GPT-4o, code generation remains chal-
lenging when addressing complicated program-
ming problems, such as those encountered in
collegiate programming competitions like IOI
and ACM (Hendrycks et al., 2021).

Figure 8 compares the Pass@1 accuracy of LDB, LPW, and SLPW across different difficulty levels,
Introductory, Interview, and Competition, on the APPS benchmark using GPT-4o. LPW and SLPW
consistently dominate in Pass@1 accuracy across all difficulty levels. LPW and SLPW show strong
performance on the relatively easier levels, i.e., Introductory and Interview, surpassing LDB by
around 9% and 15% accuracy, respectively, and outperforming Baseline by over 20% accuracy. For
the problems belonging to the most challenging level, Competition, LPW and SLPW achieve 34.8%
accuracy, compared to 28.3% for LDB and 17.4% for Baseline. However, all approaches experience
a substantial decrease at the Competition level, emphasizing the need for further improvements.

Tables 12 and 13 present the percentage of problems where the generated program solutions from
LDB, LPW, and SLPW solve visible tests but fail hidden tests out of the total failed problems and the
total number of problems, respectively, on the APPS and CodeContests benchmarks using GPT-4o
as the backbone. In Table 12, more than 20% of failures result from passing only the visible tests on
the APPS benchmark, with this percentage increasing to around 30% on CodeContests for all eval-
uated methods. In Table 13, all approaches display similar percentages of solving visible tests only
on each benchmark, ranging from around 10% on APPS to 19% on CodeContests. Compared to the
results in Table 9, where LPW and SLPW address only visible tests in 5% and 10% of problems on
the HumanEval and MBPP benchmarks, LPW and SLPW exhibit weaker performance on the more
challenging APPS and CodeContests benchmarks. This is particularly evident on CodeContests,
where the percentage is twice as high as APPS for LPW and SLPW. In APPS and CodeContests,
each problem averages approximately 2 visible tests, while CodeContests includes more compre-
hensive hidden tests, averaging about 23 per problem compared to only around 5 per problem in
APPS, increasing the likelihood of solving only the visible tests.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Analysis Before Coding
Planning Plan Verification

Coding Without Debugging Coding With Debugging Sampling

SP ✓ ✗ ✓ ✗ ✗

SD ✗ ✗ ✗ ✓ ✗

LDB ✗ ✗ ✗ ✓ ✗

LPW (ours) ✓ ✓ ✗ ✓ ✗

SLPW (ours) ✓ ✓ ✗ ✓ ✓

Table 14: Features of Self-Planning (SP), Self-Debugging (+Expl) (SD), LDB, LPW, and SLPW
with respect to code generation strategies.

A.8 COST ANALYSIS

Figure 9 compares Pass@1 accuracy against the average token cost per program for LDB, LPW,
and SLPW across four benchmarks using GPT-4o. LDB consumes fewer tokens per problem but
achieves the lowest accuracy. LPW improves accuracy but requires additional token costs for gen-
erating and verifying the plan. SLPW achieves the highest accuracy but consumes the most tokens
per problem due to the creation of multiple plans, plan verifications, and programs. When evalu-
ated by the accuracy-to-token ratio, LDB achieves the highest efficiency on the simpler HumanEval
and MBPP benchmarks, with accuracy gains of 5.85% and 1.04% per 1,000 tokens, respectively.
In comparison, LPW achieves gains of 2.85% on HumanEval and 0.67% on MBPP, while SLPW
achieves 1.42% on HumanEval and 0.45% on MBPP. On the challenging APPS benchmark, LDB
uses fewer tokens per problem, while LPW and SLPW deliver significantly higher accuracy. As
a result, LDB and SLPW yield the same accuracy gain of 0.39% per 1,000 tokens, whereas LPW
demonstrates the highest efficiency at 0.43%. On the CodeContests benchmark, LDB, LPW, and
SLPW exhibit similar token usage per problem, with LPW and SLPW achieving higher accuracy.
Their accuracy gains, 0.17% for LPW and 0.16% for SLPW per 1,000 tokens, surpass LDB’s 0.14%.
LDB experiences low efficiency on APPS and CodeContests due to insufficient refinements, where
multiple ineffective iterations consume significant token resources, yet the generated program re-
mains flawed.

Figures 10 and 11 further illustrate the Pass@1 accuracy variations with token consumption for
LDB, LPW, and SLPW on the APPS and CodeContests benchmarks using GPT-4o. LDB demon-
strates a gradual and steady improvement in accuracy as increasesd token consumption. In contrast,
LPW and SLPW start improving accuracy after a certain level of token consumption, due to the ini-
tial plan and plan verification generation. However, both LPW and SLPW subsequently show a sharp
improvement in accuracy, ultimately surpassing LDB with fewer tokens consumed, highlighting the
benefits of plan and plan verification in generating high-quality initial code and subsequent refine-
ments. Challenging benchmarks aligns with LPW and SLPW usage scenarios, where the precise
natural language solution described in the plan and plan verification is essential for logical com-
pleteness and understanding non-trivial bugs in the program, particularly when problems involve
complex logical reasoning steps.

A.9 LIMITATION

Like other debugging frameworks, LPW and SLPW are constrained by the imperfect reasoning abil-
ities of LLMs. While the plans and plan verifications generated by LPW and SLPW show promising
accuracy on current tasks, improving this accuracy could lead to better final code generation. En-
hancing the reasoning capacity of LLMs remains an ongoing challenge. Additionally, both LPW
and SLPW require a substantial number of tokens for plan generation and verification. Although
the plan and verification have proven valuable on challenging benchmarks, reducing token usage
is an important area for future enhancement. Furthermore, incorporating high-quality visible tests
generated by LLMs could further improve the performance of our approach.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 9: Pass@1 accuracy vs. average token cost per program for LDB, LPW, and SLPW on the
HumanEval, MBPP, APPS, and CodeContests benchmarks using GPT-4o as the LLM backbone.

Code Explanation Runtime Information Natural Language Intended Solution

SD ✓ ✗ ✗

LDB ✓ ✓ ✗

LPW (ours) ✓ ✓ ✓

SLPW (ours) ✓ ✓ ✓

Table 15: Features of Self-Debugging (+Expl) (SD), LDB, LPW, and SLPW with respect to code
debugging approaches.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 10: Pass@1 accuracy as a function of to-
ken consumption for LDB, LPW and SLPW on
the APPS benchmark when using GPT-4o as the
LLM backbone.

Figure 11: Pass@1 accuracy as a function of to-
ken consumption for LDB, LPW and SLPW on
the CodeContests benchmark when using GPT-
4o as the LLM backbone.

def longest(strings):
 if not strings:
 return None
 longest_str = None
 for string in strings:
 if longest_str is None or len(string) > len(longest_str):
 longest_str = string
 return longest_str

Visible Tests(b)
longest([]) is None
longest(['a', 'b', 'c']) == 'a'
longest(['a', 'bb', 'ccc']) == 'ccc'

12th Problem
Problem Description(a)

def longest(strings):
 if not strings:
 return None
 longest_str = None
 for string in strings:
 if longest_str is None or len(string) >= len(longest_str):
 longest_str = string
 return longest_str

Initial Code(c)

Refined Code(f)

... The error in the initial program was in
the comparison condition when checking
for the longest string. The condition should
be len(string) > len(longest_str) instead of
len(string) >= len(longest_str) to ensure
that the first longest string encountered is
returned in case of multiple strings with
the same length.

Refinement Explanation(g)

... the error execution trace updates
the longest string variable from a to b
but the correct verification skips
this update due to the same length. The
condition for updating the longest
string variable is incorrect when two
variables have the same length.

Error Analysis(e)

Failed Visible Test(d)

longest(['a', 'b', 'c']) == 'a'

def longest(strings):
"""
Out of list of strings, return the longest one.
Return the first one in case of multiple strings of
the same length. Return None in case the input
list is empty.
"""

Figure 12: The 12th problem in HumanEval, where LPW with GPT-3.5 generated initial code (part
(c)) is unable to solve one of the visible tests (part (d)). The refined code (part (f)) successfully
solves both visible and hidden tests based on the error analysis (part (e)). The modification in the
refined code aligns with the error analysis, as evidenced by the refinement explanation (part (g)).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Problem Description

Visible Tests
is_bored('Hello world')
== 0
is_bored('The sky is
blue. The sun is shining.
I love this weather') == 1

(b)

def is_bored(S):
 # Split the input string into sentences using delimiters '.', '?', and '!'
 sentences = S.split('.')
 sentences = [s for sentence in sentences for s in sentence.split('?')]
 sentences = [s for sentence in sentences for s in sentence.split('!')]
 # Initialize a counter to keep track of the number of boredoms
 boredom_count = 0
 # Loop through each sentence and strip any leading or trailing whitespace
 for sentence in sentences:
 stripped_sentence = sentence.strip()
 # Check if the sentence starts with the word "I"
 if stripped_sentence.startswith("I"):
 # Increment the counter if the sentence starts with "I"
 boredom_count += 1
 # Return the counter as the result
 return boredom_count

Add a Visible Test(d)
is_bored('Hello world') == 0
is_bored('The sky is blue. The sun
is shining. I love this weather') == 1
is_bored(' Is the sky blue?') ==0

import re
def is_bored(S):
 sentences = re.split(r'[.?!]', S)
 # Initialize a counter to keep track of the number of boredoms
 boredom_count = 0
 # Loop through each sentence in the split list
 for sentence in sentences:
 # Strip leading and trailing whitespace
 sentence = sentence.strip()
 # Split the sentence into words
 words = sentence.split()
 # Check if the first word is "I"
 if words and words[0] == "I":
 # Increment the counter
 boredom_count += 1
 # Return the counter as the result
 return boredom_count

(a)

Error Code(c) Correct Code(e)

91st Problem
def is_bored(S):
"""
You'll be given a string of words, and
your task is to count the number of
boredoms. A boredom is a sentence that
starts with the word "I". Sentences are
delimited by '.', '?' or '!'.
"""

Figure 13: The problem description (part (a)) and visible tests (part (b)) of the 91st problem in
HumanEval, where GPT-4o generated code (part (c)) addresses the visible tests but fails the hidden
tests. However, after converting a failed hidden test to a visible test (part (d)), GPT-4o successfully
generates the correct program (part (e)).

(d)

Problem Description(a)

def order_by_points(nums):
 def digit_sum(n):
 """ Helper function to calculate the sum of digits for a given number. """
 if n < 0:
 result = -int(str(n)[1]) + sum(int(d) for d in str(n)[2:])
 return result
 result = sum(int(d) for d in str(n))
 return result
 # Create a list of tuples where each tuple contains the original number and its digit sum
 nums_with_sums = [(num, digit_sum(num)) for num in nums]
 # Sort the list of tuples based on the digit sum.
 nums_with_sums.sort(key=lambda x: x[1])
 # Extract the sorted numbers from the tuples
 sorted_nums = [num for num, _ in nums_with_sums]
 return sorted_nums

Correct Code(d)

Visible Tests(b)

order_by_points([1, 11, -1, -11, -12])
== [-1, -11, 1, -12, 11]
order_by_points([]) == []

Write a function which sorts the given list of integers in
ascending order according to the sum of their digits.

For positive numbers, the digit sum is the sum of all digits.
For negative numbers, consider the sign only for the first digit
(e.g., the digit sum for -12 is -1 + 2, and for -11, it is -1 + 1).

Note: if there are several items with similar sum of their
digits, order them based on their index in original list.

145th Problem
Refined Problem Description (c)

def order_by_points(nums):
"""

Write a function which sorts the
given list of integers in ascending
order according to the sum of their
digits. Note: if there are several
items with similar sum of their
digits, order them based on their
index in original list.
"""

Figure 14: The problem description (part (a)) and visible tests (part (b)) of the 145th problem in Hu-
manEval where GPT-4o fails to respond with a valid plan verification, resulting in failure. However,
after refining the problem description (part (c)), GPT-4o successfully generates the correct program
(part (d)).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

def is_nested(string: str) -> bool:
 opening_bracket_index = []
 closing_bracket_index = []
 for i in range(len(string)):
 if string[i] == '[':
 opening_bracket_index.append(i)
 else:
 closing_bracket_index.append(i)
 closing_bracket_index.reverse()
 cnt = 0
 i = 0
 l = len(closing_bracket_index)
 for idx in opening_bracket_index:
 if i < l and idx < closing_bracket_index[i]:
 cnt += 1
 i += 1
 return cnt >= 2

Visible Tests(b)
is_nested('[[]]') == True
is_nested('[]]]]]]][[[[[]') == False
is_nested('[][]') == False
is_nested('[]') == False
is_nested('[[][]]') == True
is_nested('[[]][[') == True

132nd Problem
def is_nested(string)
"""

Create a function that takes a string as input
which contains only square brackets. The
function should return True if and only if there
is a valid subsequence of brackets where at
least one bracket in the subsequence is nested.
"""

Problem Description(a)

def is_nested(string: str) -> bool:
 counter = 0
 nested = False
 for char in string:
 if char == '[':
 # Increment counter for opening bracket
 counter += 1
 if counter > 1:
 # Set nested flag if there is more than one opening bracket
 nested = True
 elif char == ']':
 # Decrement counter for closing bracket
 counter -= 1
 if counter < 0:
 # Return False if counter goes negative (unbalanced brackets)
 return False
 # Return True if there was any nested bracket, else False
 return nested

Error Code(c)
Canonical Solution(d)

Figure 15: The problem description (part (a)) and visible tests (part (b)) of the 132nd problem in
HumanEval, where the GPT-4o generated error code (part (c)) passes the visible tests yet fails the
hidden tests. GPT-4o consistently generates incorrect programs despite providing additional visible
tests or refining the problem description.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Task

Given an initial string s, switch case of the minimal
possible number of letters to make the whole string
written in the upper case or in the lower case.

Input/Output

[input] string s

String of odd length consisting of English letters.

3 ≤ inputString.length ≤ 99.

[output] a string

The resulting string.

Example

For s = "Aba", the output should be "aba"

For s = "ABa", the output should be "ABA"

Unstructured Problem(a)

3231st Problem (APPS)
Structured Problem(a)

def case_unification(s: str) -> str:

"""

Task

Given an initial string s, switch case of the minimal

possible number of letters to make the whole string
written in the upper case or in the lower case.

Input/Output

[input] string s

String of odd length consisting of English letters.

3 ≤ inputString.length ≤ 99.

[output] a string

The resulting string.

Example
For s = "Aba", the output should be "aba"

For s = "ABa", the output should be "ABA"

"""
Visible Tests(b)

 case_unification('Aba') == 'aba'
 case_unification('ABa') == 'ABA'

Figure 16: An example structured APPS problem with a function signature and visible tests, gener-
ated by instructing GPT-4o with the unstructured problem description.

A string is called a k-string if it can be represented as k
concatenated copies of some string. For example, the
string "aabaabaabaab" is at the same time a 1-string, a 2-
string and a 4-string, but it is not a 3-string, a 5-string, or
a 6-string and so on. Obviously any string is a 1-
string. You are given a string s, consisting of lowercase
English letters and a positive integer k. Your task is to
reorder the letters in the string s in such a way that the
resulting string is a k-string.

Input: The first input line contains integer k (1 ≤ k ≤
1000). The second line contains s, all characters in s are
lowercase English letters. The string length s satisfies the
inequality 1 ≤ |s| ≤ 1000, where |s| is the length of string s.

Output: Rearrange the letters in string s in such a way
that the result is a k-string. Print the result on a single
output line. If there are multiple solutions, print any of
them. If the solution doesn't exist, print "-1" (without
quotes).

Examples

Input 2 aazz Output azaz

Input 3 abcabcabz Output -1

Unstructured Problem(a)

137th Problem (CodeContests)
Structured Problem(a)

 def AkString(k: int, s: str) -> str:
"""
A string is called a k-string if it can be represented as k
concatenated copies of some string. For example, the string
"aabaabaabaab" is at the same time a 1-string, a 2-string
and a 4-string, but it is not a 3-string, a 5-string, or a 6-
string and so on. Obviously any string is a 1-string. You are
given a string s, consisting of lowercase English letters and a
positive integer k. Your task is to reorder the letters in the
string s in such a way that the resulting string is a k-string.

Input: The first input line contains integer k (1 ≤ k ≤ 1000).
The second line contains s, all characters in s are lowercase
English letters. The string length s satisfies the inequality 1 ≤
|s| ≤ 1000, where |s| is the length of string s.

Output: Rearrange the letters in string s in such a way that
the result is a k-string. Print the result on a single output
line. If there are multiple solutions, print any of them. If the
solution doesn't exist, print "-1" (without quotes).

Examples

Input 2 aazz Output azaz

Input 3 abcabcabz Output -1
"""

Visible Tests(b)
 AkString(2, 'aazz') == 'azaz'
 AkString(3, 'abcabcabz') == '-1'

Figure 17: An example structured CodeContests problem with a function signature and visible tests,
generated by instructing GPT-4o with the unstructured problem description.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

A.10 PROMPTS FOR LPW AND SLPW

We provide the LLM prompts used in LPW in Prompts 1 to 8. For conciseness, we only include one
example in each prompt. Full prompts can be found in our released code.

Prompt 1: Prompt for plan generation

You are a Python writing assistant that responds with a step-by-step
thought process (IN ENGLISH) to solve Python coding problems.

You will be provided with a series of examples, where each example
begins with [Start Example] and ends with [End Example]. In each example,
you will be presented with a Python coding problem, starting with [

Example Problem Description], which includes the function signature and
its accompanying docstring. You will then provide a reasonable solution
plan, starting with [Example Start Plan] and ending with [Example End
Plan], to solve the given problem.

[Start Example]
[Example Problem Description]
def encrypt(s):

"""
Create a function encrypt that takes a string as an argument and

returns a string encrypted with the alphabet being rotated. The alphabet
should be rotated in a manner such that the letters shift down by two
multiplied to two places.

"""

[Example Start Plan]
Create an alphabet, biased by two places multiplied by two.
Loop through the input, find the letter biased by the alphabet.
Return the result.
[Example End Plan]
[End Example]

... Authors’ notes: We omit another example for conciseness. The full
prompt can be found in our released code. ...

Lastly, you will be given a Python writing problem, beginning with [
Problem Description], which includes the function signature, its
docstring, and any potential constraints. The phrase "Let’s think step by
step" will signal the start of the plan. Your task is to create a

solution plan, starting with [Start Plan] and ending with [End Plan].

Prompt 2: Prompt for plan verification

You are a logical reasoner.

You will be presented with several plan verification examples, each
starting with [Start Example] and ending with [End Example]. In each
example, you will be given a Python writing problem, starting with [
Example Problem Description], followed by the solution plan starting with
[Example Solution Plan], and its verification process beginning with [

Example Plan Verification for X] for a test case X, starting with [
Example Test Cases]. During the verification process, intermediate
variables that need to be recorded are clearly identified at the outset,
starting with [Record Analysis]. Whenever the value of a recorded
intermediate variable is updated, the new result is clearly displayed,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

beginning with [Record]. After the verification, the derived result is
compared to the correct test result, starting with [Results Compare]. If
the derived result matches the test result, the output will be [Correct
Plan]. If the derived result differs from the test result, the output
will be [Incorrect Plan], followed by the reasons for the discrepancy,
starting with [Incorrect Reasons], and the revised correct solution plan,
beginning with [Start Revised Solution Plan] and ending with [End

Revised Solution Plan].

[Start Example]
[Example Problem Description]
def prime_number(n: int):

"""
In range 0 to 100, returns n-th number that is a prime.
"""

[Example Solution Plan]
1. Iterate number through 0 to 100.
2. Check each number, if it’s prime.
3. Keep track of the count of prime numbers found.
4. Stop when we find the n-th prime number.
5. Return the nth prime number.
[Example Test Cases]
assert prime_number(3)==5
[Example Plan Verification for assert prime_number(2)==3]
[Record Analysis]
The return value is the nth prime number, so all nth prime numbers need
to be clearly recorded!
1. Call the function prime_number(2).
2. According to line 1 in solution plan, Iterate number through 0 to 100.
3. According to line 2 in solution plan, Check if 0 is prime. It’s not.
4. Move to next number 1.
5. According to line 2 in solution plan, Check if 1 is prime. It’s not.
6. Move to next number 2.
7. According to line 2 in solution plan, Check if 2 is prime. It is a
prime.
8. According to line 3 in solution plan, the count of prime numbers is 1.
[Record]: 1st prime number is 2
9. Move to next number 3.
10. According to line 2 in solution plan, Check if 3 is prime. It is a
prime.
11. According to line 3 in solution plan, the count of prime numbers is
2.
[Record]: 2nd prime number is 3
12. According to line 4 in solution plan, Stop when we find the 2nd prime
number.

13. According to line 5 in solution plan, Return the 2nd prime number,
which is 3.
[Results Compare]
The test correct output is 3. The logic analysis output is 3. 3=3. Thus,
the plan is verified to correctly handle all test cases.
[Correct Plan]
[End Example]

... Authors’ notes: We omit another example for conciseness. The full
prompt can be found in our released code. ...

Finally, you will be given a problem description, beginning with [
Problem Description], along with your generated solution plan, starting

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

with [Solution Plan], to solve the [Problem Description], and multiple
test cases starting with [Test Cases]. The phrase "Let’s verify the plan"
will indicate the beginning of the verification process, followed by

your verification steps to confirm whether your generated plan can pass
all test cases.

For each test case, the verification must include [Record Analysis]
to track the intermediate variables at the beginning. If any intermediate
variable value is updated during the reasoning process, the updated

value should be clearly displayed, starting with [Record]. Please include
[Results Compare] to assess the derived outcome against the correct test
output. If the derived result matches the test result, output [Correct

Plan] and proceed to the next test case. If the derived result does not
match the test result, output [Incorrect Plan], followed by the reasons
for the discrepancy, starting with [Incorrect Reasons]. Finally, provide
the revised solution plan, starting with [Start Revised Solution Plan]
and ending with [End Revised Solution Plan], to complete the process.

Prompt 3: Prompt for plan verification check

You are a logical reasoner. Your goal is to identify any incorrect
logic within the logic verification process.

You will be given several examples demonstrating how to evaluate a
logic verification process. Each example will begin with [Start Example]
and end with [End Example]. In each example, you will find the following:

[Example Problem Description] outlining the Python writing problem;

[Example Solution Plan] describing the approach to solve the problem;

[Example Plan Verification for X], applying the solution plan to a
specific test case X. In this process, the intermediate variables to be
tracked are analyzed at the start, marked by [Record Analysis]. Whenever
the value of a recorded intermediate variable is updated, its new value
is displayed starting with [Record]. The [Results Compare] section
compares the verification derived result with the correct test output;

[Example Verification Check for X], this section evaluates, step by step,
whether the logic verification process for test case X is correct.

If the verification is correct, the output will be [Correct Plan
Verification], and please proceed to the next example. If the
verification is incorrect, explanation should be provided and [Incorrect
Plan Verification] will be the output to conclude the evaluation.

[Start Example]
[Example Problem Description]
def addOne(message: str):

"""
You are given a large integer represented as an integer array digits,

where each digits[i] is the ith digit of the integer. The digits are
ordered from most significant to least significant in left-to-right order
. The large integer does not contain any leading 0’s. Increment the large
integer by one and return the resulting array of digits.

"""

[Example Solution Plan]
1. Convert the list of digits into a number.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

2. Increment the number by one.
3. Convert the incremented number back into a list of digits and return
it.

[Example Plan Verification for assert addOne([1,2,3])==[1,2,4]]
[Record analysis]
The return value is the incremental resulting array of digits, so the
incremental resulting array of digits needs to be clearly recorded!

According to line 1 in solution plan, convert [1,2,3] to the number 123.
According to line 2 in solution plan, Increment 123 by one to get 124.
According to line 3 in solution plan, convert 124 back into the list
[1,2,4]
[Record]: incremental resulting array is [1,2,4]
According to line 3 in solution plan return incremental resulting array
[1,2,4].

[Results Compare]
The test correct output is [1,2,4]. The logic analysis output is
[1,2,4]. [1,2,4]=[1,2,4]. So the plan is verified to correctly handle all
test cases.

[Correct Plan]

[Example Verification Check for assert ddOne([1,2,3])==[1,2,4]]:
"Convert [1,2,3] to the number 123" is correct!
"Increment 123 by one to get 124" is correct! since 123+1=124
"Convert 124 back into the list [1,2,4]" is correct!
"return incremental resulting array [1,2,4]" is correct!

In [Results Compare] "The test correct output = [1,2,4]" is correct! "The
logic analysis output = [1,2,4]" is correct! The results comparison

"[1,2,4]=[1,2,4]" is correct!

All analysis steps are correct!

[Correct Plan Verification]

[Example Plan Verification for assert addOne([-1,2])==[-1,1]]
[Record analysis]
The return value is the incremental resulting array of digits, so the
incremental resulting array of digits needs to be clearly recorded!
According to line 1 in solution plan, convert [-1,2] to the number 12.
According to line 2 in solution plan, Increment 12 by one to get 13.
According to line 3 in solution plan, convert 13 back into the list [1,3]
[Record]: incremental resulting array is [1,3]

According to line 3 in solution plan return incremental resulting array
[1,3].

[Results Compare]
The test correct output is [-1,1]. The logic analysis output is [-1,1].
[-1,1]=[-1,1]. So the plan is verified to correctly handle all test cases
.
[Correct Plan]

[Example Verification Check for assert addOne([-1,2])==[-1,1]]:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

"Convert [-1,2] to the number 12" is incorrect. The analysis doesn’t
correctly interpret the -1 and assumes all values are positive, the
sequence -1, 2 should form -12.
"Increment 12 by one to get 13" is correct, but as established, the
initial conversion should not yield 12.
"Convert 13 back into the list [1,3]" is correct!
"Return incremental resulting array [1,3]" is correct!

In [Results Compare] "The test correct output = [-1,1]" is correct! "The
logic analysis output = [-1,1]" is incorrect! The logic analysis result
is [1,3] mentioned in the verification "return incremental resulting
array [1,3]". The results comparsion "[-1,1]=[-1,1]" is incorrect! The
logic analysis result is [1,3] and [-1,1] is not equal [1,3].

The logic verification process for addOne([-1,2])==[-1,1] is incorrect.
The analysis doesn’t correctly interpret the -1 and assumes all values
are positive, the sequence -1, 2 should form -12. The logic analysis
output = [-1,1] is incorrect! It is [1,3]. The results comparison is
incorrect since [-1,1] is not equal [1,3].

[Incorrect Plan Verification]

[End Example]

... Authors’ notes: We omit another example for conciseness. The full
prompt can be found in our released code. ...

Finally, you will be given a problem description, beginning with [
Problem Description], followed by your generated solution plan, starting
with [Solution Plan], to address the [Problem Description]. You will then
work through multiple Plan Verification, each starting with [Plan

Verification for X], where X represents a test case. At the start of the
verification process, [Record Analysis] examines the intermediate
variables that should be tracked. During the logic verification, the tag
[Record] indicates any updates to the values of the recorded intermediate
variables. The [Results Compare] section documents the comparison

between the verification derived result and the expected test output.

The phrase "Let’s evaluate the verification" will indicate the start
of the evaluation for each verification process. This will be followed by
your step-by-step verification check to assess whether each intermediate
output in the verification process is correct, starting with [

Verification Check for X], as shown in the examples. If all intermediate
results in the verification process are correct, the output will be [
Correct Plan Verification], and you will proceed to the next verification
. If the verification process is incorrect, an explanation should be
provided, and [Incorrect Plan Verification] will be output to conclude
the evaluation.

Prompt 4: Prompt for initial code

You are a Python writing assistant that only responds with Python
programs to solve a Python writing problem.

You will receive several examples, each structured as follows,
beginning with [Start Example] and ending with [End Example]. Within each
example, you will find a Python programming problem starting with [

Example Problem Description] and a solution plan starting with [Example
Solution Plan]. Additionally, you will receive plan verifications for

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

specific test cases. For each test case X, the plan verification is
labeled as [Example Plan Verification for X], providing a detailed
logical breakdown and variable value updates, which are recorded starting
with [Record]. Following the verification, you will encounter the

example-generated program starting with [Example Generated Program]. The
program, marked from [Start Program] to [End Program], is generated based
on the solution plan and plan verification, ensuring that the program’s

execution aligns with the plan verification when test case X is used as
input.

[Start Example]

[Example Problem Description]
from typing import List
def get_closest_transition_character(word):

"""
You are given a word. Your task is to find the closest transition

character from the right side of the word(case sensitive). The transition
character is lowercase and the character after it is uppercase. If no

such lowercase character is found, return an empty string.
>>> get_closest_transition_character("eAsy") == "s"
"""

[Example Solution Plan]
1. Reverse iterate through the characters of the word starting from the
last character from the right.
2. For each character, check if the current character is lowercase and if
the character after it is uppercase.

3. If step 2 is satisfied,
4. return the current vowel character.
5. If no such vowel is found, return an empty string.

[Example Plan Verification for assert get_closest_transition_character("
eAsy")=="s"]

[Record analysis]
The return value is the closest transition character, so the closest
transition character should be recorded!

1. Call the function get_closest_vowel("eAsy").
2. According to line 1 in the solution plan, reverse iterate the word,
from the last character to the first character, so the last character is
"y"
3. According to line 2 in the solution plan, "y" is a lowercase but the
character after "y" is "s" and "s" is a lowercase.
4. Move to the next character based on the reverse iterate, so the
character is "s".
5. According to line 2 in the solution plan, "s" is a lowercase and the
character after ’s’ is ’A’, and ’A’ is uppercase.
6. According to line 3 in the solution plan, step 2 is satisfied,
7. [Record]: the closest transition character ’s’
8. According to line 4 in the solution plan, return the current lowercase
character ’s’

[Example Generated Program]
[Start Program]

from typing import List

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

def get_closest_transition_character(word):
""" You are given a word. Your task is to find the closest transition

character from the right side of the word(case sensitive). The
transition character is lowercase and the character after it is uppercase
.

>>> get_closest_transition_character("eAsy") == "s"
"""
reverse iterate the word
for i in range (len(word)-1,-1,-1):

current_character=word[i]
if current_character.islower():

if i!=0:
after_character=word[i-1]
if after_character.isupper():

return current_character
return ""

[End Program]
[End Example]

... Authors’ notes: We omit another example for conciseness. The full
prompt can be found in our released code. ...

Finally, you will be provided with a Python writing problem, starting
with [Problem Description]. A solution plan will follow, beginning with

[Solution Plan]. Next, you will receive several plan verifications. For
each test case X, the plan verification, starting with [Plan Verification
for X] provides detailed logical reasoning steps to solve it.

Once the plan verification is provided, the "Let’s generate the
program" flag indicates the start of Python program generation. You will
then need to generate the Python program solution for the problem. The
plan verification serves as a constraint during program generation. It
is essential to ensure that the execution of the generated program
remains consistent with [Plan Verification for X] when using test case X
as input. Additionally, the generated program should incorporate all
conditions noted in [Plan Verification for X] to solve test case X.
Please ONLY output the generated Python program, starting with [Start
Program] and ending with [End Program].

Prompt 5: Prompt for print statement generation

You are a Python writing assistant that only responds with Python
programs with PRINT statements.

You’ll be provided with several examples structured as follows,
beginning with [Start Example] and ending with [End Example]. In each
example, you will be given a sample Python program, starting with [
Example Python Program]. You will also receive several plan verifications
for specific test cases. For a test case X, its plan verification,

starting with [Example Plan Verification for X], includes a worded
description of the logic used to solve test case X. During the
verification, the intermediate variable that needs to be tracked is
clearly identified, starting with [Record Analysis] at the beginning, and
any updates to its value are recorded, starting with [Record].

Following this, you will be shown a Python program that includes
detailed print statements, starting with [Example Python Program with
Print Statements]. These print statements illustrate how the values of

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

the intermediate variables (described in the plan verification) are
modified during program execution, as well as how other variables in the
program change. These examples will guide you on where and how to add
print statements in your Python program.

[Start Example]

[Example Python Program]
from typing import List
def get_closest_transition_character(word):

""" You are given a word. Your task is to find the closest transition
character from the right side of the word(case sensitive). The

transition character is lowercase and the character after it is uppercase
.

>>> get_closest_transition_character("eAsy") == "s"
"""
for i in range (len(word)-1,-1,-1):

current_character=word[i]
if current_character.islower():

if i!=0:
after_character=word[i-1]
if after_character.isupper():

return current_character
return ""

[Example Plan Verification for assert get_closest_transition_character("
eAsy")=="s"]
[Record analysis]
The return value is the closest transition character, so the closest
transition character should be recorded!

1. Call the function get_closest_vowel("eAsy").
2. According to line 1 in the solution plan, reverse iterate the word,
from the last character to the first character, so the last character is
"y"
3. According to line 2 in the solution plan, "y" is a lowercase but the
character after "y" is "s" and "s" is a lowercase.
4. Move to the next character based on the reverse iterate, so the
character is "s".
5. According to line 2 in the solution plan, "s" is a lowercase and the
character after ’s’ is ’A’, and ’A’ is uppercase.
6. According to line 3 in the solution plan, step 2 is satisfied,
7. [Record]: the closest transition character ’s’
8. According to line 4 in the solution plan, return the current lowercase
character ’s’

[Example Python Program with Print Statements]
from typing import List
def get_closest_transition_character(word):

""" You are given a word. Your task is to find the closest transition
character from the right side of the word(case sensitive). The

transition character is lowercase and the character after it is uppercase
.

>>> get_closest_transition_character("eAsy") == "s"
"""

print(f"Reverse iterate the word {word}")
for i in range (len(word)-1,-1,-1):

current_character=word[i]

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

print(f"current character at index {i} is {word[i]}")
if current_character.islower():

print(f"current character {word[i]} is lowercase")
if i!=0:

print(f"There is a character after {word[i]}")
after_character=word[i-1]
print(f"character after {word[i]} is {word[i-1]}")
if after_character.isupper():

print(f"character is {word[i-1]} is uppercase")
print(f"[Record]: the closest transition character {

word[i]}")
print(f"Return the closest transition character {word

[i]}")
return current_character

print(f"no such lowercase character is found, return an empty string
")

return ""
[End Example]

... Authors’ notes: We omit another example for conciseness. The full
prompt can be found in our released code. ...

Finally, you will be provided with a Python program, starting with [
Python Program], along with several plan verifications for specific test
cases. For each test case X, the plan verification, starting with [Plan
Verification for X], includes a detailed description of the logic used to
solve test case X. In the plan verification, the intermediate variables

to be tracked are clearly analyzed at the beginning, starting with [
Record Analysis], and any updates to these variable values are recorded,
starting with [Record].

The phrase "Let’s add print statements" signals the start of the
process to incorporate print statements into the provided Python program.
Your task is to add print statements that track how the variables in the
program change. Ensure that the intermediate variable values (as

outlined in the plan verification) are printed using these statements.
Output your program with print statements, starting with [Start Program]
and ending with [End Program].

Prompt 6: Prompt for code explanation

You are a Python interpreter.

You will be given a Python program, and your task is to generate a
word-by-word explanation describing the effect of each line in the
program. You will be provided with several examples, each beginning with
[Start Example] and ending with [End Example]. In each example, you will
receive a Python programming problem, starting with [Example Problem
Description], along with an example Python program, marked as [Example
Python Program], which is generated to solve the given problem.
Additionally, you will be provided with an explanation of each line in
the example Python program, starting with [Example Explanation For Each
Line].

[Start Example]
[Example Problem Description]
def encode(message):

"""

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Write a function that takes a message, and encodes in such a way that
replaces all letters in the message with the letter that appears 1 place
after of that letter in the english alphabet and then delete letter is a
vowel.

The last letter z is execluded in the message. Assume the input only
containing letters.

"""

[Example Python Program]
def encode(message):

encoded_message = ""
for char in message:

next_char = chr(ord(char) + 1)
if next_char not in "aeiouAEIOU":

encoded_message += next_char
return encoded_message

[Example Explanation For Each Line]
The Python function encode is designed to manipulate a given string (
referred to as a message) by replacing the current letter with the letter
that appears 1 place after it in the English alphabet and then skipping

the letter if it is a vowel:

Function Definition (def encode(message):): Defines a function named
encode that accepts one parameter, message. This parameter is intended to
be a string that will be processed to create an encoded message.

Initialize Encoded Message (encoded_message = ""): Initializes a variable
encoded_message as an empty string. This variable will store the encoded
version of the message as characters are processed and approved for

inclusion.

For Loop (for char in message:): Iterates over each character in the
message. Each character is processed individually.

Calculate Next Character (replacechar = chr(ord(char) + 1)): For each
character in the message, this line calculates its next character that
appears 1 place after it in the English alphabet. It converts the
character to its ASCII value with ord(char), increments this value by 1,
and then converts it back to a character with chr().

Check if the resulting character is a Vowel (if replacechar in "
aeiouAEIOU":): Check if the resulting character (replacechar) after
incrementation is a vowel (either uppercase or lowercase is checked here)
. If it is a vowel, the continue statement is executed.

Add Character to Encoded Message (else: encoded_message += replacechar):
If replacechar is not a vowel, it is appended to encoded_message. This
builds up the final encoded string with the modified characters.

Return Encoded Message (return encoded_message): After processing all
characters in the original message, the function returns the fully
encoded string which consists of all non-vowel characters that are the
successors of the original characters in the ASCII sequence.
[End Example]

... Authors’ notes: We omit another example for conciseness. The full
prompt can be found in our released code. ...

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Finally, you will be presented with a problem description, starting
with [Problem Description], and your generated Python program, starting
with [Python Program], which is meant to solve the [Problem Description].
After this, the "Let’s generate the explanation" flag will signal the

beginning of the explanation phase. Your task is to generate a word-by-
word explanation for each line in the Python program, following the
format shown in the previous examples. Please skip the explanation for
any line that is a print statement. Output your explanation starting with
[Start Explanation] and ending with [End Explanation].

Prompt 7: Prompt for error analysis

You are a logical reasoner. You will be provided with two logical
reasoning processes: [Plan Verification] and [Error Execution Trace].
Your task is to identify any errors in the [Error Execution Trace] by
comparing it with the [Plan Verification].

You will be provided with several examples, each starting with [Start
Example] and ending with [End Example]. In each example, you will

receive a Python programming problem, starting with [Example Problem
Description], along with an example of an incorrect Python program,
marked as [Example Error Program], generated for that problem. You will
also be provided with a detailed execution trace of the error program on
the failed test case X, labeled as [Example Error Execution Trace for X],
including the intermediate variable values.

Additionally, you will be provided with an example of the correct
logical reasoning process, labeled as [Example Plan Verification for X].
This process outlines the necessary steps to solve test case X accurately
, including condition checks and recording intermediate variable updates,
starting with [Record]. Next, [Example Discrepancy Analysis] provides a

comparison between the Example Plan Verification and the Example Error
Execution Trace, highlighting output differences and identifying where
the Error Execution Trace deviates from correctness. Finally, [Example
Error Analysis] summarizes the errors identified in the [Example
Discrepancy Analysis] and proposes solutions to correct them.

[Start Example]
[Example Problem Description]
def is_palindrome(num):

"""
check if a given integer is a palindrome.
"""

[Example Error Program]
def is_palindrome(num):

num_str = str(abs(num))
return num_str == num_str[::-1]

[Example Error Execution Trace for assert is_palindrome(-121)==False]
1. Convert the integer -121 to the string "121"
2. The integer string "121" is equal to the reversed string "121", the
result is True
3. Return True

[Example Plan Verification for assert is_palindrome(-121)==False]
[Record analysis]
The return value is the checking result about a given integer is a
palindrome, so the checking result should be clearly recorded!

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

1. Call the function is_palindrome(-121).
2. change integer to string, it is "-121"
3. check whether the string "-121" is equal to its reversed string
"121-", the checking result is False
4. [Record]: checking result = False
5. Return checking result False

[Example Discrepancy Analysis]
In the plan verification, the recorded value is the checking result:

Let’s trace the "checking result" value in the plan verification when it
is first-time recorded (SKIP INITIALIZATION).

In the plan verification, the value of checking result is first-time
recorded in Line 4 after executing lines:
1. Call the function is_palindrome(-121).
2. change to integer to the string, it is "-121"
3. check whether the string "-121" is equal to its reversed string
"121-", the checking result is False
4. [Record]: checking result = False

In the plan verification, the first-time update changes the checking
result value to False.

Let’s trace the "checking result" value in the Error Execution Trace.
In Error Execution Trace, the value of checking result is first-time
recorded in Line 2 after executing lines
1. Convert the integer -121 to the string "121"
2. The integer string "121" is equal to the reversed string "121", the
result is True

In Error Execution Trace, the first-time update changes the checking
result value to True.

The checking result value in the plan verification and Error Execution
Trace are NOT the same, due to False NOT equaling True when the checking
result value is first updated.

Let’s carefully analyse the reason with step-by-step thinking:
In lines 1-4 in the plan verification, the integer -121 is first
converted to the string "-121". Then "-121" is compared with its reversed
string "121-". "-121" is NOT equaling "121-" so the result is False

In lines 1-2 in Error Execution Trace, the integer -121 is first
converted to the string "121". This is different from the plan
verification where converting -121 to string is "-121" rather than "121".
Then "121" is compared with its reversed string "121". "121" is equaling
"121" so the result is True.

[Example Error Analysis]
The error execution trace incorrectly converts the negative integer to
its negative integer string. The negative signal is missed. For example,
negative integer -121 should be converted to string "-121" but not "121.
To fix this error, the negative number must be considered and its
negative sign should be contained when converted to string. Such as
negative integer -121 should be converted to string "-121".

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

[End Example]

... Authors’ notes: We omit another example for conciseness. The full
prompt can be found in our released code. ...

Finally, you will be presented with a problem description, starting
with [Problem Description], along with your generated error program,
starting with [Error Program], which attempts to solve the [Problem
Description]. You will also receive a detailed execution trace, including
intermediate variable values, for the failed test case X, starting with

[Error Execution Trace for X]. This trace is generated by the error
program. Additionally, you will be provided with a correct logical
reasoning process, labeled as [Plan Verification for X], which outlines
the necessary steps to solve test case X accurately, including condition
checks and recording intermediate variable updates, starting with [Record
].

Following this, the "Let’s do analysis" flag will indicate the start
of the analysis phase. Your task is to analyze where the [Error Execution
Trace for X] deviates from the [Plan Verification for X], as

demonstrated in the examples. This analysis should be output starting
with [Discrepancy Analysis]. Finally, you should provide a summary of
the errors identified in the [Discrepancy Analysis], including the
reasons for these mistakes (IN ENGLISH) and suggestions on how to correct
them, starting with [Error Analysis].

Prompt 8: Prompt for code refinement

You are a Python program fixer. You need to correct an error Python
program based on the provided information.

You will receive several examples, each structured as follows,
starting with [Start Example] and ending with [End Example]. Within each
example, you will find a Python programming problem, beginning with [
Example Problem Description], followed by an error program provided under
[Example Error Program] for the given problem. You will then receive an

explanation for the error program, including a line-by-line explanation
starting with [Example Error Program Explanation].

Additionally, an error analysis will be provided, starting with [
Example Error Analysis], describing the issues in the error program and
offering suggestions for refinement. You will then be provided with the
refined Python program under [Example Refined Program], based on the
error analysis. Following that, a refinement explanation, starting with [
Example Refinement Explanation], will be given to show which lines of the
program were changed and explain the reasons for those changes.

[Start Example]

[Example Problem Description]
def is_palindrome(num):

"""
check if a given integer is a palindrome.
"""

[Example Error Program]
def is_palindrome(num):

num_str = str(abs(num))
return num_str == num_str[::-1]

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

[Example Error Program Explanation]
Function Definition (def is_palindrome(num):): This line defines a
function named is_palindrome that takes one parameter, num. This
parameter is expected to be an integer.

Convert Number to Absolute String (num_str = str(abs(num))): A variable
num_str is initialized with the absolute value of num converted to a
string. The abs() function removes the sign from num if it’s negative,
ensuring the palindrome check is based solely on the digits.

Check Palindrome and Return (return num_str == num_str[::-1]): This line
checks if the string representation of num_str is the same forwards and
backwards. It uses the slicing technique [::-1] to reverse the string. If
num_str is equal to its reversed version, the function returns True,

indicating the number is a palindrome. Otherwise, it returns False.

[Example Error Analysis]
The error execution trace incorrectly converts the negative integer to
its negative integer string. The negative signal is missed. For example,
negative integer -121 should be converted to string "-121" but not "121.
To fix this error, the negative number must be considered and its
negative sign should be contained when converted to string.

[Example Refined Program]
def is_palindrome(num):

num_str = str(num)
return num_str == num_str[::-1]

[Example Refinement Explanation]
Program line (num_str = str(abs(num))) is changed to (str(num)) to
convert the negative integer to its negative integer string by deleting
the abs function to keep the negative representation as mentioned in the
the error analysis. (str(num)) can correctly convert negative integer
-121 to string "-121".

[End Example]

... Authors’ notes: We omit another example for conciseness. The full
prompt can be found in our released code. ...

You will be presented with a Python writing problem, starting with [
Problem Description]. The error program will be provided under [Error
Program], followed by an explanation of each line, starting with [Error
Program Explanation]. You will then receive an error analysis, starting
with [Error Analysis], which describes the issues in the error program
and provides refinement suggestions.

The repair process will begin with the phrase "Let’s correct the
program." Based on the error analysis, generate the refined program.
Output your refined program, starting with [Start Refined Program] and
ending with [End Refined Program], ensuring that ONLY the Python code is
included between these markers. Finally, provide a refinement explanation
, starting with [Refinement Explanation], detailing how the program was
modified to align with the error analysis.

41

	Introduction
	Problem Formulation
	Workflow Structure
	LPW with Sampling
	Experiments
	Case Study
	Related Work
	Conclusion
	Appendix
	SLPW Pseudo-Code
	Parameter Study
	Additional Ablation Study
	Analysis of Unsolved Problems for GPT-3.5
	Accuracy of solution plans and plan verifications using GPT-3.5
	Refinement Consistency in LPW and SLPW
	Analysis of Unsolved Problems for GPT-4o
	HumanEval
	APPS and CodeContests

	Cost Analysis
	Limitation
	Prompts for LPW and SLPW

