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ABSTRACT

We present a framework for learning compositional, rational skill models
(RatSkills) that support efficient planning and inverse planning for achieving novel
goals and recognizing activities. In contrast to directly learning a set of policies
that map states to actions, in RatSkills, we represent each skill as a subgoal that
can be executed based on a planning subroutine. RatSkills can be learned by
observing expert demonstrations and reading abstract language descriptions of
the corresponding task (e.g., collect-wood then craft-boat then go-across-river).
The learned subgoal-based representation enables inference of another agent’s
intended task from their actions via Bayesian inverse planning. It also supports
planning for novel objectives given in the form of either temporal task descriptions
or black-box goal tests. We demonstrate through experiments in both discrete
and continuous domains that our learning algorithms recover a set of RatSkills by
observing and explaining other agents’ movements, and plan efficiently for novel
goals by composing learned skills.

1 INTRODUCTION

Being able to decompose complex tasks into sub-goals can help long-term planning. Consider the
example in Figure 1, planning to craft a boat from scratch is hard, as it requires a long-term plan
going from collecting materials to crafting boats, but it can be made easier if we know that “having
an axe” and “having wood” are useful sub-goals. Planning hierarchically with these subgoals can
substantially reduce the search required. It is also helpful if we have knowledge about when a subgoal
can be easily achieved. For example, knowing that crafting boats needs the initial condition “having
wood” is useful because it allows us to further decompose the subgoal of “having a boat” into two
stages: “collecting wood” and “crafting boat.”

Learning useful subgoals and their initial conditions (i.e., a skill concept as a whole) from data is
important but very hard with out any supervision. The most prevalent strategy for doing this is to
learn a set of low-level policies, which can be recombined to solve new high-level problems. The
policy-based approach rests on determining a basis of fixed policies that are rich enough to solve a
variety of problems. This is generally challenging, because it can require a large set of policies and
because there are few clear learning signals indicating what a good decomposition might be.

In this work, we propose Rational Skill Models (RatSkills), an alternative approach to policy learning
that addresses these two problems. First, we train the system with very weak supervision, in the form
of a small number of unsegmented demonstrations of complex behaviors paired with abstract logical
descriptions of the action sequence, which uses terms that are initially unknown to the agent, much as
an adult might narrate the high-level steps they are taking when demonstrating a cooking recipe to a
child. These action-terms indicate important subgoals in the action sequence, and our agent learns
to recognize those subgoals. Second, rather than attempting to learn a fixed policy to reach each
subgoal, our system uses planning to reach each subgoal, which retains the advantages of planning at
the lower level as well: it has an easier learning task and can leverage the planner to easily generalize
over a wide range of initial states and domains.

In Fig. 1: given a sequence of low-level state-action pairs, and a corresponding abstract logical
description of the task, collect-wood then craft-boat then go-across-river, our system learns to
decompose the observed trajectory into fragments, each of which corresponds to a particular subgoal
named in the description. Furthermore, it learns an abstract description of individual subgoals o:
the initial condition Io and the goal condition Go, denoting the conditions that are satisfied before
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Figure 1: Interpreting a demonstration and its description in terms of RatSkills: (a) Each RatSkill
consists of two conditions Io and Go. (b) The system infers a transition to the next skill if both the G
condition of the current skill and the I condition of the next skill are satisfied. Such transition rules
can be used to interpret demonstrations and to plan for tasks that require multiple skills to achieve.

and after the execution of the skill. Io and Go jointly characterize the important state transition that
happened as a result of the skill execution, and the subgoal-based characterization of the skills allows
them to be implemented via planning, which, as explained below, generates rational action sequences
at the low-level, and also allows them to be combined via planning, allowing them to be flexibly
recomposed in novel situations, for example, in this domain, to craft a house.

In order to learn RatSkills from limited and weakly-labeled data, our framework relies on the key
assumption that the expert demonstrations are rational: experts generate trajectories to accomplish
their target task while approximately minimizing their total cost, although they may make randomized
errors in execution. The skill representation Io and Go are learned iteratively, based on a Bayesian
inverse planning mechanism. Given candidate initial state and task classifiers, we first use a built-in
planner to obtain rational trajectories for completing the task. Next, we compare these trajectories
with the observed demonstration and quantify the rationality score of the demonstration. Finally, we
update the weights of the classifiers by maximizing the rationality score using gradient descent.

We evaluate RatSkills on two benchmarks: CraftWorld (Chen et al., 2021), a grid-world domain
with a rich set of object crafting tasks, and Playroom (Konidaris et al., 2018), a 2D continuous
domain with geometric constraints. We also show that RatSkills can be extended to an image-based
representation of CraftWorld, demonstrating its generality with respect to input representations. Our
evaluation focuses two aspects of the learned skill concepts. First, our model significantly outperforms
baselines on planning tasks where the agent needs to generate trajectories itself to accomplish a given
task. Another important application of RatSkills is to create a language interface for human-robot
communication, which includes robots interpreting human actions and humans instructing robots by
specifying a sequence of skill concepts to execute. Our model enables compositional generalization
through flexible re-composition of learned skill concepts, which allows the robot to interpret novel
action sequences and execute novel instructions better than the baseline approaches.

2 RELATED WORK

Modular skill models. There have been a significant number of recent approaches that use deep
neural networks to construct modular skills models for interaction. Researchers have proposed models
for learning these models by simultaneously looking at the state-action sequence and reading task
specifications in the form of skill sequences (Corona et al., 2021; Andreas et al., 2017; Andreas &
Klein, 2015), programs (Sun et al., 2020), and linear temporal logic (LTL) formulas (Bradley et al.,
2021; Sadigh et al., 2014; Toro Icarte et al., 2018; Tellex et al., 2011). However, they either require
additional annotation for the segmenting the sequence and associating fragments with labels in the
task description (Corona et al., 2021; Sun et al., 2020), or cannot learn models for planning and
execution from demonstration (Tellex et al., 2011). By contrast, in RatSkills, we use a small but
expressive subset of LTL sentences for describing tasks and propose to jointly learn skill models and
segment the demonstration sequence based on the rationality assumption.

Our skill representation is also related to other models in domain control knowledge (de la Rosa
& McIlraith, 2011), goal-centric skill primitives (Park et al., 2020), macro learning (Newton et al.,
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2007), hierarchical reinforcement learning (HRL; Dietterich, 2000; Mehta, 2011), and methods that
combine reinforcement learning and planning (Segovia-Aguas et al., 2016; Winder et al., 2020), but
we focus on learning the skill models from demonstrations and instructions. Our planning algorithm
is similar to other approaches: de la Rosa & McIlraith (2011); Botvinick & Weinstein (2014); Winder
et al. (2020), but this is not the focus of this paper.

Learning from demonstration. The idea of learning from demonstration generally refers to building
agents that can interact with the environment by observing demonstrations by other experts, usually
in the form of state-action sequences. Techniques for learning from demonstration can be roughly
categorized into three groups: policy function learning (Chernova & Veloso, 2007; Torabi et al.,
2018), cost and reward function learning (Markus Wulfmeier & Posner, 2015; Ziebart et al., 2008),
and learning high-level plans (Ekvall & Kragic, 2008; Konidaris et al., 2012). We refer to Argall et al.
(2009) and Ravichandar et al. (2020) as comprehensive surveys. In this paper, we propose to learn
compositional skill models that support planning, and compare with methods that directly learns
policy functions and cost functions. In contrast to approaches for learning high-level plans, which
mostly focus on directly learning primitive action sequences, our representation, RatSkills are more
general skill descriptions that are used by planners to generates primitive action sequences. Moreover,
unlike them, RatSkills do not use similarities between skills (Niekum et al., 2012) for segmenting the
observed state-action sequences. In contrast, we segment the demonstration and associate skill labels
for each fragment by assuming the expert is rational.

Inverse planning. Our model is also related to methods for inferring agents’ intentions by observing
their states and actions, by assuming agents are rationally selecting actions to achieve their goal. The
technique of inverse planning addresses this problem by finding a task description t that maximizes
the consistency between the agent’s behavior and the synthesized plan for t (Baker et al., 2009).
While existing work has largely focused on modeling the rationality of agents (Baker et al., 2009;
Zhi-Xuan et al., 2020) and more expressive task description languages (Shah et al., 2018), it generally
does not jointly consider how models for skills can be learned so that the agent itself can generate
plans to achieve novel tasks. In RatSkills, we use the Bayesian inverse planning framework (Baker
et al., 2009) for inferring agents’ intentions and present learning algorithms that can learn rational
skill models from demonstration.

Activity recognition. Hidden Markov Models (Brand et al., 1997) and other activity recognition
approaches (Huang et al., 2016) focus on learning to understand tasks, which may also require task
segmentation. Compared to them, RatSkills focus on acquiring models that can be used not only for
activity recognition, but also for planning, both to complete specified task descriptions but also to
plan when only the terminal goal condition is specified.

3 PLANNING AND LEARNING OF RATSKILLS

We begin by describing the basic problem formulation and model, illustrate how to use the model for
both planning and inverse planning, and then present a paradigm for learning from a small number of
weakly labeled trajectories.

3.1 PROBLEM FORMULATION

We assume an environment in the form of a deterministic process with states, actions, transition
function and cost function 〈S,A, T , C〉. S can be given in various forms, such as an object centric
representation, in which each state is specified in terms of the values of a set of properties and relations
applied to a universe of objects; the properties and relations are fixed for any given domain, but the
universe may change for different problem instances and our model will generalize over problems
with different numbers of objects. We will focus on this representation in the paper but will also
show how our model can be extended to other representations, such as images. We assume that the
primitive action spaceA can be used by a low-level planner to find state trajectories through the space:
we illustrate both a discrete A and a continuous robot-motion A. We further assume that the agent
has access to the transition and cost models. We will say that a state sequence s̄ = (s1, . . . , sn) ∈ Sn
is feasible, if for all i ∈ (1, . . . , n− 1), ∃a ∈ A.si+1 = T (si, a).

Rational skills. Our objective is to learn a set of rational skills (RatSkills), where each RatSkill has
an atomic skill name o, and is specified in terms of a pair of classifiers (Io, Go), each of which maps S
into Boolean values. In our formulation, we use neural logic machines (Dong et al., 2019) to represent
these classifiers, because they provide flexible representation of first-order logic formulas with finite
quantification, allowing RatSkills to generalize effectively to domains with different universes of
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objects. We say a RatSkill is applicable at state s if Io(s) ∧
(
∃ā ∈ Ā. Go(T (s, ā))

)
, where Ā is

the set of finite sequences of actions; that is, Io is true for state s, and there is another state that is
reachable from s in which Go is true. In Appendix A.1, we provide a discussion on the importance of
the initial conditions Io in our abstration. Unlike the skills often defined in terms of unconstrained
policies, our skills are rational in the sense that it requires reasoning to execute them. To execute
RatSkill o from some state s ∈ Io, we call a planner with Go as the goal condition; as long as o is
applicable, we will obtain a plan, which is then executed to reach some state s′ ∈ Go. Although
this model-based skill representation pays a computational cost at execution time, this model-based
approach exhibits generalization abilities that far exceed those of fixed policies.

Task language. The goal-centric skill representation supports flexible composition to form new
tasks. We define a simple temporal language T L for task descriptions. Syntactically, all atomic skills
o are in T L; and for all t1, t2 ∈ T L, (t1 then t2), (t1 or t2), and (t1 and t2) are all in T L.
Semantically, a feasible state sequence s̄ satisfies a task description t, written s̄ |= t when:

• If t is a RatSkill o, then Io(s1) and Go(sn).
• If t = (t1 then t2) then ∃0 < j < n such that (s1, . . . , sj) |= t1 and (sj , . . . , sn) |= t2.
• If t = (t1 or t2) then s̄ |= t1 or s̄ |= t2.
• If t = (t1 and t2) then s̄ |= (t1 then t2) or s̄ |= (t2 then t1).

Remark. It is important to note that t1 then t2, specified in our goal-centric representation allows
“interleaving” the actual execution steps for t1 and t2. Recall that the completion of a task t is
indicated by a state s satisfying Gt(s). This does not put any constraint on how an agent chooses to
solve each task. For example, it does not restrict the agent from making progress towards the skill
t2 before the skill t1 is completed. This is fundamentally different from concatenating the optimal
policies for solving individual tasks. See Appendix A.1 for a detailed example.

The language T L can be viewed as a fragment of linear temporal logic (LTL) sentences. Specifically,
there is no always quantifier in our language, so our fragment does not model task specifications that
contain infinite loops. This simple grammar covers all instructions that we are considering in this
paper but the approach could be directly extended to handle more complex constructions.

3.2 TASK-AUGMENTED TRANSITION MODELS

We will frequently want to construct plans for, or evaluate plans relative to, a particular task t ∈ T L.
To do so, we will construct a deterministic, task-augmented transition model. This construction is a
variation on those used to bias reinforcement-learning (Parr & Russell, 1998) and to plan to meet
LTL specifications (Belta, 2016).

-
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Figure 2: Illustrative example of how finite state
machines (FSM) are constructed from task descrip-
tions. The super-starting node v0 and the super-
terminal node vT are highlighted.

We begin by constructing a finite state machine
FSMt based on the task specification t. Each
FSMt is a tuple 〈Vt, Et,VIt,VGt〉, where Vt is
the set of skill nodes in FSMt, and Et the edges.
An edge (x, y) ∈ Et indicates that after exe-
cuting skill x, the agent can switch to the exe-
cution of another skill y. All possible starting
skill nodes of the state machine are indicated
by VIt ⊆ Vt. Analogously, the set of terminal
nodes of the machine is VGt ⊆ Vt. For simplicity, we add two special nodes: the super-starting node
v0 connecting to all starting nodes VIt and the super-terminal node vT , to which all terminal nodes
VGt are connected. The initial and goal conditions for both super nodes evaluate to true for all states
in S. FSMt can be constructed based on the recursive structure of T L. Fig. 2a-d shows example
constructions for the four cases. The details can be found in Appendix A.1.

We now formally define our task-augmented transition model for a given task t, 〈S ′,A′, T ′, C′〉,
by composing the FSM with the basic environmental model. Concretely, S ′ = S × Vt. We denote
each task-augmented state as (s, v), where s is the environment state, and v indicates the skill being
currently executed. The actions A′ = A ∪Et, where each action either corresponds to a primitive
action a ∈ A or a transition in FSMt, such as finishing executing the current skill and proceeding to
the next skill. We further define T ′ ((s, v), a) = (T (s, a), v) if a is a primitive action in A, while
T ′ ((s, v), a) = (s, v′) if a = (v, v′) ∈ Et is an edge in the FSM. Similarly, for the cost function,

C′ ((s, v), a) =

{
C(s, a) if a ∈ A,
−λ (logGv(s) + log Iv′(s)) if a = (v, v′) ∈ Et,
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where λ is a hyperparameter. The key intuition behind the construction of C′ is that the cumulative
cost from v0 to vT is the summation of all primitive action costs added to the log-likelihood of all the
skill sub-sequences satisfying their associated subtask description —at each skill transition, the world
state s should satisfy both the goal condition of the current skill and the initial condition of the next
skill. In principle, when Iv and Gv are Boolean-output classifiers, the transition cost is 0 for a valid
transition and∞ for an invalid transition. During learning, we approximate the “soft” version of
classifiers with neural networks. The networks may output values in [0, 1] indicating the probabilities
of those conditions to be satisfied, which impose positive transition costs other than 0 and∞.

3.3 PLANNING AND INVERSE PLANNING WITH RATSKILLS

We can use a set of RatSkills in three ways: planning to achieve a goal, planning to follow a sequence
of instructions, and inverse planning to infer another agent’s intended task from an action sequence.
A critical basic component is planning to execute a single RatSkill o: finding a sequence of primitive
actions to follow the sub-goals and initial condition set by the finite state machine.

Planning for a task described in T L. In planning with RatSkills, our goal is to find an optimal-cost
sequence of actions in the task-augmented transition model from (s0, v0) to (sT , vT ) that completes
the given task t, where s0 is the initial state of the environment, and sT is the state in S last reached
by the agent. We make plans using slightly modified versions of A∗ search, with a learned value
function as the heuristic for seen tasks and a uniform heuristic for unseen tasks, for discrete domains
and Rapidly-exploring Random Tree (RRT) for continuous domains. Both of these algorithms can be
viewed as doing forward search to construct a trajectory from a given state to a state that satisfies the
goal condition. Our extension to the algorithms handles the hierarchical task structure of the FSM.

Our modified A∗ search maintains a priority queue of nodes to be expanded. Each node is associated
with a evaluation which adds up the total cost of the agent reaching this state and an estimated
cost-to-go (heuristic), in our case, either a uniform heuristic for novel tasks, or a heuristic produced
by a learned value function approximator for previously-seen tasks. At each step, instead of always
popping the task-augmented state (s, v) with the optimal evaluation, we first sample a skill node v
uniformly in the FSM, and then choose the priority-queue node with the smallest evaluation value
among all states (·, v). This search algorithm remains complete, but balances the time allocated to
finding a successful trajectory for each RatSkill in the FSM. Similarly, for RRT, we maintain different
RRTs for different skill nodes in the FSM and balance the number of nodes we expand for each tree.
We include the implementation details of these modified versions of A∗ and RRT in Appendix A.2

Planning for a goal state without a task description. RatSkills also support efficient planning for
novel goals without a task description in T L, by using a bias that the solution has a short description
in T L to provide substantial search guidance. In this paper, we study the case where a black-box
goal-state test G∗ is provided to the algorithm. The task is formulated as finding a sequence of
actions that leads to a state s where G∗(s). We use RatSkills for this task with a hierarchical search
mechanism. First, we enumerate candidate skill sequences, i.e., tasks in T L composed with only
skills and the then connectives*. Next, we run parallel A∗ search procedures for each candidate
high-level skill plan. The algorithm will terminate and return a plan when any one of the downward
refinements reaches a state that satisfies G∗. Ideally, we would be able to plan at the high level by
chaining the skills, matching goals of one skill with the initiation sets of the next. We leave the
integration of other informed search methods into the high-level skill space as future work. We also
analyze the optimality of our algorithm in Appendix A.2.

Bayesian inverse planning. The set of RatSkills can also be used to infer another agent’s intended
task from their action sequence via Bayesian inverse planning. Concretely, the input to our algorithm
is a state sequence s̄ and an action sequence ā, such that ∀i, si+1 = T (si, ai). It is important to note
that the state-action sequence only contains the environment states S and actions A. However, we do
not know the FSM state vi ∈ Vt associated with each state si, nor the FSM transition actions e ∈ Et
(i.e. we do not assume the segmentation of the state-action sequence). The output of the algorithm is
a ranking of a set of candidate tasks described in T L, by how likely they are the intended task.

For each candidate task t, our inverse planning procedure starts by running forward search (A∗ or
RRT) from a seed node set composed of all task-augmented states (s, v) based on the task-augmented
transition model of t, where s ∈ s̄ and v ∈ Vt. This step produces a larger set of task-augmented

*In practice, we use the idea of IDA*: try all candidates with length 1, and then try ones with length 2, and
then 3, . . . , until we find a path to satisfy the goal or reach the time limit.

5



Under review as a conference paper at ICLR 2022

mine-gold

collect-wood
craft-boat!! !"

Task: (collect-wood or mine-good) then craft-boat

Figure 3: An example of the value function for task-
augmented states on a simple FSM. maxa∈A Jt (s, v, a)
are plotted at each location at each FSM node. Deeper
color indicates larger cost. Dotted lines illustrate one ra-
tional trajectory for each skill; red boxes indicate goals.

	
			𝐼𝑁𝐼𝑇!		, 𝐺𝑂𝐴𝐿!		 	

Rational Skill Models

�̅� 𝑎$𝑡

TrajectoryTask

Search: A*/RRT

Bellman-Ford for 𝐽!(𝑠, 𝑣, 𝑎′)

Dynamic Programming for 𝑠𝑐𝑜𝑟𝑒(�̅�, 𝑎., 𝑡)

ℒ
Back
Propagation
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states Kt. We run Bellman-Ford (analogous to value iteration for deterministic systems) on Kt and
obtain a value function Jt(s, v, a′) (analog to the Q-value for Markov Decision Processes but in terms
of cost) for all nodes along the observed state sequence s ∈ s̄, all FSM states v ∈ Vt, and all actions
a′ ∈ A′ = A ∪ Et (i.e., all environment actions and state machine transitions in FSMt). Fig. 3 shows
an example of the value function over the task-augmented states.

Based on the Jt, we define the rationality of action a′ ∈ A′ at environment state s and FSM state v (α
is also called the inverse rationality):

Rat (s, v, a′, t) :=
exp (−α · Jt(s, v, a′))∫

x′∈A′ exp (−α · Jt(s, v, x′))
For discrete action spaces, the integral is simply a finite sum. In continuous action spaces, we use
Monte Carlo sampling to compute the integral.

Since we do not know the segmentation of the state-action sequence, we use a dynamical programming
process† to find an optimal assignment of FSM states for states in the trajectory s ∈ s̄. Each
candidate assignment yields a FSM state sequence v̄ = {vi} and a task-augmented action sequence
ā′ = {a′i ∈ A′}. Our dynamical programming process finds the optimal s̄′ and ā′ that maximizes:

score(s̄, ā, t) := max
(v̄,ā′)

derived from (s̄,ā)


∑

a′=(v,v′)∈ā′

is an FSM transition

[logGv(si) + log Iv′(si)] + log
∏
i

Rat
(
si, vi, a

′
i, t
) ,

Essentially, it requires all FSM state transitions (v, v′) at state si are valid, and the agent’s actions are
well explained. If we consider Iv and Gv as “soft” probabilities, the computation of score finds s̄′
and ā′ that maximize the rationality of primitive actions and the likelihood that FSM transitions are
successful. We use score(s̄, ā, t) to rank all candidate tasks t.
Remark. We are using dynamic programming to determinate the transitions, and there are other
formulations such as using stochastic transitions derived by Iv and Gv. These formulations can be
unified using a framework of latent transition models. We will discuss them in Appendix A.3.

3.4 LEARNING RATSKILLS
We employ a contrastive-learning based approach to learn a set of RatSkills from paired task descrip-
tions t ∈ T L and state-action sequences (s̄, ā), which we assume are generated by a rational agent
to accomplish t. Critically, the agent does not know the meanings of the skills in T L—these will be
learned in the form of the Go classifiers. The intuition behind the learning method is that the model
parameters should be adjusted so that each task description in the training set is a high-probability
rational explanation of the accompanying state-action sequence. In order to learn the weights in the
classifiers Io and Go, we define the following training objective:

L =
∑

(s̄,ā,t)∈D

score(s̄, ā, t) + γ · log
exp (β · score(s̄, ā, t))∑
t′ exp (β · score(s̄, ā, t′))

,

whereD is the dataset we train on, and t′ are uniformly sampled negative tasks in T L for the particular
data point. Since the cost function for task-augmented transition models C′ (and thus the computed

†The dynamic programming is similar to Dynamic time warping(DTW) warping trajectories into sequential
skills, but we compute the “cost” at each segment instead of at each pair pf matched positions.
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Jt values) is fully differentiable w.r.t. all Io and Go in RatSkills, L can be maximized simply using
gradient descent—we are running back-propagation through the Bayesian inverse planning.

It is important to note that the computation of L only requires J values for states along the observed
state-action sequences, instead of for the entire state-action space, making our model scalable to
compositional state spaces with many objects and obstacles.

To summarize, Fig. 4 gives an overview of the the learning paradigm. Given the task description t,
based on the current skill models, we first use A* search or RRT to solve for the optimal policy for t,
and run value iteration on the search tree nodes to compute the value function Jt. Next, we compute
the score of the observed trajectory (s̄, ā) from Jt. Note that the computation of score only requires
Jt values for states along the input trajectory s̄. Since the derived score of (s̄, ā) is fully differentiable
w.r.t. the neural network parameters in RatSkills, we can use back-propagation to update them.

4 EXPERIMENTS
We compare our model with other skill-learning approaches in two environments: Crafting
World (Chen et al., 2021) and Playroom (Konidaris et al., 2018). In both cases, all models are
trained on the inverse planning task given expert demonstrations generated by human-written pro-
grams, and are evaluated on two tasks: planning and inverse planning.
4.1 SETUP

To evaluate planning, each algorithm is given a novel task, either specified in T L, or as a black-box
goal state classifier. The objective is to generate a trajectory of actions from the agent’s current state
to complete the task. In the inverse planning problem, we give each algorithm a state-action sequence,
from which the algorithm should infer the intended task of the agent. We provide each algorithm
with a list of candidate task descriptions in T L for which it outputs a ranking. For both tasks, we
focus on evaluating the compositional generalization, i.e., inferring complex tasks that they have not
seen during training.

Baselines. We compare our RatSkills, which learns goal-based representations, with two closely
related groups of baselines, both of which learn from demonstration, but acquiring different underlying
representations: IRL methods learn reward-based representations and behavior cloning methods
directly learn policies. The implementation details of baselines are in the Appendix C.

Figure 5: An illustration
of the Playroom environ-
ment and a trajectory for
the task: turn-on-music
then play-with-ball then
turn-off-music.

Our max-entropy inverse reinforcement learning (IRL; Ziebart et al., 2008)
baseline learns a task-conditioned reward function by trying to explain
the demonstration. For planning, we use the built-in deep-Q-learning
algorithm. For inverse planning, we rank all candidates by the consistency
between the observation and the task-conditioned policy.

The behavior cloning (BC; Torabi et al., 2018) baseline directly learns a
task-conditioned policy that maps the current state and the given task to
an environment primitive action. For planning, we directly follow the task-
conditioned policy. For inverse planning, we rank all candidate tasks by
the consistency between the observation and the task-conditioned policy.

BC-FSM is the BC algorithm augmented with our FSM description of
tasks. Compared with RatSkills, instead of segmenting the demonstration
sequence based on the rationality, BC-FSM segments them based on how
consistent each fragment is with the policy for the corresponding skill.

For the inverse planning task, we include an additional sequence classification baseline: LSTM.
It uses two separate LSTM networks to encode the state-action sequence and the task description,
respectively. Next, it uses a multi-layer perceptron (MLP) to compute a score for each task description.
4.2 ENVIRONMENTS

Crafting World. Our first environment is Crafting World (Chen et al., 2021), a Minecraft-inspired
crafting environment. The agent can move in a 2D grid world and interact with objects next to it,
including picking up tools, mining resources, and crafting items. Mining in the environment typically
requires tools, while crafting tools and other objects has preconditions, such as being close to a
workstation or holding another specific tool. Thus, crafting a single item often takes multiple steps.
In certain maps, there are also obstacles such as rivers (which requires boats to go across) and doors
(which requires specific keys to open). We modified the rules from the original environment to make
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Crafting World Playroom

Model Com. Novel Com. Novel

IRL 36.5 1.8 28.3 9.6
BC 11.2 0.8 15.8 4.8
BC-FSM (ours) 5.2 0.3 38.2 31.5
RatSkills (ours) 99.6 97.8 82.0 78.2

Table 1: Results of the planning task, evaluated
as the success rate in completing the specified
task. The maximum number of expanded nodes
for all planners is 5000. All models are trained
on the compositional split, and tested on the com-
positional and the novel split.

4 steps

2 steps

3 steps
186997707 2.4 × efficiency

Figure 6: RatSkills applied to planning with a
black-box goal test. We do evaluation on 3 plan-
ning tasks in the Crafting World environment.
We use 100 random initial states for each task.

the tasks more challenging: we added crafting rules so that some craftings can share a common
station; we also added doors and rivers where the agent must hold key or boat when crossing.

We define 26 primitive tasks, instantiated from templates of grab-X, toggle-switch, mine-X, and
craft-X. While generating trajectories, all required items have been placed in the agent’s inventory.
For example, before mining wood, an axe must be already in the inventory. In this case, the agent
is expected to move to a tree and execute the mining action. We also define 26 compositional tasks
composed of the aforementioned primitive tasks. For each task we have 400 expert demonstrations.

We train all models on these primitive and compositional tasks and test them on two splits: composi-
tional and novel. The compositional split contains novel state-action sequences of previously-seen
tasks. The novel split contains rational state-action sequences for 12 novel tasks that are composed of
the primitive tasks, but have never been seen during training.

Playroom. Our second environment is Playroom (Konidaris et al., 2018), a 2D maze with continuous
coordinates and geometric constraints. Fig. 5 shows an illustrative example of the environment.
Specifically, a 2D robot can make moves in a small room with obstacles. The agent has three degrees-
of-freedom (DoFs): x and y direction movement, and a 1D rotation. The environment invalidates
movements that cause collisions between the agent and the obstacles. Additionally, there are six
objects randomly placed in the room, which the robot can interact with. For simplicity, when the
agent is close to an object, the corresponding robot-object interaction will be automatically triggered.

Similar to the Crafting World, we have defined six primitive tasks (corresponding to the interaction
with six objects in the environment) and eight compositional tasks (e.g., turn-on-music then play-
with-ball). Similarly, we made up another eight novel tasks, and for each task we have 400 expert
demonstrations. We will train different models on rational demonstrations for both the primitive and
compositional tasks, and evaluate them on the compositional and novel splits.

4.3 RESULTS

Planning for a task. Table 1 summarizes the results for planning in both environments. RatSkills
outperforms all baselines. On the compositional split, our model achieves nearly perfect success rate
in the Crafting World (99.6%) and high performance in Playroom (82.0). Comparatively, although
the tasks have been presented during training of all baselines, their scores remain below 40%.

On the novel split, RatSkills outperforms all baselines by a larger margin than on the compositional
split, in both environments. We observe that, in Crafting World, since some novel tasks contain
longer descriptions than those in the compositional set, all baselines have almost zero success rate
on them. Compared to behavior cloning methods that directly apply a learned policy, our model
runs A*/RRT search based on the learned goal classifier with a learned heuristic. This suggests that
learning goals from demonstration is more sample-efficient than learning policies, and generalizes
better to new maps. Meanwhile, compared with IRL methods, our goal-centric representation has
more compositional structure and thus performs better in these domains.

Planning with a black-box goal test. We also evaluate RatSkills on planning with a black-box goal
test. These problems require a long solution sequence, making them too difficult to solve with blind
search from an initial state. Since there is no task specification given, in order to solve the problems
efficiently, it is critical to use RatSkills for search guidance. In our setting we assume the black-box
goal test can be achieved by executing a few skills sequentially, and decomposing a long solution into
sequential skills can significantly reduce the cost of search.
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Crafting World Playroom

Model Com. Novel Com. Novel

LSTM 100.0 25.0 51.1 37.5
IRL 64.1 22.1 92.5 65.6
BC 85.6 20.8 72.5 45.0
BC-FSM (ours) 100.0 100.0 85.0 98.8
RatSkills (ours) 97.2 95.7 97.5 91.9

Table 2: Results of the inverse planning task, eval-
uated as the percentage of trajectories with a cor-
rect task prediction. All models are trained on
the compositional data splits and evaluated on the
compositional and the novel split.

We manually designed three goal tests that each
require sequential executions of 2, 3, and 4
atomic skills to complete. We run our hierar-
chical search algorithm based on RatSkills and a
blind forward-search algorithm on 100 random
initial states for all three tasks. Fig. 6 summa-
rizes the result. Overall, RatSkills enable effi-
cient search for plans. On relatively easier tasks
(2 or 3 steps), search with and without RatSkills
have similar efficiency. However, when the task
becomes more complex (4 steps), our model sig-
nificantly improves the search. For example, to
reach 70% success rate, search with RatSkills
only need to expand 7,707 nodes, while without
RatSkills, it needs 18,699 (2.4×) nodes. Besides, the effectiveness of RatSkills grows as the map
grows, because they provide cues of meaningful sub-goals in order to achieve the final goal. We leave
learning models for more efficient skill-level planning (Konidaris et al., 2018) as future work.

Inverse planning. Table 2 shows the results for the inverse planning task. In general, models
with FSM-based task representations (BC-FSM and RatSkills) outperform those that treat the task
description directly as an additional input. In both environments and on both splits, RatSkills
consistently perform well. In both environments, the LSTM, IRL and BC baselines all achieve high
accuracy on previously-seen tasks (i.e., in the compositional split) but experience a huge performance
drop when generalizing to the novel split. By contrast, BC-FSM and RatSkills significantly outperform
others on the novel split. This suggests the effectiveness of our task-augmented transition models.

We see a strong performance of LSTM on the compositional split in Crafting World but fails on all
other tasks. Its failure on two “novel” splits suggests that the LSTM encoding of the task specification
does not generalize to unseen task specifications. The failure on the Playroom compositional split is
probably because typically we have longer action sequences in continuous environments and we are
dealing with continuous parameters instead of symbolic concepts..

Extension to image-based states. We include an additional experiment to test the applicability of
RatSkills on image inputs. Specifically, instead of processing the symbolic states containing global,
inventory, and map features, the model now uses a CNN to directly read the game interface. The
image-based RatSkills reach 76.4% success rate on the compositional split in the Crafting World
environment, which is lower than RatSkills based on symbolic states (99.6%) but still significantly
outperforms all baselines based on symbolic states (the best baseline IRL reaches 36.5%).

Limitations. There are certain limitations of RatSkills in terms of computational cost and scalability.
First, high-level planning is currently done with a blind search. Although we have already demon-
strated its effectiveness with black-box goal test experiments, its applicability to longer-horizon tasks
can be further extended by learning causal models at the skill level (Konidaris et al., 2018). Second,
the skills learned by RatSkills are not “lifted.” That is, the skills do not generalize to unseen objects
(e.g., from “mine gold ore” to “mine iron.” Designing skill representations that generalize to unseen
objects is another meaningful direction. Third, in this first work we assume a good deterministic ap-
proximation to the actual world dynamics. Generalizing to stochastic domains may require significant
algorithm change in training and execution but the high-level concepts of RatSkills could be retained.

5 CONCLUSION

We present RatSkills, compositional hierarchical skill models that support efficienct planning and
inverse planning to achieve novel goals and recognize activities of other agents. RatSkills can be
learned by observing expert demonstrations and reading task specifications described in a simple
task language T L. Specifically, we present a learning algorithm based on Bayesian inverse planning
to simultaneously segment the trajectory into fragments, which correspond to individual skills, and
learn planning-compatible models for each skill. Our experiments in both discrete and continuous
domains suggest that RatSkills have strong compositional generalization to novel tasks composed of
the previously-seen skills.
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REPRODUCIBILITY STATEMENT

Our dataset, environment, and code can be found at: https://sites.google.com/view/
ratskills/home. Our dataset and code contain no personally indentifiable information or
offensive content.
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A IMPLEMENTATION DETAILS OF RATSKILLS

A.1 SKILL MODEL AND TASK LANGUAGE

In this section, we first formally describe how we can construct finite state machines based on task
descriptions. Next, we provide a discussion on the initiation set Io in our skill model. Then, we
provide a example to better understand the semantics of “then” in our task language. Specifically,
how it allows the execution steps for different skills to be interleaved.

Construction of finite state machines from task descriptions. We provide the detailed algorithm
for the construction. Recall the definition of FSM. Each FSMt is a tuple (Vt, Et, V It, V Gt) which
are skill nodes, edges, set of possible starting nodes and set of terminal nodes. We have the follow
constructions:

• Single skill: A single skill s is corresponding FSM with a single node i.e. VIt = VGt =
Vt = {s}, and Et = ∅.

• t1 then t2: We merge FSMt1 and FSMt2 by merging their skill nodes, edges and using
VIt1 as the new starting node set and VGt2 as the new terminal node set. Then, we add all
edges from VGt1 to VIt2 . Formally,

FSMt1 then t2 = (Vt1 ∪ Vt2 , Et1 ∪ Et2 ∪ (VGt1 × VIt2),VIt1 ,VGt2)

• t1 or · · · or tn: Simply merge n FSMs without adding any new edges. Formally,

FSMt1 or ··· or tn = (
⋃
i

Vti ,
⋃
i

Eti ,
⋃
i

VIti ,
⋃
i

VGti)

• t1 and · · · and tn: Build 2n−1n sub-FSMs over n layers: the i-th layer contains
n ·
(
n−1
i−1

)
sub-FSMs each labeled by (s,D) where s is the current skill to complete (so this

sub-FSM is a copy of FSMs), andD is the set of skills that have been previously completed.
Then for a sub-FSM (s1, D1) and a sub-FSM (s2, D2) in the next layer, if D2 = D1 ∪{s1},
we add all edges from terminal nodes of the first sub-FSM to starting nodes of the second
sub-FSM. After building layers of sub-FSMs and connecting them, we set the starting nodes
to be the union of starting nodes in the first layer and terminal nodes to be the union of
terminal nodes in the last layer.

Note that our framework requires the starting and terminal nodes to be unique, but the construction
above may output a FSM with multiple starting/terminal nodes, so we introduce the virual super
starting node v0 and terminal node vT to unify them.

The initial condition Io is important in our abstration. The learned skill definitions are intended
to constitute a hierarchy that is useful both for parsing human activity sequences and efficiently
generating behavior. To do so, high-level skills need to account for a bounded interval of activity.
Without an explicit understanding of an initiation set i.e. Io, an entire long behavior sequence could
conceivably be described just in terms of the final goal condition. For example, picking up an object
should be interpreted as from "not holding X" to "holding X", but not as a long sequence of building
X from scratch and then picking up it.

This interpretation agrees with the definition of a broad set of natural language words, such as the
representations in Doering (2015).

In planning, the initial condition associated with each skill helps limit the horizon when planning for
the goal. For example, our planning algorithm will not try to plan for "holding an axe" (the subgoal
for skill "pickup-axe") if we haven’t yet built an axe (because the initial condition for "pickup-axe" –
having an axe on the ground – is not satisfied).

Although it is true that the simple planning method we used as a proof-of-concept does not make use
of the initiation sets, more sophisticated planning methods make critical use of preconditions and
effects, especially for deriving domain-independent value functions.
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Skill 1 (!!): mine-gold Skill 2 (!"): craft-boat

!! is completed. !" is completed.The agent may make some
progress (mine wood for the
boat) towards .$ even if .%
has not been completed yet.

Task: !" "#$% !#

Completing !"Completing !!Completing !"

Figure 7: An example of optimal interleaving skills: s1 is "mine gold", and s2 is "craft boat". It
is valid that the agent first goes to collect wood (for accompolishing s2), and then mine gold (for
accompolishing s1), and finally crafts boat. In this case, the action sequences for completing s1 and
s2 are interleaved. However, they can are be recognized as s2 then s2 because s1 is accomplished
before s2.

Execution steps for different skills can interleave. RatSkills does not simply run optimal policy
for each individual skill sequentially. Rather, the semantic of s1 then s2 is: s1 should be completed
before s2. It does not restrict the agent from making progress towards the skill before the skill is
completed. In some case, such interleaving is necessary to obtain the globally optimal trajectory.

Consider the example shown in Figure 7, where s1 is "mine-gold", and s2 is "craft-boat". It is
valid that the agent first goes to collect wood (for accompolishing s2), and then mine gold (for
accompolishing s1), and finally crafts boat. In this case, the action sequences for completing s1 and
s2 are interleaved. However, they can are be recognized as s1 then s2 because s1 is accomplished
before s2.

A.2 FSM-A∗

We have implemented a extended version of the A∗ algorithm to handle FSM states in Crafting World.

A∗ at each FSM node. We start with the A∗ search process happening at each FSM node. For a
given FSM state, the A∗ search extends the tree search in two stages. The first stage lasts for b = 3
layers during training and b = 4 layers during testing. In the first b layers of the search tree, we run a
Breadth-First-Search so that every possible path with length b is explored. Then on the second stage
lasts for c = 15 layers during training and 25 layers in testing. In layer d ∈ [b+ 1, b+ c], we run A*
from the leaves in the first stage based on the heuristic for each node. By enforcing the exploration at
the early stage, we avoid imperfect heuristic from misguiding the A* search at the beginning. For
each FSM node v and each layer d, we only keep the top k = 10. Finally, we run the value iteration
on the entire search tree.

To accelerate this search process, for all tasks t in the training set, we have initialized a dedicated
value approximator Vt(s̄), conditioned on the historical state sequence. During training, we use the
value iteration result on the generated search tree to supervise the learning of this approximator Vt.
Meanwhile, we use the value prediction of Vt as the heuristic function for node pruning. During test,
since we may encounter unseen tasks, the A∗-FSM search uses a uniform heuristic function h ≡ 0

Search on an FSM. For a given initial state s0 and task description t, we first build FSMt and add
the search tree node (s0, v0) to the search tree, where v0 is the initial node of the FSM. Then we
expand the search tree nodes (s, v) by a topological order of v. It has two stages. First, for each FSM
node v, we run up to 5000 steps of A∗ search. Next, for all search tree nodes (s, v) at FSM node v, we
try to make a transition from (s, v) to (s, v′) where (v, v′) is a valid edge in FSMt. Finally, we output
a trajectory ending at the FSM node vT with minimum cost.
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Skill 1 (!!): mine-gold Skill 2 (!"): craft-boat

!! is completed. !" is completed.The agent may make some
progress (mine wood for the
boat) towards .$ even if .%
has not been completed yet.

Task: !" "#$% !#

Completing !"Completing !!Completing !"

Figure 8: A running example of the FSM-A∗ algorithm for the task “(mine wood or mine coal) then
mine gold.” For simplicity, we only show a subset of states visited on each FSM node. The blue
arrows indicate transitions by primitive actions (in this example, each primitive action takes a cost of
0.1). The yellow arrows are transitions on the FSM, which can only be performed when Gv(·) and
Iv′(·) evaluates to True (in practice, the reward is computed as − (log Pr(Gv(·) + log Pr(Iv′(·)))).
At the super-terminal node vT , the state with minimum cost will be selected and we will back-trace
the entire state-action sequence.

Example. Fig. 8 shows a running example of our FSM-A∗ planning given the task “mine wood or
mine coal then mine gold” from the state s0 (shown as the left-most state in the figure).

1. At the beginning, (s0, v0) is expanded to the node v1:mine wood and v2:mine coal with FSM
transition actions at no cost.

2. We expand the search tree node on v1 and v2 and compute the cost for reaching each states
on v1 and v2.

3. For states that satisfy the goal conditions for v1 and v2 (i.e., G1 and G2, respectively,
and circled by green and blue boxes) and the initial condition for v3 (i.e., I3), we make a
transition to v3 at no cost (the states that do not satisfy the conditions can also be expanded
to v3 but with a large cost.

4. Then search can be done in a similar way at v3 and the states at v3 that satisfy G3 can reach
vT .

5. For all states at vT , we back-trace the state sequence with the minimum cost.

Optimality of the A* algorithm on FSM. In the current implementation, RatSkills might return
sub-optimal solutions even with a perfect heuristic, because RatSkills balance the expanded nodes
across all FSM nodes: it first samples an FSM node and then expand a search tree node with the best
heuristic value on that node.

The optimality can be guaranteed by either of the following simple modifications, although at the
cost of possibly increasing the running time:

• Always expand the search node with the globally best admissible heuristic value. (Because
our heuristic is learned, this may not be practical.)

• Keep expanding nodes, even after finding a plan, until none of the unexpanded search tree
nodes across all skill nodes in the FSM have better heuristic values than the current best
solution.
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Scalability and complexity of task searching. When planning for a black-box test, currently we
assume that the task can be completed within a short sequence of skills, and thus a blind/enumerative
search at the skill level can work. In the future we hope to incorporate other learning and planning-
based approach (Konidaris et al., 2018) at the skill level to improve efficiency.

Meanwhile, the efficiency can be justified theoretically, even for this enumerative search approach.
Say we have a skill set O, a primitive action set A, and each skill can be completed in l actions,
and the task can be achieved by sequencing m skills. Our two-level search generates up to O(|O|m)
candidate skill sequences and each sequence takes O(m|A|l) time to search. Thus, the worst-case
complexity is O(m|O|m|A|l) which is still better than a pure primitive-level search, which has the
worst-case complexity O(|A|ml), because the number of skills |O| is usually much smaller than |A|l
(the number of all possible length l sequences).

A.3 TRANSITIONS ON FSM

When encoding transitions on FSM, we use dynamic program to select a transition that maximize
our score, and another formulation is to consider the stochastic transitions using Iv and Gv as
probabilities. These two formulations can be unified using a framework of latent transition models,
though they are computed using different DP algorithms and may lead to different results.

First of all, these two formulations are equivalent when the initial/goal classifiers are binary
(0/1). When the classifiers are approximated by "soft" functions that indicate the probability
they are satisfied, the two formulations correspond to two approaches of integrating reward (i.e.
rationality in our model). The stochastic transition formulation computes the expected ratio-
nality, and our formulation can be viewed as an approximation of maximum-likelihood esti-
mated rationality – we take maxτ λ log Pr(transitions in τ are successful) + Rationality(s̄, ā, τ).
It would be an interesting extension to adopt the stochastic transition formulation (i.e.,
Eτλ log Pr(transitions in τ are successful) + Rationality(s̄, ā, τ)) and use a stochastic planner
or MDP solver, although the planning time might be substantially increased.

Second, even if these two approaches behave differently in some cases, but it is unclear which one
is better: this is a fundamental challenge in planning: how should the robot decide whether it has
finished a task if there is no indication (such as rewards) from the environment?

B DATASET

B.1 CRAFTING WORLD

Our Crafting World environment is based on the Crafting environment introduced by Chen et al. Chen
et al. (2021). The environment has a crafting agent that can move in a grid world, collect resources,
and craft items. In the original environment, every crafting rule is associated with a unique crafting
station (e.g., paper must be crafted on the paper station). We modified the rules such that some
crafting rules can share a common crafting station (e.g., both arrows and swords can be crafted on a
weapon station). We add additional tiles: doors and rivers into the environment. Toggling a specific
switch will open all doors. Otherwise, the agent can move across doors when they are holding a key.
Meanwhile, the agent can move across rivers when they have a boat in their inventory.

We have used 47 object types in Crafting World including obstacles (e.g., river tiles, doors), items
(e.g., axe), resources (e.g., trees), and crafting stations. We use 27 rules for mining resources and
crafting items. When the agent is at the same tile as another object, the toggle action will trigger
the object-specific interaction. For item, the toggle action will pick up the object. For resource, the
toggle action will mine the resource if the agent has space in their inventory and has the required tool
for mining this type of resource (e.g., pickaxe is needed for mining iron ore).

State representation. The state representation of Crafting World consists of three parts.

1. The global feature contains the size of grid world, the location of the agent, and the inventory
size of the agent.

2. The inventory feature contains an unordered list of objects in the agent’s inventory. Each of
them is represented as a one-hot vector indicating its object type.
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3. The map feature contains all objects on the map, including obstacles, items, resources, and
crafting stations. Each of them is represented by a one-hot type encoding, the location (as
integer values), and state (e.g., open or closed for doors).

Action. In Crafting World, there are 5 primitive level actions: up, down, left, right, and toggle. The
first four actions will move the agent in the environment, while the toggle action will try to interact
with the object in the same cell as the agent.

State feature extractor. Since our state representation contain a varying number of objects, we
extract a vector representation of the environment with a relational neural network: Neural Logic
Machines (NLM; Dong et al., 2019).

Concretely, we extract the inventory feature and the map feature separately. For each item in the inven-
tory, we concatenate its input representation (i.e., the object type) with the global input feature. We
process each item with the same fully-connected layer with ReLU activation. Following NLM Dong
et al. (2019), we use a max pooling operation to aggregate the feature for all inventory objects,
resulting in a 128-dim vector. We use a similar architecture (but different neural network weights) to
process all objects on the map. Finally, we concatenate the extracted inventory feature (128-dim), the
map feature (128-dim), and the global feature (4-dim) as the holistic state representation. Thus, the
output feature dimension for each state is 260.

Task definitions. We list the task descriptions in the primitive, the compositional, and the novel
splits Table 3.

B.2 PLAYROOM

We build our Playroom environment following Konidaris et al. Konidaris et al. (2018). Specifically,
we have added obstacles into the environment. The environment contains an agent, 6 effectors (a ball,
a bell, a light switch, a button to turn on the music, a button to turn off the music and a monkey), and
a fix number of obstacles. The agent and the effectors have fixed shapes. Thus, their geometry can be
fully specified by their location and orientation. For simplicity, we have also fixed the shape and the
location of the obstacles.

State representation. We represent the pose of the agent by a 3D vector including the x, y coordi-
nates (real-valued) and its rotation (real-valued, in [−π, π). The state representation consist of the
pose of the agent (as a 3-dimensional vector) and the locations of six effectors (as 6 2-dimensional
vectors). Note that the state representation does not contain the shapes nor the locations of obstacles
as they remain unchanged throughout the experiment. We directly concatenate these 7 vectors as the
state representation.

Action. The agent has a 3-dimensional action space: [−1, 1]3. That is, for example, at each time
step, the agent can at most move 1 meter along the x axis. We perform collision checking when the
agent is trying to make a movement. If an action will result in a collision with objects or obstacles in
the environment, the action will be treated as invalid and the state of the agent will not change.

Task definitions. We list the task descriptions in each of the primitive, compositional and novel set
of the Playroom in Table 4
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Primitive

grab-pickaxe grab-axe grab-key toggle-switch
craft-wood-plank craft-stick craft-shears craft-bed
craft-boat craft-sword craft-arrow craft-cooked-potato
craft-iron-ingot craft-gold-ingot craft-bowl craft-beetroot-soup
craft-paper mine-gold-ore mine-iron-ore mine-sugar-cane
mine-coal mine-wood mine-feather mine-wool
mine-potato mine-beetroot

Compositional

grab-pickaxe grab-axe
grab-key toggle-switch
mine-wood then craft-wood-plank craft-wood-plank then craft-stick
craft-iron-ingot or craft-gold-ingot then craft-shears mine-wool and craft-wood-plank then craft-bed
craft-wood-plank then craft-boat craft-iron-ingot and craft-stick then craft-sword
mine-feather and craft-stick then craft-arrow mine-potato and mine-coal then craft-cooked-potato
mine-iron-ore and mine-coal then craft-iron-ingot mine-gold-ore and mine-coal then craft-gold-ingot
craft-wood-plank or craft-iron-ingot then craft-bowl craft-bowl and mine-beetroot then craft-beetroot-soup
mine-sugar-cane then craft-paper grab-pickaxe then mine-gold-ore
grab-pickaxe then mine-iron-ore grab-pickaxe or grab-axe then mine-sugar-cane
grab-pickaxe then mine-coal grab-axe then mine-wood
craft-sword then mine-feather craft-shears or craft-sword then mine-wool
grab-axe or mine-coal then mine-potato grab-axe or grab-pickaxe then mine-beetroot

Novel

1. mine-sugar-cane then craft-paper
2. mine-potato and (gran pickaxe then mine-coal) and craft-cooked-potato
3. mine-beetroot and (grab-axe then mine-wood then craft-wood-plank then craft-bowl) then craft-beetroot-soup
4. grab-axe then mine-wood then craft-wood-plank then grab-pickaxe then mine-iron-ore
and mine-coal then craft-iron-ingot then craft-shears then mine-wool then craft-bed
5. grab-axe then mine-wood then craft-wood-plank then craft-stick then grab-pickaxe
then mine-iron-ore and mine-coal then craft-iron-ingot then craft-sword then mine-
feather then mine-wood then craft-wood-plank then craft-stick then craft-arrow
6. grab-key then grab-axe
7. toggle-switch then mine-beetroot
8. grab-axe then mine-wood then craft-wood-plank then craft-boat then mine-sugar-cane
9. grab-axe then mine-wood then craft-wood-plank then craft-boat then grab-pickaxe
10. grab-key then grab-axe then mine-wood then craft-wood-plank then craft-boat then mine-potato
11. grab-key or (grab-axe then mine-wood then craft-wood-plank then craft-boat) then
grab-pickaxe then mine-gold-ore
12. grab-axe then mine-wood then craft-wood-plank then craft-boat then grab-key or
toggle-switch then grab-pickaxe then mine-iron-ore and mine-coal then craft-iron-ingot

Table 3: Task descriptions in the primitive, compositional and novel sets for the Crafting World.
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Primitive

play-with-ball ring-bell turn-on-light
touch the mounkey turn-off-music turn-on-music

Compositional (designed meaningful tasks)

play-with-ball
turn-on-light then ring-bell
turn-on-music and play-with-ball then touch the monkey
play-with-ball then turn-on-light
turn-on-music and play-with-ball then turn-off-music
turn-on-music or play-with-ball
turn-off-music then play-with-ball then turn-on-music
turn-on-music and play-with-ball and turn-on-light then ring-bell

Novel (randomly sampled)

play-with-ball then turn-on-light or ring-bell
turn-on-music then turn-on-light
turn-on-music then turn-on-light
play-with-ball then touch the monkey
turn-on-music then turn-off-music
turn-on-music and ring-bell then touch the monkey
ring-bell then touch the monkey then turn-on-light
turn-on-light and (ring-bell or turn-on-music) then play-with-ball

Table 4: Task descriptions in the primitive, compositional and novel sets for the Playroom.
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C IMPLEMENTATION DETAILS

In this section, we present the implementation details of RatSkills and other baselines. Without
further notes, through out this section, we will be using the same LSTM encoder for task descriptions
in T L, and the same LSTM encoder for state sequences. The architecture of both encoders will be
presented in Appendix C.1.

C.1 LSTM

Task description encoder. We use a bi-directional LSTM Hochreiter & Schmidhuber (1997) with
a hidden dimension of 128 to encode the task description. The vocabulary contains all primitive
skills, parentheses, and three connectives (and, or, and then). We perform an average pooling on the
encoded feature for both directions, and concatenate them as the encoding for the task description.
Thus, the output dimension is 256.

State sequence encoder. For a given state sequence s̄ = {si}, we first use a fully-connected layer
to map each state si into a 128-dimensional vector. Next, we feed the sequence into a bi-directional
LSTM module. The hidden dimension of the LSTM is 128. We perform an average pooling on the
encoded feature for both directions, and concatenate them as the encoding for the state sequence.

Training. In our LSTM baseline for inverse planning, we concatenate the state sequence feature
and the task description feature, and use a 2-layer multi-layer perceptron (MLP) to compute the score
of the input tuple: (trajectory, task description). The LSTM model is trained for 100 epochs on both
environments. Each epoch contains 30 training batches that are randomly sampled from training data.
The batch size is 32. We use the RMSProp optimizer with a learning rate decay from 10−3 to 10−5.

C.2 INVERSE REINFORCEMENT LEARNING (IRL)

The IRL baseline uses an LSTM model to encode task descriptions. We use different parameterizations
for the reward function and the Q function in two datasets.

Crafting World Since the task description may have complex temporal structures, the reward
value does not only condition on the current state and but all historical states. Therefore, instead
of Q(s, a|t) and R(s, a, s′|t), we use Q(s̄, a|t) and R(s̄, a, s′|t) to parameterize the Q function and
reward function, where s is the current state, a the action, t the task description, s′ the next state, and
s̄ the historical state sequence from the initial state to the current state.

We use neural networks to approximate the Q function and reward function. For both of them, s̄ is
first encoded by an LSTM model into a fixed-length vector embedding. We simply concatenate the
historical state encoding and the task description encoding, and then use a fully-connected layer to
map the feature into a 5-dimensional vector. Each entry corresponds to the Q value or the reward
value for a primitive action.

Playroom The Q function and reward function in Playroom also condition on all historical states.
In Playroom, we parameterize the value of each state: V (s̄), instead of Q(s̄, a). We parameterize
R(s̄, a, s′) as R(s̄, s′).

The input to our reward function network is composed of three parts: the vector encoding of the
historical state sequence, the vector encoding for the next state s′, and the task description encoding.
We concatenate all three vectors and run a fully-connected layer with a logSigmoid activation
function.‡

In Playroom, since we do not directly parameterize the Q value for all actions in the continuous
action space, in order to sample the best action at each state s for plan execution, we first randomly
sample 20 valid actions from the action space (i.e., actions that do not lead to collision), and choose
the action that maximizes the Q function: Q(s̄ ∪ s′, a), where s̄ is the historical state seuqnce and s′
is the next state after taking a.

‡We have experimented with no activation function, Sigmoid, and logSigmoid activations, and found that the
logSigmoid activation works the best.
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Value iteration. Both environments have a very large (Crafting World) or even infinite (Playroom)
state space. Thus it is impossible to run value iteration on the entire state space. Thus, at each
iteration, for a given demonstration trajectory (s̄e, āe), we construct a self exploration trajectory
(s̄p, āp) that share the same start state as s̄e §. We run value iteration on {s̄e} ∪ {s̄p}. For states not
in this set, we use the Q function network to approximate their values.

Training. For both Crafting World and Playroom, we train the IRL model for 60 epochs. We set
the batch size to be 32 and each epoch has 30 training batches. We use a replay buffer that can store
100,000 trajectories. For both environments, we use the Adam optimizer with a learning rate decay
from 10−3 to 10−5. We have found the IRL method unstable to train in the Playroom environment.
Thus, in Playroom, we use a warm-up training procedure. In the first 18(30%) epochs, we set γ = 0
for a “warm start”, and for rest of the epochs we use γ = 0.5, where γ is the discount factor in the Q
function.

C.3 BEHAVIOR CLONING (BC)

BC learns a policy π(s̄, a|t) from data, where t is the task description, a a primitive action, and s̄ the
historical state sequence. The state sequence s̄ is first encoded by an LSTM model into a fixed-length
vector embedding.

In Crafting World, we use a fully-connected layer with softmax activation to parameterize π(a|s̄, t).
Specifically, the input to the fully-connected layer is the concatenation of the vector encoding of s̄
and the vector encoding of the task description t.

In Playroom, we use two fully-connected (FC) layers to parameterize π(a|s̄, t). Specifically, we
parameterize π(a|s̄, t) as a Gaussian distribution. The first FC layer has a Tanh activation and
parameterizes the mean µ of the Gaussian. The second FC layer has a Sigmoid activation and
paramerizes the standard variance σ2 of the Gaussian.

To make this model more consistent with our BC-FSM model, in both environments, we also train a
module to compute the termination condition of the trajectory. That is, a neural network that maps s̄
to a real value in [0, 1], indicating the probability of terminating the execution. Denote the output of
this network as stop(s̄). At each time step, the agent will terminate its policy with probability stop(s̄).
We modulate the probability for other actions a as π(a|s̄, t) · (1− stop(s̄))

For planning in Crafting World, at each step, we choose the action with the maximum probability
(including the option to “terminate” the execution). In Playroom, we always take the “mean” action
parameterized by π(a|s̄, t) until we reach the maximum allowed steps.

We then define the score of a task given a trajectory, score(s̄, ā, t), as the sum of log-probabilities
of the actions taken at each step. We train this model with the same loss and training procedure as
RatSkills. We train the model for 100 epochs using the Adam optimizer with a learning rate decay
from 10−3 to 10−5.

C.4 BEHAVIOR CLONING WITH FSM (BC-FSM)

BC-FSM represents task description as an FSM, in the same way as our model RatSkills. It represents
each skill o as a tuple: 〈πo(sa), stopo(s)〉, corresponding to the skill-conditioned policy and the
termination condition.

Inverse planning. The inverse planning procedure for BC-FSM jointly segments the trajectory and
computes the consistency score between the task description and the input trajectory. In particular,
our algorithm will assign an FSM state vi to each state si, and insert several action. We use a dynamic
programming algorithm (similar to the one used by our algorithm for RatSkills) to find the assignment
that maximize the overall score:

score(s̄, v̄, ā) :=
∏
i

p(ai|si, vi, t)

p(ai|si, vi, t) =

{
π(ai|si, vi) · (1− stop(si, vi)) if a ∈ A is a primitive action
stop(si, vi) if a ∈ Et is an FSM transition

§Since running self-exploration in Playroom is too slow, in practice, we only generate self-exploration
trajectories for 4 trajectories in the input batch.
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Planning. We use the same strategy as the basic Behavior Cloning model to choose actions at each
step, conditioned on the current FSM state. BC-FSM handles branches in the FSM in the same way as
our algorithm for RatSkills.
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