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ABSTRACT

The pursuit of general-purpose artificial intelligence depends on large language
models (LLMs) that can handle both structured reasoning and open-ended genera-
tion. We present OMNI-THINKER, a unified reinforcement learning (RL) frame-
work that scales LLMs across diverse tasks by combining hybrid rewards with
backward-transfer–guided scheduling. Hybrid rewards integrate rule-based verifi-
able signals with preference-based evaluations from an LLM-as-a-Judge, enabling
learning in both deterministic and subjective domains. Our scheduler orders tasks
according to accuracy backward transfer (BWT), reducing forgetting and improv-
ing multi-task performance. Experiments across four domains show gains of 6.2%
over joint training and 12.4% over model merging. Moreover, we demonstrate that
simple assumptions on accuracy transfer yield accurate predictions of curriculum
outcomes, with entropy dynamics explaining deviations due to generative tasks.
These findings underscore the importance of BWT-aware scheduling and hybrid
supervision for scaling RL-based post-training toward general-purpose LLMs.

1 INTRODUCTION
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Figure 1: Performance across four task domains, comparing Joint Training and Curriculum Learning
against baselines including SFT and Model Merging. Curriculum Learning achieves the strongest
results, showing that controlling how tasks are scheduled is crucial for effective multi-task learning.

Reinforcement learning (RL) has become an effective approach for improving large language models
(LLMs) (Hurst et al., 2024; Liu et al., 2024; Dubey et al., 2024; Yang et al., 2024), particularly in
structured domains such as math and coding where verifiable, rule-based rewards are available (Guo
et al., 2025; Luo et al., 2025; Kimi-Team et al., 2025). Methods such as Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) show that even coarse learning signals can steer LLMs
toward structured, chain-of-thought reasoning. However, most RL methods remain tailored to
deterministically verifiable tasks, limiting their utility in open-ended domains such as general QA
and creative writing. Moreover, training LLMs across multiple tasks remains challenging because
it requires optimizing for diverse forms of feedback signals, including binary correctness checks in
structured tasks and subjective, preference-based judgments in generative ones.

We address this challenge with OMNI-THINKER, a unified RL framework that enables LLMs to learn
from both rule-based and generative supervision under a single policy. Building on Reinforcement
Learning with Verified Reward (RLVR), our method integrates symbolic verifiers with LLM-as-a-
Judge evaluations (Zheng et al., 2023; Zhang et al., 2025) to handle subjective tasks. Our curriculum
is forgetting-aware; it is guided by backward transfer (BWT), where BWT denotes test-performance
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backward transfer computed on a normalized, task-specific test metric. Ordering task training
according to this signal yields effective curricula across heterogeneous domains. We show that
the final accuracy of model after curriculum learning is well predicted by forgettability ranking,
even under simplifying assumptions. Empirically, we observe complementary entropy dynamics,
fine-tuning on creative writing tends to increase the model’s output entropy, whereas training on
verifier-supervised, structured tasks tends to decrease it; this trend is consistent with our BWT-guided
choice to train structured tasks before open-ended ones. Across four domains, OMNI-THINKER
improves generalization while reducing forgetting, with average gains of 6.2% over joint multi-task
training and 12.4% over model merging, respectively.

Our key contributions are threefold. (1) We present OMNI-THINKER, a unified framework that
trains a single policy across four diverse domains, using hybrid verifiable and preference-based
rewards. (2) We develop a forgetting-aware curriculum based on backward transfer (BWT) linear
ordering maximization over task-specific test performance to reduce forgetting, outperforming joint
multi-task training and model merging. (3) We empirically analyze training dynamics through the
lens of entropy, revealing that structured domains (math, coding) systematically decrease output
entropy while open-ended domains (creative writing) increase it, thereby providing an explanatory
link between entropy evolution and the effectiveness of BWT-guided curricula.

2 FRAMEWORK OVERVIEW

We introduce OMNI-THINKER as a unified reinforcement learning framework for large language
models that integrates hybrid rewards with task scheduling guided by backward transfer. Unlike
prior approaches that separate reasoning and generative domains, OMNI-THINKER maintains a single
policy across heterogeneous tasks, including Math, Coding, General QA, and Creative Writing, while
dynamically ordering training to minimize forgetting. The framework is instantiated using Multi-Task
GRPO, augmented with both symbolic verifiers and LLM-as-a-Judge supervision, and a curriculum
determined by accuracy- and entropy-based backward transfers.

2.1 NOTATION AND TRAINING OBJECTIVE

We give ourselves a vocabulary V with a special end-of-sequence token eos. The set of finite
sequences of tokens is denoted V∗; for any sequence o ∈ V∗, its length is denoted |o| and we say
that o is complete if o|o| = eos. A model, parameterized by θ, defines a conditional distribution
πθ(yt | y<t) for any given sequence of tokens (yt)t∈N. It induces a policy π⊗

θ on token sequences
defined by π⊗

θ (o | q, o<t0) :=
∏|o|

t=t0
πθ(ot | q, o<t). We adopt a multi-task RL (MTRL) formulation:

a task is a couple T = (D, R) where D is a dataset of prompts and R(q, o) is a task-specific reward
function. Given a set of K tasks T = {T1, . . . , TK}, the goal is to learn a unified policy πθ that
maximizes the expected reward over the task distribution:

max
θ
J (θ) = E(D,R)∼P (T )

[
Eq∼D,o∼π⊗

θ (·|q) [R(o)]
]
, (1)

where P (T ) is a task sampling distribution, which determines task exposure during training.

In order to train πθ to maximize the objective J , we extend the GRPO (Guo et al., 2025) algorithm
to the multi-task setting by jointly optimizing over task-specific reward signals and reference policies.
For each input prompt q, GRPO samples a group of outputs {oq,1, oq,2, · · · , oq,G} from the old policy
πθold . A task-specific reward function Rk(q, o) scores each output. The policy πθ is updated to
maximize expected return while controlling divergence from a reference policy.

We define the policy ratio ρq,i,t and the normalized advantage estimate Âq,i,t as follows:

µq = mean
(
{Rk(q, oq,i)}Gi=1

)
, σq = std

(
{Rk(q, oq,i)}Gi=1

)
, (2)

ρq,i,t =
πθ(oq,i,t | q, oq,i,<t)

πθold(oq,i,t | q, oq,i,<t)
, Âq,i,t =

Rk(q, oq,i)− µq

σq
. (3)
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This allows us to write the MT-GRPO objective as

JMT-GRPO(θ) = Ek∼K,q∼Dk,{oq,i}G
i=1∼π⊗

θold
(·|qk)

1

G

G∑
i=1

1

|oq,i|

|oq,i|∑
t=1

{
min

[
ρq,i,tÂq,i, clip (ρq,i,t, 1−ϵ, 1+ϵ) Âq,i

]
− βkDKL [πθ||πref ]

}
,

(4)

where

DKL [πθ||πref ] =
πref (oq,i,t|q, oq,i,<t)

πθ(oq,i,t|q, oq,i,<t)
− log

πref (oq,i,t|q, oq,i,<t)

πθ(oq,i,t|q, oq,i,<t)
− 1. (5)

The clipping parameter ϵ stabilizes updates by keeping policy ratios within a bounded range, following
the PPO approach (Schulman et al., 2017). The KL divergence term regularizes the new policy
towards the reference policy πref, weighted by a task-specific coefficient βk.

2.2 HYBRID REWARDS

We design a hybrid reward system that unifies reinforcement learning across both structured reasoning
tasks and open-ended generative domains.

Verifiable Supervision. For tasks with objective correctness signals, such as symbolic math and
code generation, we define binary rewards based on symbolic matches, test case results, or other
deterministic evaluators depending on the tasks.

Short-Form Open-Ended Supervision. For language tasks with known or extractable ground-truth
answers such as general question answering (QA), we reformulate queries into open-ended prompts
and incorporate distractor responses (LLM-generated plausible but incorrect answers) into the context.
Instead of labeling options, we prompt the model to reason using the <think>...</think> format
and to output answers within <answer>...</answer> tags. Responses are evaluated with a binary
reward based on string matching or set membership against reference answers, thereby encouraging
semantic grounding and mitigating shallow pattern memorization. We find that conditioning the LLM
on a diverse set of candidate options, including one correct answer and multiple distractors, is key to
steadily improving general-domain reasoning while reducing susceptibility to random guessing or
reward hacking, compared to directly prompting the model to generate open-ended answers during
training without the augmented context.

Long-Form Open-Ended Supervision. For subjective tasks lacking ground truth (e.g., dialogue,
writing), we use an LLM-as-a-Judge (Chen et al., 2025) to assign a scalar reward based on rubric-
aligned pairwise preferences between candidate outputs. This enables learning in domains where
symbolic correctness is insufficient or intractable. This prompt-based approach leverages recent
advances in the general reasoning capabilities of LLMs, using generated chain-of-thoughts to elicit a
ternary reward signal, preferred, tie, or dispreferred, without requiring large-scale preference data
collection and reward model training.

Together, these components form a unified hybrid reward scheme: verifiable rewards ensure correct-
ness where possible and generative-based signals cover subjective domains. This design enables
reinforcement learning to scale across diverse tasks, from reasoning to open-ended generation.

2.3 JOINT TRAINING AND CURRICULUM LEARNING

In practice, a maximization step of the training objective JMT-GRPO requires a batch B of prompts
sampled from

⋃K
k=1Dk then sampling a batch of outputs {oq,i}Gi=1 for each q ∈ B. A multi-

task schedule is defined as a sequence of batches (Bs)
smax
s=1 such that ∀s ̸= s′, Bs ∩ Bs′ = ∅ and⋃smax

s=1 Bs =
⋃K

k=1Dk.

Two special cases are considered: Joint Training and Curriculum Learning. Joint Training consists in
sampling each batch B uniformly at random among all samples (without replacement), disregarding
their corresponding tasks: ∀s,Bs ∼ U

(⋃K
k=1Dk \

⋃
s′<s Bs′

)
. Curriculum Learning on the other

3
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hand consists of pure batches chosen from the same task until exhaustion of the task dataset. By pure,
we mean that each batch is derived from only one task dataset: ∀s,Bs ∼ U

(
Dks
\
⋃

s′<s Bs′
)

for
some task schedule (ks)s∈{1,··· ,smax}. A Curriculum is described by a permutation σ ∈ SK of the
tasks, with SK the set of permutation of {1, · · · ,K}.

3 BACKWARD TRANSFER FOR TASK-SCHEDULING

We intend to use Backward Transfers (BWT) to guide our choice of curriculum. Following Lopez-Paz
& Ranzato (2017) it is defined as follows.

Definition 1 (Backward Transfer Matrix). Let θ0 be a set of initial parameters of a model πθ and
let θ(θ0, T ) be the set of parameters obtained after training πθ on task T starting from θ0. Write
Acc(θ, T ) the accuracy of model πθ on task T . The backward transfer matrix is defined by

BWTij(θ0) := logAcc(θ(θ0, Tj), Ti)− log Acc(θ0, Ti). (6)

3.1 A PRIORI PREDICTION OF TERMINAL ACCURACIES UNDER CONSTANT BWT

Algorithm 1: Final Accuracy under Assump-
tions 1 and 2
Input: BWT ∈ RK×K .

ainit := (Acc(θ0, Tk))
K
k=1 ∈ RK .

Curriculum σ ∈ SK

a← ainit;
for j = 1 to K do

k ← σ(j);
ak ← ainit,k;
for i = 1 to K do

ai ← ai × exp(BWTik);
end

end
return a;

Our goal is to choose a curriculum order σ
a priori by predicting the terminal per–task ac-
curacies without training all permutations. We
propose a simple predictive model in which (i)
inter–task backward transfers are treated as con-
stant in log–accuracy, and (ii) training on the full
dataset of a task saturates its self–accuracy. Un-
der these assumptions, terminal accuracies for
any order σ become computable from quantities
measured once at initialization.

Setup. Using notations from Section 2.3, let
θ0 denote the parameters of the pre–trained
model πθ, and let θs be the parameters after s
optimization steps following a curriculum order
σ ∈ SK .

Assumption 1 (Constant off–diagonal BWT in log–accuracy). For all i ̸= j and all optimization
steps s along the schedule,

BWTij(θs) = BWTij(θ0) . (7)

Assumption 2 (Task–wise saturation). Let {Bs} be the sequence of mini–batches processed along
the schedule. If, between steps s1 and s2, the full dataset Dk of task Tk has been seen, then accuracy
saturates on task Tk to the same accuracy as training from θ0:

s2⋃
s=s1

Bs = Dk ⇒ Acc(θs2 , Tk) = Acc
(
θ(θ0, Tk), Tk

)
. (8)

Theorem 1. Under Assumptions 1 and 2, for any curriculum order σ ∈ SK starting from θ0, the
terminal accuracies {Acc(θsmax , Tk)}Kk=1 given the initialization accuracies {Acc(θ0, Tk)}Kk=1, the
BWT(θ0) and a curriculum σ is exactly the output of Algorithm 1

Reasonableness and limitations. Assumption 1 abstracts away known drivers of transfer, such
as domain overlap, stochasticity, and entropy evolution, thus is a toy yet useful approximation for a
priori curriculum selection. See Sections 5.2 and 5.3 for a discussion of a correction coming from
entropy. Working in log–accuracy space keeps accuracies positive but does not eliminate the risk
of unrealistic growth over long curricula (e.g., predictions exceeding 1 in accuracy). Assumption 2
is reasonable when each task dataset is sufficiently large and optimization keeps the model in a
well–conditioned regime, conditions we satisfy in our experiments. Together, these assumptions
yield a tractable predictor that captures coarse curriculum effects while remaining simple enough to
evaluate without exhaustive training.
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3.2 CURRICULUM CHOICE VIA LINEAR ORDERING MAXIMIZATION

Algorithm 1 admits the following closed form for the predicted terminal accuracies:

log Acc(σ)− log Acc(Id) =
∑
i<j

(
Φ−1

σ BWTΦσ

)
ij
, with Φσ,ij = 1i=σ(j). (9)

Algorithm 2: Greedy BWT-LOM Curriculum

Input: BWT matrix BWT ∈ RK×K

σ ← empty list;
while there are unvisited tasks do

k∗ ← argmaxk/∈σ

∑
i/∈σ∪{k} BWTik;

append k∗ to σ;
end
return σ;

In words, curriculum reordering acts by permut-
ing the BWT matrix with Φσ, and the gain rel-
ative to the identity schedule is simply the sum
of the upper–triangular entries of the permuted
matrix.

Given an aggregated score of the form

S :=
∑
T∈T

αT log Acc(θ, T ), (10)

identifying the best task order amounts to solv-
ing a Linear Ordering Problem (LOP). see (Floudas & Pardalos, 2008) for an overview. This problem
is known to be NP–hard, but for small numbers of tasks (K) it can be solved exactly. For larger K, a
wide range of approximation algorithms and heuristics exist. A simple heuristic is to rank tasks by a
forgettability score: Fk := αk

∑
i ̸=k BWTik. Intuitively, ordering tasks by decreasing Fk prioritizes

those that exert the least destructive interference on others (or even provide positive transfer), thereby
reducing overall forgetting. Our curriculum orders tasks by decreasing column mean of BWT.

4 EXPERIMENTAL SETUP

Training Datasets. We curate a multi-domain training dataset covering Math, Coding, General
QA, and Creative Writing, with each domain selected to support hybrid reward functions and robust
evaluation. For Math, we begin with the OpenR1-Math (HuggingFace, 2025) dataset, retaining
only word problems and excluding questions that require visual reasoning. We further subsample
12,000 examples to fit our compute budget. For Coding, data is sourced from the code-r1-12k (Liu
& Zhang, 2025) dataset, with outliers exceeding 1024 tokens removed. Each entry includes a code
prompt and JSON-formatted unit tests for automatic validation. For General QA, we subsample
5,500 queries from from SuperGPQA (Du et al., 2025) dataset, proportionally by question category.
Each sample comprises a factual question paired with a plain-text answer. We then generate 15
additional confusion options while making sure the uniqueness of correctness by prompting an
LLM. The Creative Writing. domain leverages 6,650 conversations from Nitral AI’s ShareGPT
dataset (Nitral-AI, 2024), focused on single-turn completions. Samples exceeding two dialogue turns
are filtered out, and responses are judged via an LLM-as-a-Judge framework.

Evaluation. We assess performance in each domain using dedicated benchmarks aligned with
the task’s evaluation criteria. Math: accuracy on AIME24 (MAA, 2024), AMC23 (MAA, 2023),
Gaokao2023EN (Liao et al., 2024), MATH-500 (Hendrycks et al., 2021), MinervaMath (Lewkowycz
et al., 2022), and OlympiadBench (He et al., 2024). Coding: pass@1 on BigCodeBench (Complete-
Full) (Zhuo et al., 2024) and LiveCodeBench (24Oct–25Jan) (Jain et al., 2024). General QA:
exact-match accuracy on MMLU-Pro (Wang et al., 2024). Creative Writing: win rate on the
role-play and creative writing subsets of MT-Bench (Zheng et al., 2023), against GPT-4 (pre-gen,
June 16, 2023).

Baselines. We use Qwen2.5-7B-Instruct (Yang et al., 2024) as the base model for all experiments,
owing to its strong instruction-following capability, which makes it well-suited for reinforcement
learning on both structured reasoning and open-domain QA tasks. Supervised Fine-Tuning (SFT):
In order to have a meaningful comparison with GRPO, we adopt a similar self-sampled data curation
and fine-tuning approach with Rejection sampling Fine-Tuning (Yuan et al., 2023). We first prompt
the base model to generate 128 chain-of-thought responses for our training dataset to ensure we end up
with at least one correct response for most queries, then filter them based on the same accuracy reward
signals used in GRPO training. We then perform sft on base model using these self-distilled responses.
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This provides a strong on-policy learning baseline that incorporates explicit reasoning steps through
self-distillation from the base model. Model Merging: We employ TIES-Merging (Wu et al., 2025)
as our model-merging baseline. It is a simple yet effective method designed specifically for the
multi-task setting that takes into consideration the interference between parameters from models
trained on individual tasks during the merging process. It has demonstrated superior performance in
multi-task learning compared to linear and task arithmetic approaches (Yadav et al., 2023). To begin
with, we conduct single-task GRPO training using individual task datasets and collect the model
weights of the best checkpoints with the help of a validation set for each training run. We then merge
the four single-task models using a scaling value λ = 1.

5 RESULTS AND DISCUSSION

5.1 MAIN RESULTS: SCALING MULTI-TASK LLM POST-TRAINING WITH OMNI-THINK

We evaluate OMNI-THINKER across four diverse domains: Coding, Math, General QA, and Creative
Writing, to assess how reinforcement learning with rule-based verifiable rewards and generative
supervision supports multi-task generalization. BWT matrix is computed following equation 6, then
Algorithm 1 is used to predict the accuracy of the model after curriculum learning, Appendix A.2.2
for details. The predicted best curriculum using Algorithm 2 is Code→ Math→ QA→Writing
while the worst is Writing→ QA→Math→ Coding.

Figure 1 shows that Curriculum Multi-Task Learning with GRPO consistently yields the best results.
Table 1 further details how these gains vary by benchmarks.

In Math, Curriculum Learning (CL) achieves the highest average performance at 59.6%, with the
clearest gains on more complex reasoning tasks such as MinervaMath and OlympiadBench. These
benchmarks benefit from strong rule-based reward signals and backward-transfer-guided task ordering.
In contrast, datasets like AMC23 show minimal change because their relatively high baseline scores
likely reflect smaller question sets and potential pretraining overlap rather than robust multi-step
problem-solving.

In General QA, CL again performs best (52.2%), followed by Model Merging (49.8%) and Mixed
Training GRPO (48.8%). These improvements are driven by our Short-Form Open-Ended Supervision
strategy: instead of generating responses in a fully open-ended and unconstrained fashion, the model
is trained to produce complete answer strings given a diverse set of candidate responses, enabling
the effective application of verifiable reward through simple string matching when training general-
domain tasks.

For Code Generation, CL achieves 35.4%, slightly ahead of Model Merging. Notably, we only
evaluate on the subset of LiveCodeBench(24Oct-25Jan) problems released after Qwen2.5’s data cutoff,
which ensures that these are unseen test items. This setup highlights CL’s significant generalization
gains on novel problems, explaining the larger improvements on LiveCodeBench relative to static
benchmarks like BigCodeBench, where data overlap is more likely.

In Creative Writing, the introduction of our Long-Form Open-Ended Supervision strategy, employ-
ing the LLM-as-a-Judge framework for pairwise evaluation, results in significant performance boosts
(Curriculum-Guided at 84.2% and Joint MT at 83.00%), underscoring the advantage of our generative
reward approach in subjective, open-ended tasks.

These results support our central hypothesis: The OMNI-THINKER Framework, BWT-guided Cur-
riculum Learning with hybrid rewards, enables a single unified policy to scale across structured and
open-ended tasks alike, without relying on interleaving RLVR on reasoning tasks and fine-tuning
non-reasoning tasks.

5.2 ENTROPY DYNAMICS: DISCUSSION

Comparison between accuracies predictions to the actual test evaluation results for various curricula
is depicted on Table 3. Predicted accuracies using test set backward transfers are surprisingly precise
considering our simplifying assumptions, especially for the top curriculum. We now discuss an
identified cause of discrepancies.

6
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Table 1: Performance across benchmarks. ST = Single-Task RL (e.g., ST Math = RL trained only
on math). MM = Model Merging. JT = Joint Training. CL = Curriculum Learning. Bolded values
mark the best per row; underscored values mark the second best. Domains include Math (7 sets),
MMLU-Pro (9 categories), Coding (2 sets), and Creative Writing (MT-Bench).

Eval Task
Base

Model
ST

Coding
ST

Math
ST
QA

ST
Writing SFT MM JT CLbest

Math
AIME24 18.0 13.3 14.7 14.0 15.3 16.7 10.0 11.3 15.3
AMC23 57.5 57.5 60.0 62.5 61.0 62.0 56.0 51.0 70.0
Gaokao2023en 73.0 74.3 76.1 74.0 75.6 74.3 74.8 76.6 77.1
MATH500 78.2 78.8 80.4 75.4 79.2 76.8 79.8 77.6 81.0
MinervaMath 64.3 64.0 66.5 63.2 61.8 65.1 66.2 68.4 71.7
OlympiadBench 42.1 43.0 43.7 41.3 43.0 43.0 41.8 43.6 47.4
Average 55.5 55.1 56.9 55.1 56.0 56.3 54.8 54.8 60.4

General QA
Biology 57.6 56.8 52.3 67.4 59.0 66.3 65.6 67.2 68.8
Business 33.5 39.0 25.6 58.7 33.0 48.2 59.8 49.8 47.5
Chemistry 35.8 31.8 27.3 47.7 38.3 44.1 42.5 42.1 50.7
CS 53.7 48.1 50.2 55.1 52.0 53.7 53.9 58.8 59.3
Economics 42.7 49.2 38.7 62.9 44.9 59.6 62.0 56.8 62.1
Engineering 28.3 31.3 20.4 37.5 26.6 37.8 38.1 35.8 37.1
Health 46.7 46.2 45.2 51.0 47.2 45.7 52.7 50.7 57.1
History 37.3 33.3 34.7 47.2 38.6 33.9 47.3 43.3 45.7
Law 23.2 24.0 20.6 27.9 23.3 26.8 26.6 27.5 29.7
Math 55.4 52.6 50.4 59.3 56.3 57.4 58.3 59.2 61.2
Other 44.3 40.0 39.7 51.0 43.9 46.4 51.8 49.9 53.3
Philosophy 36.9 34.3 33.3 43.9 35.5 38.2 41.5 42.1 42.9
Physics 41.1 37.4 30.8 53.7 41.6 49.8 46.7 48.0 55.6
Psychology 50.9 51.5 45.4 60.2 51.8 59.0 59.4 59.3 61.8
Average 41.5 40.1 37.9 51.3 42.0 47.8 49.8 48.8 52.2

Coding
BigCodeBench 46.5 50.4 46.7 47.1 46.8 44.5 48.1 47.2 49.5
LiveCodeBench 12.7 21.8 13.1 13.8 13.3 14.2 20.8 17.0 21.3
Average 29.6 36.1 29.9 30.5 30.1 29.3 34.4 32.1 35.4

Creative Writing
MT-Bench (Writing) 74.2 71.6 74.2 63.0 78.3 44.2 67.5 83.0 84.2

We define the token-wise entropy of a policy πθ on task Tk ti measures the average per-token
uncertainty of the policy across task samples.

E(θ, Tk) := −Eq∼Dk,o∼π⊗
θ (·|q)

1

|o|

|o|∑
t=1

∑
v∈V

πθ(v | q, o<t) log πθ(v | q, o<t). (11)

Table 2: Test performance (%) of single-task RL fine-
tuning on General QA and Creative Writing respectively
under different generation temperature (T) in training.

Eval Task General QA Creative Writing
T=1.0 T=1.2 T=1.0 T=0.1

Math 55.1 54.8 55.6 57.8
Coding 30.4 26.6 30.1 27.4
General QA 51.4 13.9 42.0 44.9
Creative Writing 63.0 66.7 78.3 82.5

Entropy has been shown to drop during
GRPO fine-tuning on reasoning, coding
and more generally verified rewards (Ras-
togi et al., 2025; Cui et al., 2025; Yu et al.,
2025) with a correlation to higher accuracy
until reaching a breaking point. Long train-
ing requires extra care towards entropy scal-
ing either via regularization (Shen, 2025)
or dynamic temperature scaling. Our multi-
task setting differs in two key aspects com-
pared to the above references.

First, we are using hybrid rewards with
both verified and generative components. The Creative Writing task is generative and is expected to
increase entropy. Indeed, Wang et al. (2025) account for so-called forking tokens corresponding to
structural choices of the output capturing most of the entropy. Reasoning tasks tend to require highly
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causal token sequences hence few forking tokens (low entropy) while generative tasks may allow
more logical cuts at inference (higher entropy).

Second, we train on multiple domains compared to mostly single-domain analysis in the references
above. It is unclear a priori whether entropy decrease propagates from task to task. Agarwal et al.
(2025) show that fine-tuning to reduce entropy suffices to improve performance on multiple domains.
We hypothesize that models implicitly learn to emulate lower or higher temperatures as a mechanism
to regulate entropy. In practice, the policy often produces logically flawed but rarely syntactically
meaningless outputs, suggesting that its support lies within a constrained domain V (q, o<t) ⊂ V:∑

v∈V (q,o<t)
πθ(v | q, o<t) = 1. Scaling the final layer weights by a factor λ < 1 preserves this

domain while increasing entropy, effectively raising the model’s base temperature. Such changes
propagate across all tasks, not only the one being fine-tuned. Thus, even when two domains are
sufficiently distinct for knowledge transfer to fail, the entropy dynamics may still be measurable
across tasks.

Table 3: Comparison of empirical and predicted test accuracies (%). Each task column reports Test
vs. Predicted accuracy for a given curriculum order. Standard deviations are rounded up.

Curriculum Math Coding QA Writing
Test Pred Test Pred Test Pred Test Pred

CMQW 60.4±0.3 57.3 35.4±0.3 35.4 52.2±0.1 51.9 84±2 78.4
QMW C 59.3±0.3 55.6 31.6±0.3 36.7 39.0±0.1 38.8 79±2 78.4
QW CM 60.4±0.3 57.6 31.9±0.3 33.9 36.3±0.1 38.8 82±2 73.1
W QMC 56.6±0.3 55.5 32.7±0.3 36.1 22.6±0.1 38.4 75±2 62.1

5.3 ENTROPY DYNAMICS: EMPIRICAL SUPPORT

Math Coding General
QA

Creative
Writing

Math

Coding

General
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Creative
Writing

-49.8 -48.8 -43.9 -13.3
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Figure 2: Validation Set Entropy Change Matrix.

The intuitions laid out in the previous section
are empirically supported by two experiments.

We define the entropy change matrix as

Hij :=
E(θ(θ0, Ti), Tj)

E(θ0, Tj)
− 1 (12)

and compute it, see Figure 2. We observe that
Math and Coding decrease entropy for all tasks
(as previously observed for Verified Rewards)
while Creative Writing increases entropy. Also,
entropy change seems to depend primarily on
the source task type, secondarily on the target
task type, but not on their domain overlap.

We fine-tune the base model on QA and Writing task with different choices of temperature to emulate
the effect of entropy modifications due to fine-tuning on entropy-increasing or entropy-decreasing
tasks. On the one hand, Writing is thought to benefits from temperature lowering coming from other
tasks, we thus train the base model on writing with a lower temperature and expect the model to close
the gap compared to the best Curriculum-trained model when evaluated with zero temperature. On
the other hand, QA is thought to performs worse than expected in the worst curriculum due to the
increased entropy coming from the trainig on Writing. We fine-tune the base model on QA with a
higher temperature, then evaluate with zero temperature, and expect QA performance to drop toward
the low performance of the worse curriculum learning. The results on table 2 shows that indeed the
case.

6 RELATED WORK & LIMITATIONS

Large Language Models and Multi-Task Learning Early work like (Sanh et al., 2021) showed
that multi-task prompted training can encourage zero-shot generalization. Dong et al. (2023) further
analyzed how mixing SFT data across domains can cause performance conflicts and forgetting,

8
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proposing Dual-stage Mixed Fine-tuning to alleviate these effects. However purely supervised
objectives often encourage memorization rather than transferable reasoning. The Qwen3 model series
(Yang et al., 2025) employs a four-stage post-training pipeline in the order of reasoning, non-reasoning,
and general-domain under a mix of supervised fine-tuning and reinforcement learning. In comparison,
the post-training process for Command-A (Cohere et al., 2025) alternates between training multiple
expert models separately and merging the experts’ parameters into a “Soup Model” during its SFT
and RL steps, before the model undergoes a polishing phase of preference alignment. In contrast,
our work integrates multi-task learning directly into a single RL framework. Its backward-transfer-
guided curriculum orders tasks from least to most forgettable, drawing on continual learning insights
(Lopez-Paz & Ranzato, 2017) to reduce interference and maintain stable cross-task performance.

Large Language Models and Reinforcement Learning Reinforcement Learning with Verified
Rewards has demonstrated effectiveness for tasks with deterministic correctness signals such as math
or code generation (Lambert et al., 2024; Shao et al., 2024; Kimi-Team et al., 2025; Guo et al., 2025).
Recent frameworks like General-Reasoner (Ma et al., 2025), Nemotron-Crossthink (Akter et al.,
2025) and X-REASONER (Liu et al., 2025) expand this to broader reasoning by blending multi-
domain corpora and structured answer templates. However, these tasks still largely remain largely
confined to verifiable STEM problems or multiple-choice formats, leaving open-ended generation,
such as creative writing, insufficiently addressed. To bridge this gap, Su et al. (2025) propose a
generative reward model (GRM) to replace rule-based signals. Although this improves RL and makes
it applicable to general-domain QA when references exist, the approach is still restricted to verifiable
tasks. In contrast, our approach integrates hybrid verifiable and preference-based rewards within
a single RL loop, enabling consistent optimization across both structured and open-ended tasks.
Moreover, our curriculum design, guided by backward transfer, helps maintain stable cross-task
performance even for tasks lacking deterministic evaluation criteria.

7 CONCLUSION

We presented OMNI-THINKER, a unified reinforcement learning framework that enables large
language models to handle both structured and open-ended tasks under a single policy. By combining
rule-based verifiable rewards and generative preference-based supervision, our method improves
generalization while mitigating forgetting and interference. Our findings show that effective multi-
task LLM post-training depends not only on reward design but also on how tasks are sequenced
and optimized together. Ordering tasks from structured to open-ended domains based on backward
transfer reduces forgetting and enhances cross-domain performance. Overall, OMNI-THINKER
advances the goal of general-purpose LLMs that can learn from both verifiable and subjective
feedback, bridging structured reasoning, open-ended question answering, and creative generation in a
single post-training framework.

Limitations: Further work is needed to test this approach across a broader range of tasks and
domains, including those that require logical reasoning over graph-structured data (Zhou et al.,
2024) and knowledge-base retrieval (Dehghan et al., 2024), as well as more diverse open-ended
domains such as mixed-initiative collaborative storytelling and co-creativity (Kreminski et al., 2024).
Our discussion on entropy is consistent with the existing literature however we lack 1) experiments
backing our intuition that forking tokens are clearly identifiable and more frequent in generative
tasks is lacking 2) a direct measurement of temperature scaling due to fine-tuning. Furthermore,
our discussion on entropy is mostly qualitative. A quantitative study of entropy effects could allow
to avoid failure cases of our accuracy predictions hence of our task scheduler. Finally, we fully
leverage BWT only for curriculum learning. A comprehensive framework combining BWT, entropy
and gradient norm in a quantitative manner in the continuous limit would allow for dynamical joint
training with mixed batches.
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LLM USAGE STATEMENT

In accordance with the conference policy on large language model (LLM) usage, we acknowledge that
LLMs were employed as general-purpose assistants during the preparation of this work. Specifically,
we used LLMs for proof-reading, LaTeX formatting support, adaptation of short code or text snippets.
We also used LLMs a search engine and to find weaknesses. The LLMs did not contribute to research
ideation, experimental design, or substantive writing, and their role was limited to auxiliary assistance.

A APPENDIX

A.1 REWARD ESTIMATION

Omni-Thinker employs a hybrid reward system combining rule-based correctness (math, code, QA)
with preference-based supervision (creative writing) in a unified RL framework. We define task-
specific reward functions as Rk(q, o), where o denotes the model output and q is the prompt provided
to the model. Each reward function captures domain-relevant correctness criteria, assessing whether o
satisfies symbolic constraints, passes execution tests, or is preferred over alternatives under subjective
evaluation. While some rewards (e.g., math and code) are strictly deterministic, others, such as
LLM-as-a-Judge comparisons, are inherently stochastic but executed at low decoding temperature to
ensure stable and consistent supervision. All reward functions are designed to be domain-aware and
automatable, supporting scalable reinforcement learning across both structured and generative tasks.

Primary Rewards. Each task employs a tailored correctness criterion:

• Math: Elements of the math dataset are couples (q, aq) where q is a prompt and aq is a token
sequence stating the answer. We implement a verifymath(o, a) function that combines
regular expression and symbolic parser to checks that a (or an equivalent acceptable answer)
is in o within tags <answer>. More formally

rmath(q, o) = 1 {verifymath(o, aq) = true} .

• Code Generation: Each element of the code dataset is a tuple
(q,unittestq,test caseq) where q is a prompt, unittestq is a unit test
function and test caseq is a set of test cases. Given an output o for prompt q, the
generated code oans is extracted from the output o using regular expressions, the unit
test unittestq(oans, x) is executed in a sandboxed environment for every test case
x ∈ test caseq . More formally

rcode(q, o) =
∏

x∈test caseq

1 {unittestq(oans, x)}

• General QA: Each element of the dataset for General QA is a couple (q, aq) of prompt and
answer. The reward is defined by extracting the answer oans from the output o using regular
expressions and testing it against the ground truth a. More formally:

rqa(q, o) = 1 {oans = aq}

which returns 1 if the predicted answer matches the ground-truth string exactly.

• Creative Writing: Each element of the dataset for Creative writing is a couple (q, oref,q).
Given an output o on prompt q, the reward is computed by calling a fixed LLM-as-a-Judge
model prompted to do a pairwise comparison between o and oref,q . More formally:

rwriting(q, o) =


1.0 if o ≻q oref,q
0.5 if o ∼q oref,q
0.0 if o ≺q oref,q

where A ≻q B means that the fixed LLM-as-a-Judge model prefered A over B for request
q, and A ∼q B means it judges the answers as tied.
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Auxiliary Rewards. To encourage structured outputs, we define formatting-based rewards shared
across tasks:

rformat(q, o) = 1 {tags valid(o)}

rtags(q, o) =
1

4
· |tags present(o)|

Here, tags valid ensures proper nesting of <think> and <answer> tags, while
tags present counts required structural markers.

Total Reward. We define the total reward as a weighted sum over both primary and auxiliary
reward components. Let Fk = {r(1)k , r

(2)
k , . . . , r

(m)
k } denote the set of reward functions associated

with task k, where each r
(j)
k measures a different aspect of correctness. Given a model output o and

its associated evaluation context ϕk, the total reward is computed as:

Rk(q, o) =
∑
r∈Fk

wr · r(q, o),

where wr ∈ [0, 1] denotes the task-specific weight for reward component r. If a component reward is
undefined, e.g., due to malformed or unparsable output, it is omitted from the sum. Samples with no
valid reward components are excluded from policy updates.

A.2 RESULTS

A.2.1 OUTPUT FORMAT MATTERS: FULL-TEXT ANSWERS ENHANCE GENERALIZATION

We examine how output format impacts generalization by comparing models trained to generate
full-text answers versus selecting letter choices in multiple-choice QA (MCQ). Using GRPO, we
train two single-task policies on the training set, one prompted to produce full-text final answers at
the end of its chain-of-thought completions, and the other to output only letter choices (e.g., “A”, “B”,
“C”).

QA Format (Test) MCQ Format (Test)0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Trained on QA Format
Trained on MCQ Format

Figure 3: Models trained to generate full-
text answers outperform those trained to
select letter choices. This format pro-
motes deeper semantic understanding
over shallow pattern matching or guess-
ing.

As shown in Figure 3, the model trained to output full-
text answers achieves significantly better generalization
when evaluated with free-form QA prompts on MMLU
Pro (51% vs. 41%). While the letter-choice model slightly
outperforms when evaluated strictly on MCQ prompts, the
full-text model remains competitive across both prompt
formats.

These results suggest that training with complete, seman-
tically grounded answers encourages deeper reasoning,
improving the model’s ability to generalize beyond the
specific format seen during training. In contrast, letter-
choice training risks overfitting to shallow pattern match-
ing, reducing transferability to realistic QA settings that
often require articulated responses.

A.2.2 CURRICULUM ACCURACIES PREDICTIONS

On Figure 4 are provided BWT matrix for validation sets
and test sets. We compute ranking of curricula using both,
see table 4. We observe that he Forgettability heuristic
provides the second best prediction on test BWT, but exact LOM yields a potentially better candidate.
Using validation BWT, the curriculum Code-Math-QA-Writing comes second but the proposed exact
LOM should be rejected based on our entropy discussion.
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Figure 4: Comparison of backward transfer on validation set (left) and test set (right).

Table 4: Curricula ranked by final geometrical average relative improvement

∆rel :=
1

K
log

K∏
k=1

Acc(θsmax
, Tk)

Acc(θ0, Tk)
(14)

on test set (left block) and eval set (right block), with predicted accuracies (%) for each task at each
order, and their ranking scores.

Test set order Validation set order
Order M C Q W ∆rel Order M C Q W ∆rel

MCQW 55.2 37.7 51.9 78.4 12.85 CW MQ 34.9 42.5 26.8 35.4 26.00
CMQW 57.3 35.4 51.9 78.4 12.22 CMQW 36.7 42.5 27.5 32.6 25.85
MQCW 55.2 36.7 51.0 78.4 11.70 C QW M 33.1 42.5 28.1 35.3 25.81
MQW C 55.2 36.1 51.0 75.7 10.43 W CMQ 34.9 44.7 26.8 33.4 25.77
MCW Q 55.2 37.7 51.3 66.6 8.49 CMW Q 36.7 42.5 26.8 32.8 25.29
CMW Q 57.3 35.4 51.3 66.6 7.86 CW QM 33.1 42.5 27.4 35.4 25.25
MW CQ 55.2 37.1 51.3 64.3 7.22 C QMW 34.8 42.5 28.1 32.6 25.09
CW MQ 57.2 35.4 51.3 64.3 6.96 W CQM 33.1 44.7 27.4 33.4 25.02
W MCQ 55.1 37.1 51.3 62.1 6.32 MCQW 37.0 40.2 27.5 32.6 24.71
MW QC 55.2 36.1 50.4 64.3 6.07 W MCQ 35.3 42.3 26.8 33.4 24.64
W CMQ 57.2 34.8 51.3 62.1 5.69 MCW Q 37.0 40.2 26.8 32.8 24.16
C QMW 57.7 35.4 39.5 78.4 5.56 MW CQ 37.0 42.3 26.8 30.9 23.93
W MQC 55.1 36.1 50.4 62.1 5.18 QCW M 33.1 41.3 26.1 35.3 23.23
QMCW 55.6 36.7 38.8 78.4 5.05 QW CM 33.1 43.4 26.1 33.3 23.00
C QW M 57.6 35.4 39.5 75.7 4.67 QCMW 34.8 41.3 26.1 32.6 22.52
QCMW 57.7 34.4 38.8 78.4 4.41 W QCM 33.1 43.4 25.4 33.4 22.45
QMW C 55.6 36.1 38.8 75.7 3.77 MQCW 37.0 39.1 25.5 32.6 22.14
QCW M 57.6 34.4 38.8 75.7 3.52 W MQC 35.3 41.1 24.9 33.4 22.07
QW MC 55.5 36.1 38.8 73.1 2.88 MQW C 37.0 41.1 25.5 30.8 21.91
QW CM 57.6 33.9 38.8 73.1 2.25 QW MC 33.5 41.1 26.1 33.3 21.87
CW QM 57.6 35.4 39.0 64.3 0.31 QMCW 35.2 39.1 26.1 32.6 21.39
W CQM 57.6 34.8 39.0 62.1 -0.97 MW QC 37.0 41.1 24.9 30.9 21.35
W QMC 55.5 36.1 38.4 62.1 -1.48 W QMC 33.5 41.1 25.4 33.4 21.31
W QCM 57.6 33.9 38.4 62.1 -2.11 QMW C 35.2 41.1 26.1 30.8 21.16
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A.3 DETAILED HYPER-PARAMETERS

We summarize the hyperparameters used in our experiments in Table 5. These values were chosen
through a combination of prior work, small-scale ablations, and practical compute considerations.

Table 5: Training Hyperparameters for All Training Settings. ST = Single-Task RL (e.g., ST Math =
RL trained only on math).

Hyperparameter
Curr.

Learning
Joint

Training
ST

Coding
ST

Math
ST
QA

ST
Writing SFT

Model Configuration
Max Prompt Length 1024 1024 1024 1024 1024 1024 -
Max Response Length 3072 3072 3072 3072 3072 3072 -

Training Settings
Train Batch Size 256×6 256×6 256×6 256×6 256×6 256×6 128
Learning Rate 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 2.5e-6
Learning Scheduler Constant Constant Constant Constant Constant Constant Cosine
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Grad Clip 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max Epoch 3 3 3 3 3 3 3

RL Settings
KL Beta 0.0 0.0 0.0 0.0 0.0 0.0 -
Clip Ratio Low 0.2 0.2 0.2 0.2 0.2 0.2 -
Clip Ratio High 0.2 0.2 0.2 0.2 0.2 0.2 -
N Rollouts 16 16 16 16 16 16 -
Rollout Temperature 1.0 1.0 1.0 1.0 1.0 1.0 -
Rollout Top-P 1.0 1.0 1.0 1.0 1.0 1.0 -
Rollout Top-K 50 50 50 50 50 50 -

LLM-as-a-Judge Settings
Model gpt-4.1-mini gpt-4.1-mini - - - gpt-4.1-mini -
Temperature 0.4 0.4 - - - 0.4 -
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