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Abstract

Large language models (LLMs) have demon-
strated impressive reasoning abilities, but they
still struggle with faithful reasoning due to knowl-
edge gaps and hallucinations. To address these
issues, knowledge graphs (KGs) have been uti-
lized to enhance LLM reasoning through their
structured knowledge. However, existing KG-
enhanced methods, either retrieval-based or agent-
based, encounter difficulties in accurately retriev-
ing knowledge and efficiently traversing KGs
at scale. In this work, we introduce graph-
constrained reasoning (GCR), a novel framework
that bridges structured knowledge in KGs with un-
structured reasoning in LLMs. To eliminate hallu-
cinations, GCR ensures faithful KG-grounded rea-
soning by integrating KG structure into the LLM
decoding process through KG-Trie, a trie-based
index that encodes KG reasoning paths. KG-Trie
constrains the decoding process, allowing LLMs
to directly reason on graphs and generate faith-
ful reasoning paths grounded in KGs. Addition-
ally, GCR leverages a lightweight KG-specialized
LLM for graph-constrained reasoning alongside
a powerful general LLM for inductive reasoning
over multiple reasoning paths, resulting in accu-
rate reasoning with zero reasoning hallucination.
Extensive experiments on several KGQA bench-
marks demonstrate that GCR achieves state-of-
the-art performance and exhibits strong zero-shot
generalizability to unseen KGs without additional
training’.
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1. Introduction

Large language models (LLMs) have shown impressive rea-
soning abilities in handling complex tasks (Qiao et al., 2023;
Huang & Chang, 2023), marking a significant leap that
bridges the gap between human and machine intelligence.
However, LLMs still struggle with conducting faithful rea-
soning due to issues of lack of knowledge and hallucination
(Huang et al., 2024; Wang et al., 2023). These issues result
in factual errors and flawed reasoning processes (Nguyen
et al., 2024), which greatly undermine the reliability of
LLMs in real-world applications.

To address these issues, many studies utilize knowledge
graphs (KGs), which encapsulate extensive factual informa-
tion in a structured format, to improve the reasoning abilities
of LLMs (Pan et al., 2024; Luo et al., 2024). Nevertheless,
because of the unstructured nature of LLMs, directly apply-
ing them to reason on KGs is challenging.

Existing KG-enhanced LLM reasoning methods can be
roughly categorized into two groups: retrieval-based and
agent-based paradigms, as shown in Figure 2 (a) and (b).
Retrieval-based methods (Li et al., 2023; Yang et al., 2024b;
Dehghan et al., 2024) retrieve relevant facts from KGs with
an external retriever and then feed them into the inputs of
LLMs for reasoning. Agent-based methods (Sun et al., 2024;
Zhu et al., 2024; Jiang et al., 2024) treat LLMs as agents
that iteratively interact with KGs to find reasoning paths and

answers.

Faithful Reasoning Path
Invalid - Format Error
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Despite their success, retrieval-
based methods require
additional accurate retrievers,
which may not generalize
well to unseen questions or
account for the graph structure
(Mavromatis & Karypis, 2024).
Conversely, agent-based
methods necessitate multiple
rounds of interaction between
agents and KGs, leading to  soning errors in RoG (Luo
high computational costs and  etal., 2024).

latency (Dehghan et al., 2024). Furthermore, existing works
still suffer from serious hallucination issues (Agrawal et al.,
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2024). Sui et al. (2024) indicates that RoG (Luo et al.,
2024), a leading KG-enhanced reasoning method, still
experiences 33% hallucination errors during reasoning on
KGs, as shown in Figure 1.

To this end, we introduce graph-constrained reasoning
(GCR), a novel KG-guided reasoning paradigm that connects
unstructured reasoning in LLMs with structured knowledge
in KGs, seeking to eliminate hallucinations during reason-
ing on KGs and ensure faithful reasoning. Inspired by the
concept that LLMs reason through decoding (Wei et al.,
2022), we incorporate the KG structure into the LLM de-
coding process. This enables LLMs to directly reason on
graphs by generating reliable reasoning paths grounded in
KGs that lead to correct answers.

In GCR, we first convert KG into a structured index, KG-
Trie, to facilitate efficient reasoning on KG using LLM. Trie
is also known as the prefix tree (Wikipedia contributors,
2024) that compresses a set of strings, which can be used
to restrict LLM output tokens to those starting with valid
prefixes (De Cao et al., 2022; Xie et al., 2022). KG-Trie
encodes the reasoning paths in KGs as formatted strings
to constrain the decoding process of LLMs. Then, we pro-
pose graph-constrained decoding that employs a lightweight
KG-specialized LLM to generate multiple KG-grounded
reasoning paths and hypothesis answers. With the con-
straints from KG-Trie, we ensure faithful reasoning while
leveraging the strong reasoning capabilities of LLMs to ef-
ficiently explore paths on KGs in constant time. Finally,
we input multiple generated reasoning paths and hypothesis
answers into a powerful general LLM to utilize its inductive
reasoning ability to produce final answers. In this way, GCR
combines the graph reasoning strength of KG-specialized
LLMs and the inductive reasoning advantage in general
LLMs to achieve faithful and accurate reasoning on KGs.
The main contributions of this work are as follows:

* We propose a novel framework called graph-
constrained reasoning (GCR) that bridges the gap be-
tween structured knowledge in KGs and unstructured
reasoning in LLMs, allowing for efficient reasoning on
KGs via LLM decoding.

* We combine the complementary strengths of a
lightweight KG-specialized LLM with a powerful gen-
eral LLM to enhance reasoning performance by lever-
aging their respective graph-based reasoning and in-
ductive reasoning capabilities.

* We conduct extensive experiments on several KGQA
reasoning benchmarks, demonstrating that GCR not
only achieves state-of-the-art performance with zero
hallucination, but also shows zero-shot generalizabil-
ity for reasoning on unseen KGs without additional
training.

2. Related Work

LLM reasoning. Many studies have been proposed to ana-
lyze and improve the reasoning ability of LLMs (Wei et al.,
2022; Wang et al., 2024b; Yao et al., 2024). To elicit the
reasoning ability of LLMs, Chain-of-thought (CoT) rea-
soning (Wei et al., 2022) prompts the model to generate a
chain of reasoning steps in response to a question. Wang
et al. (2024b) propose a self-consistency mechanism that
generates multiple reasoning paths and selects the most con-
sistent answer across them. The tree-of-thought (Yao et al.,
2024) structures reasoning as a branching process, exploring
multiple steps in a tree-like structure to find optimal solu-
tions. Other studies focus on fine-tuning LLMs on various
reasoning tasks to improve reasoning abilities (Yu et al.,
2022; Hoffman et al., 2024). For instance, OpenAl (2024c¢)
adopts reinforcement learning to train their most advanced
LLMs called “OpenAl 01” to perform complex reasoning,
which produces a long internal chain of thought before final
answers.

KG-enhanced LLM reasoning. To mitigate the knowledge
gap and hallucination issues in LLM reasoning, research
incorporates KGs to enhance LLM reasoning (Pan et al.,
2024). KD-CoT (Wang et al., 2023) retrieve facts from
an external knowledge graph to guide the CoT performed
by LLMs. RoG (Luo et al., 2024) proposes a planning-
retrieval-reasoning framework that retrieves reasoning paths
from KGs to guide LLMs conducting faithful reasoning. To
capture graph structure, GNN-RAG (Mavromatis & Karypis,
2024) and GFM-RAG (Luo et al., 2025) adopt the graph
neural network to effectively retrieve from KGs. Instead
of retrieving, StructGPT (Jiang et al., 2023) and ToG (Sun
et al., 2024) treat LLMs as agents to interact with KGs to
find reasoning paths leading to the correct answers.

3. Preliminary

Knowledge Graphs (KGs) represent a wealth of factual
knowledge as a collection of triples: G = {(e,r,€’) €
€ x R x &£}, where € and R denote the set of entities and
relations, respectively.

Reasoning Paths are sequences of consecutive triples
in KGs: w, = e Iy ey Iy ¢, where
V(e;—1,7i,e;) € G. The paths reveal the connections
between knowledge that potentially facilitate reasoning.

marry_to

For example, the reasoning path: w, = Alice ————

Bob 22°"°%, Charlie indicates that “Alice” is married

to “Bob” and “Bob” is the father of “Charlie”. Therefore,
“Alice” could be reasoned to be the mother of “Charlie”.

Knowledge Graph Question Answering (KGQA) is a
representative reasoning task with the assistance of KGs.
Given a natural language question ¢ and a KG G, the task
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Figure 2. Tllustration of existing KG-enhanced LLM reasoning paradigms and proposed graph-constrained reasoning (GCR), which
consists of three main components: 1) Knowledge Graph Trie Construction: building a structural index of KG to guide LLM reasoning, 2)
Graph-constrained Decoding: generating KG-grounded paths and hypothesis answers using LLMs, and 3) Graph Inductive Reasoning:

reasoning over multiple paths and hypotheses to derive final answers.

aims to design a function f to reason answers a € A based
on knowledge from G, i.e., a = f(q,G). The entities e, €
&, mentioned in ¢ are linked to the corresponding entities
ing,ie,& CE.

KG-constrained Zero-hallucination. As facts in KGs are
usually verified, making them a reliable source for assessing
the faithfulness of LLM reasoning (Nguyen et al., 2024). In
this paper, we define KG-constrained zero hallucinations as
the LLM generated reasoning paths can be fully grounded
within KGs, ensuring the alignment of reasoning process
with real-world facts.

4. Approach

4.1. From Chain-of-Thought Reasoning to
Graph-constrained Reasoning

Chain-of-Thought Reasoning (CoT) (Wei et al., 2022) has
been widely adopted to enhance the reasoning ability of
LLMs by autoregressively generating a series of reasoning
steps leading to the answer. Specifically, given a question
q, CoT models the joint probability of the answer a and

reasoning steps z as
P(alg) = ZPG(G|Z7Q)P9(Z|Q)
z
1)

1z|

= Z Pg(a|q, Z) H P0(21|Qa Zl:i71>a

i=1

where ¢ denotes the input question, a denotes the final an-
swer, 6 denotes the parameters of LLMs, and z; denotes the
i-th step of the reasoning process z. To further enhance the
reasoning ability, many previous works focus on improving
the reasoning process Py (z|q) by exploring and aggregating
multiple reasoning processes (Wang et al., 2024b; Yao et al.,
2024).

Despite the effectiveness, a major issue remains the faithful-
ness of the reasoning process generated by LLMs (Huang
et al., 2024). The reasoning is represented as a sequence
of tokens decoded step-by-step, which can accumulate er-
rors and result in hallucinated reasoning paths and answers
(Nguyen et al., 2024). To address these issues, we utilize
knowledge graphs (KGs) to guide LLMs toward faithful
reasoning.
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KG-enhanced Reasoning utilizes the structured knowledge
in KGs to improve the reasoning of LLMs (Luo et al., 2024;
Sun et al., 2024), which can generally be expressed as find-
ing a reasoning path w, on KGs that connects the entities
mentioned in the question and the answer. This can be
formulated as

P(alq.G) =Y Pylalg w:)Py(w=lg.G), ()

Wz

where P,(w;|q,G) denotes the probability of discovering
a reasoning path w, on KGs G given the question g by a
function parameterized by ¢. To acquire reasoning paths for
reasoning, most prior studies follow the retrieval-based (Li
et al., 2023) or agent-based paradigm (Sun et al., 2024), as
shown in Figure 2 (a) and (b), respectively. Nevertheless,
retrieval-based methods rely on precise additional retrievers,
while agent-based methods are computationally intensive
and lead to high latency. To address these issues, we propose
a novel graph-constrained reasoning paradigm (GCR).

Graph-constrained Reasoning (GCR) directly incorporates
KGs into the decoding process of LLMs to achieve faithful
reasoning. The overall framework of GCR is illustrated in
Figure 2 (c), which consists of three main components: 1)
Knowledge Graph Trie Construction, 2) Graph-constrained
Decoding, and 3) Graph Inductive Reasoning.

4.2. Knowledge Graph Trie Construction

Knowledge graphs (KGs) store abundant knowledge in a
structured format. However, large language models (LLMs)
struggle to efficiently access and reason on KGs due to their
unstructured nature. To address this issue, we propose to
convert KGs into knowledge graph Tries (KG-Tries), which
serve as a structured index of KGs to facilitate efficient
reasoning on graphs using LLMs.

A Trie (a.k.a. prefix tree) (Wikipedia contributors, 2024;
Fredkin, 1960) is a tree-like data structure that stores a dy-
namic set of strings, where each node represents a common
prefix of its children. Tries can be used to restrict LLM out-
put tokens to those starting with valid prefixes (De Cao et al.,
2022; Xie et al., 2022; Chen et al., 2022). The tree structure
of Trie is an ideal choice for encoding the reasoning paths
in KGs for LLMs to efficiently traverse.

Given a KG G and a question ¢, we first retrieve paths
W, within L hops starting from entities mentioned in the
question e, € &,. We adopt the breadth-first search (BFS)
algorithm to retrieve reasoning paths, but it can be replaced
with other efficient graph-traversing algorithms, such as
random walk (Xia et al., 2019). The retrieved paths are
formatted as sentences using the template shown in Figure 9.
The formatted sentences are then split into tokens by the
tokenizer of LLM and stored as a KG-Trie Cg. The overall

process can be formulated as:

W, = BFS(G, &, L), 3)
T. = Tokenizer(W,), 4
Cg = Trie(7%), 5)

where &, denotes all entities mentioned in the question, L
denotes the maximum hops of paths, and 7, denotes the
tokens of reasoning paths. The KG-Trie Cg is used as a
constraint to guide the LLM decoding process.

By constructing KG-Trie for each question entity, we can
enable efficient traversal of reasoning paths in constant
time (O(|W;|)) without costly graph traversal (Sun et al.,
2024). Moreover, KG-Trie can be pre-constructed offline
and loaded during reasoning for fast inference, or it can be
built on-demand to reduce pre-processing time. Detailed dis-
cussions on construction efficiency and potential solutions
for further improvements to scale into real-world applica-
tions is available in Appendix B. This significantly reduces
the computational cost and latency of reasoning on KGs,
making it feasible for real-time applications.

4.3. Graph-constrained Decoding

Large language models (LLMs) have strong reasoning ca-
pabilities but still suffer from severe hallucination issues,
which undermines the trustworthiness of the reasoning pro-
cess. To tackle this issue, we propose graph-constrained
decoding, which unifies the reasoning ability of LLMs with
the structured knowledge in KGs to generate faithful KG-
grounded reasoning paths leading to answers.

Given a question ¢, we design an instruction prompt to har-
ness the reasoning ability of LLMs to generate reasoning
paths w_ and hypothesis answers a. To eliminate the hal-
lucination during reasoning on KGs, we adopt the KG-Trie
Cg as constraints to guide the decoding process of LLMs
and only generate reasoning paths that are valid in KGs,
formulated as:
Regular decoding
P¢(a7 wz|Q) = Pli)(a‘qv wz)

gt (©)
H Pd’(wzi |Q7 Wzyi-1 )Cg (wzi |wzl:z—1)’
i=1

Graph-constrained decoding

1, Iprefix(w,, ,, wy), Jw, € Wy,
Co(ws, ws,,, ) = { ' (7)

0, else,

where w,, denotes the i-th token of the reasoning path w,
P4 denotes the token probabilities predicted by the LLM
with parameters ¢, and Cg(w,,|w,,,,_,) denotes the con-
straint function that checks whether the generated tokens
W, 18 a valid prefix of the reasoning path using KG-Trie.
After a valid reasoning path is generated, we switch back
to the regular decoding process to generate a hypothesis
answer conditioned on the path.
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============== Prompt Input ==============

Please generate some reasoning paths in the KG starting from the topic
entities to answer the question.

# Question: what is the name of justin bieber brother?

============== LM Output ==============

# Reasoning Path: <PATH> Justin Bieber — people.person.parents —
Jeremy Bieber — people.person.children — Jaxon Bieber </PATH>

# Answer: Jaxon Bieber

Figure 3. An example of the graph-constrained decoding. Detailed
prompts can be found in Figure 10.

To further enhance KG reasoning ability, we fine-tune a
lightweight KG-specialized LLM with parameters ¢ on the
graph-constrained decoding task. Specifically, given a ques-
tion g, the LLM is optimized to generate relevant reasoning
paths w that are helpful for answering the question, then
provide a hypothesis answer a based on it, which can be
formulated as:

L= E(qA,sz,u)N’Dg log P(/)((I,, wz‘q)

|al |w| 8)
=E IOg H Pd)(al‘% Wy, al:ifl) H P(/J(wzj |q7 u}Zl:j—l)

i=1 j=1

where a; and w,; denote the i-th token of the answer a and
the j-th token of the reasoning path w, respectively.

The training data (¢, w,a) € Dg consists of question-
answer pairs and reasoning paths generated from KGs. We
use the shortest paths connecting the entities in the ques-
tion and answer as the reasoning path w, for training,
where details can be found in Appendix C. An example
of graph-constrained decoding is illustrated in Figure 3,
where <PATH> and </PATH> are special tokens to control
the start and end of graph-constrained decoding. Experi-
ment results in Section 5.2 show that even a lightweight
KG-specialized LLM (0.5B) can achieve satisfactory perfor-
mance in KG reasoning.

The graph-constrained decoding method differs from
retrieval-based methods by integrating a pre-constructed
KG-Trie into the decoding process of LLMs. This not only
reduces input tokens, but also bridges the gap between un-
structured reasoning in LLMs and structured knowledge in
KGs, allowing for efficient reasoning on KGs regardless
of its scale, which results in faithful reasoning leading to
answers. Additionally, experimental results in Section 5.4
demonstrate that KG-Trie can integrate with new KGs on the
fly, showcasing its zero-shot generalizability for reasoning
on unseen KGs without further training.

4.4. Graph Inductive Reasoning

Graph-constrained decoding harnesses the reasoning ability
of a KG-specialized LLM to generate a faithful reasoning
path and a hypothesis answer. However, complex reason-
ing tasks typically admit multiple reasoning paths that lead

to correct answers (Stanovich et al., 2000). Incorporating
diverse reasoning paths would be beneficial for deliberate
thinking and reasoning (Evans, 2010; Wang et al., 2024b).
To this end, we propose to input multiple reasoning paths
and hypothesis answers generated by the KG-specialized
LLM into a powerful general LLM to leverage its inductive
reasoning ability to produce final answers.

The graph-constrained decoding seamlessly integrates into
the decoding process of LLMs, allowing it to be paired
with various LLM generation strategies like beam-search
(Federico et al., 1995) to take advantage of the GPU paral-
lel computation. Thus, given a question, we adopt graph-
constrained decoding to simultaneously generate K reason-
ing paths and hypothesis answers with beam search in a
single LLM call, which are then inputted into a general
LLM to derive final answers. The overall process can be
formulated as:

Zi = {d", witii, = argtop-K Py(a,welg),  (9)

K
Py(Alg, Zx) ~ [ ] Po(Alg, a*, wf),  (10)
k=1

where 6 denotes the parameters of the general LLM, Zx
denotes the set of top-K reasoning paths and hypothesis
answers, and A denotes the final answers.

We follow the FiD framework (Izacard & Grave, 2021;
Singh et al., 2021) to incorporate multiple reasoning paths
and hypothesis answers to conduct inductive reasoning
within one LLM call, i.e., Py(A|q, Zx ), where detailed
prompts can be found in Figure 11. The general LLM can
be any powerful LLM, such as ChatGPT (OpenAl, 2022),
or Llama-3 (Meta, 2024), which can effectively leverage
their internal reasoning ability to reason over multiple rea-
soning paths to produce final answers without additional
fine-tuning.

5. Experiment

In our experiments, we aim to answer the following re-
search questions: RQ1: Can GCR achieve state-of-the-art
reasoning performance with balances between efficiency
and effectiveness? RQ2: Can GCR eliminate hallucinations
and conduct faithful reasoning? RQ3: Can GCR generalize
to unseen KGs on the fly?

5.1. Experiment Setups

Datasets. Following previous research (Luo et al., 2024;
Sun et al., 2024), we first evaluate the reasoning ability of
GCR on two benchmark KGQA datasets: WebQuestionSP
(WebQSP) (Yih et al., 2016) and Complex WebQuestions
(CWQ) (Talmor & Berant, 2018). Freebase (Bollacker et al.,
2008) is adopted as the knowledge graph for both datasets.
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Table 1. Performance comparison with different baselines on the two KGQA datasets.

Types ‘ Methods ‘ WebQSP ewWQ

| | Hit F1 | Hit Fl
Qwen2-0.5B (Yang et al., 2024a) 262 17.2 | 125 11.0
Qwen2-1.5B (Yang et al., 2024a) 413 28.0 | 185 157
Qwen2-7B (Yang et al., 2024a) 50.8 355|253 21.6
Llama-2-7B (Touvron et al., 2023) 564 36.5 | 284 214
LLM Reasoning Llama-3.1-8B (Meta, 2024) 555 348|281 224
GPT-40-mini (OpenAl, 2024a) 63.8 40.5 | 63.8 405
ChatGPT (OpenAl, 2022) 59.3 435 | 347 302
ChatGPT+Few-shot (Brown et al., 2020) 68.5 38.1 | 385 28.0
ChatGPT+CoT (Wei et al., 2022) 73.5 385 | 475 310
ChatGPT+Self-Consistency (Wang et al., 2024b) | 83.5 63.4 | 56.0 48.1
GraftNet (Sun et al., 2018) 66.7 624 | 36.8 327
NSM (He et al., 2021) 68.7 62.8 | 47.6 424
Graph Reasoning | SR+NSM (Zhang et al., 2022) 68.9 64.1 | 50.2 47.1
ReaRev (Mavromatis & Karypis, 2022) 76.4 709 | 529 4738
UniKGQA (Jiang et al., 2022) 772 722 | 512 49.1

KD-CoT (Wang et al., 2023) 68.6 52.5 | 55.7 -

EWEK-QA (Dehghan et al., 2024) 71.3 - 52.5 -

ToG (ChatGPT) (Sun et al., 2024) 76.2 - 57.6 -

ToG (GPT-4) (Sun et al., 2024) 82.6 - 68.5 -

EffiQA (Dong et al., 2024) 82.9 - 69.5

KG+LLM RoG (Llama-2-7B) (Luo et al., 2024) 857 708 | 62.6 56.2
GNN-RAG (Mavromatis & Karypis, 2024) 857 713 | 66.8 594
GNN-RAG+RA (Mavromatis & Karypis, 2024) | 90.7 73.5 | 68.7 60.4
GCR (Llama-3.1-8B + ChatGPT) 92.6 732 | 727 609
GCR (Llama-3.1-8B + GPT-40-mini) ‘ 922 741 ‘ 75.8 61.7

To further evaluate the generalizability of GCR, we conduct
zero-shot transfer experiments on three new KGQA datasets:
FreebaseQA (Jiang et al., 2019), CSQA (Talmor et al., 2019)
and MedQA (Jin et al., 2021). FreebaseQA adopts the same
Freebase KG. For CSQA, we use ConceptNet (Speer et al.,
2017) as the KG, while for MedQA, we use a medical KG
constructed from the Unified Medical Language System
(Yasunaga et al., 2021). The details of the datasets are
described in Appendix C.

Baselines. We compare GCR with the 22 baselines grouped
into three categories: 1) LLM reasoning methods, 2) graph
reasoning methods, and 3) KG-enhanced LLM reasoning
methods. The detailed baselines are listed in Appendix D.

Evaluation Metrics. We adopt Hit and F1 as the evaluation
metrics following previous works (Luo et al., 2024; Sun
et al., 2024) on WebQSP and CWQ. Hit checks whether
any correct answer exists in the generated predictions, while
F1 considers the coverage of all answers by balancing the
precision and recall of predictions. Because CSQA and
MedQA are multiple-choice QA datasets, we adopt accuracy
as the evaluation metric.

Implementations. For GCR, we use the KG-Trie to index
all the reasoning paths within 2 hops starting from ques-
tion entities. For the LLMs, we use a fine-tuned Llama-
3-8B (Meta, 2024) as the KG-specialized LLM. We gen-
erate top-10 reasoning paths and hypothesis answers from
graph-constrained decoding. We adopt the advanced Chat-

GPT (OpenAl, 2022) and GPT-40-mini (OpenAl, 2024a)
as the general LLMs for inductive reasoning. The detailed
hyperparameters and experiment settings are described in
Appendix E.

5.2. RQ1: Reasoning Performance and Efficiency

Main Results. In this section, we compare GCR with other
baselines on KGQA benchmarks to evaluate the reason-
ing performance. From the results shown in Table 1, GCR
achieves the best performance on both datasets, outperform-
ing the second-best by 2.1% and 9.1% in terms of Hit on
WebQSP and CWQ, respectively. The results demonstrate
that GCR can effectively leverage KGs to enhance LLMs
and achieve state-of-the-art reasoning performance.

Among the LLM reasoning methods, ChatGPT with self-
consistency prompts demonstrates the best performance,
which indicates the powerful reasoning ability inherent in
LLMs. However, their performances are still limited by
the model size and complex reasoning required over struc-
tured data. Graph reasoning methods, such as ReaRev,
achieve competitive performance on WebQSP by explic-
itly modeling the graph structure. But they struggle to
generalize across different datasets and underperform on
CWQ. In KG+LLM methods, both agent-based methods
(e.g., ToG, EffiQA) and retrieval-based methods (e.g., RoG,
GNN-RAGQG) achieve the second-best performance. Nev-
ertheless, they still suffer from inefficiency and reasoning
hallucinations which limit their performance. In contrast,
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Table 2. Efficiency and performance comparison of different methods on WebQSP.

Types | Methods | Hit | Avg. Runtime (s) | Avg. # LLM Calls | Avg. # LLM Tokens
S-Bert 66.9 0.87 1 293
BGE 727 1.05 1 357
Retrieval-based | OpenAI-Emb. | 79.0 1.77 1 330
GNN-RAG | 85.7 1.52 1 414
RoG 85.7 2.60 2 521
ToG 75.1 16.14 11.6 7,069
Agent-based ‘ EfiQA | 829 ; 73 i
Ours | GcR | 926 | 3.60 | 2 | 231

GCR effectively eliminates hallucinations and conducts faith-
ful reasoning by leveraging the structured KG index and
graph-constrained decoding.

Efficiency Analysis. To show the efficiency of GCR, we
compare the average runtime, number of LLM calls, and
number of input tokens with retrieval-based and agent-
based methods in Table 2. For retrieval-based methods,
we compare with dense retrievers (e.g., S-Bert (Reimers
& Gurevych, 2019), BGE (Zhang et al., 2023), OpenAl-
Emb. (OpenAl, 2024b)) and graph-based retrievers (e.g.,
GNN-RAG (Mavromatis & Karypis, 2024), RoG (Luo et al.,
2024)), which retrieve reasoning paths from KGs and feed
them into LLMs for reasoning answers. For agent-based
methods, we compare with ToG (Sun et al., 2024) and Ef-
fiQA? (Dong et al., 2024), which heuristically search on
KGs for answers. The detailed settings are described in
Appendix E.

Dense retrievers are most efficient in terms of runtime and
LLM calls as they convert all paths into sentences and en-
code them as embeddings in advance. However, they sacri-
fice their accuracy in retrieving as they are not designed to
encode graph structure. Graph-based retrievers and agent-
based methods achieve better performance by considering
graph structure; however, they require more time and LLM
calls. Specifically, the retrieved graph is fed as inputs to
LLMs, which leads to a large number of input tokens. Agent-
based methods, like ToG, require more LLM calls and input
tokens as the question difficulty increases due to their it-
erative reasoning process. In contrast, GCR achieves the
best performance with a reasonable runtime and number
of LLM calls. With the help of KG-Trie, GCR explores
multiple reasoning paths at the same time during the graph-
constrained decoding, which does not involve additional
LLM calls or input tokens and benefits from the parallel
GPU computation with low latency. More efficiency anal-
ysis under different beam sizes used for graph-constrained
decoding can be found in parameter analysis.

Ablation Study. We first conduct an ablation study to an-
alyze the effectiveness of the KG-specialized LLM and

2Since there is no available code for EfiQA, we directly copy
the results from the original paper.

Table 3. Ablation studies of GCR on two KGQA datasets.
Variants ‘ WebQSP ‘ cwa
| FI  Precision Recall | FI  Precision Recall

GCR (Llama-3.1-8B + ChatGPT) | 73.2 80.0 769 | 60.9 61.1 66.6
GCR w/o0 KG-specialized LLM 529 66.3 502 | 375 40.8 37.9
GCR w/o0 General LLM 57.0 58.0 70.1 | 39.4 32.8 64.3

general LLM in GCR. As shown in Table 3, the full GCR
achieves the best performance on both datasets. By remov-
ing the KG-specialized LLM, we feed all 2-hop reasoning
paths into the general LLM. This results in a significant
performance drop, indicating its importance in utilizing rea-
soning ability to find relevant paths on KGs for reasoning.
On the other hand, removing the general LLM and relying
solely on answers predicted by KG-specialized LLM leads
to a noticeable decrease in precision, due to noises in its
predictions. This highlighting the necessity of the general
LLM for conducting inductive reasoning over multiple paths
to derive final answers.

Different LLMs. We further analyze LLMs used for
KG-specialized and general LLMs in Table 4. For KG-
specialized LLMs, we directly plug the KG-Trie into differ-
ent LL.Ms to conduct graph-constrained decoding and use
ChatGPT as the general LLM for final reasoning. For gen-
eral LLMs, we adopt the same reasoning paths generated by
KG-specialized LLMs to different LLMs to produce final
answers. For zero-shot and few-shot learning, we adopt the
original LLMs without fine-tuning, whose prompt templates
can be found in Figures 10 and 12.

Results in Table 4 show that a lightweight LLM (0.5B) can
outperform a large one (70B) after fine-tuning, indicating the
effectiveness of fine-tuning in enhancing the ability of LLMs
and make them specialized for KG reasoning. However, the
larger LLMs (e.g., 7B and 8B) still perform better than
smaller ones, highlighting the importance of model capacity
in searching relevant reasoning paths on KGs. Similar trends
are observed in general LLMs where larger models (e.g.,
GPT-40-mini and ChatGPT) outperform smaller ones (e.g.,
Qwen-2-7B and Llama-3.1-8B), showcasing their stronger
inductive reasoning abilities. This further emphasizes the
need of paring powerful general LLMs with lightweight
KG-specialized LLMs to achieve better reasoning driven by
both of them.
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Table 4. Comparison of different LLMs used in GCR.
| Hit | FI

Variants
Llama-3.1-8B 28.25 | 10.32

Components ‘ Learning Types ‘

Zeroshot | 11 ma-3.1-70B | 38.53 | 12.53
Few-shot Llama-3.1-8B 33.24 | 11.19
KG-specialized Llama-3.1-70B | 41.13 | 13.14
LLM Qwen2-0.5B | 87.48 | 60.03
Qwen2-1.5B 89.21 | 62.97
Fine-tuned Qwen2-7B 92.31 | 72.74
Llama-2-7B 92.55 | 73.23
Llama-3.1-8B 92.74 | 73.14
Qwen-2-7B 86.32 | 67.59
Llama-3.1-8B 90.24 | 71.19
General LLM Zero-shot Llama-3.1-70B | 89.85 | 71.47
ChatGPT 92.55 | 73.23
GPT-40-mini 92.23 | 74.05
I Generation Time (s) Precision
—eo— Hit M- Recall
-4- FI
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Figure 4. Parameter analysis of beam size K.

Parameter Analysis. We first analyze the impact of dif-
ferent beam sizes K for graph-constrained decoding on the
performance of GCR. We conduct the experiments on We-
bQSP with different beam sizes of 1, 3, 5, 10, and 20. The
results are shown in Figure 4. We observe that the hit and
recall of GCR increase with the beam size. Because, with
a larger beam size, the LLMs can explore more reasoning
paths and find the correct answers. However, the F1 score,
peaks when the beam size is set to 10. This is because the
beam size of 10 can provide a balance between the explo-
ration and exploitation of the reasoning paths. When the
beam size is set to 20, the performance drops due to the
increased complexity of the search space, which may in-
troduce noise and make the reasoning less reliable. This
also highlights the importance of using general LLMs to
conduct inductive reasoning over multiple paths to disre-
gard the noise and find the correct answers. Although the
graph-constrained decoding benefits from the parallel GPU
computation to explore multiple reasoning paths at the same
time, the time cost still slightly increases from 1.4s to 7.8s
with the increase of the beam size. Thus, we set the beam
size to 10 in the experiments to balance the performance
and efficiency. We also investigate the impact of L hops
paths used for KG-Trie construction in Appendix F.1. The
results show that GCR can achieve a good balance between

Faithful Reasoning Error Reasoning
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= 07100.0% e o0 -
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Figure 5. Analysis of performance and reasoning errors in GCR.

reasoning performance and efficiency by setting L = 2 and
K =10.

5.3. RQ2: Hallucination Elimination and Faithful
Reasoning

In this section, we investigate the effectiveness of KG con-
straints in eliminating hallucinations and ensuring faithful
reasoning. We first compare the difference of answer ac-
curacy (Hit) and faithful reasoning ratio by removing KG
constraints in graph-constrained decoding. The faithful
reasoning ratio is calculated as the percentage of faithful
reasoning in correctly predicted answers. We define a rea-
soning as faithful where the generated reasoning path can
be found in KGs, and vice versa.

From the Figure 5, we can observe that GCR achieves the
100% faithful reasoning ratio on both datasets, which in-
dicates that GCR can eliminate hallucinations and ensure
faithful reasoning during reasoning on KGs. In contrast,
when removing KG constraints, both the answer accuracy
and faithful reasoning decrease significantly on WebQSP.
This shows that KG constraints not only improve reasoning
by reducing the searching space, but also play a crucial role
in preventing hallucinations for accurate reasoning. While
the answer hit rate on CWQ remains almost unchanged, the
ratio of faithful reasoning still decreases to 48.1%. This
implies that even if LLMs can produce correct answers, the
reasoning process is still prone to hallucinations and cannot
be trusted, which is aligned with the findings in previous
studies (Nguyen et al., 2024).

Case Study. We further provide a case study to illustrate
the effectiveness of GCR in eliminating hallucinations and
ensuring faithful reasoning. As shown in Table 5, the first
case demonstrates that, without constraints, the model gen-
erates an incorrect reasoning path leading to an incorrect
answer by hallucinating facts such as “Mabel Rose Fergu-
son is the child of Naill Ferguson and her parent is Alyssa
Mastromonaco”. In contrast, GCR generates a faithful rea-
soning path grounded in KGs that “Naill Ferguson has a
child named Thomas Ferguson who has a parent named
Ayaan Hirsi Ali”. Based on the paths we can reason the
correct answer to the question is “Ayaan Hirsi Ali”. In the
second case, although the LLM answers the question cor-
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Table 5. Examples of the faithful reasoning conducted by GCR. Red denotes the incorrect reasoning paths and answers, while bold denotes

the correct paths and answers.

Case 1: Incorrect answers and hallucinated reasoning paths without constraints.

Question ‘ Who is niall ferguson ’s wife?

Answer ‘ Ayaan Hirsi Ali

# Reasoning Path: Niall Ferguson — people.person.children — Mabel Rose Ferguson —

GCR w/o constraint

people.person.parents — Alyssa Mastromonaco
#Answer: Alyssa Mastromonaco

# Reasoning Path: Niall Ferguson — people.person.children — Thomas Ferguson —
GCR people.person.parents — Ayaan Hirsi Ali

#Answer: Ayaan Hirsi Ali

Case 2: Correct answers but hallucinated reasoning paths without constraints.

Question

‘ Where is jamarcus russell from?

Answer ‘ Mobile

R i .
GCR w/o constraint ‘ #Answer: Mobile, Alabama

# Reasoning Path: JaMarcus Russell — people.person.place_of _birth — Tampa

GCR ‘ #Answer: Mobile

# Reasoning Path: JaMarcus Russell — people.person.place_of_birth — Mobile

Table 6. Zero-shot transferability to other KGQA datasets.

Model FreebaseQA CSQA MedQA
ChatGPT 85 79 64
GCR (ChatGPT) 92 85 66
GPT-40-mini 89 91 75
GCR (GPT-40-mini) 94 94 79

rectly, the generated reasoning path is still hallucinated with
incorrect facts. Conversely, GCR conducts faithful reason-
ing with both correct answer and reasoning path. These
results demonstrate that GCR can effectively eliminate hal-
lucinations and ensure faithful reasoning by leveraging KG
constraints in graph-constrained decoding.

5.4. RQ3: Zero-shot Generalizability to Unseen KGs

In GCR, the knowledge graph is converted into a constraint
which is plugged into the decoding process of LLMs. This
allows GCR to generalize to unseen KGs without further
training. To evaluate the generalizability of GCR, we con-
duct zero-shot transfer experiments on three unseen KGQA
datasets: FreebaseQA (Jiang et al., 2019), CSQA (Talmor
et al., 2019) and MedQA (Jin et al., 2021). Specifically, we
use the same KG-specialized LLM (Llama-3.1-8B) trained
on Freebase as well as two general LLMs (ChatGP, GPT-
40-mini). During reasoning, we directly plug the KG-Trie
constructed from Freebase, ConceptNet and medical KGs
into the GCR to conduct graph-constrained decoding without
additional fine-tuning. The results are shown in Table 6.

From the results, it is evident that GCR outperforms Chat-
GPT and GPT-40-mini in zero-shot performance on both
datasets. Specifically, GCR shows 8.2% and 7.6% increase

in accuracy on FreebaseQA and CSQA, respectively. This
highlights the strong zero-shot generalizability of its graph
reasoning capabilities to unseen datasets and KGs without
additional training. However, the improvement on MedQA
is not as significant as that on CSQA. We hypothesize this
difference may be due to LLMs having more common sense
knowledge, which aids in reasoning on common sense
knowledge graphs effectively. On the other hand, medi-
cal KGs are more specialized and require domain-specific
knowledge for reasoning, potentially limiting the generaliz-
ability of our method.

6. Conclusion

In this paper, we introduce a novel LLM reasoning paradigm
called graph-constrained reasoning (GCR) to eliminate hal-
lucination and ensure faithful reasoning by incorporating
structured KGs. To bridge the unstructured reasoning in
LLMs with the structured knowledge in KGs, we propose
a KG-Trie to encode paths in KGs using a trie-based in-
dex. KG-Trie constrains the decoding process to guide a
KG-specialized LLM to generate faithful reasoning paths
grounded in KGs. By imposing constraints, we can not
only eliminate hallucination in reasoning but also reduce
the reasoning complexity, contributing to more efficient and
accurate reasoning. Last, a powerful general LLM is uti-
lized as a complement to inductively reason over multiple
reasoning paths to generate the final answer. Extensive
experiments demonstrate that GCR excels in faithful rea-
soning and generalizes well to reason on new KGs without
additional fine-tuning.
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A. Detailed Related Work on KG-enhanced LLMs

Knowledge graph (KG), as a structured representation of factual knowledge, has been widely used to enhance the factual
knowledge and reasoning abilities of LLMs (Pan et al., 2024; Liang et al., 2024) by reducing the hallucinations (Nguyen
et al., 2024; Dhuliawala et al.; Lv et al., 2024). In this section, we provide a detailed review of the related work on
KG-enhanced LLMs, which can be categorized into two paradigms: retrieval-based and agent-based methods.

Retrieval-based Methods. Retrieval-based methods retrieve relevant facts from KGs with an external retriever and then
feed them into the inputs of LLMs for reasoning. These methods aim to provide LLMs with external knowledge to enhance
their reasoning abilities (Li et al., 2025). For example, KD-CoT (Wang et al., 2023) retrieves relevant knowledge from
KGs to generate faithful reasoning plans for LLMs. EWEK-QA (Dehghan et al., 2024) enriches the retrieved knowledge
by searching from both KGs and the web. RoG (Luo et al., 2024) proposes a planning-retrieval-reasoning framework that
retrieves reasoning paths from KGs to guide LLMs conducting faithful reasoning. GNN-RAG (Mavromatis & Karypis,
2024) adopts a lightweight graph neural network to effectively retrieve from KGs. GNN-RAG+RA (Mavromatis & Karypis,
2024) combines the retrieval results of both RoG and GNN-RAG to enhance the reasoning performance. GFM-RAG (Luo
et al., 2025) utilizes KG as the structural index of knowledge and designs a graph foundation model to reason on KGs
and retrieve relevant knowledge for LLMs. Studies have also been proposed to retrieve from dynamic KGs to enhance the
temporal reasoning abilities of LLMs (Wang et al., 2024a; Liang et al., 2023). However, these methods may suffer from the
retrieval accuracy, which limits the reasoning performance.
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Agent-based Methods. Agent-based methods treat LLMs as agents that iteratively interact with KGs to find reasoning paths
and answers. For example, StructGPT (Jiang et al., 2023) treats LLMs as agents to interact with KGs to find a reasoning
path leading to the correct answer. ToG (Sun et al., 2024) extends the method and conducts reasoning on KGs by exploring
multiple paths and concludes the final answer by aggregating the evidence from them. EffiQA (Jiang et al., 2024) proposes
an efficient agent-based method to reason on KGs. Plan-on-Graph (Chen et al.) proposes an adaptive planing paradigm to
decompose the question into sub-tasks and guide the LLMs to reason on KGs. Debate on Graph (Ma et al., 2024) asks LLM
as agents to debate with each other to gradually simplify complex questions and find the correct answers. SymAgent (Liu
et al., 2025) introduces a collaborative agent framework that autonomously utilizes tools to integrate information from KGs
and external documents, tackling the problem of KG incompleteness. Although these methods are effective, they face high
computational costs and challenges in designing the interaction process.

B. KG-Trie Construction

KG-Trie converts KG structures into the format that LLMs can handle. It can been incorporated into the LLM decoding
process as constraints, allowing for faithful reasoning paths that align with the graph’s structure. The KG-Trie can be either
pre-computed for fast inference or constructed on-demand to minimize pre-processing time.

B.1. Construction Strategies

Offline Construction. The KG-Trie can be pre-computed offline, allowing them to be used during inference at no additional
cost. Instead of constructing the KG-Trie for all entities in the KG, we could only construct the KG-Trie for certain entities.
We can select the entities based on their popularity, importance, or the frequency of their occurrence in the questions.

On-demand Construction. Alternatively, we can construct the KG-Trie on-demand. When a question is given, we first
identify the question entities with named entity recognition (NER) tools. Then, we retrieve the question-related subgraphs
around the question entities from the KGs. Finally, we construct a question-specific KG-Trie based on the retrieved
subgraphs. The KG-Trie is then used to guide the LLMs to reason on the KGs.

Dynamic Cache for KG-Trie Construction. Users can also develop their own strategies to balance pre-processing and
inference overhead. For example, we can maintain a dynamic cache to store the KG-Trie for the most frequently asked
questions, as shown in Figure 6. When a new question is given, they first check whether the KG-Trie for the question is
in the cache. If it is, they directly use the KG-Trie for inference. Otherwise, they construct a question-specific KG-Trie
on-demand. The cache can be updated periodically to remove the least frequently used KG-Trie and add the new ones.

B.2. Time and Space Complexity Analysis

The time and space complexity for KG-Trie construction is affordable and can be easily improved in industry-level
applications to support billions of scale graphs. To support this, we provide detailed theoretical analysis and empirical
evidence. In experiments, we adopt the breadth-first search, whose complexities are:

B.2.1. THEORETICAL ANALYSIS

Time Complexity. Constructing the KG-Trie involves a BFS traversal to explore paths up to a maximum length of L starting
from certain entities. The time complexity of this traversal is O(E*), where E is the average number of edges per entity,
and L is the maximum path length. BFS ensures that all reachable paths up to length L are considered. However, BFS can
be replaced with other efficient graph-traversing algorithms, such as random walk (Xia et al., 2019) to further improve
efficiency.

Space Complexity. The space complexity of the KG-Trie depends on the number of unique paths and their tokenized
representations. In the worst case, the space complexity is O(E” x T'), where T represents the average number of tokens
per path. Trie structures are efficient for storing shared prefixes, which reduces redundancy and optimizes memory usage.
Moreover, it supports efficient traversal of reasoning paths in constant time.

B.2.2. EMPIRICAL ANALYSIS

We have provided the average BFS running time and space consumption of the KG-Trie construction to demonstrate its
efficiency. The system settings are illustrated at Table 7.
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Figure 6. The illustration of dynamic cache for KG-Trie construction.
Table 7. System settings overview for efficiency experiments.
System Setting ‘ Specification
CPU ‘ Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz
Memory ‘ 32G

BFS Implementation ‘ Virtuoso SPARQL

Space Storage | Pickle

In the experiment, we build the KG-Trie for all question entities of WebQSP dataset and measure the average running time
and space consumption. The BFS is executed on the Freebase KG stored in a Virtuoso database (Erling & Mikhailov, 2009).
We retrieve the L-hop paths, then save the constructed KG-Trie with Pickle. The statistics show that both running time and
space usage are acceptable when L <= 3, which highlights efficiency in KG-Trie construction. Although a larger hop can
lead to better coverage of the possible answer, it would significantly increase the time and space complexity. Thus, we set
hops to 2 or 3 in experiments to balance between efficiency and effectiveness. Notably, time can be further reduced by
utilizing multi-threading. Space consumption can be optimized by storing data in a database.

B.2.3. TIME CONSUMPTION BREAKDOWN

In addition, we have provided a detailed breakdown of the time consumption for each component involved in the KG-Trie
construction. As shown in Table 9, the overall time for constructing the KG-Trie under the open-end setting is approximately
0.28 seconds. This includes the time for all necessary stages, such as Named Entity Recognition, Entity Linking, graph
retrieval, tokenization, and trie construction.

B.3. Strategies for Optimizing Efficiency

We provide several strategies that can be used to further speed up the KG-Trie construction.
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Table 8. Average running time and space utilization of the KG-Trie construction.

Hop Avg. Running Time (s) Space (Mb)

L=1 0.0058 0.4
L=2 0.0133 0.5
L=3 0.0219 2.5

Table 9. Breakdown of the time consumption for each component involved in the KG-Trie construction.

Component Description Implementation Time (s)
Named Entity Recognition (NER)  Identify mentioned entities in user questions Spacy 0.0059
Entity Linking (NL) Link to entities in KGs ColBERTV2 0.0457
Graph Retrieval Retrieve question-relevant subgraphs for KG-Trie construction (Eq. 3).  2-hop BFS implemented with SPARQL. 0.0133
Tokenizer Tokenize paths into tokens for building LLM constraints (Eq. 4). Llama-3-8B Tokenizer implemented by Huggingface.  0.1227
Trie construction Store the tokenized paths with Trie (Eq. 5). Python MARISA Trie 0.0962
Total 0.2838

Parallel Processing: As the KG-Trie is independently constructed for each entity, it can be easily scaled with parallel
processing. We provide the total running time of constructing 2-hop KG-Trie of all question entities in WebQSP dataset in
Table 10 to show the improvement of parallel processing. It shows that the efficiency can be greatly improved with parallel
processing. This parallel nature enables it to be executed on distributed computing systems such as Hadoop and Spark in
real-world applications.

Table 10. Total running time and improvement under different processing threads.

Total time (s) Total Time (min) Improvement

Thread=1 4.03 100%
Thread=4 3.21 126%
Thread=10 2.31 174%
Thread=20 1.92 210%

Efficiency Graph Traversal Algorithms: The BFS or DFS enumerates all the paths around the entities which might lead to
computational overhead. However, they can be easily replaced with other graph traversal algorithms, such as random walk,
to reduce time complexity.

Combination with Graph Retrieval Algorithms: To reduce the overhead of graph traversal, we can construct the KG-Trie
on the question-related subgraphs. To this end, our methods can be combined with other graph retrieval algorithms, such as
GNN-RAG (Mavromatis & Karypis, 2024) and RoG (Luo et al., 2024). They would retrieve meaningful and relevant paths
from KGs to speed up the KG-Trie construction. However, the performance might be limited by the retrieval accuracy.

Reduce Entities Number: Instead of constructing the KG-Trie for all entities in the KG, we could only construct the
KG-Trie for certain entities. We can select the entities based on their popularity, importance, or the frequency of their
occurrence in the questions.

B.4. Real-World Applicability

To support real-world applications with billion-scale KGs, KG-Trie construction can be implemented in industrial-level
settings. For instance, billion-scale KGs can be stored in scalable graph databases like Neo4j. The parallel nature of KG-Trie
construction allows it to be executed on distributed computing systems such as Hadoop and Spark, enabling pre-computation
and offline storage. The constructed KG-Trie can then be stored in a database and loaded for inference without additional
computation, facilitating real-time responses. To reduce the overhead in pre-processing, we can design a cache mechanism
that only builds KG-Trie for popular accessed entities and caches them for faster inference. The illustration of the framework
can be found in Figure 6.
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C. Datasets

KGQA Datasets. To compare the reasoning performance with existing methods, we use two benchmark KGQA datasets in
this study: WebQuestionSP (WebQSP) (Yih et al., 2016) and Complex WebQuestions (CWQ) (Talmor & Berant, 2018). To
ensure fairness, we adopt the same train and test splits as previous works (Jiang et al., 2022; Luo et al., 2024). Details of the
datasets can be found in Table 11.

Both WebQSP and CWQ can be reasoned using Freebase KGs? (Bollacker et al., 2008). To reduce the size of the KGs, we
use a subgraph of Freebase by extracting all triples that start from question entities within the maximum reasoning hops
provided by previous works* (Luo et al., 2024). The statistics of the knowledge graphs are shown in Table 13.

Fine-tuning Datasets. To enhance the KG reasoning ability of LLMs, we construct fine-tuning datasets by generating
reasoning paths from the KGs. Specifically, we adopt the training split of WebQSP and CWQ, which contain 2,826 and
27,639 question-answer pairs, respectively. For each question, we find all the shortest reasoning paths on KGs that connect
the question entity to the answer entity. We then convert the reasoning paths into formatted strings and pair them with
the question-answer pairs with the template shown in Figure 10 to form the fine-tuning datasets. Since there could be
multiple reasoning paths for a question, we generate multiple training instances paired with different reasoning paths for
each question-answer pair. The fine-tuning datasets contain 28,307 and 181,602 question-reasoning path-answer triples for
WebQSP and CWQ, respectively. The statistics of the fine-tuning datasets are shown in Table 12.

Zero-shot Generalization Datasets. To evaluate the transferability of GCR, we further select three new KGQA datasets:
FreebaseQA (Jiang et al., 2019), CommonsenseQA (CSQA) (Talmor et al., 2019) and MedQA-USMLE (MedQA) (Jin et al.,
2021).FreebaseQA is an open-ended question answering dataset. CSQA 1is a 5-way multiple choice QA dataset that involves
reasoning with commonsense knowledge. MedQA is a 4-way multiple choice QA task that requires biomedical and clinical
knowledge. FreebaseQA adopts the same Freebase KG used in WebQSP and CWQ. For CSQA, we use the ConceptNet
(Speer et al., 2017), which is a general-purpose KG that contains commonsense knowledge. For MedQA, we use a medical
KG constructed from the Unified Medical Language System (Yasunaga et al., 2021). The statistics of the knowledge graphs
are shown in Table 13. We respectively select 100 questions from each dataset. For each question, following previous studies
(Feng et al., 2020; Yasunaga et al., 2021), a 2-hop subgraph is extracted from the KGs to form the zero-shot generalization
datasets.

Table 11. Statistics of datasets.

| Dataset Statistics | Statistics of Answer Numbers
Dataset
‘ #Train #Test ‘ #Ans=1 2>#Ans<4 S5>#Ans<9 #Ans> 10
WebQSP | 2,826 1,628 51.2% 27.4% 8.3% 12.1%
CWQ 27,639 3,531 70.6% 19.4% 6% 4%

Table 12. Statistics of fine-tuning datasets for graph-constrained decoding.

Total WebQSP  CWQ
209,909 28,307 181,602

Table 13. Statistics of constructed knowledge graphs.

KG #Entities  #Relations  #Triples
Freebase 2,566,291 7,058 8,309,195
ConceptNet 799,273 17 2,151,303
MedKG 9,958 15 49,974

https://github.com/microsoft/FastRDFStore
4WebQSP: https://huggingface.co/datasets/rmanluo/RoG-webgsp, CWQ: https://huggingface.co/
datasets/rmanluo/RoG-cwqg
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D. Baselines

We compare GCR with the 22 baselines grouped into three categories: 1) LLM reasoning methods, 2) graph reasoning
methods, and 3) KG-enhanced LLM reasoning methods. The details of each baseline are described as follows.

LLM reasoning methods only rely on LLMs for reasoning without utilizing external KGs. We include both the vanilla
LLMs with different sizes and the LLMs with advanced reasoning mechanisms. Specifically, we consider the following
baselines:

* Qwen2-0.5B/1.5B.7B (Yang et al., 2024a) provides a series of pre-trained LLMs with different sizes, including 0.5B,
1.5B, and 7B parameters.

e Llama-2-7B (Touvron et al., 2023) is a large-scale LLM pre-trained on a diverse range of tasks.
* Llama-3.1-8B (Meta, 2024) is the updated version of Llama-2 with more powerful reasoning capabilities.
* ChatGPT (OpenAl, 2022) is a powerful closed-source LLM that could follow instructions to conduct complex tasks.

* GPT-40-mini (OpenAl, 2024a) is the new flagship model of OpenAl that could reason across different modalities and
tasks.

* Few-shot prompt (Brown et al., 2020) is a few-shot learning method that provides LLMs with a few examples in the
prompts to conduct reasoning.

e CoT (Wei et al., 2022) is a chain-of-thought reasoning method that prompts LLMs to generate a chain of reasoning
steps.

» Self-consistency (Wang et al., 2024b) generates multiple reasoning paths and selects the most consistent answer.

Graph reasoning methods focus on reasoning on KGs using graph neural networks (GNNs) (Wu et al., 2020) or graph-based
reasoning mechanisms. We include the following baselines:

» GraftNet (Sun et al., 2018) is a graph-based reasoning method that retrieves relevant subgraphs from KGs with entity
linking.

* NSM (He et al., 2021) utilizes the sequential model to mimic the multi-hop reasoning process on KGs.
* SR+NSM (Zhang et al., 2022) proposes a relation-path retrieval to retrieve subgraphs for multi-hop reasoning.

* ReaRev (Mavromatis & Karypis, 2022) is a GNN-based method that reasons on KGs by considering complex graph
information.

* UniKGQA (Jiang et al., 2022) is a unified framework that combines graph-based reasoning of GNNs and LLMs for
KGQA.

KG-enhanced LLM reasoning methods incorporate KGs to enhance the reasoning abilities of LLMs which can be further
divided into retrieval-based and agent-based paradigms. We include the following baselines:

Retrieval-based methods retrieve relevant facts from KGs with an external retriever and then feed them into the inputs of
LLMs for reasoning:

e KD-CoT (Wang et al., 2023) retrieves relevant knowledge from KGs to generate faithful reasoning plans for LLMs.
* EWEK-QA (Dehghan et al., 2024) enriches the retrieved knowledge by searching from both KGs and web.

* RoG (Luo et al., 2024) proposes a planning-retrieval-reasoning framework that retrieves reasoning paths from KGs to
guide LLMs conducting faithful reasoning.

* GNN-RAG (Mavromatis & Karypis, 2024) adopts a lightweight graph neural network to effectively retrieve from KGs.

19



Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models

Table 14. Training time and memory usage for different KG-specialized LLM:s.

Model Time  Mem. Usage per GPU
Qwen2-0.5B 3.47h 10G
Qwen2-1.5B 4.11h 25G
Qwen2-7B 14.37h 81G
Llama-2-7B 13.93h 80G
Llama-3.1-8B  14.52h 85G

* GNN-RAG+RA (Mavromatis & Karypis, 2024) combines the retrieval results of both RoG and GNN-RAG to enhance
the reasoning performance.

Agent-based methods treat LLMs as agents that iteratively interact with KGs to find reasoning paths and answers:

* ToG (Sun et al., 2024) conducts the reasoning on KGs by exploring multiple paths and concludes the final answer by
aggregating the evidence from them.

» EffiQA (Jiang et al., 2024) proposes an efficient agent-based method to reason on KGs.

E. Implementation Details and Experiment Settings
In this section, we will detail the implementation of GCR as well as the experiment settings.

Fine-tuning KG-specialized LLMs. We fine-tune several lightweight LLMs ranging from 0.5B to 8B (Yang et al., 2024a;
Touvron et al., 2023; Meta, 2024) on the fine-tuning datasets for 3 epochs. The batch size is set to 4 and the learning rate is
set to 2e-5. We use the cosine learning rate scheduler policy with the warmup ratio set to 0.03. The training is conducted on
2 A100-80G GPUs for each model. The training time and memory usage are shown in Table 14.

KGQA Experiment Settings. The KGQA experiment shown in Table 1 aims to compare the reasoning performance of GCR
with existing methods. For our method, we use the fine-tuned Llama-3.1-8B as KG-specialized LLMs, the general LLM is
selected as ChatGPT and GPT-40-mini. The KG-Trie is constructed from the subgraph of Freebase KGs. The maximum
reasoning hops are set to 2 for both WebQSP and CWQ. The beam size is set to 10 for graph-constrained decoding. For
vanilla LLMs baselines, we use the zero-shot prompting to ask the models to answer the questions. For other baselines, we
strictly check whether the original papers follow the same settings and copy the results for fair comparison.

Efficiency Analysis Settings. The efficiency analysis shown in Table 2 aims to compare the efficiency and performance of
different methods on WebQSP. For GCR, we use the same settings as the KGQA experiment. For dense retriever methods
(e.g., S-Bert (Reimers & Gurevych, 2019), BGE (Zhang et al., 2023), OpenAI-Emb. (OpenAl, 2024b)), we first search
all paths within 2-hops on the KGs which are formatted as sentences with the template in Figure 9. Then, we adopt the
embedding model to encode the path sentences as embeddings which are stored in a vector database. During inference,
we retrieve 10 paths from the vector database with the question as query and feed them into the LLMs for reasoning. For
GNN-RAG (Mavromatis & Karypis, 2024) and RoG (Luo et al., 2024), we strictly follow the original papers to retrieve
reasoning paths and conduct the experiments. For agent-based methods (e.g., ToG (Sun et al., 2024)), we use the same
settings detailed in the original papers. For EfiQA (Jiang et al., 2024), since there is no available code, we directly copy the
results from the original paper.

The average runtime is measured by the time taken to answer the questions. The average number of LLM calls is the number
of times the LLMs are called to answer the questions. The average number of LLM tokens is the number of tokens inputted
into LLMs to answer the questions, such as questions and retrieved reasoning paths. The experiments are conducted on a
single A100-80G GPU for each method.

Ablation Study. In ablation study, we first try to analyze the effectiveness of different components in GCR. We conduct the
experiments on WebQSP and CWQ datasets. By removing the KG-specialized LLM (w/o KG-specialized LLM), we search
all the 2-hop paths starting from question entities and feed them into the general LLMs for reasoning. By removing the
general LLM (w/o general LLM), we directly use the hypothesis answers generated by the KG-specialized LLMs as the
final answers.
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Different LLMs. We also analyze the different LLMs used for KG-specialized LLMs and general LLMs on WebQSP. For
KG-specialized LLMs, we first use the vanilla LLMs with different learning types (i.e., zero-shot and few-shot prompting).
For zero-shot prompting, we directly ask the models to generate the reasoning paths with the constraints. For few-shot
prompting, we provide the models with a few examples in the prompts to conduct path generation. Detailed prompts
can be found in Figures 10 and 12. Then, we fine-tune the lightweight LLMs with different sizes (0.5B to 8B) on the
graph-constrained decoding task. For general LLMs, we use the vanilla LLMs to directly conduct reasoning over multiple
reasoning paths. The detailed reasoning prompts can be found in Figure 11.

Parameter Analysis. We first analyze the performance of GCR with different beam sizes for graph-constrained decoding. We
conduct the experiments on the WebQSP datasets with beam sizes of 1, 3, 5, 10, and 20. Then, we analyze the performance
of GCR with different hops of paths encoded in the KG-Trie. We conduct the experiments on the WebQSP datasets with
maximum paths hops ranging from 1 to 4.

Faithful Reasoning Analysis. We investigate the effect of the KG constraints on ensuring faithful reasoning. We adopt the
fine-tuned Llama-3.1-8B as KG-specialized LLMs. Then, we compare the faithful reasoning rate and answer hit of GCR
with and without the KG constraints in graph-constrained decoding. The faithful reasoning rate is the percentage of the
faithful reasoning in the correctly predicted answers. A reasoning path is considered faithful if it can be found in the KGs,
and vice versa. The answer hit is the percentage of the correct answers in the predictions.

Zero-shot Generalization Analysis. We evaluate the transferability of GCR on two zero-shot generalization datasets: CSQA
and MedQA. We use the fine-tuned Llama-3.1-8B as KG-specialized LLMs and ChatGPT as well as GPT-40-mini as the
general LLMs. The KG-Trie is constructed from the subgraph of ConceptNet and MedKG. The maximum reasoning hops
are set to 2 for both datasets. The beam size is set to 10 for graph-constrained decoding. For vanilla LLMs baselines (i.e.,
ChatGPT and GPT-40-mini), we use the zero-shot prompting to ask the models to answer the questions.

F. Additional Experiment Results
F.1. Performance on Different Hops of KG-Trie

In this section, we analyze the impact of different hops of reasoning paths on the performance of GCR. We conduct the
experiments on WebQSP with different maximum hops of reasoning paths encoded in the KG-Trie. The results are shown in
Figure 7. We observe that the performance of GCR increases with the number of hops of reasoning paths. The performance
peaks when the maximum hops of reasoning paths are set to 2. This is because the 2-hop paths can provide sufficient
information for the LLMs to conduct reasoning. When the hops are set to 3 or 4, the performance drops due to the increased
complexity of the reasoning paths, which may introduce noise and make the reasoning less reliable. Additionally, the size of
the KG-Trie slightly increases from 0.5 MB to 7.5 MB with the increase of the hops from 1 to 4. This indicates that the
KG-Trie can be efficiently constructed with a small size and guide the LLMs to reason on graphs effectively.
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Figure 7. Parameter analysis of path hop L for KG-Trie construction on WebQSP.
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F.2. Performance on Multi-path Reasoning

GCR could take advantage of the GPU parallel computation to conduct multi-path explorations on KGs with beam-search.
It could generate simultaneously generate K reasoning paths and hypothesis answers with beam search in a single LLM
call. The effectiveness of different K is analyzed in Figure 4 where larger K can lead to a better recall of the answers.
In addition, we compare the F1 performance under different numbers of ground-truth answers with RoG, which requires
reasoning across multiple reasoning paths to find all answers. From the results shown in Table 15, we can observe that GCR
exhibits better performance in exploring multiple paths for reasoning.

Table 15. F1 comparison against RoG under different numbers of ground-truth answers.

Methods ‘ WebQSP ‘ cwQ
| #Ans=1 2<=#Ans<=4 5<=#Ans<=9 #Ans>=10 | #Ans=1 2<=#Ans<=4 5<=#Ans<=9 #Ans>=10
GCR 71.31 78.14 83.47 63.20 55.80 64.08 62.57 55.32
RoG 67.89 79.39 75.04 58.33 56.9 53.73 58.36 43.62

F.3. Performance on Multi-hop Reasoning

To demonstrate the effectiveness of multi-hop reasonings. We illustrate the F1 performance under different hops. From
results shown in Table 16, we can observe that GCR also outperforms baselines in multi-hop reasoning.

Table 16. F1 comparison against RoG under different hops of reasoning.

Methods | WebQSP CWQ
| Thop 2hop >=3hop | lhop 2hop >=3hop
GCR 75.05 72.72 - 64.54 62.44 43.82
RoG 77.03 64.86 - 62.88 58.46 37.82

F.4. Logical Coherence in KG Reasoning Paths

Due to the lack of ground truth and a great number of paths, we utilize the LLMs to evaluate the logical coherence and
semantic meanings of the generated paths. The prompt is shown in Figure 8. The LLMs are asked to evaluate the logical
coherence of the generated paths and provide a score from 1 to 5. The results show that GCR achieves an average 3.9 in
evaluation score, which demonstrates the logical coherence of the generated paths. Moreover, the LLM-based evaluation
can be further used for selecting meaningful paths for training.

F.5. Analysis of the Failure Cases

Although GCR achieves 100% trustful reasoning, there are still some failure cases due to the noise and redundant information
in KGs. Two failure cases are presented in Table 17. In the first case, the generated path is unrelated to the question.
GCR provides a valid reasoning path that describes Anna Bligh’s political position, which lacks information about her
electoral district. Although LLMs exhibit strong reasoning ability, they still cannot always find meaningful paths, resulting
in incorrect answers. In the second case, the KG is incomplete, and the generated path does not contain facts for generating
answers. Although KGs store abundant factual knowledge, there are still missing facts. Because there is no information
about the character’s player stored in KGs, GCR cannot generate the correct answer. These failure cases indicate that the
performance of GCR can be further improved by enhancing the reasoning ability of LLMs and the completeness of KGs.

G. Limitations

In this section, we discuss the limitations and future directions of the proposed method.

* Definition of Zero-hallucination. This paper defines KG-constrained zero-hallucination as the generated reasoning
paths are fully grounded in the KG. However, KGs often face issues of incompleteness and incorrect facts, leading to
occasional false positives. Detecting such hallucinations without external evidence remains challenging, highlighting the
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Table 17. Failure cases predicted by GCR.

Case 1: Generated paths are unrelated to the questions.

Question ‘ What electorate does anna bligh representt?

Answer ‘ Electoral district of South Brisbane

Anna Bligh — government.politician.government_positions_held — m.Ocr320w — govern-

Generated Path .- L
ment.government_position_held.jurisdiction_of_office — Queensland

Predicted answer ‘ Queensland

Case 2: KG incompleteness.

Question ‘ who plays ken barlow in coronation street?
Answer ‘ William Roache
Generated Path Coronation Street — tv.tv_program.program_creator — Tony Warren — fic-

tional_universe.fictional_character_creator.fictional_characters_created — Ken Barlow

Predicted answer | Ken Barlow

potential of integrating cross-references from multiple knowledge sources—such as KGs, web data, and documents—to
improve reasoning faithfulness.

* Time Complexity of Complex Questions. Highly complex questions usually require conduct reasoning with multiple
steps. However, directly constructing a KG-Trie for a larger L can be time-consuming. To address this, GCR can be
integrated with existing planning-based methods to decompose complex questions into multiple shorter steps (Li et al.,
2024). By breaking down the reasoning process, we can construct a KG-Trie with a smaller L for each subtask to
conduct reasoning, thereby reducing computational overhead while maintaining inference quality.

¢ Irrelevant Reasoning Path. As shown in Appendix F.5, although LLMs exhibit strong reasoning ability, they still
cannot always find meaningful paths, resulting in incorrect answers. It is worth to investigate how to further improve
the reasoning ability of LLMs, especially under the settings of incomplete knowledge graphs.

H. Templates and Prompts

In this section, we illustrate all the templates and prompts used in the experiments.

Path Sentence Template. The template for converting reasoning paths into natural language sentences is shown in Figure 9,
where the e, and r, denotes the entities and relations in a reasoning path w, = eg AT e1 RENRIN e,

Graph-constrained Decoding Prompt. The prompt for graph-constrained decoding is shown in Figure 10, where the
question and mentioned entities are provided to the LLMs to generate reasoning paths and hypothesis answers. In the
fine-tuning datasets, the supervised LLM outputs are constructed from the ground-truth answers and reasoning paths
extracted from the KGs.

The few-shot prompt template for graph-constrained decoding is shown in Figure 12. We provide a few examples in the
prompts to guide the LLMs to generate reasoning paths. Since the LLMs with few-shot prompt learning are not fine-tuned
on the graph-constrained decoding task, we only apply the constraint to generate reasoning paths.

Graph Inductive Reasoning Prompt. The prompt for graph inductive reasoning is shown in Figure 11. We adopt the
graph-constrained decoding to generate K reasoning paths and hypothesis answers for each question. The reasoning paths
and hypothesis answers are provided to the general LLMs to answer the questions without fine-tuning.

Path Evaluation Prompt. The prompt for evaluating the logical coherence of reasoning paths is shown in Figure 8. The
LLMs are asked to evaluate the logical coherence of the generated paths and provide a score from 1 to 5.
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Path Evaluation Prompt

= Prompt Input ==

As an advanced reasoning evaluator, your task is to analyze whether the following
reasoning path presents a xxlogically coherent connection from the question (
subject entity) to the answer (target entity)**. You will assess whether each step
in the path is valid and necessary, and whether the overall reasoning supports the
final answer in a grounded and justified manner.

### Instructions:

1. Focus on whether the reasoning path makes logical sense from the question to the
answer.

2. Check whether each relation contributes meaningfully and validly to reaching the
final answer.

3. Penalize paths that make unjustified jumps, overly general connections, or weak

associations.

### Rating Scale:

5 - Excellent: Every step is logically valid and contributes clearly toward the
answer.

4 - Good: Mostly coherent with minor assumptions or weak steps.

3 - Moderate: Some steps are unclear, general, or weak, but the general direction
is acceptable.

2 — Poor: Contains major logical leaps or unclear connections.

1 - Very Poor: Illogical or invalid path from question to answer.

### Output:

— Score: [1 to 5]

- Explanation: [Brief explanation of the logical quality of the path from gquestion
to answer]

### Question:

<Question>

### Answer:

<Answer>

### Path:

<Path>

= LLM Output
<Score>

Figure 8. The prompt template for path evaluation.

Path Sentence Template

<PATH>e; —r1 —>e2 —>...— 1] — € </PATH>

Figure 9. The template for converting reasoning paths into formatted sentences.
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Graph-constrained Decoding Prompt

Prompt Input
Reasoning path is a sequence of triples in the KG that connects the topic entities in the question to answer entities. Given a
question, please generate some reasoning paths in the KG starting from the topic entities to answer the question.

# Question:
<Question>

# Topic entities:
<Question Entities>

LLM Output
# Reasoning Path:
<PATH> <Reasoning Path> </PATH>

# Answer:
<Hypothesis Answer>

Figure 10. The prompt template for graph-constrained decoding.

Graph Inductive Reasoning Prompt

Prompt Input

# Reasoning Paths:
<Reasoning Path 1><Hypothesis Answer 1>

<Reasoning Path K><Hypothesis Answer K>

# Question:
<Question>

Based on the reasoning paths, please answer the given question. Please keep the answer as simple as possible and only return
answers. Please return each answer in a new line.

LLM Output
<Answer 1>
<Answer 2>

Figure 11. The prompt template for graph inductive reasoning.
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Few-shot Graph-constrained Decoding Prompt

Prompt Input
Reasoning path is a sequence of triples in the KG that connects the topic entities in the question to answer entities. Given a
question, please generate some reasoning paths in the KG starting from the topic entities to answer the question.

Example 1

# Question:
<Question>

# Topic entities:
<Question Entities>

# Reasoning Path:
<Reasoning Path>

Example 2

# Question:
<Question>

# Topic entities:
<Question Entities>

# Reasoning Path:
<Reasoning Path>

Example 3

# Question:
<Question>

# Topic entities:
<Question Entities>

# Reasoning Path:
<Reasoning Path>

Input

# Question:
<Question>

# Topic entities:
<Question Entities>

LLM Output

# Reasoning Path:
<Reasoning Path>

Figure 12. The few-shot prompt template for graph-constrained decoding.
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