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ABSTRACT

We investigate In Situ visual feedback, on or in the hand, to learn
hand gestures more precisely in virtual reality environments. This
feedback helps users understand if any of their fingers are incorrectly
positioned during a gesture, and enables hitting a smaller, more
precise “target” in pose space. In Situ feedback can be used to
teach gestures in a tutorial mode, or can appear automatically when
the user gets close enough to a known hand pose, serving both
as an autocompletion hint (i.e., if the user terminates the gesture,
they know with confidence how it will be interpreted) and as a
feedforward hint (i.e., the user can adjust their pose to be closer
to the ideal before terminating, when precision is important). We
present four variants of In Situ feedback, which were compared in a
first study in virtual reality involving 12 users wearing a Meta Quest
2 headset. The most promising variant, Puppet, was evaluated in
a second study with 20 users, and enabled greater precision than a
static grid, and was preferred by most users.

Index Terms: Human-centered computing—Virtual reality;
Human-centered computing—Graphical user interfaces

1 INTRODUCTION

Hand tracking is now common in XR (virtual and augmented reality),
for example in games for the Meta Quest 2, or business applications
with the Microsoft Hololens 2. Hand tracking is also sometimes
used without headsets, both in workstations [25, 28] and in public
displays such as in shopping centers. Gestural interaction with bare
hands has advantages over input devices like keyboards, mice, and
hand-held controllers: bare hand gestures (1) do not require the
user to pick up hardware devices, which may be hard to find when
wearing an opaque headset or may need to be recharged or may
require learning how to use; (2) afford the user more freedom to
stand or walk during interaction; (3) are more easily intermixed
with the grabbing and manipulation of other physical objects; and
(4) there are more degrees of freedom available with bare hands
(position, orientation, individual fingers) than with common input
hardware devices. Once learned, gestures allow for fast execution of
commands with no need for menus or widgets that would occupy
space.

Status quo interfaces often reveal available gestures through visual
aids (static images or animations) that are separate from the user’s
hands. These visual aids have the disadvantages of occupying screen
space, requiring the user to move their eyes between the visual
aid and their hand, and also make it difficult to achieve precisely
the same gesture with all fingers positioned correctly. Learning to
reproduce gestures precisely helps to avoid subsequent errors that
could be caused if the user “drifts” toward an incorrect pose, and is
also useful in applications where gestures are used for continuous
control.

To address these problems, we investigate In Situ (“in place” or
“local”) visual feedback (Figure 1) positioned directly in or on the
hand. Rather than performing a gesture and waiting for discrete con-
firmation that it was recognized as intended, users see continuously
updated, fine-grained feedback prior to terminating a gesture. Users
can understand if one of their fingers is incorrectly positioned, and
also learn to reproduce gestures more precisely. This helps users hit
a smaller “target” in pose space, resulting in fewer recognition errors
during subsequent use. This also means that there is more room in
gesture space to later incorporate and learn additional gestures.

Figure 1: Four variants of In Situ feedback. The yellow mesh shows
the user’s current hand pose. Left column: the target gesture is with
thumb and index extended. Right column: the target gesture is with
thumb, index and middle fingers extended.

Our contributions are (1) the design of 4 variants of In Situ feed-
back, which, unlike previous work, provide in-the-hand visual aid
for individual finger placement; (2) a discussion of design issues
related to implementing such feedback; and (3) the results of two
studies performed in virtual reality, collectively involving 32 users.
Our 2nd study provides strong evidence that our novel Puppet variant
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enables users to reproduce hand poses more precisely than a status
quo cribsheet (“grid”) and was preferred by most users.

2 BACKGROUND

Xia et al. [29] give a thorough, recent survey of issues related to
gestural interaction. In our brief survey here, the term ‘gesture’ may
refer to motions through space performed by a limb or input device,
or refer to postures or poses adopted by a body part, or a combina-
tion of these. We review previous work on gestural interaction by
considering different modalities for input, beginning with pointing
devices in 2D or 3D space, and ending with the fingers of the user’s
hands.

2.1 Gestures with pointing devices
First, consider gestures made with the motion of a 2D pointing device
such as a stylus, mouse, or a single finger on a touchpad. Typically,
the user “draws” one of many possible gestures, or shapes, with the
input device, causing a command to be selected. In some systems,
the user must study the set of allowed shapes prior to using them,
e.g., by using a “cribsheet”, a visual key showing how each shape is
drawn. A more advanced version of this is the GestureBar [7, 31],
which allows users to look up and interactively rehearse gestures
before using them in the workspace.

Other systems display visual guides at the same time that the
user is drawing a gesture. This is sometimes called feedforward,
in contrast to (confirmatory) feedback which is displayed after the
system has recognized a gesture. (Throughout this paper, we use
the term feedback to refer more generally to any visual indication,
including feedforward as well as confirmatory feedback.) Feedfor-
ward can be displayed at the user’s current location [1,5,6] to reduce
division of attention and eye motion, or off to the side [1, 18] to
reduce occlusion. Feedforward might be continually updated during
the user’s motion to only display the subset of gestures most closely
matching the user’s motion up until now, and/or only display the
remaining portion of each possible gesture [1,5]. If only one gesture
known to the system matches a user’s partial gesture, the system
can autocomplete the gesture [6], affording a shortcut to the user.
Feedforward can also be displayed in the form of menu items, where
the gesture’s shape is implied by the location of the menu labels [4].

Although such feedforward makes it easier for beginners to per-
form gestures, it may also act as a crutch, making it less likely that
users will remember the gestures. Anderson et al. [1] experimentally
demonstrated that users remembered gestures better when the feed-
forward was hidden earlier and earlier prior to the user completing a
gesture.

The preceding work has been for input in 2D, but OctoPocus [5]
has notably been extended to 3D [9, 11].

2.2 Gestures with body parts
Next, we move on to gestures performed with the user’s body, arms,
or hands [14, 17], first considering gestures that do not require spe-
cific actions by individual fingers. Techniques for visually indicating
how to perform a gesture with a body part include (1) showing a
semi-transparent or “ghosted” image of the body part performing
the gesture, which has been applied to the whole body [3, 30], the
arms [10, 16], the hands [20] or an object held in the hand [27]; (2)
showing a skeleton of the body part performing the gesture [2, 23];
or (3) using arrows [2,24]. We can classify these previous works into
those that are exocentric, displaying indications in front of the user,
e.g., on a screen, as if the user is looking at a mirror image or a 3rd
person perspective [2, 23], and egocentric, with visual indications
displayed in the 1st person on the user’s own body in an immersive
environment [10, 16, 20, 24, 27].

Next, there are gestural interfaces where the user’s individual
fingers must execute specific motions or poses. In one subset of
this previous work, the gestures are performed on a multitouch

surface. ShadowGuides [12] indicate how to perform multitouch
gestures using silhouettes and arrows, and Arpège [13] displays
labeled contact points for fingertips. We classify Arpège [13] as an
example of in situ help, because the visual indications are displayed
directly under the hand, in contrast to ShadowGuides [12] where
the visual indications are offset to the side to avoid occlusion. (Note
that Freeman et al. [12] describe their system as in-situ, but this is
meant in a temporal sense, i.e., the visual help is provided at the
same time that the user is executing gestures, to “learn while doing”.
We instead use the term “in situ” to refer to spatial coincidence.)

Another subset of work involves individual fingers moving or
posing in 3D space. To visually indicate a gesture to the user, a
common approach within VR games is to show the user exocentric
static images or animations. GesturAR [26] displays exocentric
animated skeletons of fingers. We are aware of no previous virtual
reality interfaces employing in situ (on the bare hand) indications of
how to move or position individual fingers. Our work studies this
topic.

2.3 Other previous work
Our work was also informed by a previous study of hotkey learning
by Grossman et al. [15], who experimentally compared different
methods for learning shortcut keys in a pulldown menu. The condi-
tion that resulted in the fastest learning was one where users could
not select menu items by clicking on them, and could only use the
pulldown menu to look up the corresponding shortcut key. A pull-
down menu that can only be used to lookup shortcut keys, and not
click to select commands, is analogous to a cribsheet that can only
be used to lookup gestures. If such a pulldown menu or cribsheet
is inconvenient to access, this will incentivize the user to memorize
the shortcuts or gestures, respectively.

3 TYPES OF GESTURES

This section considers hand gestures in a general sense, involving
the hand either moving through space or positioning the fingers in
a specific way. Table 1 identifies five types of such gestures. The
term hand pose refers specifically to a configuration of fingers, i.e.,
a positioning of fingers in the hand’s local space.

Table 1: Five types of gestures.

Pose of fingers Pose of fingers Pose of fingers
is not important is fixed changes over time

Hand does not move (not applicable) 2. Static Fingers 4. Dynamic Fingers
through space

Hand moves 1. Dynamic Hand 3. Dynamic Hand 5. Dynamic Hand
through space & Static Fingers & Fingers

We consider each of the five types in turn.
1: Dynamic Hand gestures involve hand motions without depend-

ing on fingers. OctoPocus in 3D [9, 11] demonstrates one way to
teach such gestures to users.

2: Gestures involving Static Fingers are invoked by adopting a
particular pose. A simple example is the “pinch” gesture where the
user touches the tips of their index finger and thumb. These are the
kinds of gestures that we have designed for in our work. Compared
to gestures with Dynamic Fingers, those with Static Fingers are
more amenable to a clear definition of the start and end of a gesture,
which can be useful for segmenting a stream of input.

3: Gestures with Dynamic Hand & Static Fingers are a combi-
nation of the previous two types. For example, pinching the thumb
together with either the index or middle or ring finger could open
one of three radial menus, after which the user moves their hand in
one of four directions (north, south, east, west) to select an item in
the radial menu, and then releases their pinch pose to complete the
menu selection. The initiation and release of the pinch pose delimit
the start and end of the gesture, but the pose remains fixed during the
hand motion, hence we classify this gesture as having static fingers.
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4 and 5: In the right-most column of the table, the pose of the
hand changes over the course of the gesture. An example of this
would be a pinch gesture where the user gradually spreads open
or closes their thumb + index to zoom or resize an object. During
this action, the hand could have a fixed position (Dynamic Fingers),
or the hand could be simultaneously moving (Dynamic Hand &
Fingers) to perform a translation of the scene or of an object. Ad-
ditional examples in this column (in the Dynamic Fingers subset)
are the “bloom” and “air tap” gestures on the Microsoft HoloLens,
where the user must move between different poses (closed fist to
extended fingers, or upward pointing index to downward pointing
index, respectively) to invoke commands.

Our research on In Situ feedback is focused on the Static Fingers
subset of the table, because there is a lack of previous work on visual
aids for positioning individual fingers, and it makes sense to first
design for static poses before considering dynamic fingers.

4 DESIGN OF IN SITU VISUAL FEEDBACK

4.1 The Importance of Precision
To reveal available gestures to new users, interfaces often use ex-
ocentric static images or recorded animations. A user attempting
to reproduce such gestures may do so with small variations. For
example, a hand pose where the index finger points forward might be
done with varying placement of the thumb or smaller fingers. Such
variations may lead to problems. First, if the gesture is not recog-
nized as intended, the user may not understand what caused the error.
Second, even if the recognition algorithm allows for such variations,
this may encourage users to adopt imprecise poses that drift over
time, resulting in subsequent recognition errors that are mysterious
to the user. Third, allowing for more variation makes it difficult to
later incorporate additional gestures that depend on correctly repro-
ducing the precise placement of all fingers. Fourth, in applications
that continuously interpolate between a set of hand poses (e.g., for
continuous control of a virtual character’s posture [19] or of a digital
musical performance), it may be important for users to learn how to
precisely reproduce key hand poses.

If we imagine pose space as a 2-dimensional keyboard, executing
a gesture is like hitting a key. Without In Situ feedback, the user has
no indication if they are hitting the center of a key, or near the edge.
In Situ feedback should help users hit closer to the center of each
key (i.e., perform gestures more precisely), allowing them to avoid
errors later on, and also allowing the keys to be made smaller at a
later time to introduce more keys within the same space.

4.2 Visual Design
Figure 1 shows variants of In Situ feedback which we implemented
and evaluated. For clarity, Figure 1 shows snapshots of feedback
from a fixed position in the hand’s local space (i.e., the hand is
rotated and centered at a fixed position).

Each type of feedback changes as the user’s fingers move, updat-
ing to show the target gesture pose, except for Ghost feedback, in
which the purple mesh remains fixed as the user’s hand changes.

Note that each variant could be used in either virtual reality or
augmented reality, so long as the user’s hands are visible.

4.2.1 Arrows
Arrows indicate where each of the fingertips should be positioned.
To increase visibility, each arrow is rotated so that its flat side is
facing the user as much as possible. Arrows that would be less than
3 mm long are hidden to reduce clutter.

4.2.2 Ghost
Our Ghost feedback was inspired partly by the use of semi-
transparent drawing of objects to suggest motion, seen in comic
book art [22], and also in previous work such as Han et al. [16] and
Dürr et al. [10] which show comparable feedback for the entire arm

rather than fingers. Unlike our other forms of feedback, the ghost
feedback is static (not changing as the user’s fingers move), which
may be less distracting for the user as they seek to achieve the target
pose. To prevent “z-fighting” (i.e., rendering artefacts caused by the
user’s hand and the In Situ feedback drawn with nearly coincident
surfaces), the Ghost mesh is scaled down by 2% relative to the user’s
hand size.

4.2.3 Puppet
In this feedback, target positions for fingertips are indicated with
spheres which are connected via line segments to the user’s cur-
rent fingertip positions. Because the line segments resemble cords
that are stretched taut, this feedback superficially resembles puppet
strings.

The idea for this feedback came from redesigning Arrows to be
as simple as possible. Tiny spheres are arguably the simplest way
to indicate target positions. To show the association between these
spheres and each finger, the simplest approach is arguably straight
line segments. The result creates less occlusion of the hand.

4.2.4 ColoredSkin
ColoredSkin paints a heatmap on the skin, showing the difference
between the user’s hand and the target gesture with a color gradient.
Each joint is colored darker if a larger rotation is needed to achieve
the target gesture. Unlike the other types of feedback, ColoredSkin
does not directly indicate the target position of each finger, which
may make it more difficult to understand. However, the increased
effort required by a user to achieve a target gesture may work in
favor of remembering the gesture, as suggested by previous studies
involving effort and memory [1, 8, 15].

4.3 Uses of In Situ Feedback
One way to use In Situ feedback is as part of a tutorial mode where
the system is teaching the user one or several gestures. Each time the
system prompts the user to perform a gesture, the system can display
the corresponding In Situ feedback. We call this system-driven
feedback. This is analogous to a system asking the user to invoke a
search command by hitting a shortcut key combination like Ctrl+F
or +F. However, users may grow impatient with such tutorials if
there are many gestures to learn.

Continuing with the analogy, keyboard shortcuts are often listed
inside a pull-down menu where the user can simply click on the name
of a command. Users are often not willing to invest time learning
many shortcuts in a tutorial and might prefer to just open the pull-
down menu as needed. Once the pull-down menu is open, there is a
natural tendency to simply click on the desired command without
reading the associated keyboard shortcut. Grossman et al. [15]
evaluated alternative interfaces where the user could open a pull-
down menu to find a command, but then had to hit the corresponding
keyboard shortcut, helping the user to memorize the shortcut. A
similar approach is possible with In Situ feedback: the user would
first select the desired command in some kind of menu, causing the
corresponding In Situ feedback to appear, and the user would then be
required to perform the gesture, helping them memorize that gesture
for faster subsequent invocation. We call this user-driven feedback.
This is not a tutorial in the sense of the previous paragraph, since
now the user is selecting the desired command each time, perhaps
as part of real work tasks. Once the user has learned a gesture, they
can perform it without first opening the menu.

A third possible use is for the system to detect whenever the user’s
hand pose is close to a gesture G known to the system, at which
point the system displays the In Situ feedback for G. We call this
predictive feedback an autocompletion hint. This is analogous to the
user holding down the Ctrl key, at which point the system displays
“Ctrl+F: Find” because that is the only (or the most common) shorcut
key combination that starts with Ctrl.
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To implement autocompletion hinting, our code used a temporal
threshold τt and distance threshold τd : if the user’s pose remains
within distance τd of a known gesture for time τt , this triggers the
displaying of In Situ feedback. Our method for calculating distance
is explained in Section 5.1. We set τd = 12.6 cm for both our studies.
In Study 1, τt = 1000 ms, and in Study 2, τt = 500 ms.

4.4 How to Terminate a Gesture

Another design issue is how to allow a user to terminate (i.e., con-
firm) a hand pose gesture. This may be difficult to do with the same
hand and without changing the gesture recognized by the system.
Possible strategies include: once a gesture is executed, (1) the user
might hold their hand in the appropriate pose and await a timeout
(where the progress of the timeout is shown with a timer ring or
similar feedback), however this could be tiring for the user and also
make the interaction feel less “fluid”; (2) the hand performing the
gesture could perform a sudden lateral movement to signal comple-
tion, however this risks recognition errors depending on the tuning
of the system; (3) the other hand could press a hardware button
(such as a wireless clicker), or press a software widget, or perform
a “completion” gesture such as touching the index and thumb (of
the other hand) together – this requires the 2nd hand but avoids the
problems of the other strategies just mentioned.

5 IMPLEMENTATION

Our system was developed with Unity and a Meta Quest 2 headset.
As part of our research, we implemented software infrastructure

allowing us to record, playback, process, and visualize sequences
of hand poses. This allowed us to test, debug, and fine tune features
such as gesture recognition, autocompletion, and the visual design
of feedback without wearing a headset, greatly accelerating the
development process.

5.1 Defining the Distance between Hand Poses

To recognize a gesture, the system must find which pi of the known
poses {pi} is most similar to the user’s current pose pu. Doing
this requires defining the distance between any two poses. This
distance is computed by aligning the two poses at the wrist, and then
quantifying the dissimilarity between pi and pu. We experimented
with various formulations of this dissimilarity, taking into account
the positions of fingertips, or the positions of all joints in the hand,
or the distances between joints and the wrist, and we compared these
alternative formulations by testing how they ranked the similarity
of a pool of known poses to a variety of input poses. We found
that the simplest formulation, based on fingertip positions, produced
rankings that were subjectively no worse than other formulations.
In our fingertip formulation, the distance between poses a and b is
Σ5

k=1∥ fk,a− fk,b∥, where fk,p is the 3D position of the kth fingertip of
pose p. Notice that this distance has physical units, namely the sum
of distances between corresponding fingertips, which we measure in
centimeters. Because this distance function only uses the 5 fingertips,
it is faster to compute than a distance based on all joints, and is
more portable between different hand-tracking platforms for the
following reasons: some platforms might not track all internal joints,
or not track them reliably, and different hand tracking platforms
may decompose the hand into different sets of internal joints. The
fingertip positions are a lowest common denominator that are more
likely to be reliably tracked across platforms.

Our distance function weighs all fingers equally, however future
work could evaluate if different fingertips should be given different
weights.

6 STUDY 1

Study 1 was designed to answer two research questions: first, does In
Situ feedback help users to be more precise in performing gestures

than status quo feedback, and second, which form of In Situ feedback
is most effective?

6.1 Conditions
In a status quo VR user interface with hand gestures, the user might
have a way of accessing a visual guide (sometimes called a “crib-
sheet”) to learn the available hand gestures. This guide might be
displayed off to the side, requiring the user to rotate their head, or
might be popped open like a menu whenever the user presses a but-
ton. We implemented this feature and called it the “grid” (Figure 2)
because it can display multiple rows and columns of gestures, each
with a corresponding command name, somewhat like a display case.
The hands in the grid are 3D models with depth. Our grid is dis-
played directly in front of the user, and only displayed when the user
holds down a button. This allows us to measure how often the user
accesses the grid and also allows us to impose a cost to access the
grid in the form of an animated opening of the grid, to incentivize
memorization. (Grossman et al.’s previous study [15] of hotkeys
imposed an analogous cost, in that the user had to move their cursor
from the bottom to the top of the screen before opening a pull-down
menu, unless they had memorized the shortcut key.) A pilot study
convinced us of the need to impose such an inconvenience to moti-
vate users to learn gestures, otherwise users tended to simply open
the grid repeatedly without trying to memorize them. In our Study
1, the duration of the grid’s opening-up animation was 2500ms.

Figure 2: The grid is a kind of help menu or cribsheet that the user
pops open, and is extensible to multiple rows and columns. In both
our studies, the grid showed 1×4 gestures.

The first condition in our experiment is a Baseline condition
which only gives the user access to the grid, without any In Situ
feedback on their hand. In this Baseline condition, the user simply
opened the grid to learn the required gestures and perform them.

There was also an additional condition for each of the variants
of In Situ feedback (Figure 1). In these conditions, when the user
opened the grid, they could select a gesture and it would activate
a user-driven In Situ feedback on the user’s hand (as described in
Section 4.3) to guide them toward the correct gesture. The user
could also trigger autocompletion In Situ feedback (whether or not
they had opened the grid), simply by maintaining a hand pose close
enough to a known gesture for enough time.

In the Baseline condition, the grid could be opened but the user
could not select within it, because there was no In Situ feedback to
display.

In all conditions, the user was not obliged to open the grid if they
had already memorized the gesture.

6.2 Task
Users performed gestures with their right hand while holding a
wireless clicker in their left hand (Figure 3). Each trial was initiated
by the user pressing a button #1 on the clicker to signal that they
were ready to begin.

The system would then display the name of the command whose
corresponding gesture had to be performed. If the user had not yet
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Figure 3: The wireless clicker held in the user’s left hand.

memorized the corresponding gesture, they used a button #2 on the
clicker to pop open the grid, which rose up from the ground plane
with a 2500 ms animation.

Releasing button #2 dismissed the grid, causing it to disappear.
The user could perform the gesture with their right hand, either
before or after dismissing the grid. (However, it was only after the
grid was dismissed that In Situ feedback was displayed.)

Once they were satisfied with their gesture and button #2 was
released, they had to press button #1 to terminate the gesture and
end the trial.

This caused a ring timer to appear that would gradually fill itself
(Figure 4) before the next trial began. To motivate users to perform
gestures with greater precision, the duration of the ring-filling ani-
mation was longer if the user’s gesture had been less precise. The
delay imposed by the ring timer also forced users to rest their hands
before the next trial. There was no need to maintain any hand pose
during the ring-filling animation.

Figure 4: At the end of each trial, a ring timer (in orange) was displayed
and gradually filled, forcing the user to pause before the next trial. The
ring timer filled more slowly if the user was less precise in the gesture
they had just performed.

In all conditions except for Baseline, the user could select a
gesture within the grid, causing In Situ feedback to appear on their
right hand. Selection within the grid was done by holding down
button #2 to keep the grid open, and using the head direction to
select a gesture in the grid. The frame around the gesture would
highlight in orange in response to the head direction, and after a
timeout of 500 ms, the hand showing the gesture would also change
color, to indicate that the gesture was selected. This timeout was to
prevent accidental misselections during rapid sideways head motion
when releasing the button, as users tended to look at their hand just
before releasing.

The precision of the gesture performed by the user was quantified
with a distance d in centimeters to the target pose (see Section 5.1).
A pilot study found that d varied between 1 and 35 cm, and these
were mapped to a duration for the ring-filling animation using a ramp
function varying from 1 to 10 seconds. Specifically, the duration in
seconds was min(max(((10−1)/(35−1))(d −1)+1,1),10).

To recap, user performance was incentivized in two ways: first,
having to wait 2500 ms each time the grid was opened discouraged
users from opening it too many times and encouraged memorizing

the gestures, and second, having the ring-filling animation’s duration
increase with fingertip distance encouraged users to be more precise
with their gestures.

The random association of command names to gestures was done
once for each user, such that a user never saw the same gesture
associated to different command names or the same command name
associated to different gestures, to avoid confusion.

6.3 Gesture Set
The set of gestures for study was generated in two steps. First, 25 =
32 canonical hand poses were generated covering every combination
of each finger being extended or closed. Second, to sample more
of pose space, informal data collection was done, asking two pilot
participants to perform spontaneous, widely varying poses with their
hands for 2 minutes each, while the system recorded their hand. We
algorithmically sampled these recordings, choosing random poses
that were not too similar to already-collected poses, until we had a
set of 101 gestures in total.

Of these 101 gestures, 2 with the middle finger extended were
eliminated as they are considered obscene and users felt uncomfort-
able performing them. The remaining 99 gestures (Figure 5) were
used in Study 1. The trials for the conditions (Section 6.1) and main
task (Section 6.2) were generated for each user by sampling from
this set of 99.

Figure 5: The pool of 99 gestures used in Study 1, sorted by average
difficulty score (shown in upper left corners) as rated subjectively
by the 12 participants. Scores followed by a star indicate canonical
gestures.

After the trials were complete, each of the 12 users in Study 1
was also asked to rate the difficulty of each of the 99 gestures, on
a scale of 1 (easy), 2 (medium), 3 (difficult), and 4 (impossible).
These ratings were used to reduce the set of gestures used in Study
2, as described later.

6.4 Protocol
Equipment was disinfected before and after each user session. At
the start of each session, after signing a consent form, users filled
out a pre-questionnaire and had their interpupillary distance (IPD)
measured, and the headset was adjusted for comfort and for the
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Figure 6: Duration of trials in Study 1. As users advanced through the
blocks of each condition, their time tended to decrease. In this and
all subsequent charts, colors show block number, each dot is for one
user, and error bars show 95% confidence intervals.

measured IPD. Users were then shown printouts to explain how
to proceed in trials of all the conditions of the experiment. After
the trials were completed, and each of the 99 gestures had been
evaluated, a post-questionnaire was filled out.

6.5 Users
12 users were recruited: 9 men, 3 women; 10 right handed, 1 left
handed, 1 ambidextrous, but all with a habit of using the mouse
with their right hand; age 20 to 46 years (average 27.4); IPD 54
to 65mm (average 61.0), all with previous experience using 3D
software and headsets. Each user was asked if they engaged in
activities requiring well developed manual dexterity such as playing
a musical instrument, drawing, or soldering; 10 out of 12 answered
yes.

6.6 Design
Each user experienced the 5 levels of the Condition variable
{Baseline, Arrows, Ghost, Puppet, ColoredSkin} in random or-
der. For each Condition, the user performed a single warmup block
followed by a sequence of 4 real blocks.

For the warmup block, the grid was populated with 2 gestures
selected at random from the pool of 99 gestures, and 4 trials (in
random order) were generated asking the user to select each gesture
twice (i.e., 2 gestures × 2 repetitions, in random order, yielding 4
trials).

For the sequence of 4 real blocks, the grid was populated with
4 gestures selected at random from the pool of 99, and 8 trials (in
random order) were generated for each block, asking the user to
select each gesture twice (i.e., 4 gestures × 2 repetitions, in random
order, yielding 8 trials per real block).

Gestures were chosen so that the same gesture never appeared in
different conditions or different sequences for the same user.

There were a total of 12 users × 5 levels of Condition (in random
order) × 4 real blocks × 4 gestures × 2 repetitions = 1920 trials,
not counting warmup trials. Each user session lasted ≈ 90 minutes,
of which ≈ 50 minutes were spent in VR.

6.7 Results
Figures 6-8 show the average time, error rate, and precision (quanti-
fied as distance) for Study 1. The Baseline condition yielded some
of the lowest times, but also some of the worst distances, which
is not surprising since users had no In Situ feedback to attend to.
In terms of distance, the best conditions were Ghost and Puppet,
providing evidence that In Situ feedback can indeed help users to be
more precise. Ghost and Puppet are also better than the other two In
Situ conditions with respect to error rate.

Figure 9 shows the subjective ratings of the users for all condi-
tions. In Study 1, Ghost and Puppet were preferred by most users,
and both conditions resulted in favorable Likert scores, with Puppet
obtaining the best Likert scores for two criteria (Physical effort and

Figure 7: Error rates in Study 1. In a given trial, if the user’s performed
hand pose more closely resembled an incorrect gesture than the
target gesture, this was counted as an error.

Figure 8: The “distance” (sum of distances between fingertips) be-
tween the user’s performed hand pose and the target gesture, in Study
1. This quantifies the precision of the user’s gesture. Puppet was one
of the most precise conditions.

Frustration), tying for a third (Enabled task), and 2nd best for Mental
effort.

In Study 1, because the threshold for autocompletion hinting was
τt = 1000 ms, this gave users some freedom to deliberately wait for
it to trigger without first opening the grid, or conversely, to open the
grid and select within it (to invoke user-driven In Situ feedback) and
terminate the gesture before autocompletion hinting was triggered.
We asked users if they preferred autocompletion, and 10 out of 12
answered ‘yes’.

6.8 Discussion
We were surprised that Arrows did not do better in terms of error
rate and distance, because Arrows seem like an obvious kind of
feedback to display. Subjectively, however, the Arrows can be
distracting because they continually change size and orientation as
the user’s hand pose changes, whereas the Ghost and the spheres
of the Puppet remain static with respect to the user’s hand and are
perhaps easier to perceive and remember as a single rigid object.
Puppet also results in less occlusion than Arrows because the line
segments are thinner than arrows, and Puppet feedback is perhaps
also less distracting because strings stretched like elastics conform
to a physical metaphor, contrary to Arrows that continually change
size as their length changes.

It is also possible that Puppet has an advantage over Ghost be-

Figure 9: Subjective ratings by users for Studies 1 and 2, shown
together to ease comparison.
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cause the distance between gestures is measured between fingertips,
whose ideal positions are indicated directly with Puppet, whereas
Ghost shows a slightly smaller version of the ideal hand pose.

Users commented that some conditions seemed more difficult
than others because the hand poses were more difficult to achieve.
The assignment of gestures to conditions was random and different
for each user, however we realized that a subsequent study could
increase statistical power by better controlling hand pose difficulty
across conditions. We therefore planned a 2nd study to collect more
data on the most promosing In Situ feedback, namely Puppet, that
would assign gestures of roughly equal difficulty to each condition.

7 STUDY 2

The results of the previous study suggest that the main advantage of
Puppet is in the precision of the gestures performed by the user, as
measured by fingertip distance (Figure 8). Thus, the main hypoth-
esis we test in Study 2 is that Puppet results in smaller distances
compared to the Baseline condition. To increase statistical power
in Study 2, we recruit more users who will perform more trials in
Study 2, and we only compare the two conditions of Puppet and
Baseline. Section 7.3 explains how we controlled the difficulty of
gestures in each condition to have less variability than in Study 1.

We also want to better understand how much autocompletion
can help users. We reduced the trigger time from τt = 1000 ms to
500ms so that autocompletion would be suggested earlier. Auto-
completion was also modified to display the predicted command
name on the back and front of the user’s wrist (Figure 10). We also
modified our software to measure more data about how the grid and
autocompletion was being used during trials.

Figure 10: In Study 2, in the Puppet condition, the name of the pre-
dicted command for autocompletion was displayed on the wrist. In this
case, the system is asking the user to perform the gesture for Assist,
but the user’s hand pose is currently closer to the gesture for Paste,
which is being suggested by the Puppet feedback and displayed on
the wrist. The user may correct their pose before terminating the trial.

To further encourage users to memorize gestures and not overly
rely on the grid, the animation of the grid opening was modified
to become gradually slower during each trial. In Study 1, the grid
always took 2500ms to open. In Study 2, the time varied as a
function of the block and also the number of times the grid had been
invoked within a trial. Specifically, to open the grid the nth time in a
trial of the bth block, where n ≥ 0 and b ≥ 0, the animation lasted
(2500+(b−1+n−1)×300) ms.

7.1 Protocol

The protocol for Study 2 was similar to that of Study 1, with two
changes. First, to provide a more complete explanation of trials
before starting, users were asked to hold the clicker, without the
headset, to try the buttons and have each button’s function explained.

A printed document showed how to do gestures with puppet feed-
back, and users were asked to complete the gestures in the printed
document before beginning the experiment. Second, users did not
rate the difficulty of gestures at the end of the session.

7.2 Users
20 users were recruited: 10 men, 10 women; all right handed; age
21 to 39 years (average 22.6); IPD 55 to 70mm (average 59.9); 14
out of 20 with previous experience using 3D software; 13 out of 20
with previous experience using headsets.

Each user was asked if they engaged in activities requiring well
developed manual dexterity, such as playing a musical instrument or
drawing. 8 out of 20 answered yes.

7.3 Design
Each user experienced 2 levels of Condition {Baseline, Puppet} in
random order. For each Condition, the user performed two warmup
blocks followed by two sequences of 4 real blocks. For each warmup
block, the grid was populated with 2 gestures selected at random,
and 4 trials (in random order) were generated asking the user to
select each gesture twice (i.e., 2 gestures × 2 repetitions, in random
order, yielding 4 trials in each warmup block). For each sequence
of 4 real blocks, the grid was populated with 4 gestures selected
at random, and 8 trials (in random order) were generated for each
block, asking the user to select each gesture twice (i.e., 4 gestures
× 2 repetitions, in random order, yielding 8 trials per real block).
There were a total of 20 users × 2 levels of Condition (in random
order) × 2 sequences × 4 real blocks × 4 gestures × 2 repetitions =
2560 trials, not counting warmup trials. Each user session lasted ≈
75 minutes, of which ≈ 35 minutes were spent in VR.

In Study 1, each subset of 4 gestures for each sequence of blocks
was simply chosen at random from the pool of 99 gestures. This
meant that the difficulty of getures was quite variable from one
sequence of blocks to another. In Study 2, to reduce this variability,
we chose subsets of 4 gestures that satisfied some constraints which
we now describe.

Recall that Study 1 asked users to rate the difficulty of each of
the 99 gestures, from which we computed the average difficulty of
each gesture. For Study 2, from the original pool of 99 gestures,
we chose 12 “easy” gestures (with difficulty between 1.0 and 1.33)
and 12 “medium” gestures (difficulty between 1.5 and 1.92), chosen
so that none appear too similar to each other. This produced a new
pool of 24 gestures. The first constraint on each subset of 4 gestures
is that they were chosen from this reduced pool of 24. The second
constraint is that the total difficulty of the 4 gestures must be within
5% of 4 times the average difficulty of all the gestures. The third
constraint is that we required the distance (as defined in Section 5.1)
between any 2 gestures in the subset of 4 be at least 15cm. Finally,
gestures were chosen so that the same gesture never appeared in
different conditions or different sequences for the same user (i.e., for
each user, 8 of the 24 gestures were used for warmup blocks, and
the other 16 for real blocks).

7.4 Results
Figures 11-13 show the average time, error rate, and distance, per
condition and per block. Figure 14 shows distances aggregated
across blocks, along with paired differences calculated as part of
a t-test providing strong evidence that Puppet results in smaller
distances (i.e., greater precision) than the Baseline, confirming our
main hypothesis.

Figures 15 and 16 show the average number of times the grid was
opened, and the total time the grid was opened, by condition and
block. Decreasing trends within each condition are apparent.

We also found that in more than 90% of the Puppet trials, auto-
completion was triggered and displayed the correct gesture. This
rate was roughly constant across blocks with no obvious trend.
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Figure 11: The duration of trials in Study 2. Performance improved as
users advanced throught the blocks.

Figure 12: Error rates in Study 2.

Although the autocompletion hint was triggered when the user
was within τd = 12.6 cm of a known gesture for the minimum time of
τt = 500 ms, our recorded data indicates that users usually got closer
to the target gesture before the autocompletion hint was triggered
(Figure 17).

Figure 18 shows that users often spent 3 seconds or more cor-
recting their hand pose after the autocompletion was triggered, even
during the last block, presumably to improve the precision of their
gesture and reduce the penalty time imposed by the ring timer.

We also calculated the average duration and average distance for
each user within the Puppet condition, resulting in 20 pairs of num-
bers, and checked for a correlation between these two variables. The
Pearson correlation coefficient was −0.52 with p < 0.05. In other
words, users who spent more time performing a gesture resulted in
lower distances.

Figure 9 shows that Puppet was preferred over Baseline by 15 out
of the 20 users, and scored better on Mental effort and Enabling the
task, but worse on Physical effort and Frustration. These scores may
reflect the fact that Pupper made incorrect poses visible to the user,
pressuring them to correct their pose, whereas Baseline did not.

We checked but found no evidence of differences in time, error
rate, or distances between the two gender groups, nor between the
group of users who reported activities involving more dexterity

Figure 13: The distance (sum of distances between fingertips) be-
tween the user’s performed hand pose and the target hand pose, in
Study 2.

Figure 14: Distances aggregated across blocks, in Study 2. The 3rd
error bar shows the result of a paired t-test. Because the zero line
falls far outside this 3rd error bar, the t-test yields a significant result,
with p < 5×10−8. Puppet is therefore more precise.

Figure 15: The number of times the grid was opened during a trial,
during Study 2.

versus those who did not.

7.5 Discussion

The decreasing trend seen in Figures 15 and 16 indicate that users
were relying less and less on the grid as they advanced through
blocks, presumably because they were memorizing the gestures
(at least approximately) and using this memory to reproduce the
gestures, often with help from autocompletion.

The inverse correlation between distance and duration suggests
a speed-accuracy tradeoff, which is also found in other interaction
tasks [21].

8 CONCLUSIONS

We have presented the design and experimental evaluation of In Situ
visual feedback, the first egocentric visual feedback for position-
ing individual fingers to learn hand gestures. Of the four variants
we implemented, Puppet feedback resulted in the most precisely
reproduced gestures, as measured by distances between fingertips
(Figures 13 and 14), and was also preferred by most users (Figure 9).

9 FUTURE DIRECTIONS

In Situ feedback might be applied for rehabilitation of patients after
injury or surgery to their hand, or for the training of musicians.

Figure 16: The total time spent with the grid opened during a trial,
during Study 2.
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Figure 17: The distance between the user’s hand pose and a known
gesture at the instant that autocompletion was triggered.

Figure 18: The time it took after autocompletion was triggered for the
user to terminate the trial.

Our autocompletion hint is limited to only displaying one pre-
dicted gesture at a time. It may sometimes be advantageous to
display multiple predicted gestures, for example the N known ges-
tures most similar to the user’s current hand pose, near the user’s
hand, possibly in a radial layout around the hand.

Future work could also investigate In Situ feedback for the other
kinds of gestures in Table 1.
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