
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OMNI-THINKER: SCALING MULTI-TASK RL IN LLMS
WITH HYBRID REWARD AND TASK SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

The pursuit of general-purpose artificial intelligence depends on large language
models (LLMs) that can handle both structured reasoning and open-ended genera-
tion. We present OMNI-THINKER, a unified reinforcement learning (RL) frame-
work that scales LLMs across diverse tasks by combining hybrid rewards with
backward-transfer–guided scheduling. Hybrid rewards integrate rule-based verifi-
able signals with preference-based evaluations from an LLM-as-a-Judge, enabling
learning in both deterministic and subjective domains. Our scheduler orders tasks
according to accuracy backward transfer (BWT), reducing forgetting and improv-
ing multi-task performance. Experiments across four domains show gains of 6.2%
over joint training and 12.4% over model merging. Moreover, we demonstrate that
simple assumptions on accuracy transfer yield accurate predictions of curriculum
outcomes, with entropy dynamics explaining deviations due to generative tasks.
These findings underscore the importance of BWT-aware scheduling and hybrid
supervision for scaling RL-based post-training toward general-purpose LLMs.

1 INTRODUCTION

25.0

27.5

30.0

32.5

35.0

Sc
or

e

Coding

54

56

58

60

Sc
or

e

Math

40

45

50

Sc
or

e

General QA

40

60

80

Sc
or

e

Creative Writing

Base SFT Model Merging Joint Training Curriculum Learning (Ours)

Figure 1: Performance across four task domains, comparing Joint Training and Curriculum Learning
against baselines including SFT and Model Merging. Curriculum Learning achieves the strongest
results, showing that controlling how tasks are scheduled is crucial for effective multi-task learning.

Reinforcement learning (RL) has become an effective approach for improving large language models
(LLMs) (Hurst et al., 2024; Liu et al., 2024; Dubey et al., 2024; Yang et al., 2024), particularly in
structured domains such as math and coding where verifiable, rule-based rewards are available (Guo
et al., 2025; Luo et al., 2025; Kimi-Team et al., 2025). Methods such as Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) show that even coarse learning signals can steer LLMs
toward structured, chain-of-thought reasoning. However, most RL methods remain tailored to
deterministically verifiable tasks, limiting their utility in open-ended domains such as general QA
and creative writing. Moreover, training LLMs across multiple tasks remains challenging because
it requires optimizing for diverse forms of feedback signals, including binary correctness checks in
structured tasks and subjective, preference-based judgments in generative ones.

We address this challenge with OMNI-THINKER, a unified RL framework that enables LLMs to learn
from both rule-based and generative supervision under a single policy. Building on Reinforcement
Learning with Verified Reward (RLVR), our method integrates symbolic verifiers with LLM-as-a-
Judge evaluations (Zheng et al., 2023; Zhang et al., 2025) to handle subjective tasks. Our curriculum
is forgetting-aware; it is guided by backward transfer (BWT), where BWT denotes test-performance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

backward transfer computed on a normalized, task-specific test metric. Ordering task training
according to this signal yields effective curricula across heterogeneous domains. We show that
the final accuracy of model after curriculum learning is well predicted by forgettability ranking,
even under simplifying assumptions. Empirically, we observe complementary entropy dynamics,
fine-tuning on creative writing tends to increase the model’s output entropy, whereas training on
verifier-supervised, structured tasks tends to decrease it; this trend is consistent with our BWT-guided
choice to train structured tasks before open-ended ones. Across four domains, OMNI-THINKER
improves generalization while reducing forgetting, with average gains of 6.2% over joint multi-task
training and 12.4% over model merging, respectively.

Our key contributions are threefold. (1) We present OMNI-THINKER, a unified framework that
trains a single policy across four diverse domains, using hybrid verifiable and preference-based
rewards. (2) We develop a forgetting-aware curriculum based on backward transfer (BWT) linear
ordering maximization over task-specific test performance to reduce forgetting, outperforming joint
multi-task training and model merging. (3) We empirically analyze training dynamics through the
lens of entropy, revealing that structured domains (math, coding) systematically decrease output
entropy while open-ended domains (creative writing) increase it, thereby providing an explanatory
link between entropy evolution and the effectiveness of BWT-guided curricula.

2 FRAMEWORK OVERVIEW

We introduce OMNI-THINKER as a unified reinforcement learning framework for large language
models that integrates hybrid rewards with task scheduling guided by backward transfer. Unlike
prior approaches that separate reasoning and generative domains, OMNI-THINKER maintains a single
policy across heterogeneous tasks, including Math, Coding, General QA, and Creative Writing, while
dynamically ordering training to minimize forgetting. The framework is instantiated using Multi-Task
GRPO, augmented with both symbolic verifiers and LLM-as-a-Judge supervision, and a curriculum
determined by accuracy- and entropy-based backward transfers.

2.1 NOTATION AND TRAINING OBJECTIVE

We give ourselves a vocabulary V with a special end-of-sequence token eos. The set of finite
sequences of tokens is denoted V∗; for any sequence o ∈ V∗, its length is denoted |o| and we say
that o is complete if o|o| = eos. A model, parameterized by θ, defines a conditional distribution
πθ(yt | y<t) for any given sequence of tokens (yt)t∈N. It induces a policy π⊗

θ on token sequences
defined by π⊗

θ (o | q, o<t0) :=
∏|o|

t=t0
πθ(ot | q, o<t). We adopt a multi-task RL (MTRL) formulation:

a task is a couple T = (D, R) where D is a dataset of prompts and R(q, o) is a task-specific reward
function. Given a set of K tasks T = {T1, . . . , TK}, the goal is to learn a unified policy πθ that
maximizes the expected reward over the task distribution:

max
θ
J (θ) = E(D,R)∼P (T)

[
Eq∼D,o∼π⊗

θ (·|q) [R(o)]
]
, (1)

where P (T) is a task sampling distribution, which determines task exposure during training.

In order to train πθ to maximize the objective J , we extend the GRPO (Guo et al., 2025) algorithm
to the multi-task setting by jointly optimizing over task-specific reward signals and reference policies.
For each input prompt q, GRPO samples a group of outputs {oq,1, oq,2, · · · , oq,G} from the old policy
πθold . A task-specific reward function Rk(q, o) scores each output. The policy πθ is updated to
maximize expected return while controlling divergence from a reference policy.

We define the policy ratio ρq,i,t and the normalized advantage estimate Âq,i,t as follows:

µq = mean
(
{Rk(q, oq,i)}Gi=1

)
, σq = std

(
{Rk(q, oq,i)}Gi=1

)
, (2)

ρq,i,t =
πθ(oq,i,t | q, oq,i,<t)

πθold(oq,i,t | q, oq,i,<t)
, Âq,i,t =

Rk(q, oq,i)− µq

σq
. (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This allows us to write the MT-GRPO objective as

JMT-GRPO(θ) = Ek∼K,q∼Dk,{oq,i}G
i=1∼π⊗

θold
(·|qk)

1

G

G∑
i=1

1

|oq,i|

|oq,i|∑
t=1

{
min

[
ρq,i,tÂq,i, clip (ρq,i,t, 1−ϵ, 1+ϵ) Âq,i

]
− βkDKL [πθ||πref]

}
,

(4)

where

DKL [πθ||πref] =
πref (oq,i,t|q, oq,i,<t)

πθ(oq,i,t|q, oq,i,<t)
− log

πref (oq,i,t|q, oq,i,<t)

πθ(oq,i,t|q, oq,i,<t)
− 1. (5)

The clipping parameter ϵ stabilizes updates by keeping policy ratios within a bounded range, following
the PPO approach (Schulman et al., 2017). The KL divergence term regularizes the new policy
towards the reference policy πref, weighted by a task-specific coefficient βk.

2.2 HYBRID REWARDS

We design a hybrid reward system that unifies reinforcement learning across both structured reasoning
tasks and open-ended generative domains.

Verifiable Supervision. For tasks with objective correctness signals, such as symbolic math and
code generation, we define binary rewards based on symbolic matches, test case results, or other
deterministic evaluators depending on the tasks.

Short-Form Open-Ended Supervision. For language tasks with known or extractable ground-truth
answers such as general question answering (QA), we reformulate queries into open-ended prompts
and incorporate distractor responses (LLM-generated plausible but incorrect answers) into the context.
Instead of labeling options, we prompt the model to reason using the <think>...</think> format
and to output answers within <answer>...</answer> tags. Responses are evaluated with a binary
reward based on string matching or set membership against reference answers, thereby encouraging
semantic grounding and mitigating shallow pattern memorization. We find that conditioning the LLM
on a diverse set of candidate options, including one correct answer and multiple distractors, is key to
steadily improving general-domain reasoning while reducing susceptibility to random guessing or
reward hacking, compared to directly prompting the model to generate open-ended answers during
training without the augmented context.

Long-Form Open-Ended Supervision. For subjective tasks lacking ground truth (e.g., dialogue,
writing), we use an LLM-as-a-Judge (Chen et al., 2025) to assign a scalar reward based on rubric-
aligned pairwise preferences between candidate outputs. This enables learning in domains where
symbolic correctness is insufficient or intractable. This prompt-based approach leverages recent
advances in the general reasoning capabilities of LLMs, using generated chain-of-thoughts to elicit a
ternary reward signal, preferred, tie, or dispreferred, without requiring large-scale preference data
collection and reward model training.

Together, these components form a unified hybrid reward scheme: verifiable rewards ensure correct-
ness where possible and generative-based signals cover subjective domains. This design enables
reinforcement learning to scale across diverse tasks, from reasoning to open-ended generation.

2.3 JOINT TRAINING AND CURRICULUM LEARNING

In practice, a maximization step of the training objective JMT-GRPO requires a batch B of prompts
sampled from

⋃K
k=1Dk then sampling a batch of outputs {oq,i}Gi=1 for each q ∈ B. A multi-

task schedule is defined as a sequence of batches (Bs)
smax
s=1 such that ∀s ̸= s′, Bs ∩ Bs′ = ∅ and⋃smax

s=1 Bs =
⋃K

k=1Dk.

Two special cases are considered: Joint Training and Curriculum Learning. Joint Training consists in
sampling each batch B uniformly at random among all samples (without replacement), disregarding
their corresponding tasks: ∀s,Bs ∼ U

(⋃K
k=1Dk \

⋃
s′<s Bs′

)
. Curriculum Learning on the other

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

hand consists of pure batches chosen from the same task until exhaustion of the task dataset. By pure,
we mean that each batch is derived from only one task dataset: ∀s,Bs ∼ U

(
Dks
\
⋃

s′<s Bs′
)

for
some task schedule (ks)s∈{1,··· ,smax}. A Curriculum is described by a permutation σ ∈ SK of the
tasks, with SK the set of permutation of {1, · · · ,K}.

3 BACKWARD TRANSFER FOR TASK-SCHEDULING

We intend to use Backward Transfers (BWT) to guide our choice of curriculum. Following Lopez-Paz
& Ranzato (2017) it is defined as follows.

Definition 1 (Backward Transfer Matrix). Let θ0 be a set of initial parameters of a model πθ and
let θ(θ0, T) be the set of parameters obtained after training πθ on task T starting from θ0. Write
Acc(θ, T) the accuracy of model πθ on task T . The backward transfer matrix is defined by

BWTij(θ0) := logAcc(θ(θ0, Tj), Ti)− log Acc(θ0, Ti). (6)

3.1 A PRIORI PREDICTION OF TERMINAL ACCURACIES UNDER CONSTANT BWT

Algorithm 1: Final Accuracy under Assump-
tions 1 and 2
Input: BWT ∈ RK×K .

ainit := (Acc(θ0, Tk))
K
k=1 ∈ RK .

Curriculum σ ∈ SK

a← ainit;
for j = 1 to K do

k ← σ(j);
ak ← ainit,k;
for i = 1 to K do

ai ← ai × exp(BWTik);
end

end
return a;

Our goal is to choose a curriculum order σ
a priori by predicting the terminal per–task ac-
curacies without training all permutations. We
propose a simple predictive model in which (i)
inter–task backward transfers are treated as con-
stant in log–accuracy, and (ii) training on the full
dataset of a task saturates its self–accuracy. Un-
der these assumptions, terminal accuracies for
any order σ become computable from quantities
measured once at initialization.

Setup. Using notations from Section 2.3, let
θ0 denote the parameters of the pre–trained
model πθ, and let θs be the parameters after s
optimization steps following a curriculum order
σ ∈ SK .

Assumption 1 (Constant off–diagonal BWT in log–accuracy). For all i ̸= j and all optimization
steps s along the schedule,

BWTij(θs) = BWTij(θ0) . (7)

Assumption 2 (Task–wise saturation). Let {Bs} be the sequence of mini–batches processed along
the schedule. If, between steps s1 and s2, the full dataset Dk of task Tk has been seen, then accuracy
saturates on task Tk to the same accuracy as training from θ0:

s2⋃
s=s1

Bs = Dk ⇒ Acc(θs2 , Tk) = Acc
(
θ(θ0, Tk), Tk

)
. (8)

Theorem 1. Under Assumptions 1 and 2, for any curriculum order σ ∈ SK starting from θ0, the
terminal accuracies {Acc(θsmax , Tk)}Kk=1 given the initialization accuracies {Acc(θ0, Tk)}Kk=1, the
BWT(θ0) and a curriculum σ is exactly the output of Algorithm 1

Reasonableness and limitations. Assumption 1 abstracts away known drivers of transfer, such
as domain overlap, stochasticity, and entropy evolution, thus is a toy yet useful approximation for a
priori curriculum selection. See Sections 5.2 and 5.3 for a discussion of a correction coming from
entropy. Working in log–accuracy space keeps accuracies positive but does not eliminate the risk
of unrealistic growth over long curricula (e.g., predictions exceeding 1 in accuracy). Assumption 2
is reasonable when each task dataset is sufficiently large and optimization keeps the model in a
well–conditioned regime, conditions we satisfy in our experiments. Together, these assumptions
yield a tractable predictor that captures coarse curriculum effects while remaining simple enough to
evaluate without exhaustive training.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 CURRICULUM CHOICE VIA LINEAR ORDERING MAXIMIZATION

Algorithm 1 admits the following closed form for the predicted terminal accuracies:

log Acc(σ)− log Acc(Id) =
∑
i<j

(
Φ−1

σ BWTΦσ

)
ij
, with Φσ,ij = 1i=σ(j). (9)

Algorithm 2: Greedy BWT-LOM Curriculum

Input: BWT matrix BWT ∈ RK×K

σ ← empty list;
while there are unvisited tasks do

k∗ ← argmaxk/∈σ

∑
i/∈σ∪{k} BWTik;

append k∗ to σ;
end
return σ;

In words, curriculum reordering acts by permut-
ing the BWT matrix with Φσ, and the gain rel-
ative to the identity schedule is simply the sum
of the upper–triangular entries of the permuted
matrix.

Given an aggregated score of the form

S :=
∑
T∈T

αT log Acc(θ, T), (10)

identifying the best task order amounts to solv-
ing a Linear Ordering Problem (LOP). see (Floudas & Pardalos, 2008) for an overview. This problem
is known to be NP–hard, but for small numbers of tasks (K) it can be solved exactly. For larger K, a
wide range of approximation algorithms and heuristics exist. A simple heuristic is to rank tasks by a
forgettability score: Fk := αk

∑
i ̸=k BWTik. Intuitively, ordering tasks by decreasing Fk prioritizes

those that exert the least destructive interference on others (or even provide positive transfer), thereby
reducing overall forgetting. Our curriculum orders tasks by decreasing column mean of BWT.

4 EXPERIMENTAL SETUP

Training Datasets. We curate a multi-domain training dataset covering Math, Coding, General
QA, and Creative Writing, with each domain selected to support hybrid reward functions and robust
evaluation. For Math, we begin with the OpenR1-Math (HuggingFace, 2025) dataset, retaining
only word problems and excluding questions that require visual reasoning. We further subsample
12,000 examples to fit our compute budget. For Coding, data is sourced from the code-r1-12k (Liu
& Zhang, 2025) dataset, with outliers exceeding 1024 tokens removed. Each entry includes a code
prompt and JSON-formatted unit tests for automatic validation. For General QA, we subsample
5,500 queries from from SuperGPQA (Du et al., 2025) dataset, proportionally by question category.
Each sample comprises a factual question paired with a plain-text answer. We then generate 15
additional confusion options while making sure the uniqueness of correctness by prompting an
LLM. The Creative Writing. domain leverages 6,650 conversations from Nitral AI’s ShareGPT
dataset (Nitral-AI, 2024), focused on single-turn completions. Samples exceeding two dialogue turns
are filtered out, and responses are judged via an LLM-as-a-Judge framework.

Evaluation. We assess performance in each domain using dedicated benchmarks aligned with
the task’s evaluation criteria. Math: accuracy on AIME24 (MAA, 2024), AMC23 (MAA, 2023),
Gaokao2023EN (Liao et al., 2024), MATH-500 (Hendrycks et al., 2021), MinervaMath (Lewkowycz
et al., 2022), and OlympiadBench (He et al., 2024). Coding: pass@1 on BigCodeBench (Complete-
Full) (Zhuo et al., 2024) and LiveCodeBench (24Oct–25Jan) (Jain et al., 2024). General QA:
exact-match accuracy on MMLU-Pro (Wang et al., 2024). Creative Writing: win rate on the
role-play and creative writing subsets of MT-Bench (Zheng et al., 2023), against GPT-4 (pre-gen,
June 16, 2023).

Baselines. We use Qwen2.5-7B-Instruct (Yang et al., 2024) as the base model for all experiments,
owing to its strong instruction-following capability, which makes it well-suited for reinforcement
learning on both structured reasoning and open-domain QA tasks. Supervised Fine-Tuning (SFT):
In order to have a meaningful comparison with GRPO, we adopt a similar self-sampled data curation
and fine-tuning approach with Rejection sampling Fine-Tuning (Yuan et al., 2023). We first prompt
the base model to generate 128 chain-of-thought responses for our training dataset to ensure we end up
with at least one correct response for most queries, then filter them based on the same accuracy reward
signals used in GRPO training. We then perform sft on base model using these self-distilled responses.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This provides a strong on-policy learning baseline that incorporates explicit reasoning steps through
self-distillation from the base model. Model Merging: We employ TIES-Merging (Wu et al., 2025)
as our model-merging baseline. It is a simple yet effective method designed specifically for the
multi-task setting that takes into consideration the interference between parameters from models
trained on individual tasks during the merging process. It has demonstrated superior performance in
multi-task learning compared to linear and task arithmetic approaches (Yadav et al., 2023). To begin
with, we conduct single-task GRPO training using individual task datasets and collect the model
weights of the best checkpoints with the help of a validation set for each training run. We then merge
the four single-task models using a scaling value λ = 1.

5 RESULTS AND DISCUSSION

5.1 MAIN RESULTS: SCALING MULTI-TASK LLM POST-TRAINING WITH OMNI-THINK

We evaluate OMNI-THINKER across four diverse domains: Coding, Math, General QA, and Creative
Writing, to assess how reinforcement learning with rule-based verifiable rewards and generative
supervision supports multi-task generalization. BWT matrix is computed following equation 6, then
Algorithm 1 is used to predict the accuracy of the model after curriculum learning, Appendix A.2.2
for details. The predicted best curriculum using Algorithm 2 is Code→ Math→ QA→Writing
while the worst is Writing→ QA→Math→ Coding.

Figure 1 shows that Curriculum Multi-Task Learning with GRPO consistently yields the best results.
Table 1 further details how these gains vary by benchmarks.

In Math, Curriculum Learning (CL) achieves the highest average performance at 59.6%, with the
clearest gains on more complex reasoning tasks such as MinervaMath and OlympiadBench. These
benchmarks benefit from strong rule-based reward signals and backward-transfer-guided task ordering.
In contrast, datasets like AMC23 show minimal change because their relatively high baseline scores
likely reflect smaller question sets and potential pretraining overlap rather than robust multi-step
problem-solving.

In General QA, CL again performs best (52.2%), followed by Model Merging (49.8%) and Mixed
Training GRPO (48.8%). These improvements are driven by our Short-Form Open-Ended Supervision
strategy: instead of generating responses in a fully open-ended and unconstrained fashion, the model
is trained to produce complete answer strings given a diverse set of candidate responses, enabling
the effective application of verifiable reward through simple string matching when training general-
domain tasks.

For Code Generation, CL achieves 35.4%, slightly ahead of Model Merging. Notably, we only
evaluate on the subset of LiveCodeBench(24Oct-25Jan) problems released after Qwen2.5’s data cutoff,
which ensures that these are unseen test items. This setup highlights CL’s significant generalization
gains on novel problems, explaining the larger improvements on LiveCodeBench relative to static
benchmarks like BigCodeBench, where data overlap is more likely.

In Creative Writing, the introduction of our Long-Form Open-Ended Supervision strategy, employ-
ing the LLM-as-a-Judge framework for pairwise evaluation, results in significant performance boosts
(Curriculum-Guided at 84.2% and Joint MT at 83.00%), underscoring the advantage of our generative
reward approach in subjective, open-ended tasks.

These results support our central hypothesis: The OMNI-THINKER Framework, BWT-guided Cur-
riculum Learning with hybrid rewards, enables a single unified policy to scale across structured and
open-ended tasks alike, without relying on interleaving RLVR on reasoning tasks and fine-tuning
non-reasoning tasks.

5.2 ENTROPY DYNAMICS: DISCUSSION

Comparison between accuracies predictions to the actual test evaluation results for various curricula
is depicted on Table 3. Predicted accuracies using test set backward transfers are surprisingly precise
considering our simplifying assumptions, especially for the top curriculum. We now discuss an
identified cause of discrepancies.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance across benchmarks. ST = Single-Task RL (e.g., ST Math = RL trained only
on math). MM = Model Merging. JT = Joint Training. CL = Curriculum Learning. Bolded values
mark the best per row; underscored values mark the second best. Domains include Math (7 sets),
MMLU-Pro (9 categories), Coding (2 sets), and Creative Writing (MT-Bench).

Eval Task
Base

Model
ST

Coding
ST

Math
ST
QA

ST
Writing SFT MM JT CLbest

Math
AIME24 18.0 13.3 14.7 14.0 15.3 16.7 10.0 11.3 15.3
AMC23 57.5 57.5 60.0 62.5 61.0 62.0 56.0 51.0 70.0
Gaokao2023en 73.0 74.3 76.1 74.0 75.6 74.3 74.8 76.6 77.1
MATH500 78.2 78.8 80.4 75.4 79.2 76.8 79.8 77.6 81.0
MinervaMath 64.3 64.0 66.5 63.2 61.8 65.1 66.2 68.4 71.7
OlympiadBench 42.1 43.0 43.7 41.3 43.0 43.0 41.8 43.6 47.4
Average 55.5 55.1 56.9 55.1 56.0 56.3 54.8 54.8 60.4

General QA
Biology 57.6 56.8 52.3 67.4 59.0 66.3 65.6 67.2 68.8
Business 33.5 39.0 25.6 58.7 33.0 48.2 59.8 49.8 47.5
Chemistry 35.8 31.8 27.3 47.7 38.3 44.1 42.5 42.1 50.7
CS 53.7 48.1 50.2 55.1 52.0 53.7 53.9 58.8 59.3
Economics 42.7 49.2 38.7 62.9 44.9 59.6 62.0 56.8 62.1
Engineering 28.3 31.3 20.4 37.5 26.6 37.8 38.1 35.8 37.1
Health 46.7 46.2 45.2 51.0 47.2 45.7 52.7 50.7 57.1
History 37.3 33.3 34.7 47.2 38.6 33.9 47.3 43.3 45.7
Law 23.2 24.0 20.6 27.9 23.3 26.8 26.6 27.5 29.7
Math 55.4 52.6 50.4 59.3 56.3 57.4 58.3 59.2 61.2
Other 44.3 40.0 39.7 51.0 43.9 46.4 51.8 49.9 53.3
Philosophy 36.9 34.3 33.3 43.9 35.5 38.2 41.5 42.1 42.9
Physics 41.1 37.4 30.8 53.7 41.6 49.8 46.7 48.0 55.6
Psychology 50.9 51.5 45.4 60.2 51.8 59.0 59.4 59.3 61.8
Average 41.5 40.1 37.9 51.3 42.0 47.8 49.8 48.8 52.2

Coding
BigCodeBench 46.5 50.4 46.7 47.1 46.8 44.5 48.1 47.2 49.5
LiveCodeBench 12.7 21.8 13.1 13.8 13.3 14.2 20.8 17.0 21.3
Average 29.6 36.1 29.9 30.5 30.1 29.3 34.4 32.1 35.4

Creative Writing
MT-Bench (Writing) 74.2 71.6 74.2 63.0 78.3 44.2 67.5 83.0 84.2

We define the token-wise entropy of a policy πθ on task Tk ti measures the average per-token
uncertainty of the policy across task samples.

E(θ, Tk) := −Eq∼Dk,o∼π⊗
θ (·|q)

1

|o|

|o|∑
t=1

∑
v∈V

πθ(v | q, o<t) log πθ(v | q, o<t). (11)

Table 2: Test performance (%) of single-task RL fine-
tuning on General QA and Creative Writing respectively
under different generation temperature (T) in training.

Eval Task General QA Creative Writing
T=1.0 T=1.2 T=1.0 T=0.1

Math 55.1 54.8 55.6 57.8
Coding 30.4 26.6 30.1 27.4
General QA 51.4 13.9 42.0 44.9
Creative Writing 63.0 66.7 78.3 82.5

Entropy has been shown to drop during
GRPO fine-tuning on reasoning, coding
and more generally verified rewards (Ras-
togi et al., 2025; Cui et al., 2025; Yu et al.,
2025) with a correlation to higher accuracy
until reaching a breaking point. Long train-
ing requires extra care towards entropy scal-
ing either via regularization (Shen, 2025)
or dynamic temperature scaling. Our multi-
task setting differs in two key aspects com-
pared to the above references.

First, we are using hybrid rewards with
both verified and generative components. The Creative Writing task is generative and is expected to
increase entropy. Indeed, Wang et al. (2025) account for so-called forking tokens corresponding to
structural choices of the output capturing most of the entropy. Reasoning tasks tend to require highly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

causal token sequences hence few forking tokens (low entropy) while generative tasks may allow
more logical cuts at inference (higher entropy).

Second, we train on multiple domains compared to mostly single-domain analysis in the references
above. It is unclear a priori whether entropy decrease propagates from task to task. Agarwal et al.
(2025) show that fine-tuning to reduce entropy suffices to improve performance on multiple domains.
We hypothesize that models implicitly learn to emulate lower or higher temperatures as a mechanism
to regulate entropy. In practice, the policy often produces logically flawed but rarely syntactically
meaningless outputs, suggesting that its support lies within a constrained domain V (q, o<t) ⊂ V:∑

v∈V (q,o<t)
πθ(v | q, o<t) = 1. Scaling the final layer weights by a factor λ < 1 preserves this

domain while increasing entropy, effectively raising the model’s base temperature. Such changes
propagate across all tasks, not only the one being fine-tuned. Thus, even when two domains are
sufficiently distinct for knowledge transfer to fail, the entropy dynamics may still be measurable
across tasks.

Table 3: Comparison of empirical and predicted test accuracies (%). Each task column reports Test
vs. Predicted accuracy for a given curriculum order. Standard deviations are rounded up.

Curriculum Math Coding QA Writing
Test Pred Test Pred Test Pred Test Pred

CMQW 60.4±0.3 57.3 35.4±0.3 35.4 52.2±0.1 51.9 84±2 78.4
QMW C 59.3±0.3 55.6 31.6±0.3 36.7 39.0±0.1 38.8 79±2 78.4
QW CM 60.4±0.3 57.6 31.9±0.3 33.9 36.3±0.1 38.8 82±2 73.1
W QMC 56.6±0.3 55.5 32.7±0.3 36.1 22.6±0.1 38.4 75±2 62.1

5.3 ENTROPY DYNAMICS: EMPIRICAL SUPPORT

Math Coding General
QA

Creative
Writing

Math

Coding

General
QA

Creative
Writing

-49.8 -48.8 -43.9 -13.3

-22.3 -56.6 -42.1 -13.4

-10.0 -29.0 -40.3 -7.8

22.1 23.4 11.0 72.9 40

20

0

20

40

60

En
tro

py
 C

ha
ng

e
(%

)

Figure 2: Validation Set Entropy Change Matrix.

The intuitions laid out in the previous section
are empirically supported by two experiments.

We define the entropy change matrix as

Hij :=
E(θ(θ0, Ti), Tj)

E(θ0, Tj)
− 1 (12)

and compute it, see Figure 2. We observe that
Math and Coding decrease entropy for all tasks
(as previously observed for Verified Rewards)
while Creative Writing increases entropy. Also,
entropy change seems to depend primarily on
the source task type, secondarily on the target
task type, but not on their domain overlap.

We fine-tune the base model on QA and Writing task with different choices of temperature to emulate
the effect of entropy modifications due to fine-tuning on entropy-increasing or entropy-decreasing
tasks. On the one hand, Writing is thought to benefits from temperature lowering coming from other
tasks, we thus train the base model on writing with a lower temperature and expect the model to close
the gap compared to the best Curriculum-trained model when evaluated with zero temperature. On
the other hand, QA is thought to performs worse than expected in the worst curriculum due to the
increased entropy coming from the trainig on Writing. We fine-tune the base model on QA with a
higher temperature, then evaluate with zero temperature, and expect QA performance to drop toward
the low performance of the worse curriculum learning. The results on table 2 shows that indeed the
case.

6 RELATED WORK & LIMITATIONS

Large Language Models and Multi-Task Learning Early work like (Sanh et al., 2021) showed
that multi-task prompted training can encourage zero-shot generalization. Dong et al. (2023) further
analyzed how mixing SFT data across domains can cause performance conflicts and forgetting,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

proposing Dual-stage Mixed Fine-tuning to alleviate these effects. However purely supervised
objectives often encourage memorization rather than transferable reasoning. The Qwen3 model series
(Yang et al., 2025) employs a four-stage post-training pipeline in the order of reasoning, non-reasoning,
and general-domain under a mix of supervised fine-tuning and reinforcement learning. In comparison,
the post-training process for Command-A (Cohere et al., 2025) alternates between training multiple
expert models separately and merging the experts’ parameters into a “Soup Model” during its SFT
and RL steps, before the model undergoes a polishing phase of preference alignment. In contrast,
our work integrates multi-task learning directly into a single RL framework. Its backward-transfer-
guided curriculum orders tasks from least to most forgettable, drawing on continual learning insights
(Lopez-Paz & Ranzato, 2017) to reduce interference and maintain stable cross-task performance.

Large Language Models and Reinforcement Learning Reinforcement Learning with Verified
Rewards has demonstrated effectiveness for tasks with deterministic correctness signals such as math
or code generation (Lambert et al., 2024; Shao et al., 2024; Kimi-Team et al., 2025; Guo et al., 2025).
Recent frameworks like General-Reasoner (Ma et al., 2025), Nemotron-Crossthink (Akter et al.,
2025) and X-REASONER (Liu et al., 2025) expand this to broader reasoning by blending multi-
domain corpora and structured answer templates. However, these tasks still largely remain largely
confined to verifiable STEM problems or multiple-choice formats, leaving open-ended generation,
such as creative writing, insufficiently addressed. To bridge this gap, Su et al. (2025) propose a
generative reward model (GRM) to replace rule-based signals. Although this improves RL and makes
it applicable to general-domain QA when references exist, the approach is still restricted to verifiable
tasks. In contrast, our approach integrates hybrid verifiable and preference-based rewards within
a single RL loop, enabling consistent optimization across both structured and open-ended tasks.
Moreover, our curriculum design, guided by backward transfer, helps maintain stable cross-task
performance even for tasks lacking deterministic evaluation criteria.

7 CONCLUSION

We presented OMNI-THINKER, a unified reinforcement learning framework that enables large
language models to handle both structured and open-ended tasks under a single policy. By combining
rule-based verifiable rewards and generative preference-based supervision, our method improves
generalization while mitigating forgetting and interference. Our findings show that effective multi-
task LLM post-training depends not only on reward design but also on how tasks are sequenced
and optimized together. Ordering tasks from structured to open-ended domains based on backward
transfer reduces forgetting and enhances cross-domain performance. Overall, OMNI-THINKER
advances the goal of general-purpose LLMs that can learn from both verifiable and subjective
feedback, bridging structured reasoning, open-ended question answering, and creative generation in a
single post-training framework.

Limitations: Further work is needed to test this approach across a broader range of tasks and
domains, including those that require logical reasoning over graph-structured data (Zhou et al.,
2024) and knowledge-base retrieval (Dehghan et al., 2024), as well as more diverse open-ended
domains such as mixed-initiative collaborative storytelling and co-creativity (Kreminski et al., 2024).
Our discussion on entropy is consistent with the existing literature however we lack 1) experiments
backing our intuition that forking tokens are clearly identifiable and more frequent in generative
tasks is lacking 2) a direct measurement of temperature scaling due to fine-tuning. Furthermore,
our discussion on entropy is mostly qualitative. A quantitative study of entropy effects could allow
to avoid failure cases of our accuracy predictions hence of our task scheduler. Finally, we fully
leverage BWT only for curriculum learning. A comprehensive framework combining BWT, entropy
and gradient norm in a quantitative manner in the continuous limit would allow for dynamical joint
training with mixed batches.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We have carefully reviewed the ICLR Code of Ethics and affirm our adherence to it. Our work does
not involve human subjects, sensitive data, or personally identifiable information. It does not raise
concerns regarding privacy, security, discrimination, bias, or potential misuse. To the best of our
knowledge, our study complies with ethical standards and does not present issues related to research
integrity, conflicts of interest, or legal compliance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effective-
ness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Syeda Nahida Akter, Shrimai Prabhumoye, Matvei Novikov, Seungju Han, Ying Lin, Evelina
Bakhturina, Eric Nyberg, Yejin Choi, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro.
Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning, 2025.

Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, and Bingsheng He.
Judgelrm: Large reasoning models as a judge. arXiv preprint arXiv:2504.00050, 2025.

Team Cohere, Arash Ahmadian, Marwan Ahmed, Jay Alammar, Milad Alizadeh, Yazeed Alnumay,
Sophia Althammer, Arkady Arkhangorodsky, Viraat Aryabumi, Dennis Aumiller, et al. Command
a: An enterprise-ready large language model. arXiv preprint arXiv:2504.00698, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Mohammad Dehghan, Mohammad Alomrani, Sunyam Bagga, David Alfonso-Hermelo, Khalil Bibi,
Abbas Ghaddar, Yingxue Zhang, Xiaoguang Li, Jianye Hao, Qun Liu, et al. EWEK-QA: Enhanced
Web and Efficient Knowledge Graph Retrieval for Citation-based Question Answering Systems. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, 2024.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected
by supervised fine-tuning data composition. arXiv preprint arXiv:2310.05492, 2023.

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across 285 graduate
disciplines. arXiv preprint arXiv:2502.14739, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Christodoulos A Floudas and Panos M Pardalos. Encyclopedia of optimization. Springer Science &
Business Media, 2008.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
ment learning. Nature, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
Bench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal
Scientific Problems. In Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring Mathematical Problem Solving With the MATH Dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2021.

HuggingFace. Open R1: A fully open reproduction of DeepSeek-R1, January 2025. URL https:
//github.com/huggingface/open-r1.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

11

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and Contamination Free
Evaluation of Large Language Models for Code. In The Thirteenth International Conference on
Learning Representations, 2024.

Kimi-Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han Zhu,
Hao Ding, Hao Hu, Hao Yang, Hao Zhang, et al. Kimi k1.5: Scaling Reinforcement Learning with
LLMs, 2025.

Max Kreminski, John Joon Young Chung, and Melanie Dickinson. Intent Elicitation in Mixed-
Initiative Co-Creativity. In IUI Workshops, 2024.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving Quantitative Reasoning
Problems with Language Models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and Kai Fan. MARIO: MAth Reasoning with code
Interpreter Output–A Reproducible Pipeline. arXiv preprint arXiv:2401.08190, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Jiawei Liu and Lingming Zhang. Code-R1: Reproducing R1 for Code with Reliable Rewards. 2025.

Qianchu Liu, Sheng Zhang, Guanghui Qin, Timothy Ossowski, Yu Gu, Ying Jin, Sid Kiblawi, Sam
Preston, Mu Wei, Paul Vozila, Tristan Naumann, and Hoifung Poon. X-Reasoner: Towards
Generalizable Reasoning Across Modalities and Domains. arXiv preprint arXiv:2505.03981, 2025.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. DeepScaleR: Surpassing O1-Preview
with a 1.5B Model by Scaling RL, 2025.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025.

MAA. American mathematics competitions. https://maa.org/student-programs/
amc/, 2023.

MAA. American invitational mathematics examination. https://maa.org/
maa-invitational-competitions/, 2024.

Nitral-AI. Creative Writing-ShareGPT. https://huggingface.co/datasets/
Nitral-AI/Creative_Writing-ShareGPT, 2024. Dataset.

Abhinav Rastogi, Albert Q Jiang, Andy Lo, Gabrielle Berrada, Guillaume Lample, Jason Rute, Joep
Barmentlo, Karmesh Yadav, Kartik Khandelwal, Khyathi Raghavi Chandu, et al. Magistral. arXiv
preprint arXiv:2506.10910, 2025.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables
zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

12

https://maa.org/student-programs/amc/
https://maa.org/student-programs/amc/
https://maa.org/maa-invitational-competitions/
https://maa.org/maa-invitational-competitions/
https://huggingface.co/datasets/Nitral-AI/Creative_Writing-ShareGPT
https://huggingface.co/datasets/Nitral-AI/Creative_Writing-ShareGPT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Han Shen. On Entropy Control in LLM-RL Algorithms. arXiv preprint arXiv:2509.03493, 2025.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
Crossing the Reward Bridge: Expanding RL with Verifiable Rewards Across Diverse Domains,
2025.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. In Advances in Neural Information Processing
Systems, 2024.

Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
Tao Zhong, and Mingxuan Yuan. Unlocking Efficient Long-to-Short LLM Reasoning with Model
Merging, 2025.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. In Advances in Neural Information Processing
Systems, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 Technical Report. arXiv e-prints, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale, 2025.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. In The Thirteenth International
Conference on Learning Representations, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2023.

Jiaming Zhou, Abbas Ghaddar, Ge Zhang, Liheng Ma, Yaochen Hu, Soumyasundar Pal, Mark Coates,
Bin Wang, Yingxue Zhang, and Jianye Hao. Enhancing logical reasoning in large language models
through graph-based synthetic data. arXiv preprint arXiv:2409.12437, 2024.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

LLM USAGE STATEMENT

In accordance with the conference policy on large language model (LLM) usage, we acknowledge that
LLMs were employed as general-purpose assistants during the preparation of this work. Specifically,
we used LLMs for proof-reading, LaTeX formatting support, adaptation of short code or text snippets.
We also used LLMs a search engine and to find weaknesses. The LLMs did not contribute to research
ideation, experimental design, or substantive writing, and their role was limited to auxiliary assistance.

A APPENDIX

A.1 REWARD ESTIMATION

Omni-Thinker employs a hybrid reward system combining rule-based correctness (math, code, QA)
with preference-based supervision (creative writing) in a unified RL framework. We define task-
specific reward functions as Rk(q, o), where o denotes the model output and q is the prompt provided
to the model. Each reward function captures domain-relevant correctness criteria, assessing whether o
satisfies symbolic constraints, passes execution tests, or is preferred over alternatives under subjective
evaluation. While some rewards (e.g., math and code) are strictly deterministic, others, such as
LLM-as-a-Judge comparisons, are inherently stochastic but executed at low decoding temperature to
ensure stable and consistent supervision. All reward functions are designed to be domain-aware and
automatable, supporting scalable reinforcement learning across both structured and generative tasks.

Primary Rewards. Each task employs a tailored correctness criterion:

• Math: Elements of the math dataset are couples (q, aq) where q is a prompt and aq is a token
sequence stating the answer. We implement a verifymath(o, a) function that combines
regular expression and symbolic parser to checks that a (or an equivalent acceptable answer)
is in o within tags <answer>. More formally

rmath(q, o) = 1 {verifymath(o, aq) = true} .

• Code Generation: Each element of the code dataset is a tuple
(q,unittestq,test caseq) where q is a prompt, unittestq is a unit test
function and test caseq is a set of test cases. Given an output o for prompt q, the
generated code oans is extracted from the output o using regular expressions, the unit
test unittestq(oans, x) is executed in a sandboxed environment for every test case
x ∈ test caseq . More formally

rcode(q, o) =
∏

x∈test caseq

1 {unittestq(oans, x)}

• General QA: Each element of the dataset for General QA is a couple (q, aq) of prompt and
answer. The reward is defined by extracting the answer oans from the output o using regular
expressions and testing it against the ground truth a. More formally:

rqa(q, o) = 1 {oans = aq}

which returns 1 if the predicted answer matches the ground-truth string exactly.

• Creative Writing: Each element of the dataset for Creative writing is a couple (q, oref,q).
Given an output o on prompt q, the reward is computed by calling a fixed LLM-as-a-Judge
model prompted to do a pairwise comparison between o and oref,q . More formally:

rwriting(q, o) =


1.0 if o ≻q oref,q
0.5 if o ∼q oref,q
0.0 if o ≺q oref,q

where A ≻q B means that the fixed LLM-as-a-Judge model prefered A over B for request
q, and A ∼q B means it judges the answers as tied.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Auxiliary Rewards. To encourage structured outputs, we define formatting-based rewards shared
across tasks:

rformat(q, o) = 1 {tags valid(o)}

rtags(q, o) =
1

4
· |tags present(o)|

Here, tags valid ensures proper nesting of <think> and <answer> tags, while
tags present counts required structural markers.

Total Reward. We define the total reward as a weighted sum over both primary and auxiliary
reward components. Let Fk = {r(1)k , r

(2)
k , . . . , r

(m)
k } denote the set of reward functions associated

with task k, where each r
(j)
k measures a different aspect of correctness. Given a model output o and

its associated evaluation context ϕk, the total reward is computed as:

Rk(q, o) =
∑
r∈Fk

wr · r(q, o),

where wr ∈ [0, 1] denotes the task-specific weight for reward component r. If a component reward is
undefined, e.g., due to malformed or unparsable output, it is omitted from the sum. Samples with no
valid reward components are excluded from policy updates.

A.2 RESULTS

A.2.1 OUTPUT FORMAT MATTERS: FULL-TEXT ANSWERS ENHANCE GENERALIZATION

We examine how output format impacts generalization by comparing models trained to generate
full-text answers versus selecting letter choices in multiple-choice QA (MCQ). Using GRPO, we
train two single-task policies on the training set, one prompted to produce full-text final answers at
the end of its chain-of-thought completions, and the other to output only letter choices (e.g., “A”, “B”,
“C”).

QA Format (Test) MCQ Format (Test)0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Trained on QA Format
Trained on MCQ Format

Figure 3: Models trained to generate full-
text answers outperform those trained to
select letter choices. This format pro-
motes deeper semantic understanding
over shallow pattern matching or guess-
ing.

As shown in Figure 3, the model trained to output full-
text answers achieves significantly better generalization
when evaluated with free-form QA prompts on MMLU
Pro (51% vs. 41%). While the letter-choice model slightly
outperforms when evaluated strictly on MCQ prompts, the
full-text model remains competitive across both prompt
formats.

These results suggest that training with complete, seman-
tically grounded answers encourages deeper reasoning,
improving the model’s ability to generalize beyond the
specific format seen during training. In contrast, letter-
choice training risks overfitting to shallow pattern match-
ing, reducing transferability to realistic QA settings that
often require articulated responses.

A.2.2 CURRICULUM ACCURACIES PREDICTIONS

On Figure 4 are provided BWT matrix for validation sets
and test sets. We compute ranking of curricula using both,
see table 4. We observe that he Forgettability heuristic
provides the second best prediction on test BWT, but exact LOM yields a potentially better candidate.
Using validation BWT, the curriculum Code-Math-QA-Writing comes second but the proposed exact
LOM should be rejected based on our entropy discussion.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Math Coding General
QA

Creative
Writing

Math

Coding

General
QA

Creative
Writing

49.1 18.1 11.4 29.4

19.8 74.2 52.6 7.6

14.4 -28.6 124.6 19.3

22.2 0.6 -55.3 207.6
50

0

50

100

150

200

Re
la

tiv
e

Ac
c

BW
T

(%
)

Math Coding General
QA

Creative
Writing

Math

Coding

General
QA

Creative
Writing

3.8 -6.1 -23.9 -3.4

-3.7 21.9 -1.8 -3.5

-0.7 2.9 23.7 -15.0

0.2 1.6 1.1 5.6 20

10

0

10

20

Re
la

tiv
e

Ac
c.

 B
W

T
(%

)

Figure 4: Comparison of backward transfer on validation set (left) and test set (right).

Table 4: Curricula ranked by final geometrical average relative improvement

∆rel :=
1

K
log

K∏
k=1

Acc(θsmax
, Tk)

Acc(θ0, Tk)
(14)

on test set (left block) and eval set (right block), with predicted accuracies (%) for each task at each
order, and their ranking scores.

Test set order Validation set order
Order M C Q W ∆rel Order M C Q W ∆rel

MCQW 55.2 37.7 51.9 78.4 12.85 CW MQ 34.9 42.5 26.8 35.4 26.00
CMQW 57.3 35.4 51.9 78.4 12.22 CMQW 36.7 42.5 27.5 32.6 25.85
MQCW 55.2 36.7 51.0 78.4 11.70 C QW M 33.1 42.5 28.1 35.3 25.81
MQW C 55.2 36.1 51.0 75.7 10.43 W CMQ 34.9 44.7 26.8 33.4 25.77
MCW Q 55.2 37.7 51.3 66.6 8.49 CMW Q 36.7 42.5 26.8 32.8 25.29
CMW Q 57.3 35.4 51.3 66.6 7.86 CW QM 33.1 42.5 27.4 35.4 25.25
MW CQ 55.2 37.1 51.3 64.3 7.22 C QMW 34.8 42.5 28.1 32.6 25.09
CW MQ 57.2 35.4 51.3 64.3 6.96 W CQM 33.1 44.7 27.4 33.4 25.02
W MCQ 55.1 37.1 51.3 62.1 6.32 MCQW 37.0 40.2 27.5 32.6 24.71
MW QC 55.2 36.1 50.4 64.3 6.07 W MCQ 35.3 42.3 26.8 33.4 24.64
W CMQ 57.2 34.8 51.3 62.1 5.69 MCW Q 37.0 40.2 26.8 32.8 24.16
C QMW 57.7 35.4 39.5 78.4 5.56 MW CQ 37.0 42.3 26.8 30.9 23.93
W MQC 55.1 36.1 50.4 62.1 5.18 QCW M 33.1 41.3 26.1 35.3 23.23
QMCW 55.6 36.7 38.8 78.4 5.05 QW CM 33.1 43.4 26.1 33.3 23.00
C QW M 57.6 35.4 39.5 75.7 4.67 QCMW 34.8 41.3 26.1 32.6 22.52
QCMW 57.7 34.4 38.8 78.4 4.41 W QCM 33.1 43.4 25.4 33.4 22.45
QMW C 55.6 36.1 38.8 75.7 3.77 MQCW 37.0 39.1 25.5 32.6 22.14
QCW M 57.6 34.4 38.8 75.7 3.52 W MQC 35.3 41.1 24.9 33.4 22.07
QW MC 55.5 36.1 38.8 73.1 2.88 MQW C 37.0 41.1 25.5 30.8 21.91
QW CM 57.6 33.9 38.8 73.1 2.25 QW MC 33.5 41.1 26.1 33.3 21.87
CW QM 57.6 35.4 39.0 64.3 0.31 QMCW 35.2 39.1 26.1 32.6 21.39
W CQM 57.6 34.8 39.0 62.1 -0.97 MW QC 37.0 41.1 24.9 30.9 21.35
W QMC 55.5 36.1 38.4 62.1 -1.48 W QMC 33.5 41.1 25.4 33.4 21.31
W QCM 57.6 33.9 38.4 62.1 -2.11 QMW C 35.2 41.1 26.1 30.8 21.16

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 DETAILED HYPER-PARAMETERS

We summarize the hyperparameters used in our experiments in Table 5. These values were chosen
through a combination of prior work, small-scale ablations, and practical compute considerations.

Table 5: Training Hyperparameters for All Training Settings. ST = Single-Task RL (e.g., ST Math =
RL trained only on math).

Hyperparameter
Curr.

Learning
Joint

Training
ST

Coding
ST

Math
ST
QA

ST
Writing SFT

Model Configuration
Max Prompt Length 1024 1024 1024 1024 1024 1024 -
Max Response Length 3072 3072 3072 3072 3072 3072 -

Training Settings
Train Batch Size 256×6 256×6 256×6 256×6 256×6 256×6 128
Learning Rate 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 2.5e-6
Learning Scheduler Constant Constant Constant Constant Constant Constant Cosine
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Grad Clip 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max Epoch 3 3 3 3 3 3 3

RL Settings
KL Beta 0.0 0.0 0.0 0.0 0.0 0.0 -
Clip Ratio Low 0.2 0.2 0.2 0.2 0.2 0.2 -
Clip Ratio High 0.2 0.2 0.2 0.2 0.2 0.2 -
N Rollouts 16 16 16 16 16 16 -
Rollout Temperature 1.0 1.0 1.0 1.0 1.0 1.0 -
Rollout Top-P 1.0 1.0 1.0 1.0 1.0 1.0 -
Rollout Top-K 50 50 50 50 50 50 -

LLM-as-a-Judge Settings
Model gpt-4.1-mini gpt-4.1-mini - - - gpt-4.1-mini -
Temperature 0.4 0.4 - - - 0.4 -

17

	Introduction
	Framework Overview
	Notation and Training Objective
	Hybrid Rewards
	Joint training and Curriculum Learning

	Backward Transfer for Task-scheduling
	A priori prediction of terminal accuracies under constant BWT
	Curriculum Choice via Linear Ordering Maximization

	Experimental Setup
	Results and Discussion
	Main Results: Scaling Multi-Task LLM Post-Training with Omni-Think
	Entropy Dynamics: Discussion
	Entropy Dynamics: Empirical Support

	Related Work & limitations
	Conclusion
	Appendix
	Reward Estimation
	Results
	Output Format Matters: Full-Text Answers Enhance Generalization
	Curriculum Accuracies Predictions

	Detailed Hyper-Parameters

