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ABSTRACT

Dimensionality Reduction-based Models (DRbMs), which couple a dimensionality
reduction technique with a predictive model, are commonly used to mitigate over-
fitting and reduce computational complexity regarding high-dimensional tabular
data. However, their two-stage architecture presents considerable challenges for
explainability, as the projection obscures the original feature space, thus making
the model output difficult to interpret in terms of the input features. Model-agnostic
explanation methods are applicable to DRbMs but typically rely on sampling-based
approximations, leading to instability and low-faithfulness explanations. To address
these limitations, we introduce OptSHAP, the first optimization-based attribution
specifically designed for DRbMs. Our method leverages reduced-space attributions
and then redistributes them back to the original feature space through a transfor-
mation that satisfies the principle of efficiency. Additionally, we propose a novel
evaluation metric, the k-Local Stability Score (LSS), which quantifies the stability
of feature attribution methods by averaging their distances to local explanations.
Extensive empirical evaluations across high-dimensional datasets, various dimen-
sionality reduction techniques, and multiple machine learning models demonstrate
that OptSHAP outperforms state-of-the-art attribution methods, achieving up to
24× stability and 2× fidelity on key benchmarks.

1 INTRODUCTION

Learning from high-dimensional tabular datasets has become increasingly common across various
domains (Ruiz et al., 2023). Such high-dimensional feature spaces give rise to the well-known “curse
of dimensionality”, which increases computational cost and overfitting risk (Köppen, 2000). A popular
and effective strategy to mitigate these issues is to use a Dimensionality Reduction-based Model
(DRbM), where meaningful features are first extracted through a dimensionality reduction technique
and then passed to a machine learning model. Specifically, Dimensionality Reduction (DR) techniques,
such as Principal Component Analysis (PCA (Abdi & Williams, 2010)), Independent Component
Analysis (ICA (Hyvärinen et al., 2009)) and Linear Discriminant Analysis (LDA (Balakrishnama
& Ganapathiraju, 1998)), project the data into a lower-dimensional space (called a reduced space),
thereby reducing computational cost, and facilitating data visualization (Jia et al., 2022; Velliangiri
et al., 2019). Moreover, by focusing on the most informative components, DR techniques may
help improve model accuracy on downstream tasks (Hasan & Abdulazeez, 2021). For example,
DRbMs are practically effective in clinical prediction tasks, genomics, and bioinformatics, where
tabular datasets often contain thousands of features (Fu & Wang, 2003; Singh et al., 2016). Similarly,
Hollmann et al. (2025) point out that DR techniques may be beneficial for supervised tabular learning
models designed for small- to moderate-sized datasets.

While their empirical performance is well established, DRbMs, like many machine learning models,
face a trade-off between predictive performance and explainability (Bell et al., 2022). This trade-off
becomes especially pronounced in DRbMs due to their two-stage structure, which complicates the
task of attributing model predictions to original input features. Thus, explaining DRbMs becomes
an essential task, both for model debugging and for building trust in practical applications. Due
to DRbM’s complexity, post-hoc explanations have become a common paradigm, where the focus
lies in local feature attributions, explaining why the model makes a specific prediction for a single

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: General (Left) and Internal (Right) view of the OptSHAP framework. These show how
reduced explanations are reallocated back to the original feature space via a transformation block T ,
which integrates gradient information Jp(x

e) through a tanh gate, where xe is an explicand.

sample (known as explicand (Sundararajan & Najmi, 2020)). We categorize local feature attribution
methods into model-agnostic and model-specific approaches. Existing model-agnostic methods (e.g.,
EIC (Strumbelj & Kononenko, 2010), KernelSHAP (Lundberg & Lee, 2017), and LIME (Ribeiro
et al., 2016)) are applicable regardless of the underlying model. While they can be used to explain a
DRbM, they suffer from two notable shortcomings: (1) their sampling-based estimates of feature
importance are inherently unstable (Chen et al., 2022); and (2) they estimate the explanation directly
through the pipeline, without considering how it behaves in the reduced space, which may result
in lower confidence. On the other hand, model-specific methods, designed for particular model
types, are typically much faster and meaningfully deeper than model-agnostic ones. Examples
include: DeepLIFT (Shrikumar et al., 2017), DeepSHAP (Lundberg & Lee, 2017) and Integrated
Gradients (Sundararajan et al., 2017) are for deep models, TreeSHAP (Lundberg et al., 2020) is for
tree-based models. Yet these methods are not capable of explaining a series of models (Chen et al.,
2022), including DRbMs.

Therefore, there is a pressing need for a more effective feature attribution approach specialized
for DRbMs, which can achieve two key objectives: (O1) avoiding reliance on sampling, thereby
reducing variance in the explanations; and (O2) leveraging the explanation generated by model-
specific methods in the reduced space.

Contributions. We introduce OptSHAP, a novel optimization-based attribution framework for
explaining DRbMs. This maps the explanations from the reduced space back to the original feature
space using a transformation block T , which incorporates gradient information Jp(x

e) through a
tanh gating mechanism (see Fig. 1). To the best of our knowledge, it is the first approach to exploit
explanations in the reduced space and reproject them onto the original feature space. The novelties
and contributions are briefly as follows:

• First, we propose an optimization-based attribution, namely OptSHAP, which achieves two
objectives (O1) reduced-variance explanations and (O2) model-specific alignment. We
support this with theoretical analyses demonstrating that this approach satisfies desirable
properties, including stability (c.f. Sec. 4).

• Second, we introduce the k-Local Stability Score (LSS), a new metric for evaluating the
stability of attribution methods. Compared to existing perturbation-based metrics such as
Stability and Relative Stability, LSS is more computationally efficient, flexible, and easier to
interpret (c.f. Sec. 5).

• Third, we conduct comprehensive experiments across high-dimensional tabular datasets
using three DR techniques and four classifiers to assess the faithfulness of OptSHAP relative
to three state-of-the-art (SOTA) attribution methods for DRbMs. Our results demonstrate
improved performance in both quantitative metrics and qualitative evaluations (c.f. Sec. 6).

2 RELATED WORKS

Explaining DRbMs via model-agnostic methods. Model-agnostic (post-hoc) methods approximate
feature attributions through perturbation or sampling, and thus can be applied to DRbMs (Slack et al.,
2021).
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One example of such methods, Explaining Individual Classification (EIC (Strumbelj & Kononenko,
2010)), estimates feature contributions by randomly masking subsets of features and measuring the
change in the model’s output when a feature is perturbed. While general, it suffers from high variance
and requires many evaluations, becoming impractical for high-dimensional data (only tested up to
279 features in the original paper (Strumbelj & Kononenko, 2010)). Next, KernelSHAP (Lund-
berg & Lee, 2017) is widely used and theoretically grounded in Shapley values, offering a prin-
cipled model-agnostic explanation framework. Yet, its independence assumptions rarely hold for
DRbMs (Christoph, 2020), where the transformed data is a combination of all original features. In
addition, reliable estimates in high dimensions demand many samples, making it computationally
expensive (Lundberg & Lee, 2017). From a different approach, Local Interpretable Model-Agnostic
Explanations (LIME (Ribeiro et al., 2016)) is attractive for its flexibility and low runtime, fitting
simple surrogates around an explicand. However, explanations vary significantly across runs (Alvarez-
Melis & Jaakkola, 2018), depend on ad-hoc choices of surrogate complexity, and can be adversarially
manipulated to obscure bias (Slack et al., 2020), limiting trust in sensitive applications. Overall,
while broadly applicable, model-agnostic methods struggle with instability and low-faithfulness in
the DRbM context, motivating the need for more specialized approaches.

Model-specific explanation methods. These methods are tailored to particular architectures or
tasks and are usually faster and more faithful than model-agnostic approaches (Viswan et al., 2024).
However, they cannot be directly applied to DRbMs, since intermediate dimensionality reduction
steps break their attribution rules. For example, TreeSHAP provides fast and exact Shapley values
for tree models (Lundberg et al., 2020), while DeepSHAP (Lundberg & Lee, 2017) approximates
Shapley values for neural networks by combining them with DeepLIFT (Shrikumar et al., 2017).
Generalized DeepSHAP (G-DeepSHAP (Chen et al., 2022)) extends DeepSHAP with a rescale rule
that aims to propagate attributions across heterogeneous model pipelines. However, this rule requires
explanations from each layer, which fails for intermediate transformations such as dimensionality
reduction, whose outputs are feature representations rather than predictions. Moreover, the rescale
step can be numerically unstable: when explicand and baseline outputs are close, the denominator
becomes small and leads to inflated attribution values (Appendix D). This distorts the explanation,
making it sensitive to noise and difficult to interpret in practice. In summary, model-specific methods
are efficient and faithful within their target architectures but cannot handle DRbMs, leaving a gap
that motivates our proposed approach and connects to recent advances on pipeline explainability.

Recent work on representation-level and pipeline explainability. Recent studies also examine how
feature transformations and pipeline design influence explanations. For example, Hwang et al. (2025)
shows that binning or encoding features can shift SHAP rankings drastically. Similarly, the choice of
transformation and model pair is demonstrated to alter what features appear important (Karwowska
et al., 2025). In addition, Gwinner et al. (2024) introduce representation-level explanation similarity
analysis as an additional pipeline stage, emphasizing that pipeline design directly shapes how
explanations are produced. These works underline that representation and pipeline structure materially
influence explanations, a gap we address with OptSHAP by reallocating attributions accounting for
the dimensionality reduction transform.

3 PROBLEM FORMULATION

We begin with a toy example shown in Fig. 2.
Three features (age, height, cholesterol) are pro-
jected by PCA into two components PC1 and PC2.
A model f operating on these components pro-
duces an output of 0.9, with attributions ϕ′

1 =
ϕPC1

= 0.6 and ϕ′
2 = ϕPC2

= 0.3. In practice,
PC1 and PC2 are abstract combinations of the orig-
inal variables. They do not admit a direct semantic
interpretation in the same way as the input features
(i.e, age, height, or cholesterol).

Figure 2: Toy example illustrating the challenge:
PCA components are not directly interpretable,
requiring reallocation of importance scores back
to original features.

The challenge, therefore, is to reassign their importance scores to the original feature space. This
reallocation must satisfy two properties: (i) sign preservation and (ii) efficiency. For instance, in PC1

the loadings of height (0.5) and cholesterol (−0.1) have opposite signs; thus, a positive attribution
ϕ′
1 yields a positive allocation to height and a negative one to cholesterol. Moreover, an efficiency

redistribution could be 0.39 to age, 0.28 to height, and −0.08 to cholesterol, which sums close to
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ϕ′
1, allowing for a small approximation error due to allocation constraints. Generalizing from this

toy case, we now formalize the problem for a general DRbM, where attributions derived from the
reduced space must be redistributed back to the original feature space.

Problem statement. Consider a DRbM consisting of a projection p followed by a model f :

X projection p−−−−−−→ Z model f−−−−→ Y, where p : Rd → Rr is a linear DR technique. Given an explicand
xe = (x1, . . . , xd), the prediction is ye = (f ◦ p)(xe) = f(ze) with ze = p(xe). Moreover, each
reduced component zi can be expressed through a component function pi as zi = pi(x1, x2, . . . , xd).

Our task is to provide the explanation for ye in the original space, Φ(f ◦ p,xe) = (ϕ1, ϕ2, . . . , ϕd),
by propagating the reduced-space explanation Φ(f, ze) = (ϕ′

1, ϕ
′
2, . . . , ϕ

′
r) through the component

functions p1, p2, . . . , pr. The idea is to reallocate each ϕ′
i to the input features, formalized as a

transformation T with allocation terms ϕT
i→j . Inspired by ideas from cooperative game theory,

particularly the efficiency property of Shapley value (Lundberg & Lee, 2017), T is required to satisfy
the two following properties to ensure meaningful allocation:

• (Property 1) Sign preservation:

ϕ′
i.∂

i
j .ϕ

T
i→j > 0, for all i, j, (1)

where ∂i
j :=

∂pi

∂xj

∣∣
xe arre the partial derivatives of pi with respect to xj at xe, i.e., entries of

the projection Jacobian Jp(x
e). This assures the interaction of ϕi and ϕT

i→j will be positive
if ∂i

j > 0 and negative if ∂i
j < 0.

• (Property 2) Efficiency:
d∑

j=1

ϕj =

d∑
j=1

r∑
i=1

ϕT
i→j ≈

r∑
i=1

ϕ′
i, (2)

meaning that the total allocated contributions should be close to the total original importance.
This relaxed view of efficiency has been noted in prior work, including accepting up to a 5%
deviation (Sundararajan et al., 2017), the WeightedSHAP method that explicitly relaxes the
axiom (Kwon & Zou, 2022), and stochastic approaches like SIM-Shapley allowing low-bias
deviations for efficiency (Li et al., 2025).

4 THE PROPOSED FRAMEWORK: OPTSHAP

To illustrate the idea of OptSHAP, let us revisit
the toy example. Tab. 1 shows how the attri-
butions are redistributed: for PC1, OptSHAP
assigns positive contributions to age (0.39) and
height (0.28), while a negative contribution is
assigned to cholesterol (−0.08) due to its neg-
ative loading. A similar redistribution should
be observed for PC2, resulting in feature-level
scores (0.49, 0.16, 0.24) that are more inter-
pretable than component-level attributions. To
formalize this idea, we introduce in Fig. 1 a
transformation block T , which combines in-
formation from p and Φ(f, ze) to reallocate
reduced-space contributions ϕ′

i to the original
feature space (ϕ1, . . . , ϕd).

Table 1: OptSHAP reallocation from reduced to
original features on the toy example. The “Load-
ings” rows show PCA loadings for each compo-
nent (at xe); the “Alloc.” rows are the resulting
allocations ϕT

i→j .

ϕage ϕheight ϕchol. Sum

ϕ′
1

Alloc. 0.39 0.28 −0.08 0.59

Loadings 0.6 0.5 −0.1 –

ϕ′
2

Alloc. 0.10 −0.12 0.32 0.30

Loadings 0.2 −0.3 0.8 –

Total 0.49 0.16 0.24 0.89

Now, if T allocates ϕ′
i to ϕj with contribution ϕT

i→j , the residual of this process is:

Ri = ϕ′
i −

d∑
j=1

ϕT
i→j . (3)

The transformation T is then designed to minimize Ri while ensuring the two aforementioned
redistribution properties. To this end, we utilize the parametric hyperbolic tangent function defined
below.
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Algorithm 1 OptSHAP: Explaining a DRbM via optimization
Input: DRbM with data X d, DR technique p, model f , explicand xe.
Output: Φ(f ◦ p,xe) = (ϕ1, . . . , ϕd).
Procedure:

1: Compute reduced explanation Φ(f, p(xe)) = (ϕ′
1, . . . , ϕ

′
r).

2: Solve optimization problem (5) for α1, . . . , αr, β.
3: for j = 1 to d do
4: ϕj =

∑r
i=1 ϕ

′
i tanh(αi∂

i
j + β).

5: end for
6: return (ϕ1, . . . , ϕd).

Definition 4.1 (Allocation Transform). Given parameters {αi > 0}ri=1 and a shift β ∈ R, the
transformation T reallocates ϕ′

i to feature xj as ϕT
i→j = tanh

(
αi ∂

i
j + β

)
ϕ′
i.

Consequently, the residual can be expressed as:

Ri = ϕ′
i(1−

d∑
j=1

tanh(αi · ∂i
j + β)). (4)

Here, the tanh(.) is employed because it is bounded, monotonic, and symmetric around zero. These
properties avoid exploding attributions and ensure stable redistribution, whereas other common
activation functions, such as softmax and sigmoid, fail to meet the symmetry and sign-preservation re-
quirement since their outputs are always non-negative. The sensitivity analysis for tanh(.) parameters
is detailed in Appendix A.

The following theorem shows that T preserves the sign of contributions so that the reduced compo-
nents maintain their directional relationships with the original features, see the proof in Appendix A.
Theorem 4.2 (Sign Preservation). Transformation T satisfies the property 1 about sign preservation.

To ensure that the contribution of each original feature is recovered, we set ϕj =
∑r

i=1 ϕ
T
i→j . The

property 2 is satisfied by minimizing the residual in Eq. 4. This leads to the following optimization
problem:

min
α1,α2,...,αr,β

r∑
i=1

R2
i . (5)

We now describe the entire procedure in Alg. 1 named OptSHAP, which addresses the stated
explainability challenges in DRbMs.
Remark 4.3. In this work, we consider f as a tree-based model because tree-based models have
been shown to outperform deep learning-based models on tabular data (Grinsztajn et al., 2022).
Accordingly, an exact model-specific method for such models called TreeSHAP (Lundberg et al.,
2020) is leveraged to gain the explanations in the reduced space. In this way, the propagation of
attributions to the original space is more accurate (Chen et al., 2022).

In practice, gradient perturbations may arise when derivatives are computed approximately (e.g., via
finite differences or stochastic estimation) or are affected by floating-point errors in high-dimensional
projections. To account for such effects, we provide Theorem 4.4, which establishes an upper bound
on the expected deviation of the allocation under Gaussian noise.
Theorem 4.4 (Stability). If the gradient information Jp(x

e) is perturbed by independent Gaussian
noise δij ∼ N (0, σ2), then the expected deviation of the allocated importance ϕj satisfies:

E
[∣∣ϕj − ϕnoise

j

∣∣] ≤ r∑
i=1

|ϕ′
i|αi min

(
2, σ

√
2

π

)
. (6)

5 FAITHFULNESS AND STABILITY EVALUATION

To evaluate attribution-based explanation methods, we adopt established benchmark metrics for
faithfulness and stability as follows:
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For faithfulness, we use MoRF, LeRF, and ABPC (Li et al., 2023). These metrics measure the effect
of removing features ranked by attribution importance. MoRF removes the most relevant features
first, showing sensitivity to critical inputs; LeRF removes the least relevant first, reflecting robustness
to discarding uninformative inputs; and ABPC (area between perturbation curves) quantifies the
separation between the two. Since ABPC already summarizes the MoRF and LeRF relationship, we
omit LeRF for brevity.
For stability, perturbation-based metrics such as Infidelity (INFD (Yeh et al., 2019)), Stability (Alvarez-
Melis & Jaakkola, 2018), and Relative Stability (Agarwal et al., 2022), provided that an effective
sampling strategy is employed to estimate the empirical expectation or supremum in their formulation.
However, these metrics may incur high computational complexity in large input spaces due to the
need for repeated perturbations and model predictions across sampled inputs. Therefore, we propose
a new metric, k−Local Stability Score (k−LSS), to quantify the model stability by leveraging the
correlation of available explanations for explicands, thereby requiring low computational complexity.
In addition, this metric is flexible, as it captures variation in explanations by adjusting the number of
neighboring samples considered. Formally, given a black-box function g, an explanation functional
Φ, the formulation for the k−LSS as follows:

LSS(x) =
1

k

∑
x′∈Nk(x)

∥Φ(g,x)− Φ(g,x′)∥2, (7)

where Nk(x) denotes the set of k nearest neighbors of the sample x with respect to the Euclidean
(ℓ2) distance. Stability, in this context, refers to the principle that similar inputs should yield similar
explanations (Agarwal et al., 2022). Thus, lower LSS values indicate higher stability.
In summary, we evaluate the faithfulness of attribution-based methods using four benchmarks: MoRF,
ABPC, INFD, and LSS. Formal definitions are provided in Appendix C.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Baselines. We compare OptSHAP with three SOTA meth-
ods (KernelSHAP, EIC, and LIME) in generating expla-
nations for DRbMs based on the evaluation guideline in
Sec. 5. High-quality explanations must be faithful, sta-
ble, and reliable, independent of the underlying model’s
predictive performance. Hence, our primary focus lies
in evaluating the effectiveness of attribution-based expla-
nation methods rather than comparing model accuracies.
Nevertheless, we also demonstrate that DR techniques,
such as PCA, ICA, and LDA, not only accelerate training
compared to standalone XGBoost, but also enhance its
classification accuracy, as illustrated in Fig. 3.
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Figure 3: Accuracy and Training
Time of XGBoost and DRbMs on the
Alzheimer’s Dataset.

Datasets. We consider three datasets for experiments, including Alzheimer’s (Cilia et al., 2018),
Toxicity (Gul et al., 2021), and Alon (Alon et al., 1999). All are high-dimensional datasets ranging
from 451 to 2001 dimensions.
Models. We employ three linear projections: PCA, ICA, and LDA; and four tree-based models:
XGBoost, CatBoost, LightGBM, and Random Forest.
Evaluation metrics. We utilize four metrics for faithfulness evaluation, which are described in Sec. 5,
including MoRF and ABPC (higher is better); LSS, and INFD (lower is better).
Further details about the experiment setting are in Appendix B. We commit to publishing the
implementation code if the paper is accepted.

6.2 OPTSHAP THROUGH SIMULATION

This section provides a simple simulation to show how OptSHAP works in Fig. 4. Specifically,
we construct a 10-dimensional input that is linearly projected into a 4-dimensional reduced space.
TreeSHAP first produces scores (ϕ′

1, ϕ
′
2, ϕ

′
3, ϕ

′
4) in the reduced space. OptSHAP maps these values

back to the original 10 features while satisfying the sign preservation and efficiency properties. The
left panel shows how the local attribution score ϕ′

2 from the reduced space is redistributed for the 10

6
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Figure 4: Illustration for OptSHAP via a simulation in which a 10-dim space is reduced to a 4-dim
space: (Left) Local contribution for ϕ′

2 and (Right) Total contribution for original features.

original features, with the values in parentheses indicating their corresponding PCA loadings. Here,
features with positive loadings on z2 (e.g., x8 and x1) receive positive contributions, while those with
negative loadings (e.g., x6 and x7) receive negative contributions.

The right figure aggregates the allocations across all four reduced components (z1, z2, z3, z4). Each
bar shows how the contributions from different components accumulate for a given feature, while
the red dot indicates the total feature attribution Φ(f,x) obtained by OptSHAP. For example, x8

receives the highest positive attributions from z1, z3, and z4. This confirms that OptSHAP not only
respects local consistency for each component but also yields intuitive overall attributions in the
original feature space.
6.3 QUANTITATIVE EVALUATION

MoRF "ABPC "

LSS # INFD #
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1.5

Alzheimer's

MoRF "ABPC "

LSS # INFD #
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KernelSHAP EIC LIME OptSHAP

Figure 5: Comparison of OptSHAP with three baseline methods on three datasets. Metrics include
MoRF and ABPC (higher is better); LSS and INFD (lower is better). Results are averaged across
four tree-based models and three dimensionality reduction techniques. Detailed results for each
dimensionality reduction technique and classifier are provided in Appendix E.

The quantitative results of the faithfulness evaluation are reported in Fig. 5. Our framework outper-
forms all baseline methods in MoRF and ABPC, demonstrating its effectiveness in identifying the
most important features. This trend holds consistently across all datasets, confirming the faithfulness
of our method in aligning feature attribution with model behavior. OptSHAP also achieves the
lowest LSS score, showing strong stability and robustness to local perturbations. Moreover, the
consistently low INFD values indicate reduced infidelity between explanations and the model’s
predictions, meaning that the generated attributions more faithfully capture the true decision process
of the underlying model. These findings confirm that OptSHAP consistently provides more faithful
(higher MoRF and ABPC), stable (lower LSS), and reliable (lower INFD) explanations compared to
other attribution-based methods.

6.4 QUALITATIVE ANALYSIS

Fig. 6 presents a beeswarm plot showing the top five contributing features, along with the average
frequency of zero-valued attributions produced by KernelSHAP, EIC, LIME, and OptSHAP. This
raises a key question: What should one expect from an effective explanation for DRbMs?
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Figure 6: (Left) The beeswarm plot of KernelSHAP, EIC, LIME, and OptSHAP on the Alzheimer’s
dataset with PCA and XGBoost. (Right) The average frequency of zeros in the explanations, with
this value being 0 for both LIME and OptSHAP.

In linear DR techniques, each component is a linear combination of all original features; consequently,
each feature contributes to every principal component. Thus, we expect most original features to
receive non-zero attribution scores. Zero attributions may still occur due to compensatory effects
among features, but such cases are generally uncommon. Moreover, from a feature-by-feature per-
spective, individual features may contribute either positively or negatively to the output. Accordingly,
the distribution of attribution values is expected to be roughly balanced around zero, reflecting both
positive and negative contributions rather than being skewed to one side. This forms our second expec-
tation. Importantly, this expectation is consistent with the behavior of original SHAP values (Lamane
et al., 2025; Ponce-Bobadilla et al., 2024), which also exhibit such symmetric distributions, thereby
confirming that our requirement is well grounded rather than ad hoc.

Fig. 6 shows that OptSHAP’s explanation satisfies the above expectations. In contrast, while
KernelSHAP and EIC produce symmetric explanations (meeting the second expectation), they fail
to satisfy the first expectation, namely, assigning non-zero contributions to most input features. For
example, KernelSHAP approximates the full 2d power set of feature combinations using a sampling
scheme that assigns weights based on the subset size s, using the function w(s) = d−1

(ds)s(d−s)
. This

weighting biases the sampling process toward smaller subsets, often resulting in sparse attributions
with many zero-valued features. For a high-dimensional dataset, the large number of features d can
make most of the weights nearly zero, thereby causing the frequency of zero-valued attributions to
be too high (over 60%). On the other hand, EIC, although having a lower zero-ratio, computing the
marginal contribution based on perturbation also causes the problem that the original contribution
tends to be zero. In contrast, while LIME satisfies the first expectation, it produces a skewed and
narrowed contribution of each feature to one side, which fails to accurately reflect the behavior of DR
techniques.

6.5 HYPOTHESIS TESTING FOR EFFICIENT PROPERTY

We report hypothesis testing results assessing the efficient
property of OptSHAP. Specifically, we test whether the
total contribution differs significantly before and after
allocation. To this end, we perform a paired t-test, the
Wilcoxon signed-rank test, and a permutation test at a
99% confidence level. The null hypothesis is H0 : µ = 0
(i.e., no statistical difference in total contribution), and the
alternative hypothesis is H1 : µ ̸= 0. The results in Tab. 2
indicate that OptSHAP passes all tests (p-value > α).
This implies there is insufficient evidence to reject H0,
suggesting no statistical difference in total contribution
before and after allocation at the 99% confidence level.

Table 2: The p-value of the hypothesis
testing with α = 0.01. A p-value greater
than α indicates that OptSHAP satisfies
the efficient property.

Dataset DR Method t-test Wilcoxon Permutation

Alzheimer’s
PCA 0.2075 0.1898 0.2030
ICA 0.1628 0.1633 0.1636
LDA 0.9485 0.0504 0.9184

Toxicity
PCA 0.2242 0.2500 0.2156
ICA 0.4810 0.7344 0.5468
LDA 0.7108 0.9922 0.6932

Alon
PCA 0.9875 0.9368 0.9870
ICA 0.4036 0.2368 0.4202
LDA 0.5579 0.7972 0.5490

6.6 THE STABILITY OF OPTSHAP

We investigate OptSHAP stability under perturbations of the model gradients by injecting Gaussian
noise proportional to the mean gradient magnitude. Fig. 7 summarizes the results in terms of cosine
similarity (higher is better) and normalized L2 norm (lower is better) between the original and
perturbed explanations. As shown in the left panel, the cosine similarity has no change when the
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Figure 7: Stability of OptSHAP on Alzheimer’s dataset under gradient-dependent Gaussian noise
with strength ranging from 1% to 20% of the mean gradient magnitude.

Table 3: Stability comparison of explanation methods on Alzheimer’s dataset. Reported metrics
include average, median, maximum of CV, fraction of features with CV > 0.5, and median for the
top 5 most important features.

Method mean ± std ↓ median↓ max↓ fraction( 0.5)↓ top-5 median↓
KernelSHAP 10.832 ± 66.034 2.926 1327.34 0.993 0.883
EIC 22.182 ± 116.599 4.419 2188.98 1.000 1.073
LIME 1.560 ± 11.652 0.214 184.32 0.244 0.043
OptSHAP 0.065 ± 0.372 0.011 5.35 0.020 0.003

noise is less than 10% and remains remarkably high (> 0.9996) across the entire noise range over
10%. The right panel further confirms this observation: the overall deviations of the normalized L2
error increase when noise increases, but are still small (below 0.007 at 20% noise). Together, these
results show that OptSHAP produces robust explanations under gradient perturbations, ensuring
reliability in practice.

Since explanation methods involve stochastic elements, repeated runs on the same explicand can yield
different attributions. To quantify this variability, we generated explanations 10 times per test instance
and computed the coefficient of variance (CV) across runs. Tab. 3 reports aggregated statistics of
CV over the entire test set. The results highlight differences in stability. KernelSHAP and EIC show
extreme variability, with mean CVs above 10, maximum values exceeding 1000 and 2000, and nearly
all features above the 0.5 CV threshold. LIME is more stable, with lower mean and median CVs,
though its maximum still reaches 184. By contrast, OptSHAP is highly robust: mean and median
CVs are near zero, the maximum is an order of magnitude smaller, and fewer than 2% of features
exceed 0.5, indicating consistent attributions for the most relevant variables.

7 CONCLUSIONS

In this paper, we introduce OptSHAP, which is the first optimization-based attribution method for
DRbMs. This framework reprojects model-specific explanations from the reduced feature space back
to the original input space through a bounded allocation transform. Accordingly, it is agnostic to
the choice of DR techniques and downstream models, and scales efficiently to high-dimensional
feature spaces. Evaluated on three datasets with three DR techniques and four tree-based models,
OptSHAP outperforms existing methods by delivering up to 24-fold gains in stability and 2-fold
improvements in fidelity, while generating explanations that align with the expected properties of
interpretability for DRbMs. Moreover, our framework is compatible with nonlinear projections and
deep learning models (details are provided in Appendix F), making these promising directions for
future investigation. By overcoming the limitations of existing attribution methods for DRbMs and
providing stable and faithful explanations, OptSHAP establishes a strong foundation for building
transparent and trustworthy DR pipelines in real-world applications.
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THE USE OF LARGE LANGUAGE MODELS

LLMs were only used to improve the clarity and writing quality of the manuscript.

A ADDITIONAL THEORETICAL DETAILS

A.1 tanh SELECTION

Definition A.1 (Parametric Hyperbolic Tangent). Let α > 0 and β ∈ R. The parametric hyperbolic
tangent function is defined as:

tanh(αx+ β) =
eαx+β − e−αx−β

eαx+β + e−αx−β
, x ∈ R.

Moreover, the derivative of tanh(αx+ β) is given by:

d

dx
tanh(αx+ β) = α

(
1− tanh2(αx+ β)

)
,

ensuring that tanh(αx+ β) is strictly increasing for α > 0.

In our framework, we choose the tanh function because:

• Capability of producing both positive and negative outputs. Since tanh(·) ranges from
−1 to +1, it naturally handles contributions of opposite signs. For example in Fig. 2, if
the PCA loading of cholesterol on PC1 is negative while the attribution of PC1 is positive,
tanh(·) guarantees that the propagated attribution to cholesterol is also negative. Most
activation functions, such as softmax and sigmoid, do not satisfy this property.

• Monotonicity. The function is strictly increasing, so stronger interactions (larger gradient
magnitudes ∂i

j) lead to larger absolute allocations. For instance, if ∂PC1

height = 0.5 and
∂PC1

age = 0.2, then tanh(α · 0.5 + β) will always exceed tanh(α · 0.2 + β), ensuring that
height receives a greater share from PC1.

• Continuity and Differentiability. The smoothness of tanh(·) ensures that our loss function
(Eq. 5) is differentiable everywhere. This enables stable optimization using gradient-based
methods such as Adam. Without such a smooth transform, optimization could stall or
oscillate.

• Boundedness. The outputs of tanh(·) lie strictly within (−1, 1), preventing allocations
from growing arbitrarily large. For example, if ∂i

j is extremely large due to scale differences
across features, tanh(·) saturates at ±1, thereby avoiding the situation where a single feature
dominates the redistribution unfairly.

• Symmetry around zero. The function is odd, i.e., tanh(−x) = − tanh(x), which aligns
allocations with gradient directions. Concretely, if ∂i

j is positive, the allocation ϕT
i→j has the

same sign as ϕ′
i; if ∂i

j is negative, the allocation flips sign. This ensures that the semantics
of component-feature relationships are preserved.

A.2 SENSITIVITY ANALYSIS OF tanh FUNCTION

The parameter α controls the sensitivity of tanh(·) to variations in the directional component ∂i
j . In

the limiting case, limα→0 tanh
(
α · ∂i

j + β
)
= tanh(β), meaning that the effect of ∂i

j vanishes and
the output is determined solely by the bias term β. For implementation purposes, however, directly
setting α = 0 (or arbitrarily close to zero) is not practical, as it may lead to numerical issues and
hinder gradient-based optimization. Therefore, instead of enforcing α > 0 strictly, we introduce a
lower bound αmin > 0 (a small positive constant). This ensures numerical stability and preserves the
desired sensitivity while keeping the code implementation simple.

Regarding the shift β of tanh(.), we show its upper and lower bounds in the following proposition.
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Proposition A.2 (Range of β). Given α ≥ αmin, the shift β of allocation transform must be in the
range:

−αmin
(
∂i
j

)+
min

< β < −αmin
(
∂i
j

)−
max

, (8)

where
(
∂i
j

)+
min

and
(
∂i
j

)−
max

are the smallest positive and largest negative gradients, respectively.

Proof. The parameter β ∈ R governs the shift of tanh and ensures the property of positive/negative
preservation:

sign
(
∂i
j

)
= sign

(
α∂i

j + β
)
.

To satisfy this, β must satisfy:

α · ∂i
j + β > 0 if ∂i

j > 0, (9)

α · ∂i
j + β < 0 if ∂i

j < 0. (10)

From 9, we deduce:
β > −α · ∂i

j , for all ∂i
j > 0.

This is equivalent to:

β > max{−α · ∂i
j |∂i

j > 0} = −min{α · ∂i
j |∂i

j > 0} = −αmin
(
∂i
j

)+
min

,

where
(
∂i
j

)+
min

is the smallest positive gradient. Similarly, from 10:

β < −αmin
(
∂i
j

)−
max

,

where
(
∂i
j

)−
max

is the largest negative gradient. Combining these bounds, β must lie in the range:

−αmin
(
∂i
j

)+
min

< β < −αmin
(
∂i
j

)−
max

.

Notably, if
(
∂i
j

)+
or
(
∂i
j

)−
is an empty set, then we set the minimum or maximum to 0, respectively.

Moreover, β = 0 always satisfies these conditions.

A.3 SIGN PRESERVATION PROPERTY

Theorem 4.2 (Sign Preservation). Transformation T satisfies the property 1 about sign preservation.

Proof. We need to prove that: For all i ∈ {1, . . . , r} and j ∈ {1, . . . , d}, then ϕ′
i · ∂i

j · ϕT
i→j > 0.

By the Definition 4.1,
ϕT
i→j = tanh

(
αi ∂

i
j + β

)
ϕ′
i.

Substituting this into the inequality gives:

∂i
j · tanh

(
αi · ∂i

j + β
)
· (ϕ′

i)
2.

Note that we only consider ϕ′
i ̸= 0 because ϕ(zi) = 0 is a trivial case where all re-distribution will

be zero. Therefore, ϕ2(zi) > 0 and the sign of the product depends on:

∂i
j · tanh

(
αi · ∂i

j + β
)
.

By construction, tanh(·) preserves the sign of (αi ·∂i
j+β), which aligns with ∂i

j under the conditions
on αi and β. Thus, the product is strictly positive, completing the proof.
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A.4 STABILITY UNDER GRADIENT-DEPENDENT GAUSSIAN NOISE

Theorem 4.4. (Stability). If the gradient information Jp(x
e) is perturbed by independent Gaussian

noise δij ∼ N (0, σ2), then the expected deviation of the allocated importance ϕj satisfies:

E
[∣∣ϕj − ϕnoise

j

∣∣] ≤ r∑
i=1

|ϕ′
i| .αi.min

(
2, σ

√
2

π

)
.

Proof. The allocated importance ϕj and ϕnoise
j are respectively:

ϕj =

r∑
i=1

ϕ′
i tanh

(
αi · ∂i

j + β
)
,

ϕnoise
j =

r∑
i=1

ϕ′
i tanh

(
αi · (∂i

j + δij) + β
)
.

The difference between those is:∣∣ϕj − ϕnoise
j

∣∣ ≤ r∑
i=1

|ϕ′
i| .
∣∣tanh (αi · ∂i

j + β
)
− tanh

(
αi · (∂i

j + δij) + β
)∣∣ .

From | tanh(x)− tanh(y)| ≤ min(2, |x− y|), then:∣∣ϕj − ϕnoise
j

∣∣ ≤ r∑
i=1

|ϕ′
i| .min(2, |αiδij |).

Because δij ∼ N (0;σ2), E[|δij |] = σ
√

2
π . This implies:

E
[∣∣ϕj − ϕnoise

j

∣∣] ≤ r∑
i=1

|ϕ′
i| .αi.min

(
2, σ

√
2

π

)
.

B IMPLEMENTATION DETAILS

All experiments were conducted on RTX 3090Ti, and the code was implemented in Python 3.12.2.
To ensure reproducibility, we fix the random seed to 0.

B.1 DATASETS

All of the public datasets used in our experiments were previously published, mainly focusing on the
healthcare domain. These datasets are chosen due to their high dimensionality, i.e., a much larger
number of features compared to the number of samples, which aligns with the objectives of this work.
Moreover, they are split into training and testing sets with a ratio of 8:2. The details of the datasets
are listed in the following:

• Alzheimer’s (Fontanella, 2022), 451 features and 171 samples. Also referred to as the DAR-
WIN dataset, this collection contains handwriting samples from 174 individuals, with the
goal of classifying Alzheimer’s disease patients versus healthy controls. It was designed to
facilitate the development of machine learning techniques for Alzheimer’s disease prediction
based on handwriting analysis.

• Toxicity (Gül & RAHIM, 2021), 1203 features and 174 samples. This dataset contains 171
molecules engineered to target functional domains of the core circadian clock protein CRY1,
which regulates circadian rhythms. Among them, 56 molecules are labeled as toxic, while
the remaining are non-toxic.

• Alon (Alon et al., 1999), 2000 features and 62 samples. The Alon colon cancer dataset,
introduced by Alon et al., comprises expression levels of 2000 genes across 62 samples. 40
tumor biopsies and 22 normal colon tissue biopsies were obtained from the same patients.
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B.2 DR TECHNIQUES

We use three popular DR techniques, namely PCA, ICA, and LDA. All are available in sklearn
library. Detailed implementation for these techniques is presented as follows:

• Principal Component Analysis (PCA) (Abdi & Williams, 2010): The number of com-
ponents r is selected as the smallest integer such that the cumulative variance exceeds a
predefined threshold (e.g., 95%). Then, the reduced representation Z ∈ Rn×r is obtained
via Z = XWr, where Wr ∈ Rd×r is the loading matrix composed of the top r eigenvectors.

• Independent Component Analysis (ICA) (Hyvärinen et al., 2009): This is deployed
by using the FastICA algorithm to extract statistically independent components from the
input data. We set the number of components as r = 0.05d, where d is the number of
original features. FastICA is configured with unit-variance whitening, a maximum of 1000
iterations, and a fixed random seed for reproducibility (i.e, 42). The data is then projected to
an r-dimensional space, yielding the reduced representation Z ∈ Rn×r. The corresponding
loading matrix Wr ∈ Rd×r is derived from the learned independent components.

• Linear Discriminant Analysis (LDA) (Balakrishnama & Ganapathiraju, 1998): We
implement LDA to reduce supervised dimensionality by maximizing class separability.
Given a dataset X and corresponding class labels y, we compute the number of components
r = min(C−1, d), where C is the number of distinct classes and d is the number of original
features. LDA is then fitted to the labeled data (X ,y), and the input is projected into an
r-dimensional space, resulting in a reduced representation Z ∈ Rn×r. The transformation
matrix Wr ∈ Rd×r is constructed from the top r linear discriminants (i.e., eigenvectors of
the class scatter matrix), accessible via the learned scaling matrix.

B.3 CLASSIFIERS

Regarding learning models, we adopt four widely used ensemble methods tailored for binary classifi-
cation tasks: XGBoost, LightGBM, CatBoost, and Random Forest.

• XGBoost (Chen & Guestrin, 2016) is instantiated via XGBClassifier, with the objective
function set to binary logistic loss and the evaluation metric to logloss.

• CatBoost (Prokhorenkova et al., 2018) is implemented using CatBoostClassifier, configured
with the logloss (binary cross-entropy) loss function and verbose output disabled.

• LightGBM (Ke et al., 2017) leverages LGBMClassifier, with the objective function set to
binary and the evaluation metric to binary logloss.

• Random Forest (Breiman, 2001) uses RandomForestClassifier with 100 estimators, suitable
for binary classification tasks.

Each model is trained on the reduced feature space produced from one of the aforementioned DR
techniques.

B.4 FEATURE ATTRIBUTION EXPLANATION METHODS

We implement and compare our framework, OptSHAP, with three other feature attribution methods:
KernelSHAP, LIME, and EIC. All methods were applied to the same trained model and test set, using
consistent settings to ensure fair comparison. For each explicand (test sample), the explanation is
generated for the predicted class.

• KernelSHAP (Lundberg & Lee, 2017): The model-agnostic KernelSHAP method is imple-
mented using the implementation provided in the shap library. The explainer is initialized
using the training set Xtrain as the background distribution (without sampling), and explana-
tions are computed on Xtest ⊂ X . For each test sample, SHAP values are generated using
1000 sampled coalitions.

• LIME (Ribeiro et al., 2016): The LIME explainer is implemented using the lime library. It
is initialized using the full training data Xtrain as the background distribution, while feature
names and class labels are provided. For each test sample x ∈ Xtest, LIME generates an
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explanation by fitting a local interpretable linear model on 1000 perturbed samples around
x, using the DRBM. We configure the number of features in each explanation to match
the input dimensionality (i.e., num_features = d). The local surrogate model used for
attribution is the default Ridge regression.

• EIC (Strumbelj & Kononenko, 2010): The EIC method estimates local feature attributions
based on perturbation-based marginal effects. Specifically, for each sample x ∈ Xtest, EIC
estimates the contribution of feature i as the expected decrease in model prediction when
feature i is perturbed, while conditioning on a random subset of the remaining features. To
do so, we run Monte Carlo randomized perturbation trials for each test sample x. In each
trial, a random binary mask s ∈ {0, 1}d selects a subset of features to keep from x, while
the rest are filled from a randomly sampled background point x′ ∈ Xtrain. For each feature
i ∈ supp(s), we measure the influence as the difference in the model output when xi is
replaced with a background value x′

i, formally: contribi = Es,x′ [f(x̃)− f(x̃−i)], where
x̃ is the mixed input and x̃−i replaces feature i with x′

i. The final explanation is the average
over k trials.

• OptSHAP: We implement Opt-SHAP as described in Alg. 1 and apply it to the entire
projected test set Ztest, without subsampling. The reduced-space SHAP values ϕ′ are
computed using the shap.TreeExplainer, while the Jacobian matrix J is obtained
from the DR transformation (e.g., PCA, ICA, LDA) fitted on the training data Xtrain. The
optimization is performed using the Adam optimizer, with learning rate set to 0.02 and up to
300 iterations. Parameters (α1, . . . , αr, β) are optimized in constrained space: αi ≥ 10−3,
while β is restricted by data-dependent lower/upper limits. All αi are initialized to the
minimum, and β is initialized at zero.

C EVALUATION METRICS

Definition C.1. Let g : Rd → R be a black-box model, which predicts the output g(x) for an input
x ∈ Rd. A feature attribution explanation is a function Φ : G × Rd → Rd, that given predictor g and
a test point x, assigns importance scores Φ(g,x) to the input features, known as an explanation.

Faithfulness evaluation. As mentioned in Sec. 5, we evaluate the faithfulness of explanation
methods via MoRF, ABPC, LSS, and INFD. Now, given a black-box function g, an explanation
functional Φ, a random variable I with probability measure µI , which represents meaningful
perturbations of interest. The formulation of MoRF, LeRF, ABPC, and INFD metrics is presented as
follows:

MoRF(x) =
1

d+ 1

d∑
k=0

(
g(x

(0)
MoRF)− g(x

(k)
MoRF)

)
, (11)

LeRF(x) =
1

d+ 1

d∑
k=0

(
g(x

(0)
LeRF)− g(x

(k)
LeRF)

)
, (12)

ABPC(x) =
1

d+ 1

d∑
k=0

(
g(x

(k)
LeRF)− g(x

(k)
MoRF)

)
, (13)

INFD(x) = EI∼µI

(
ITΦ(g,x)− (g(x)− g(x− I))

2
)
. (14)

Here, d is the number of features, x(0) is the original input, x(k)
MoRF and x

(k)
LeRF denotes a perturbed

version of the input in which the top-k most and bottom-k least relevant features are masked,
respectively. In the INFD evaluation (Yeh et al., 2019), we use the method of difference from a noisy
baseline I = x−wo, where wo = xo + ϵ, for some zero-mean random vector ϵ ∼ N (0, σ2).

Stability metrics. In addition to the faithfulness metrics, we assess the stability of explanations
under stochastic perturbations, repeated runs, or noisy gradients. Given two explanations Φ(g,x)
and Φ′(g,x) for the same explicand x, we define the following:
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CosineSim(Φ,Φ′) =
⟨Φ(g,x), Φ′(g,x)⟩

∥Φ(g,x)∥2 · ∥Φ′(g,x)∥2
, (15)

NormL2(Φ,Φ′) =
∥Φ(g,x)− Φ′(g,x)∥2
∥Φ(g,x)∥2 +Φ′(g,x)∥2

, (16)

where ⟨·, ·⟩ denotes the inner product and ∥ · ∥2 the Euclidean norm. Cosine similarity (Eq. 15)
measures directional consistency between two explanations, with values close to 1 indicating strong
alignment. The normalized L2 norm (Eq. 16) measures the relative deviation in magnitude between
explanations, with smaller values indicating more robust attributions.

To quantify variability across multiple stochastic runs, we adopt the coefficient of variance (CV),
defined for each feature j as

CVj =
σ
(
{ϕ(1)

j , ϕ
(2)
j , . . . , ϕ

(R)
j }

)∣∣µ({ϕ(1)
j , ϕ

(2)
j , . . . , ϕ

(R)
j }

)∣∣ , (17)

where ϕ
(r)
j denotes the attribution score of feature j in the r-th run, and µ(·) and σ(·) denote the

mean and standard deviation across R repeated runs. A higher CV indicates stronger instability, while
a CV close to zero indicates highly reproducible attributions.

D G-DEEPSHAP IS NOT SUITABLE FOR DRBMS

As discussed in Sec. 2, we show that G-DeepSHAP is not suitable in the context of DRbMs. Formally,
G-DeepSHAP computes the attribution for an explicand xe with respect to a baseline set D as:

ϕ(f ◦ p,xe) =
1

|D|
∑
xb∈D

ϕ(f ◦ p,xe,xb) =
1

|D|
∑
xb∈D

ϕ̂(p,xe,xb)
ϕ̂(f, ze, zb)

p(xe)− p(xb)
(18)

=
1

|D|
∑
xb∈D

diag(xe − xb)W.
ϕ̂(f, ze, zb)

(ze − zb)
(19)

Here, ϕ̂(f, ze, zb) is the explanation in the reduced space. This expression makes clear why G-
DeepSHAP is problematic in the DRbM setting. The term (ze − zb) appears in the denominator, and
nothing prevents it from approaching zero on any coordinate. In practice, this means that whenever
two latent encodings ze and zb are close, the attribution can blow up to arbitrarily large magnitudes.
Since DRbMs project high-dimensional inputs X into a lower-dimensional latent space Z before
classification, different inputs may be projected to nearby points in Z. As a consequence, cases with
ze ≈ zb naturally arise with high frequency. Moreover, because G-DeepSHAP averages over a set
of baselines D, the probability of encountering such near-zero differences only increases, thereby
amplifying the instability.

This theoretical issue is clearly reflected in empirical results. Figure 8 shows both a boxplot and
a heatmap of G-DeepSHAP attributions computed on DRbM data. The distributions are highly
skewed, with certain features displaying extreme values far exceeding reasonable scales. In the
heatmap, entire rows are dominated by intense colors corresponding to very large positive or negative
attributions, even though the explicand and baselines differ only slightly in the latent space. Such
“blow-ups” undermine the interpretability of the method: a small perturbation in baseline selection
disproportionately dictates the final explanation, masking the genuine structure of the model.

Taken together, both the analytical form and the empirical evidence indicate that G-DeepSHAP
is not suitable for DRbMs. The instability of its attributions not only reduces their reliability
but also risks misleading users about the true behavior of the underlying model. Prior work has
emphasized that unstable or manipulable explanations can severely compromise trust in post-hoc
methods (Slack et al., 2020), and stability has been recognized as a key desideratum for meaningful
feature attributions (Xue et al., 2023). Moreover, recent critiques of Shapley-based explanations
highlight that when the attribution values deviate drastically from reasonable scales, the interpretations
cease to reflect the underlying model behavior (Huang & Marques-Silva, 2024). These observations
suggest that in the space of DRbMs, where attribution “blow-ups” are frequent, G-DeepSHAP is not
a suitable explanation method.
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Figure 8: Boxplot and heatmap of G-DeepSHAP attributions on DRbM data, illustrating unstable
and exploding values.

E ADDITIONAL EXPERIMENT RESULTS

Table 4: Results for the Alzheimer’s dataset averaged on 3 dimensionality reduction techniques (Best
result in each row is in bold).

Model Method MoRF ABPC LSS INFD

XGBoost

KernelSHAP 0.0180 ± 0.0183 -0.0093 ± 0.0277 0.0044 ± 0.0000 2.0304 ± 0.9019
EIC 0.0211 ± 0.0389 0.0025 ± 0.0406 0.0044 ± 0.0000 0.7520 ± 1.2704
LIME 0.0366 ± 0.0279 0.0271 ± 0.0262 0.0027 ± 0.0002 0.8288 ± 0.3901
OptSHAP 0.0595 ± 0.0431 0.0566 ± 0.0363 0.0022 ± 0.0005 0.0553 ± 0.0238

LightGBM

KernelSHAP 0.0221 ± 0.0302 -0.0019 ± 0.0330 0.0044 ± 0.0000 2.2965 ± 1.5589
EIC 0.0209 ± 0.0363 0.0159 ± 0.0280 0.0037 ± 0.0007 1.0361 ± 1.3444
LIME 0.0323 ± 0.0357 0.0246 ± 0.0229 0.0028 ± 0.0002 0.7049 ± 0.4822
OptSHAP 0.0548 ± 0.0359 0.0489 ± 0.0270 0.0023 ± 0.0005 0.0520 ± 0.0318

CatBoost

KernelSHAP -0.0022 ± 0.0175 -0.0241 ± 0.0246 0.0044 ± 0.0000 2.5874 ± 0.9250
EIC 0.0126 ± 0.0357 0.0059 ± 0.0402 0.0034 ± 0.0003 0.1054 ± 0.0392
LIME 0.0137 ± 0.0220 0.0133 ± 0.0162 0.0025 ± 0.0003 0.6934 ± 0.4813
OptSHAP 0.0296 ± 0.0236 0.0289 ± 0.0174 0.0023 ± 0.0005 0.0514 ± 0.0256

Random Forest

KernelSHAP -0.0254 ± 0.0597 -0.0184 ± 0.0254 0.0044 ± 0.0000 3.3883 ± 0.6985
EIC -0.0349 ± 0.0781 -0.0288 ± 0.0295 0.0034 ± 0.0002 0.6410 ± 1.0460
LIME -0.0148 ± 0.0707 0.0094 ± 0.0295 0.0027 ± 0.0002 0.8234 ± 0.3902
OptSHAP -0.0043 ± 0.0683 0.0191 ± 0.0285 0.0018 ± 0.0013 0.0533 ± 0.0265

Table 5: Results for the Alzheimer’s dataset averaged on 4 classifiers (Best result in each row is in
bold).

DR Technique Method MoRF ABPC LSS INFD

PCA

KernelSHAP -0.0344 ± 0.0489 -0.0369 ± 0.0152 0.0044 ± 0.0000 2.0080 ± 1.0011
EIC -0.0545 ± 0.0561 -0.0492 ± 0.0320 0.0034 ± 0.0002 0.0811 ± 0.0414
LIME -0.0316 ± 0.0519 -0.0088 ± 0.0167 0.0026 ± 0.0003 0.4547 ± 0.4359
OptSHAP -0.0154 ± 0.0527 0.0146 ± 0.0230 0.0026 ± 0.0002 0.0651 ± 0.0206

ICA

KernelSHAP 0.0183 ± 0.0129 -0.0251 ± 0.0147 0.0044 ± 0.0000 1.9250 ± 0.7922
EIC 0.0321 ± 0.0223 0.0096 ± 0.0249 0.0034 ± 0.0002 0.0970 ± 0.0375
LIME 0.0363 ± 0.0164 0.0222 ± 0.0082 0.0028 ± 0.0001 0.7260 ± 0.4243
OptSHAP 0.0467 ± 0.0153 0.0313 ± 0.0104 0.0026 ± 0.0001 0.0547 ± 0.0288

LDA

KernelSHAP 0.0256 ± 0.0144 0.0217 ± 0.0134 0.0044 ± 0.0000 3.7939 ± 0.5978
EIC 0.0372 ± 0.0183 0.0361 ± 0.0160 0.0038 ± 0.0002 1.7227 ± 1.3952
LIME 0.0461 ± 0.0186 0.0425 ± 0.0155 0.0026 ± 0.0003 1.1071 ± 0.0611
OptSHAP 0.0735 ± 0.0321 0.0693 ± 0.0290 0.0012 ± 0.0008 0.0271 ± 0.0191
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Table 6: Results for the Toxicity dataset averaged on 3 dimensionality reduction techniques (Best
result in each row is in bold).

Model Method MoRF ABPC LSS INFD

XGBoost

KernelSHAP -0.0545 ± 0.0544 -0.0392 ± 0.0358 0.0016 ± 0.0000 0.8352 ± 0.9621
EIC -0.0284 ± 0.0311 -0.0124 ± 0.0324 0.0014 ± 0.0001 0.7331 ± 0.8543
LIME -0.0344 ± 0.0367 -0.0018 ± 0.0171 0.0012 ± 0.0000 0.0477 ± 0.0376
OptSHAP -0.0162 ± 0.0434 0.0157 ± 0.0130 0.0010 ± 0.0002 0.0691 ± 0.0521

LightGBM

KernelSHAP -0.0164 ± 0.0349 -0.0193 ± 0.0219 0.0016 ± 0.0000 1.5242 ± 1.3618
EIC 0.0069 ± 0.0390 0.0210 ± 0.0343 0.0014 ± 0.0001 0.8762 ± 1.1327
LIME -0.0119 ± 0.0288 -0.0123 ± 0.0227 0.0011 ± 0.0000 0.0200 ± 0.0099
OptSHAP 0.0280 ± 0.0602 0.0293 ± 0.0412 0.0011 ± 0.0001 0.0493 ± 0.0307

CatBoost

KernelSHAP -0.0174 ± 0.0338 -0.0159 ± 0.0123 0.0016 ± 0.0000 1.5803 ± 1.8537
EIC -0.0033 ± 0.0510 0.0067 ± 0.0403 0.0013 ± 0.0001 0.5161 ± 0.6541
LIME -0.0164 ± 0.0378 -0.0146 ± 0.0184 0.0011 ± 0.0000 0.0044 ± 0.0019
OptSHAP 0.0148 ± 0.0503 0.0171 ± 0.0357 0.0010 ± 0.0002 0.0197 ± 0.0117

Random Forest

KernelSHAP -0.0561 ± 0.0528 -0.0113 ± 0.0116 0.0017 ± 0.0000 2.6526 ± 2.4976
EIC -0.0712 ± 0.0803 -0.0467 ± 0.0568 0.0013 ± 0.0000 1.3536 ± 1.8449
LIME -0.0519 ± 0.0568 -0.0011 ± 0.0162 0.0011 ± 0.0000 0.0153 ± 0.0106
OptSHAP -0.0343 ± 0.0696 0.0007 ± 0.0341 0.0008 ± 0.0005 0.0307 ± 0.0227

Table 7: Results for the Toxicity dataset averaged on 4 classifiers (Best result in each row is in bold).
DR Technique Method MoRF ABPC LSS INFD

PCA

KernelSHAP -0.0413 ± 0.0245 -0.0097 ± 0.0097 0.0017 ± 0.0000 0.6533 ± 0.4814
EIC -0.0539 ± 0.0421 -0.0417 ± 0.0288 0.0013 ± 0.0001 0.0479 ± 0.0173
LIME -0.0459 ± 0.0326 -0.0147 ± 0.0106 0.0011 ± 0.0000 0.0209 ± 0.0214
OptSHAP -0.0368 ± 0.0289 -0.0139 ± 0.0155 0.0012 ± 0.0000 0.0410 ± 0.0186

ICA

KernelSHAP -0.0856 ± 0.0321 -0.0492 ± 0.0243 0.0016 ± 0.0000 0.2987 ± 0.1828
EIC -0.0608 ± 0.0508 -0.0238 ± 0.0466 0.0013 ± 0.0000 0.1063 ± 0.0519
LIME -0.0643 ± 0.0206 -0.0157 ± 0.0254 0.0011 ± 0.0000 0.0394 ± 0.0303
OptSHAP -0.0451 ± 0.0289 0.0032 ± 0.0083 0.0012 ± 0.0000 0.0779 ± 0.0381

LDA

KernelSHAP 0.0186 ± 0.0094 -0.0054 ± 0.0049 0.0016 ± 0.0000 3.9922 ± 1.4275
EIC 0.0427 ± 0.0183 0.0419 ± 0.0191 0.0015 ± 0.0000 2.4551 ± 0.9444
LIME 0.0242 ± 0.0046 0.0080 ± 0.0069 0.0011 ± 0.0000 0.0051 ± 0.0043
OptSHAP 0.0762 ± 0.0252 0.0578 ± 0.0205 0.0006 ± 0.0004 0.0076 ± 0.0048

Table 8: Results for the Alon dataset averaged on 3 dimensionality reduction techniques (Best result
in each row is in bold).

Model Method MoRF ABPC LSS INFD

XGBoost

KernelSHAP 0.0166 ± 0.0595 -0.0032 ± 0.0259 0.0010 ± 0.0000 0.4633 ± 0.4046
EIC 0.0176 ± 0.0590 -0.0052 ± 0.0249 0.0009 ± 0.0001 0.1086 ± 0.0759
LIME 0.0121 ± 0.0481 -0.0106 ± 0.0168 0.0007 ± 0.0000 0.0091 ± 0.0045
OptSHAP 0.0349 ± 0.0648 0.0241 ± 0.0299 0.0005 ± 0.0001 0.0213 ± 0.0202

LightGBM

KernelSHAP 0.0433 ± 0.0509 0.0109 ± 0.0198 0.0010 ± 0.0000 0.5626 ± 0.3884
EIC 0.0506 ± 0.0567 0.0238 ± 0.0374 0.0009 ± 0.0001 0.1098 ± 0.0676
LIME 0.0392 ± 0.0552 0.0063 ± 0.0329 0.0007 ± 0.0000 0.0242 ± 0.0198
OptSHAP 0.0418 ± 0.0863 0.0148 ± 0.0682 0.0005 ± 0.0001 0.0346 ± 0.0241

CatBoost

KernelSHAP -0.0175 ± 0.0151 -0.0056 ± 0.0058 0.0010 ± 0.0000 0.4665 ± 0.4414
EIC -0.0176 ± 0.0280 -0.0119 ± 0.0138 0.0009 ± 0.0001 0.0605 ± 0.0475
LIME -0.0148 ± 0.0066 -0.0043 ± 0.0114 0.0007 ± 0.0000 0.0160 ± 0.0115
OptSHAP 0.0019 ± 0.0144 0.0156 ± 0.0289 0.0005 ± 0.0001 0.0336 ± 0.0372

Random Forest

KernelSHAP 0.0537 ± 0.0605 0.0346 ± 0.0393 0.0010 ± 0.0000 0.4252 ± 0.3752
EIC 0.0499 ± 0.0603 0.0317 ± 0.0448 0.0009 ± 0.0001 0.0771 ± 0.0391
LIME 0.0435 ± 0.0527 0.0237 ± 0.0456 0.0007 ± 0.0000 0.0203 ± 0.0126
OptSHAP 0.0495 ± 0.0382 0.0333 ± 0.0265 0.0002 ± 0.0003 0.0332 ± 0.0205
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Table 9: Results for the Alon dataset averaged on 4 classifiers (Best result in each row is in bold).
DR Technique Method MoRF ABPC LSS INFD

PCA

KernelSHAP 0.0407 ± 0.0633 0.0158 ± 0.0182 0.0010 ± 0.0000 0.2153 ± 0.1025
EIC 0.0400 ± 0.0732 0.0178 ± 0.0393 0.0009 ± 0.0001 0.0582 ± 0.0365
LIME 0.0411 ± 0.0556 0.0199 ± 0.0184 0.0007 ± 0.0000 0.0262 ± 0.0156
OptSHAP 0.0799 ± 0.0633 0.0656 ± 0.0256 0.0006 ± 0.0000 0.0571 ± 0.0173

ICA

KernelSHAP 0.0163 ± 0.0725 0.0108 ± 0.0478 0.0010 ± 0.0000 1.0432 ± 0.0615
EIC 0.0159 ± 0.0707 0.0112 ± 0.0497 0.0009 ± 0.0000 0.0659 ± 0.0383
LIME 0.0141 ± 0.0624 0.0099 ± 0.0440 0.0007 ± 0.0000 0.0140 ± 0.0142
OptSHAP 0.0157 ± 0.0474 0.0102 ± 0.0092 0.0002 ± 0.0001 0.0166 ± 0.0217

LDA

KernelSHAP 0.0150 ± 0.0105 0.0010 ± 0.0044 0.0010 ± 0.0000 0.1797 ± 0.0605
EIC 0.0195 ± 0.0035 -0.0002 ± 0.0035 0.0009 ± 0.0000 0.1429 ± 0.0689
LIME 0.0049 ± 0.0094 -0.0184 ± 0.0113 0.0007 ± 0.0000 0.0119 ± 0.0075
OptSHAP 0.0141 ± 0.0212 0.0005 ± 0.0278 0.0004 ± 0.0002 0.0183 ± 0.0190
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F EXTEND OPTSHAP TO NONLINEAR DR TECHNIQUES

Figure 9: General (Left) and Internal (Right) view of the OptSHAP framework in case the projection
can be nonlinear.

Interpreting the mapping between the original data X and the reduced data Z is a critical issue. For
such a purpose, in Fig. 9, a new block F is proposed for approximating the mapping between X
and Z . This approximation is a basis for explaining the contribution of high-dimensional features
x1,x2, . . . ,xd towards reduced representations z1, z2, . . . , zr. To make F strong enough to cover a
diversity of DR techniques, a general form is proposed in such a way that both linear and non-linear
techniques can fall under its general form. We express Fi as follow:

Fi(x1,x2, . . . ,xd) = gi

 d∑
j=1

hij(xj)

 , i = 1, r.

In this expression, hij(xj) transforms individual source feature xj and gi(·) sums them together,
possibly with new non-linearities added. With such a general form, F can mimic a range of DR
techniques with proper selection of hij and gi. Specifically, there are two scenarios considered:

In the case of linear approaches, Fi reduces to a simple linear combination, i.e., hij(xj) = wjixj and
gi an identity function, and thus: Fi(x1,x2, . . . ,xd) =

∑d
j=1 wjixj . This corresponds to methods

such as PCA, ICA, or LDA. The simplicity of such a form encourages interpretability at a global
level, in that each feature in reduced form, zi is a weighted combination of the original features.

For such techniques that utilize non-linear relations in an attempt to capture complex structures in
data, Fi will have to extend beyond linear mixtures. In such cases, hij(xj) can denote nonlinear
transformations, and gi(·) can introduce nonlinearities in addition to any present in h. For instance, in
a Single-Layer Perceptron (SLP), hij(xj) is wjixj + bi and gi(·) is a non-linear activation function
such as ReLU or Sigmoid. The resulting formulation is:

Fi(x1,x2, . . . ,xd) = σ

 d∑
j=1

wjixj + bi

 .

The flexibility of F comes from the fact that most of the DR methods can be approximated by defining
hij(xj) and gi(·) appropriately. As an example, kernel PCA can be incorporated by defining hij(xj)
as a kernel function κ(xj ,xk) which maps the data into a higher-dimensional space where linear
relationships suffice. Autoencoders can also be cast in the above framework by parameterizing hij(xj)
and gi(·) with neural networks for hierarchical feature learning. Methods that stress neighborhood
preservation, such as t-SNE or UMAP, also fall under F , interpreting hij(xj) to represent graph-
based distances or manifold transformations and the incorporation of the same in gi(·) within the
reduced representation.

The choice of PCA and SLP thus serves as a proof of concept: if the framework can encompass
such foundational methods from both the linear and non-linear domains, it inherently possesses the
generality to accommodate more sophisticated DR approaches. This ensures that F is not constrained
by the specifics of individual algorithms but remains adaptable to the diverse spectrum of techniques
used in practice.
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G DISCUSSION AND LIMITATIONS

OptSHAP combines model-specific explanation techniques and the optimization-based strategy to
address the challenge of interpreting DRbMs applied to high-dimensional tabular data. Importantly,
it is most effective in scenarios where dimensionality reduction techniques achieve significant com-
pression of the original feature space, simplifying the explanation task without incurring significant
information loss. In particular, when paired with tree-based models—whose structure aligns well
with model-specific explanation methods like TreeSHAP, OptSHAP can deliver explanations that are
both computationally efficient and highly faithful.

Conceptually, our framework illustrates how aligning dimensionality reduction with model-specific
explanation objectives can create a unified framework that generalizes across both models and
preprocessing strategies. Its flexibility lies not just in compatibility with multiple learning components,
but in optimizing the interplay between compression and interpretability. This makes it well-suited to
domains like healthcare and finance, where high-dimensional data and tree-based models are common
and explanations must be.

While OptSHAP offers a novel and scalable approach for explaining DRbMs, its increasing runtime
with higher reduced dimensions may limit its use in time-sensitive contexts. Despite this, it remains
a promising solution. In Appendix F, we describe how the function class F can be extended to
support nonlinear dimensionality reduction (DR) techniques, enabling broader applicability beyond
linear projections. Specifically, we propose approximating nonlinear DR mappings using an in-
terpretable surrogate model, such as a single-layer perceptron, where the approximation’s fidelity
directly affects explanation quality. We also argue that the predictive model f can be a deep neural
network, allowing model-specific methods such as DeepSHAP to generate attributions directly in
the reduced-dimensional space. However, when explanations are derived from an approximated
mapping, as in the case of nonlinear DR techniques, this introduces additional uncertainty, potentially
undermining the reliability of relevance scores when mapped back to the original input space. These
observations highlight a broader challenge: how to balance fidelity and interpretability when produc-
ing explanations in reduced spaces, especially under nonlinear transformations. Future work should
investigate principled ways to quantify and mitigate such uncertainty, enabling more trustworthy
attributions across a broader class of DR methods.

While most existing approaches tend to prioritize either stability or complexity, our findings emphasize
that effective explainability often hinges on carefully balancing trade-offs, such as stability versus
expressiveness, and surrogate fidelity versus interpretability. Future work should explore whether
these trade-offs persist across other DR techniques, data distributions, and model architectures. In
particular, explicitly formalizing the assumptions underlying surrogate models for nonlinear mappings
is crucial for assessing the reliability of resulting explanations. Although our primary focus is on
explaining DRbMs, this work also connects to broader interpretability topics, including learned
representations and feature attribution in latent or transformed spaces. This can be particularly
relevant for applications in medical diagnosis and bioinformatics.
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