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Abstract

Computer-Aided Design (CAD) is pivotal in industrial manufacturing, with ortho-
graphic projection reasoning foundational to its entire workflow—encompassing
design, manufacturing, and simulation. However, prevailing deep-learning ap-
proaches employ standard 3D reconstruction pipelines as an alternative, which
often introduce imprecise dimensions and limit the parametric editability required
for CAD workflows. Recently, some researchers adopt vision–language mod-
els (VLMs), particularly supervised fine-tuning (SFT), to tackle CAD-related
challenges. SFT shows promise but often devolves into pattern memorization,
resulting in poor out-of-distribution (OOD) performance on complex reasoning
tasks. To tackle these limitations, we introduce CReFT-CAD, a two-stage fine-
tuning paradigm: first, a curriculum-driven reinforcement learning stage with
difficulty-aware rewards to steadily build reasoning abilities; second, supervised
post-tuning to refine instruction following and semantic extraction. Complement-
ing this, we release TriView2CAD, the first large-scale, open-source benchmark
for orthographic projection reasoning, comprising 200,000 synthetic and 3,000
real-world orthographic projections with precise dimensional annotations and six
interoperable data modalities. Benchmarking leading VLMs on orthographic pro-
jection reasoning, we show that CReFT-CAD significantly improves reasoning
accuracy and OOD generalizability in real-world scenarios, providing valuable
insights to advance CAD reasoning research. The code and adopted datasets are
available at https://github.com/KeNiu042/CReFT-CAD.

1 Introduction

Computer-Aided Design (CAD) is now integral to industrial product development, underpinning
design, manufacturing, and simulation workflows. In the design phase, engineers use CAD drawings
or rasterized orthographic projections for their precision and facile editability. During manufac-
turing, these drawings are converted into constraint-based parameter tables; for simulation, they
yield boundary-representation (B-Rep) data or textual geometry descriptions. A truly user-centric
pipeline thus requires accurate semantic parsing of orthographic projections: automated extraction
of parameter tables enables direct generation of 3D models meeting stringent manufacturing and
simulation standards. By contrast, existing reverse-engineering methods rely on expensive 2D/3D
scanning hardware and labor-intensive post-processing, greatly restricting scalability and widespread
industrial adoption.
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(e) CReFT-CAD for View Matching(a) Qwen2.5-VL (without tuning) for Full Parameter List Output

Given the front, top, and side views, please output the
numeric values of the following parameters in this
exact order ..., separated by commas. 

530, 540, 1, 3 ... , 208, 224, 391

Given the front, top, and side views, please output the
numeric values of the following parameters in this
exact order ..., separated by commas. 

590, 560, 2, 2 ... , 208, 224, 391

(b) Deepseek (without tuning) for Full Parameter List Output

Given the top view <   >, and front view <   >, which one <      > is the
right side view? 

2*97+2*194+146,  2*379+210, 1, 3 ... , 208, 224, 391

(c) CReFT-CAD for Full Parameter List Output

Given the <image>, is the Pier Column Cross-Bridge
Dimension equal to 210?

No, the correct answer is 194.

Given the front, top, and side views, please output the
numeric values of the following parameters in this
exact order ..., separated by commas. 

The right side view is <     >.

(d) CReFT-CAD for Parameter Validation

Given the front, top, and side views<image>, what is the quantity of
pile bases and pier colunm?

The quantity of pile base is 6; the quantity of pier column is 2.

(f) CReFT-CAD for Component Counting

Wrong
Answer!

Wrong
Answer!

Figure 1: (a) (b) show the results of parameterization tasks of orthographic projection reasoning
using Qwen2.5-VL and Deepseek without tuning. (c)–(f) illustrate CReFT-CAD’s capabilities across
various orthographic projection reasoning tasks.

With the advent of deep learning, orthographic projection reasoning has typically been framed as a
standard 3D reconstruction pipeline: models process rasterized drawings to output B-Rep structures
[1, 2], point clouds [3, 4], or meshes [5]. However, this paradigm suffers from two critical limitations.
First, industrial drawings demand near-zero tolerance for missing or erroneous components: pixel-
level discretization errors in reconstruction can propagate to 3D models, leading to failures in
downstream manufacturing and simulation. Second, practical CAD workflows require parametric
editability and precise semantic alignment—key capabilities that common 3D representations lack.
While some methods generate CAD command sequences to recover editability, they still overlook the
nuanced semantics of orthographic views, thus failing to reliably map 2D drawing features to their
intended 3D counterparts.

Recent works leverage the modality alignment and semantic reasoning capabilities of vision–language
models (VLMs) [6–12], addressing CAD challenges via supervised fine-tuning (SFT) [13–15].
However, orthographic projection reasoning requires genuine inferential ability, and task-specific
SFT often induces pattern memorization and out-of-distribution (OOD) performance degradation
rather than fostering deeper reasoning [16]. Inspired by DeepSeek R1-Zero’s Group Relative Policy
Optimization (GRPO) [17], we propose Curriculum-driven Reinforcement Fine-tuning for CAD
(CReFT-CAD).

CReFT-CAD is a versatile framework enabling interactive orthographic projection reasoning across
the full lifecycle of industrial design—from design and manufacturing to simulation (see Fig. 1). It
consists of a two-stage paradigm integrating reinforcement learning and supervised tuning: the first
stage is Curriculum-driven Reinforcement Fine-tuning, where we introduce a difficulty-aware
reward mechanism that incrementally increases task complexity, gradually exposing the model to
increasingly complex reasoning challenges to promote stable policy optimization; the second stage is
Supervised Post-tuning, where we build on the reinforced model and further refine its instruction-
following and reasoning capabilities via multi-task SFT. Our qualitative and quantitative evaluations
show that CReFT-CAD achieves robust orthographic projection reasoning and strong generalization
in OOD scenarios. Another key barrier in orthographic projection reasoning is the scarcity of open-
source datasets with high-fidelity annotations. To address this, we present TriView2CAD, the first
large-scale benchmark tailored to industrial CAD pipelines. Leveraging real-world design archives,
we use a constraint-driven synthesis pipeline to generate 200,000 synthetic and 3,000 real-world three-
view sets, each annotated with precise, one-to-one dimensional labels linked to their corresponding
geometric primitives. This design allows models to extract quantitative measurements from rasterized
drawings and enforce exact geometric constraints for 3D reconstructions ready for simulation.
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2 Related Work

2.1 Orthographic projection reasoning for CAD

Understanding and reasoning with orthographic projection is a fundamental and longstanding chal-
lenge in CAD-related tasks [18–20]. With the development of 3D reconstruction methods, existing
methods for orthographic projection reasoning have largely centered on standard 3D reconstruc-
tion pipelines. SPARE3D [21] introduces a dataset for evaluating the spatial reasoning capabilities
of AI systems via 2D line drawings of 3D objects. Contrastive-SPARE3D [22] proposes a self-
supervised binary classification network that helps learn 3D object line drawing representations that
are detail-sensitive and view-invariant. PlankAssembly [23] presents a transformer-based sequence
generation model that learns flexible input-output mappings. IsoTGAN [24] introduces a novel
Gaussian-enhanced Euclidean attention mechanism and a geometric constraint loss function to further
enhance local image features. GaussianCAD [25] employs a custom sparse-view 3D reconstruction
method, removing reliance on vector CAD sketches and real-world 3D data.

2.2 Applications of LVLMs in CAD-Related tasks

Recent efforts applying vision–language models (VLMs) to CAD tasks fall into three main cate-
gories:1) Direct Adaptation of Pretrained VLMs. CAD-Recode [26] leverages a VLM to translate
raw point cloud inputs into executable Python code.Both LEAM [27] and LLM4CAD [28] generate
CAD models by jointly leveraging text descriptions and image inputs. CAD-Assistant [29] intro-
duces a novel approach using VLMs as planners, where the model interacts with Python APIs to
accomplish diverse CAD tasks. 2) Supervised Fine-Tuning (SFT).CAD2Program [13] generates 3D
parametric models from 2D CAD drawings. CAD-MLLM [30] enables parametric CAD modeling
from text, images, and point clouds, and introduces the Omni-CAD dataset. 3) Reinforcement
Learning–based Tunings.RLCAD [31] introduces a reinforcement learning environment for gener-
ating complex CAD models. CADCrafter [32] presents an image-to-CAD generation framework,
fine-tuned via Direct Preference Optimization (DPO) to directly translate input images into executable
CAD representations.

3 TriView2CAD: Benchmarking orthographic projection reasoning

As previously noted, a critical barrier in CAD research is the absence of an open-source dataset
with high-fidelity annotations for orthographic projection reasoning. Existing benchmarks focus
on 3D reconstruction from rasterized 2D views, yet diverge from real-world engineering drawing
interpretation in three key aspects:

Lack of precise dimensional annotations. Existing orthographic projection benchmarks provide
only rasterized drawings without precise dimension annotations. This causes models to prioritize
relative scale over exact measurements, and pixel-level errors in rasterized images can easily propagate
into the reconstructed 3D model, resulting in inaccuracies. Additionally, the limited editability of
reconstructed 3D models prevents corrective adjustments during design and simulation.

Lack of explicit logical reasoning tasks. Existing datasets do not evaluate a model’s inferential
capabilities within or across orthographic views. Consequently, models trained on these benchmarks
learn pixel-level reconstruction skills but fail to handle real-world challenges such as inferring omitted
annotations or leveraging structural symmetries.

Lack of essential CAD modalities. Most datasets contain only one or two modalities—typically
raster images and, at best, a single 3D format (meshes or point clouds). This limited coverage
omits critical data representations (e.g., parameter tables, vector CAD files, executable commands,
STEP/B-Rep) required for end-to-end CAD design, manufacturing, and simulation pipelines.

3.1 Dataset construction

In this work, we focus on prefabricated bridge piers owing to their inherently modular struc-
ture—composed of repeated, standardized components—that enables a compact yet expressive
parameter space for dataset synthesis. Moreover, prefabricated piers are ubiquitous in modern
infrastructure and backed by extensive CAD drawing and manufacturing documentation archives.
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Figure 2: Constraint-driven synthesis pipeline for TriView2CAD.

TriView2CAD comprises 200,000 synthetic samples and 3,000 real-world samples. The synthetic
data are split 80/20 into training and test sets; due to the scarcity of real-world engineering drawings,
all 3,000 real-world samples are reserved exclusively for testing. The synthetic test set evaluates
in-domain performance. As shown in Fig. 3, real-world images typically feature more complex
structures—primarily due to redundant annotation lines (causing occlusions and overlaps with other
components) and the inclusion of non-numeric annotations. These samples thus assess out-of-
distribution (OOD) generalization in authentic CAD scenarios. To align with end-to-end industrial
workflows, TriView2CAD provides six interconnected data modalities per sample: structured param-
eter tables (JSON), vector CAD drawings (DXF), raster images (PNG), executable modeling scripts,
and two standard 3D formats (STEP and B-Rep). This comprehensive modality suite supports tasks
spanning early design to downstream manufacturing and simulation. As shown in Fig. 5, we adopt a
constraint-driven synthesis pipeline, with detailed steps outlined below:

Top

Side

3D Model

Front

Figure 3: Examples of Real-World
Orthographic Projections and its 3D
model.

Step 1: Constraint-Guided Parameter Sampling We
first analyze real-world CAD drawings to define a 15-
dimensional parameter space, governed by two constraint
classes. Intra-View Constraints enforce topological clo-
sure and physical validity within each projection: every
component must form gap- and overlap-free contours, and
paired dimensions adhere to domain-specific engineering
constraints (e.g., “Cross-Bridge Pier Spacing” < “Cap Beam
Cross-Bridge Dimension”). Inter-View Constraints en-
sure cross-projection consistency by requiring measurements
annotated in one view to exactly match their counterparts
(height, width, depth) in other views. By embedding these
constraints into the sampling pipeline, we ensure all syn-
thetic designs are geometrically coherent and compliant with
real-world engineering standards.

Step 2: 2D Drawing and Raster Image Generation We
use the ezdxf library to convert each sampled parameter
vector into a vectorized 2D CAD drawing (DXF format),
mapping numeric dimensions to geometric primitives (e.g.,
lines, circles, arcs) to form coherent orthographic projections.
We utilize ezdxf’s layer separation functionality to partition
primitives into semantic layers, enhancing the editability of
the resulting CAD drawings. Each DXF file is then imported
into FreeCAD [33], where high-resolution screenshots are
captured to generate three orthographic views (front, top,
side).

Step 3: 3D Model Generation We utilize the FreeCAD Python API to reconstruct a 3D model from
its corresponding parameter vector. Consistent with our 2D generation pipeline, we decompose the
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Training Tasks

Dichotomous choice task

Multiple choice task

Parameterization task based on CoT

Input Prompt Response

Yes/NO

A/B/C/D

2*82+2*188+148, 2*398+160,
..., 222

Given the front, top, and side views, please refer to the required field names below, and
determine whether the given parameter values ...match the image. 

Given the front, top, and side views, please refer to the required field names below, and
choose all options that match the image. ...Options: A. 860, 833, ..., 356 B. 860,

<mask>, .., 356  C... D ...

Given the front, top, and side views, please output only the numeric values of the
following parameters in this exact order..., separated by commas.

Figure 4: Diagram design of three tasks in curriculum-driven reinforcement fine-tuning.

model into discrete entities and generate scripted commands to precisely position each primitive
in compliance with the intra- and inter-view constraints defined in Step 1. Executing these scripts
automatically produces industry-standard STEP and B-Rep files, closing the loop from parameter
sampling to editable, simulation-ready CAD geometries.

3.2 Evaluation of TriView2CAD

We benchmark seven leading vision–language models on TriView2CAD to assess their high-precision
orthographic projection reasoning capabilities. The evaluation results are presented in Sec. 3.2.
Aligning with real-world CAD workflows, we design three complementary evaluation tasks to
rigorously test a model’s ability to extract precise dimension annotations from rasterized orthographic
projections and infer the underlying geometric relationships: (i) Dimension recognition and pairing
Models identify each annotated dimension in a single orthographic view and map it to its associated
geometric feature. (ii) Primitive counting Models count instances of specified CAD elements (e.g.,
number of pier columns), assessing their ability to parse structural composition. (iii) Composite
Parameter Computation Models compute engineering-critical derived quantities—for example,
Cross-Bridge Pier Spacing is calculated as the sum of Pier Column Cross-Bridge Dimension and
Pile Spacing. Collectively, we define a 15-dimensional parameter space consisting of 6 recognition
parameters, 3 counting parameters, and 6 composite calculation parameters. In evaluation, each
parameter is treated as an independent prediction target. Overall accuracy is computed as the total
number of correctly predicted parameters divided by the total number of parameters across all test
samples. This evaluation suite reveals the strengths and weaknesses of each model in addressing the
tightly coupled semantic and quantitative requirements of orthographic projection CAD reasoning.

4 Methodology

Inspired by the success of reinforcement learning–based tuning methods [34, 35], we present
Curriculum-driven Reinforcement Fine-tuning for CAD (CReFT-CAD), an orthographic-projection
reasoning framework. CReFT-CAD integrates a ViT-based visual encoder with Qwen2.5 [36]. First,
the framework adopts a curriculum of three progressively challenging reasoning tasks paired with
a difficulty-aware reward mechanism, empowering the model to transcend rote pattern matching
and develop robust reasoning capabilities while enhancing out-of-distribution (OOD) generalization.
Second, Supervised Post-tuning refines the model’s instruction-following abilities to accommodate
interactive, real-world CAD queries.

4.1 Curriculum-driven reinforcement fine-tuning

Orthographic projection reasoning is a sophisticated reasoning task that involves not only dimen-
sion recognition and pairing but also primitive counting and more complex composite parameter
computation. Building upon GRPO, we propose a Curriculum-driven Reinforcement Fine-tuning
(CReFT) strategy, which incrementally exposes the model to increasingly complex training tasks
to enhance its reasoning and generalization capabilities. Our task design aligns with the core steps
expert engineers follow when verifying CAD drawings, incorporating dichotomous choice tasks,
multiple-choice tasks, and chain-of-thought (CoT)-based parameterization tasks. For each task, we
design a tailored, efficient reward function to ensure the model can steadily optimize its reasoning
capabilities.
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Data engine. We utilize 160,000 image–text instruction pairs from the synthetic training set of
TriView2CAD, where each prompt includes an orthographic projection and all 15 parameter key-value
pairs (see Fig. 4).To ensure a balanced training signal across the three tasks, 50% of the training
responses are fully correct, while the remaining 50% contain errors of varying degrees. Specifically,
for dichotomous choice tasks, each negative response includes n erroneous parameter values, where
n follows a uniform distribution N ∼ Uniform(a, b), where a = 1 and b = 15.

For multiple-choice tasks, p parameter values are masked out in each image-text instruction pair.
The masking mechanism is designed to ensure the diversity of distractor options, preventing the
model from merely deriving answers through parameter matching—thereby avoiding circumvention
of the complex reasoning required for the task. Instead, it compels the model to actively engage
in decision-making, evaluating multiple potential solutions and selecting the correct one based
on a deeper geometric understanding. For each instruction pair, unmasked values are correct; for
incorrect parameter value lists, all unmasked values are correct except for those in q randomly selected
erroneous entries. Both the number of masked values p and the number of erroneous entries q follow
normal distributions, introducing smooth, gradual variations in task difficulty that enable the model
to learn in a more structured, progressive fashion.

For parameterization tasks, we construct image-text instruction pairs grounded in Chain-of-Thought
(CoT) reasoning. Specifically, for Composite Parameter Computation tasks, expert knowledge is
embedded into step-by-step reasoning prompts to guide the model toward correct outputs. The
step-by-step reasoning workflow is as follows: 1) identify the parameters required to compute the
composite parameter; 2) specify the calculation formula for the composite parameter; 3) compute the
predicted result using the formula and relevant factor parameters.

Training strategy. Given that our task involves highly specialized inputs and outputs (as opposed to
general-purpose problems), directly applying a pretrained VLM to perform reasoning and generate
the required outputs is ineffective. Consequently, the reinforcement learning (RL) reward mechanism
cannot function properly—with rewards consistently remaining zero. To mitigate this, we pre-sample
a subset of image-text instruction pairs to "warm up" the model before initiating each training task,
enabling proper initialization of the RL reward mechanism.

4.1.1 Task 1: Dichotomous choice task

For this task, the model’s output is restricted to dichotomous responses: "yes" or "no." A "yes"
response is returned if and only if all parameters in the 15-dimensional parameter space are fully
accurate, whereas any error—even in a single parameter—triggers a "no" response. This stringent
criterion incentivizes the model to generate fully accurate parameterizations. Consistent with this
design, the reward function is defined as follows:

RP1 =

{
1, if all parameters are correct
0, otherwise

(1)

4.1.2 Task 2: Multiple choice task

Training strategy. Task 2 introduces multiple-choice tasks to further increase decision-making
complexity. These tasks require the model to select from multiple parameter value lists, which
significantly enhances the cognitive load compared to binary decisions. Building on the first task,
we pre-sample a subset of image-text instruction pairs to conduct instruction-following training on
the LLM. This training enables the model to generate structured outputs in the form of multiple-
choice questions, facilitating the activation of the reinforcement learning (RL) reward mechanism.
Additionally, we design a stringent reward function that encourages the model to fully utilize image-
text instruction pairs, ensuring it extracts and leverages all relevant information from both visual and
textual modalities. The reward function incentivizes the model to select the most accurate option
from the provided choices. Any incorrect selection yields a reward of 0, compelling the model to
prioritize precision and reliability in its decision-making.

Let Scorrect be the set of correct parameter value lists, Sincorrect be the set of incorrect parameter value
lists, and SSelected be the set of selected parameter value lists by the model. The reward function Rp2
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is defined as:

RP2 =


1 if Sselected = Scorrect

0.2 if Sselected ⊆ Scorrect but Sselected ̸= Scorrect

0 if (Sselected ∩ Scorrect ̸= ∅) and (Sselected ∩ Sincorrect ̸= ∅)
0 if Sselected = Sincorrect

(2)

Where SSelected = Scorrect means the model selects only the correct parameter value lists; SSelected ⊇
Scorrect but SSelected ̸= Scorrect means the model selects all correct lists but fails to select all of them;
SSelected ∩ Scorrect ̸= ∅ and SSelected ∩ Sincorrect ̸= ∅ means the model selects both correct and incorrect
parameter value lists; SSelected = Sincorrect means the model selects incorrect parameter value lists.

4.1.3 Task 3: Parameterization tasks based on chain-of-thought

Training strategy. For this task’s training, we start with the model fine-tuned in Task 2 and sample
synthetic data to construct standard orthographic projection reasoning QA pairs. These pairs are used
for small-batch fine-tuning. After fine-tuning, we assess the difficulty of predicting the 15-dimensional
parameters by evaluating the model’s performance on a held-out test set. Each parameter’s prediction
accuracy is categorized into three difficulty levels: Easy Attributes: Attributes with an accuracy
greater than 0.8. Medium Attributes: Attributes with accuracy between 0.2 and 0.8. Difficult
Attributes: Attributes with accuracy less than 0.2. This difficulty classification is subsequently used
to design the reward function. The reward for each correctly predicted attribute is determined by its
difficulty level as follows:

RP3 =


1 if the model correctly predicts an easy attribute
1.5 if the model correctly predicts a medium attribute
2 if the model correctly predicts a hard attribute
0 if the model’s prediction is incorrect

(3)

This reward function ensures that the model is motivated to gradually improve across all difficulty
levels, with greater emphasis on mastering the more challenging tasks, thus enhancing the model’s
overall reasoning capabilities in orthographic projection tasks.

4.2 Supervised post-tuning

Following the CReFT stage—during which the model has developed robust reasoning and general-
ization capabilities—the focus of Supervised Post-tuning shifts to refining the model’s instruction-
following capabilities. We revisit the industrial design application context and, adopting a user-centric
approach, reformulate tasks in the paradigm of Visual Question Answering (VQA). Leveraging
multimodal language models, we design specific tasks that guide the model to output comprehensive
parameter lists and make engineering-critical judgments based on orthographic projections. In this
stage, the model is trained to handle the following tasks: 1) Full Parameter List Output Task:
Generate a complete and accurate set of parameter key-value pairs— the standard output format
for the simulation phase. 2) Parameter Validation Task: Compare extracted parameter key-value
pairs with the ground-truth parameter set in the orthographic projections to verify the accuracy of the
extracted parameters. 3) View Matching Task: Given two distinct orthographic views, determine if
the views correspond to the same 3D object or design based on parameter constraints and rasterized
images. 4) Component Counting Task: Identify and count specified components (e.g., bridge piers,
columns) in the drawings based on given parameter constraints. This task quantifies design elements
to support material estimation and component verification.

Through this post-tuning phase, we strengthen the model’s capacity to interpret and respond to
complex design queries, thereby enhancing its interactive reasoning capabilities and increasing its
applicability to real-world industrial design workflows.

5 Experiments

Implementation Details. All experiments were conducted on NVIDIA A100 GPUs. Most exper-
iments used GOT-OCR2.0 as the base model, trained on a single server with 8 A100 GPUs and
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Table 1: Performance comparison of various VLMs on orthographic projection reasoning tasks.

PROMPTS
Without Reasoning Guidance Reasoning Guidance

Test Img+Reference+Answered +Attribute Test Img+Reference+Answered +Attribute
Img Pair Explanation Img Pair Explanation

Phi-3.5-Vision [37] 4.22 8.95 8.05 6.26 11.32 14.40 16.16 15.79
LLaVA-OneVision [38] 9.16 16.06 15.65 14.84 9.10 16.81 16.21 20.53
DeepSeek-VL [39] 8.16 22.68 20.03 12.65 14.02 20.31 24.62 25.45
InternVL2.5 [40] 15.79 18.82 23.30 17.16 15.63 22.35 24.47 23.73
InternVL3 [40] 15.46 17.90 22.44 17.91 15.81 21.98 23.58 17.05
Qwen2.5-Omni [41] 23.43 28.89 28.74 26.50 26.12 30.93 29.40 35.71
Qwen2.5-VL [42] 24.54 30.76 30.47 25.86 24.54 32.78 33.64 38.88
Gemini2.5 Pro [43] 24.23 30.09 29.39 25.55 25.68 30.61 32.30 35.88
Claude4 Vision [44] 23.47 29.67 30.04 25.58 24.94 33.00 34.13 36.32
GPT-4o [45] 26.06 31.56 32.28 27.52 27.79 34.17 39.71 38.56

Ours 80.86 82.99 83.24 82.67 81.35 83.11 82.87 84.03

a batch size of 64. We adopted the AdamW optimizer with a cosine annealing scheduler. The
hyperparameters were configured as follows:(1) Learning rate: 1e-6 for RL (GRPO) training and
2e-5 for baseline SFT experiments;(2) Maximum input image size: 2,483,776 pixels;(3) Total GRPO
training steps: 1500.

Datasets and Metrics. We evaluated both leading vision–language models (VLMs) and our proposed
method on TriView2CAD, following the evaluation strategy outlined in Sec. 3.2. The synthetic test
set was used to assess in-domain accuracy. Due to the scarcity of real-world data, all 3,000 real-world
samples were reserved exclusively for testing—enabling evaluation of out-of-distribution (OOD)
generalization in authentic CAD scenarios.

We design four distinct prompt configurations to probe their orthographic projection reasoning
capabilities: 1) Test image-Only: Models receive only the target rasterized drawings; 2) Test image +
Reference Image: In addition to the target drawings, models are given a reference image—rendered
on the same geometry layer—with all dimension names to supply semantic alignment; 3) Test
image + Answered Pair: Inputs consist of the target drawings plus a correctly paired raster image
and its parameter vector, providing an exemplar mapping between visual features and quantitative
parameters; 4) Test image + Attribute Explanation: Models are supplied with the target drawings
alongside a detailed textual interpretation authored by professional engineers.

Given that orthographic projection reasoning involves complex multi-step inference and current
pretrained VLMs have limited exposure to CAD drawings, we incorporated explicit reasoning
guidance into each prompt format to encourage coherent reasoning trajectories. For each of the four
prompt configurations, we outlined step-by-step instructions for task completion—structured to guide
the model through the reasoning process systematically. The complete set of instructions for each
format is provided in the supplementary materials.

5.1 Performance on in-domain test set

The experimental results (Tab. 3) demonstrate that our method significantly outperforms existing
vision–language models (VLMs) on orthographic projection reasoning tasks across all prompt formats.
Specifically, in the "Without Reasoning Guidance" setting, the "+Answered Pair" prompt achieves
the highest accuracy of 83.24%. In the "With Reasoning Guidance" setting, our model reaches
84.03% accuracy with the "+Attribute Explanation" prompt. Notably, our method also delivers strong
performance under the "Test Image Only" condition, achieving 80.86% accuracy—highlighting the
effectiveness of our proposed approach.

It is worth noting that the performance improvement from "without reasoning guidance" to "with
reasoning guidance" is not as significant. This is primarily because, through our CReFT approach, the
model learns effective reasoning strategies via the difficulty-aware reward mechanism, thereby reduc-
ing the need for additional guidance to achieve further significant gains. Based on our benchmarking
of the seven leading VLMs, we present several important findings, as follows: 1) This reasoning task
remains a tough challenge for pretrained VLMs. Overall, orthographic projection reasoning entails
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not only reading textual dimensions and visual features, but also matching annotations to geometry
primitives, counting structural elements, and computing composite parameters. 2) Different prompt
formats influence the performance. In both the Without Reasoning Guidance and With Reasoning
Guidance settings, different prompt formats lead to varying degrees of performance improvement.
3)Introducing reasoning guidance yields consistent gains across all seven VLMs. Introducing
appropriate reasoning guidance significantly enhances the model’s ability to perform reasoning tasks
effectively. Further analysis regarding the three findings are presented in the supplementary materials.

5.2 Performance on real-world test set

We evaluate out-of-distribution (OOD) generalization using all 3,000 real-world samples, which reflect
authentic CAD scenarios. The baseline model (Qwen2.5-VL) achieves 13.47% accuracy—lower than
its 24.54% performance on synthetic data. This performance degradation is primarily attributed to the
more complex structures and occlusion relationships in real-world data (Sec. 3.1), which elevates task
difficulty. We also compare with a model trained via standard supervised fine-tuning (SFT), which
achieves 36.15% accuracy. This improvement stems from substantial gains in Primitive Counting
tasks. However, the model still struggles with Composite Parameter Computation—underscoring the
limitations of conventional SFT. Our CReFT-based method achieves 46.67% accuracy, demonstrating
its ability to effectively mitigate OOD challenges and deliver substantial performance gains on
complex real-world data.

5.3 Abalation study

Table 2: Ablation study results.
METHOD w/o CoTwith CoT

Task3 46.16 74.15
Task1 + Task3 46.05 77.90
Task2 + Task3 30.71 67.75

Task1 + Task2 + Task3 46.24 81.35

With CoT VS without CoT. The results from
Tab. 2 reveal a significant improvement in per-
formance when incorporating chain-of-thought
(CoT) reasoning. Specifically, the accuracy for
individual Task 3 increases from 46.16% to
74.15% after adding CoT , demonstrating a clear
performance boost. When combining multiple
training tasks, such as Task 1 + Task 3 and Task
2 + Task 3, the improvements are even more
pronounced, with accuracies reaching 77.90%
and 67.75%, respectively. The most notable enhancement is observed in the combination of Task 1 +
Task 2 + Task 3, where the accuracy increases from 46.24% to 81.35%. The primary source of these
improvements lies in how CoT helps break down complex Composite Parameter Computation tasks
into more manageable, incremental steps. The CoT mechanism, however, guides the model through
each individual component of the computation, allowing for a step-by-step approach that improves
the model’s reasoning capability.

Three training tasks. Notably, in the CoT setting, combining Task 1 and Task 3 provides a
performance boost, increasing accuracy from 74.15% to 77.90%. However, when Task 2 is added, the
model’s performance decreases. This decline can be attributed to the design of Task 2, which includes
a substantial number of masked elements within the instruction data. By exposing the model to higher
uncertainty, Task 2 forces the model to contend with incomplete or ambiguous information, which
ultimately hinders its ability to perform effectively on the task. On the other hand, when all three
tasks (Task 1 + Task 2 + Task 3) are used together, the model’s reasoning ability is fully activated,
resulting in a significant performance improvement. In contrast, in the without CoT setting, the
model’s performance is constrained by its inability to effectively handle multi-step reasoning tasks,
where even the best-performing task combination achieves a maximum accuracy of only 46.24%.

6 Conclusion and Limitation

In this work, we address challenges in orthographic projection reasoning for Computer-Aided
Design (CAD) by proposing CReFT-CAD, an innovative two-stage fine-tuning paradigm. We
demonstrated that the integration of curriculum-driven reinforcement learning (RL) with difficulty-
aware rewards effectively enhances the model’s reasoning ability. To further advance the field, we
introduce TriView2CAD, the first large-scale, open-source benchmark specifically designed for
orthographic projection reasoning. With its comprehensive dataset of 200,000 synthetic and 3,000
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real-world samples, each annotated with precise dimensions and accompanied by six interoperable
data modalities. In conclusion, this work lays the groundwork for more robust, scalable solutions to
CAD-related challenges, providing both a novel training paradigm and a rich dataset that can foster
future research and innovation in the field.

Limitation. The accuracy on complex real-world scenarios has not yet reached a very high level. As
such, the model’s generalization ability remains a key area for further development. In future work,
we plan to explore techniques to enhance the model’s robustness and adaptability.
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We will release all resources upon acceptance.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have detailed the experimental setting and implementation details.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The error bars are not used in our experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have reported the required computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper conforms with the NeurIPS Code of Ethics in every
respect.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No unsafe data is used in this manuscript.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used assets have been cited.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
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tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A The complete reasoning guidance for each input format

For the Test Image-Only format:

• Identify all annotated numbers in the orthographic projection, including dimensions, spacing,
and height.

• Interpret their meanings based on position, orientation, and surrounding context.
• Directly assign values to some parameters, count graphical elements for quantity parameters,

and compute spacing parameters based on position.

For the +Reference Image format:

• Use the reference template to understand the correspondence between primitive and parame-
ters, and identify annotated numbers in the target image.

• Assign parameters based on position and template primitive, counting graphical primitive
for quantities.

• Calculate parameters based on positional relationships or template definitions, and output
the full set of parameter values.

For the +Answered Image format:

• Learn the correspondence between structures and parameters from the example image.
• Identify and interpret annotated numbers in the target image, considering their position and

similarity to the example.
• Assign values to parameters, count graphical primitive for quantities, calculate parameters,

and apply necessary constraints to produce final results.

For the +Attribute Explanation format:

• Clarify parameter definitions and their geometric meanings, including component types and
their properties.

• Identify annotated numbers in the orthographic projection and infer their corresponding
parameters.

• Assign values to parameters, compute quantities, derive spacing values from positional
relationships, and output the complete parameter set with necessary constraints.

B Further analysis regarding the three findings

Table 3: Performance comparison of various VLMs on orthographic projection reasoning tasks.

PROMPTS
Without Reasoning Guidance Reasoning Guidance

Test Img+Reference+Answered +Attribute Test Img+Reference+Answered +Attribute
Img Pair Explanation Img Pair Explanation

Phi-3.5-Vision 4.22 8.95 8.05 6.26 11.32 14.40 16.16 15.79
LLaVA-OneVision 9.16 16.06 15.65 14.84 9.10 16.81 16.21 20.53
DeepSeek-VL 8.16 22.68 20.03 12.65 14.02 20.31 24.62 25.45
InternVL2.5 15.79 18.82 23.30 17.16 15.63 22.35 24.47 23.73
InternVL3 15.46 17.90 22.44 17.91 15.81 21.98 23.58 17.05
Qwen2.5-Omni 23.43 28.89 28.74 26.50 26.12 30.93 29.40 35.71
Qwen2.5-VL 24.54 30.76 30.47 25.86 24.54 32.78 33.64 38.88

Ours 80.86 82.99 83.24 82.67 81.35 83.11 82.87 84.03

1) Remains a Tough Challenge for pretrained VLMs. Tab. 3 reports performance across four
prompt formats without and with reasoning guidance. Overall, orthographic projection reasoning
entails not only reading textual dimensions and visual features, but also matching annotations to ge-
ometry primitives, counting structural elements, and computing composite parameters. Consequently,
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none of the off-the-shelf models fully masters this composite task. Qwen2.5-VL [46] achieves the
highest accuracy—38.88% under reasoning guidance with the Test Image + Attribute Explanation
prompt. This improvement stems primarily from its superior ability to parse geometry layers and
read dimension labels. Crucially, its performance on reasoning-intensive parameters remains low.
These findings underscore that orthographic projection CAD cannot be solved by prompting alone
and requires dedicated fine-tuning strategy.

2) Prompt Format–Dependent Performance Gains. Appending an Attribute Explanation to the
Test Image consistently boosts accuracy compared to the image-only baseline, with an average
increase of 3 to 4 percentage points across models. This demonstrates that strong text encoders
can leverage detailed, engineer-authored descriptions to guide complex geometric and numerical
inferences. Similarly, providing a Reference Image or an Answered Pair results in comparable
improvements, with a 4 to 5 percentage point increase in accuracy. These exemplars offer explicit
visual-textual templates, simplifying the task of matching primitives to their corresponding semantic
labels and dimensions. In contrast, using raw images forces models to address both perception and
reasoning simultaneously, leading to the lowest performance. Collectively, these findings indicate that
multimodal exemplars can enhance existing VLMs’ ability to reason over orthographic projection.
However, this further underscores that additional fine-tuning strategies are crucial to fully bridging
the remaining performance gap.

3)Introducing reasoning guidance yields consistent gains across all seven VLMs. Introducing
reasoning guidance demonstrates that step-wise reasoning guidance helps models better decompose
the multi-step orthographic projection tasks. In the absence of reasoning guidance, visual exemplar
prompts (+Reference Image and +Answered Pair) deliver the largest relative improvements. However,
when reasoning guidance is added, the Attribute Explanation prompt shows the greatest uplift. It
stems from reasoning guidance is textual form, which synergizes most effectively with textual inputs.
Hence, models with stronger text encoders (e.g., DeepSeek-V1) exhibit disproportionately larger
boosts. These results underscore the necessity of integrating structured reasoning guidance to advance
orthographic projection CAD reasoning.

C More performance on in-domain test set

Table 4: Performance comparison of training-free model, SFT model,and our GRPO-based model on
orthographic projection reasoning tasks.

PROMPTS
Without Reasoning Guidance Reasoning Guidance

Test Img+Reference+Answered +Attribute Test Img+Reference+Answered +Attribute
Img Pair Explanation Img Pair Explanation

Qwen2.5-VL 24.54 30.76 30.47 25.86 24.54 32.78 33.64 38.88
Qwen2.5-VL(SFT) 76.33 79.50 77.12 78.64 76.42 76.78 77.20 80.30
Ours 80.86 82.99 83.24 82.67 81.35 83.11 82.87 84.03

Tab. 4 presents the performance in-domain test set. The first row (Qwen2.5-VL) represents a training-
free baseline, which exhibits consistently poor performance across all settings, indicating the inherent
difficulty of this reasoning task without any fine-tuning or adaptation. The second row (Qwen2.5-VL
with SFT) demonstrates a significant performance improvement, particularly when provided with
reference images, answered pairs, and attribute explanations. However, despite these gains, the model
still suffers from notable drops in more complex reasoning tasks, especially those involving composite
parameter computation. In contrast, our method consistently outperforms both baselines across all
settings, achieving the highest accuracy in all prompt configurations, with particularly strong results
under reasoning guidance. These results validate the effectiveness of our approach in handling
complex geometric reasoning and highlight its robustness across both simple and compositional
inference scenarios.

D Failure cases and analysis

As illustrated in Fig. 5, we present four distinct failure cases, each highlighting different types of
errors that can occur during the 3D model reconstruction process due to incorrect 2D parameterization.
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(a) Failure cases due to incorrect dimensions

(b) Failure cases due to incorrect counting

(c) Failure cases of component stacking

(d) Failure cases exceeding the physical boundaries

Figure 5: Four sets of failure cases. Each set consists of three parts: the left part shows the
orthographic projection, the middle part presents the failed 3D model construction, and the right part
illustrates the correctly constructed 3D model.

Fig. 5(a) demonstrates the error induced by incorrect dimensional parameters. Specifically, due to
errors in the parameterization of certain dimensions, the constructed 3D model exhibits significant
scaling issues, leading to a distorted and non-accurate representation. This failure emphasizes the
critical importance of precise dimensional input when translating from 2D projections to 3D models,
as even minor errors in size parameters can drastically affect the final output. Fig. 5(b) illustrates
a failure caused by incorrect counting, which results in an incorrect number of primitives being
identified and subsequently integrated into the 3D model. The discrepancy in the number of primitives
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reflects the direct impact that improper counting and recognition of geometric elements can have on
the success of the 3D reconstruction. In Fig. 5(c), we observe a stacking issue caused by errors in the
calculation of composite parameters. The failure manifests as improper alignment of components in
the final model, where parts of the 3D structure fail to align correctly with each other. Lastly, Fig. 5(d)
shows a failure resulting from exceeding physical boundaries due to incorrect composite parameter
calculations. In this case, the incorrect parameters lead to elements of the 3D model extending beyond
the physical constraints or limits of the original design. Together, these four failure cases provide
strong evidence that errors in the parameterization of 2D models directly lead to inaccuracies in
3D model reconstruction. Each case illustrates the cascading effect of parameter errors from the
2D representation to the final 3D model, further underscoring the necessity for robust and precise
parameterization methods in 2D-to-3D model conversion processes.
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