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ABSTRACT

The remarkable success of large language models (LLMs) across diverse fields
demonstrates their transformative potential in science, with molecular optimiza-
tion representing a promising frontier. Traditionally, molecular optimization
involves iterative discussions with domain experts, who progressively refine
molecules with feedback until the desired properties are achieved. This interac-
tive and feedback-driven process aligns well with the inherent strengths of LLMs,
positioning them as promising tools for this task. As an experience-driven task,
molecular optimization depends critically on the domain feedback and ac-
cumulation of historical knowledge. However, none of the existing methods
fully leverages such feedback and historical knowledge; especially, the rea-
soning trace and chemical insights that have led to successful optimization. In
this work, we propose F2R: Feedback to Reasoning, a conversational molecular
optimization pipeline that allows LLMs to dynamically accumulate and retrieve
historical knowledge about prior actions, rationales, and feedback. Moreover, just
like humans whose reasoning is not always correct or precise, LLMs can also pro-
duce imperfect reasoning traces; F2R is the first work to leverages detailed domain
feedback to critically reflect on and improve this reasoning. In this way, LLMs can
evolve from passive language processors to agentic experts that emulate human
experts in learning both actions and reasoning from experience. F2R is also the
first work that leverages historical optimization results and reasoning traces from
historical feedback. Consequently, F2R shows remarkable performance.

1 INTRODUCTION

The impressive capabilities of large language models (LLMs) in tackling a wide range of tasks have
recently generated significant interest in extending their use to scientific fields, such as molecu-
lar optimization (Zheng et al., |2024; [Zhang et al., 2025). Molecular optimization is inherently a
complex, iterative process that relies heavily on expert input and continuous refinement. Given a
molecule{ﬂ and a target property, this process starts with consultations with domain experts who sug-
gest possible molecular modifications using their domain experiences. The proposed changes are
then implemented and the new analogue is tested in vitro (e.g., enzyme assays) or in silico (com-
putational predictions) to see if the modification improves the desired properties. If the optimized
molecule satisfies the target criteria, the process concludes. If not, expert chemists are informed by
the test results and propose further refinement (Jorgensen, [2009; (Cao et al., 2023} |Liu et al., [2024).
This cycle of iterative improvement fits naturally with one of the key strengths of LLMs, their ca-
pacity for interactive dialogue and incorporating feedback. Therefore, LLM-assisted conversational
molecular optimization proceeds in a similar manner, with modifications given by LLMs. However,
despite LLMs’ remarkable generative and reasoning capabilities, they often still perform subopti-
mally on molecular optimization tasks. This suboptimality stems from the fact that LLMs lack the
ability to accumulate and reuse historical knowledge and feedback from past tasks.

To leverage the broad underlying chemistry knowledge of LLMs, several studies have proposed in-
tegrating LL.Ms with specialized external guidance modules (agents) that provide optimization sug-
gestions. These agent-assisted strategies aim to bridge the gap between the LLM’s general chemistry

"Molecule refers broadly to both small molecules and larger macromolecules such as peptides and proteins.
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Figure 1: An overview of guidance pipelines for LLM-assisted molecule optimization. Impor-
tantly, prior works do not integrate domain feedback as guidance; instead, they only verify whether
the optimized molecule meets the task objective. Furthermore, prior works either fail to incorporate
historical experience (ChatDrug and ChemReasoner) or use it in a limited way that only provides
guidance on the action to take without the reasoning behind it (RL-Guider). In contrast, Feedback to
Reasoning (F2R) explicitly incorporates detailed domain feedback as guidance, enabling the LLM
agent to self-reflect on its mistakes and refine its decisions. In addition, F2R systematically sum-
marizes SAR patterns (see Sec. 4.2), accumulates historical knowledge during optimization, and
retrieves the most relevant past experiences, providing guidance not only on the actions to take but
also on the underlying reasoning.

knowledge and the specialized, context-dependent reasoning required for practical molecular opti-
mization. Within a molecular optimization pipeline, each proposed candidate molecule is evaluated
to determine its desirability. Human experts accumulate historical knowledge from this evaluation
feedback, which includes information such as molecular validity and property values. Importantly,
they reflect, reason, and learn why certain structural modifications succeed or fail, thereby building
domain expertise that informs subsequent optimization efforts; this process of reflection and rea-
soning is crucial for domain experts. Nevertheless, existing guidance agent modules either fail to
leverage any historical knowledge accumulation (Liu et al., 2024; [Sprueill et al., 2024) or provide
only static, single-action suggestions from a limited action space without considering the reasoning
traces and implicit chemical knowledge (Liu et al.| | 2025b)).

In this work, we propose F2R, a conversational molecular optimization pipeline that allows LLMs
to dynamically accumulate and retrieve the rich historical knowledge about prior actions, rationales,
and feedback while fully leveraging LLMs’ broad general chemical knowledge and reasoning capa-
bilities. An overview of F2R is provided in Fig.[T} Overall, we summarize our contribution as
follows: @ We highlight the importance of enabling LLMs to learn from feedback, why past actions
succeed or fail in each individual tasks, to better guide future actions (guided self-reflection). @ We
propose F2R, a molecular optimization pipeline that enables guided self-reflection and dynamical
historical reasoning for LLMs. ® F2R does not rely on a predefined external knowledge base or a
predefined action space. @ Experiments demonstrate the superiority of F2R not only in quantitative
evaluation metrics but also in transparent knowledge accumulation. ®We are the first to demonstrate
very high success rates, sometimes exceeding 95%, on many tasks in the previously established test
set of [Liu et al.|(2024)). Thus, future work can reasonably omit these low-difficulty cases.

2 RELATED WORK

Over the past few years, machine learning has achieved remarkable success in learning from molec-
ular data (Schiitt et al., [2017; |Chen et al.l [2019; Jin et al.l 2019; [Duval et al., 2024)). Moreover, in
recent years, LLMs (Team et al., 2023 |Achiam et al., [2023}; Bi et al., [2024; |Grattafiori et al., 2024)
have demonstrated superior performance in various tasks, including, but not limited to, mathematical
reasoning, code generation, and machine translation. The strengths of machine learning in molec-
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ular learning and LLMs in various diverse tasks have sparked growing interest in leveraging LLMs
for learning molecular tasks (Flam-Shepherd et al., [2022)), including early works in fine-tuning lan-
guage models for drug discovery (Cao et al., [2023; [Liang et al., |2023). Molecular optimization
(lead optimization, drug editinﬂ, is a specific and important sub-task among drug discovery tasks;
however, LLM-assisted molecular optimization remains underexplored. There are only a few works
in this line of research. ChatDrug (Liu et al.,|2024) employs a domain-specific database to retrieve
similar known molecules that satisfy the desired properties as guidance. ChemReasoner (Sprueill
et al.}2024) utilizes trained models with predefined domain knowledge to provide optimization sug-
gestions. RL-Guider (Liu et al.| 2025b) trains a reinforcement learning agent on past optimization
results to offer guidance on which substructures to modify.

Relations with Prior Works. As mentioned in Liu et al.| (2025b), both ChatDrug and ChemRea-
soner rely on a predefined knowledge base. Thus, they suffer from an inherent bias that the optimized
molecules are overly similar to those present in the knowledge base. To mitigate these issues, RL-
Guider (Liu et al.,[2025b) leverages historical successes and failures to train a reinforcement learning
agent with an action space restricted to a predefined set of atom types and functional groups. How-
ever, such a fixed action space limits exploration and constrains the reasoning capabilities of LLMs.
Moreover, RL-Guider is trained on and provides guidance purely as discrete actions (e.g., replacing
a hydroxyl group with an amino group). We argue that simply learning on actions is insufficient;
LLMs need to understand the reasons behind successes and failures to learn historical experience
and fully use their broad chemistry knowledge and reasoning abilities. Therefore, we propose F2R, a
feedback-and-reasoning-enhanced pipeline that fully leverages this rich information, self-reflects on
failed attempts, and paves the way for experience-driven, reasoning-aware LLM-assisted molecular
optimization tasks. A comparison between F2R and existing work is provided in Table

Table 1: A comparison of existing conversational molecular optimization pipelines.

Pipeline . Ut.ilization of Free of Predefined Uncon§trained Guided Self—
Historical Knowledge Knowledge Exploration Space  Reflection

Plain LLM X v v X

ChatDrug X X X X

ChemReasoner X X v X

RL-Guider X XO X X

F2R (ours) v v v v

* ChatDrug uses a limited external dataset as guidance; however, if the dataset is large enough, the
space can be considered unconstrained.

¢ RL-Guider does not leverage any reasoning accumulated from past experience. It also uses a set of
predefined actions, e.g., replacement of certain substructures.

3 BACKGROUND
3.1 MOLECULAR OPTIMIZATION WITH LLMS

Molecular optimization describes the task of transforming a given molecule into another that re-
tains structural similarity while achieving a desired property. Formally, given an input molecule x;,
represented as a string and a textual task x; describing the optimization objective, molecular opti-
mization can be formulated as a conditional generation problem (Liu et al., |2024) with the goal of
producing an optimized molecule xoy ~ P (2 | xiy , 2¢). In the context of LLM-assisted molecular
optimization, this sampling from distribution P is realized by a large language model that generates
Zow = LLM (zin , ). In contrast to traditional deep generative models that are explicitly trained
on domain-specific datasets, LLMs primarily rely on their general chemistry knowledge to reason
about molecular structures and properties, enabling them to infer appropriate edits. As a result,
LLMs are highly sensitive to the quality of the guidance they receive in the form of prompts, which
shape their ability to reason effectively. In addition to their broad knowledge and reasoning capabil-
ities, the conversational abilities (Bubeck et al., 2023)) of LLMs are particularly valuable, making it
natural for iterative tasks such as molecular optimization. When an edit is not successful, the user
can provide feedback to the LLM and prompt it to refine its result. Formally, this is described as

z; = LLM (2iy, 7, 2f)  fori=0,1,2,... K, (1)

*In prior work, the term drug editing has been used. However, drug editing is a specific type of molecular
optimization that focuses on therapeutics. Since this work also involves structural optimization tasks (such as
peptide and protein optimization in Sec. EI), we use the broader term molecular optimization.
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where xi denotes the guidance provided to the LLM at iteration i, K is the maximum number of
iterations, and the final output is z; for the smallest ¢ such that z; satisfies the target condition or
once the maximum number of iterations is reached. The guidance can be as simple as informing
the LLM that the generated molecule does not meet the requirements, or as complex as providing
detailed instructions on how to adjust its reasoning. Existing work in this line of research aims to
develop more effective forms of guidance for the LLM. A table of notations used in this work is
provided in Appendix [A]

3.2 MEMORY SYSTEMS FOR LLMs

Despite the remarkable success of LLMs across various fields, plain LLMs lack the ability to retain
and leverage knowledge from previous interactions or external sources. This limitation constrains
their capacity for tasks that require long-term context tracking, cumulative reasoning, or iterative
improvement over time. To address this, memory systems (Packer et al.l [2024; Wang et al., 2023;
Edge et al.,|2025) have been developed to extend the capabilities of LLMs by providing mechanisms
for persistent storage and retrieval of relevant information to be added to the system prompt. These
memory systems can be as simple as storing all past conversations across different sessions in a
vector database indexed by their semantic embeddings or as complex as structured, self-organizing
memory graphs or hierarchical memory modules (Chhikara et al., [2025} |Xu et al., [2025). Never-
theless, existing memory mechanisms are primarily designed for general natural language tasks.
Therefore, for molecular optimization tasks, designing an effective and specialized memory system
for storing, updating, and retrieving historical knowledge accumulated through past optimization
processes is crucial.

4 F2R: LEVERAGING HISTORICAL FEEDBACK AND REASONING

In this section, we introduce F2R, a novel conversational molecular optimization framework with
historical knowledge and reasoning enhanced by feedback. While there exist general frameworks
for memory and feedback mechanisms, such as OctoTools (Lu et al.| [2025)), F2R is designed specif-
ically for LLM-assisted molecular optimization. It incorporates domain-specific similarity metrics
for retrieval, summarizes domain-specific SAR patterns, and leverages domain tools to provide
meaningful molecular feedback.

4.1 MOLECULAR OPTIMIZATION WITH FEEDBACK AND REASONING

Given an input molecule z;, and a textual prompt z; describing the target, F2R proceeds in rounds:
20, a9, 70 = LLM (%in, 21, 20 || Peait ) »

: . )
Yie1,Ti, @i, 7y = LLM (in, o, 24, fio1||Peait ), i =1,2,..., K,

where f; is the feedback on the optimized molecule from the i-th iteration (x;); Pegy is a carefully
designed prompt template that requires the LLM to return not only the optimized molecule, but also
the action taken (a;) and the reasoning behind this particular edit (r;); and ;1 is the self-reflection
on the last failed result x; 1 based on the feedback f; 1. This feedback can also be seen as a
form of guidance that encourages the LLM to reason more critically. Here, equation 2| differs from
equation[I)in two key aspects: @ the action and reasoning are explicitly required and structured in the
output; and @ domain feedback (e.g., the optimize molecule failing to improve the desired property)
is incorporated into subsequent iterations, enabling the model to self-reflect on its reasoning and
refine future edits.

Autonomous Domain Feedback. While domain feedback can come from various sources, such
as in vitro experiments (e.g., enzyme assays) or in silico predictions (computational models), our
work focuses on a fully autonomous pipeline. This pipeline integrates computational software tools
and rule-based algorithms to operate without human intervention. This process is described in Al-
gorithm Specifically, for optimized molecules, we first evaluate validity: if a molecule is in-
valid, the LLM receives detailed feedback on why it is invalid (ExplainInvalidity), which
is done by combining computational tools and carefully designed prompt templates; if valid, its
chemical properties are further analyzed and compared with those of the input molecule with re-
spect to the optimization objective x;. These evaluation feedback from computational tools are
translated into natural language using carefully designed templates to ensure interpretability for
LLMs (ParseToNaturalLanguage). Once the optimized molecule meets the objective, the
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Algorithm 1 Autonomous Domain Feedback

Require: Relevant property values of the input molecule p;,, optimization objective x, current
optimized molecule z;
1: if Isvalid(x;) = false then
2 fi + ExplainInvalidity(x;)
3 return f;, Continuelteration
4: end if
5: p; < ComputeProperties(x;)
6: EvaluationFeedback<— ParseToNaturalLanguage(p;, Pin, Tt)
7: if Meet sObjective(p;, z;) then
8:  fi < “The optimized molecule is valid.” + EvaluationFeedback
9: return f;, Stoplteration
10: else
11:  f; < “The optimized molecule is valid.” + EvaluationFeedback
12:  return f;, Continuelteration
13: end if=0
Note: Continuelteration and Stoplteration are Boolean indicators to continue and stop the optimization itera-
tions, respectively.

iterative process terminates. For property values, we use computational software tools, including
RDKit (Landrum et al., 2013) for small molecules, MHCflurry2.0 (O’Donnell et al., [2020) for
peptides, and deep learning models such as ProteinDT (Liu et al., [2025a). For validity, we use
RDKit for small molecules and rule-based algorithms for others; more details are described in
Appendix An example of feedback obtained from interacting with RDKit is provided below:

Example Feedback

The optimized molecule: “CC[C@ @ ]J(C)(NCC(=O)N(C)OC)clnc(C)csIO” is not valid.
Specifically, atoms at positions 13 (c), 14 (n), 15 (c), 17 (c), 18 (s), are aromatic, but there is
no alternating single/double bonds that can be assigned to satisfy valence/electron count rules
for those specific atoms.

4.2 AGENTIC AWARENESS OF STRUCTURE—ACTIVITY RELATIONSHIP

Structure—Activity Relationships (SARs) describe how the chemical structure of a molecule relates
to its biological or pharmacological activity (e.g., solubility in water). Chemists design and synthe-
size related compounds, test their activities, and analyze how specific structural modifications affect
performance. Overtime, SARs that chemists learn from past experience help them make informed
decisions about which edits are likely to improve a molecule’s properties. After an optimization task
7 is finished, we further request the LLM to extract key SAR insights:

p, ¢ = LLM (m|| Psar) 3)

where m is the messages (iterations between the user and the LLM) in all the iterative rounds,
p denotes the extracted structural pattern or transformation (e.g., replace hydroxyl with amino), ¢
describes the conditions under which this pattern holds (e.g., only valid for aromatic rings), and
Psar is a carefully designed prompt template for the extraction of SAR patterns. All the prompts
for F2R are provided in Appendix

4.3 LEVERAGING HISTORICAL EXPERIENCE

Historical Knowledge Accumulation Module. To accumulate historical experience, we store op-
timization histories in a structured way. Specifically, for an individual optimization task, we store
a knowledge entry e; = {Zin, z(, p, ¢, (24, as, 73, fi,7i)vi}. Overall, we will maintain a collection
of knowledge entries £ = {eq, ea, ..., ey} as the historical knowledge base. For each optimization
task performed by the LLM, a new entry is autonomously added to this growing knowledge base.
As more edits are conducted across different molecules and targets, the accumulated knowledge
collection £ continues to expand over time.

Historical Knowledge Retrieval Module. As the historical knowledge base £ expands over time,
an important aspect of F2R is to effectively retrieve the most relevant pieces of accumulated knowl-
edge to guide new optimization tasks. Given a new optimization task specified by (zi,, x), we iden-
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tify a subset of historical knowledge entries that share the same target £, = {e; € € | ej[x¢] = 2},
where [ - | denotes accessing a specific field in the knowledge entry. Within &,,, we further retrieve
a set R* of kpeyieval knowledge entries that are most relevant to the optimization task. Formally,

R* = arg max Z sim (min ) e[l'in ]) ) S
RQSI| ,lR‘:krelrievml e€ER

where sim(-, -) is a similarity function that measures how similar the two molecules are. In practice,
string representations of molecules (e.g., SMILES strings, protein sequences) are in discrete metric
spaces. Standard similarity functions, such as cosine similarity, are no longer applicable. Tanimoto
similarity is adopted for small molecules, and Levenshtein distance is adopted for peptides and
proteins. More details about these similarity metrics are provided in Appendix Note that we
only provide this guidance in the first round; in subsequent rounds, only feedback will be given. The
SAR patterns in the retrieval knowledge entries R* will be used in the guidance xé in equation

4.4 WHY F2R? FEEDBACK-DRIVEN REASONING AND KNOWLEDGE ACCUMULATION

F2R offers unique advantages that make it particularly effective for molecular optimization tasks.
We elaborate on two core advantages: Feedback-driven Reasoning and Knowledge Accumulation.

Feedback-driven Reasoning. In the molecule optimization process, each optimized molecule is
assessed to determine whether it meets the desired properties, at which point the iterative process
may conclude. When a molecule fails to satisfy these properties, the evaluation still yields valuable
feedback, covering aspects such as validity, structural similarity, and chemical properties, that can
assist human experts in refining their decisions and proposing more effective modifications. How-
ever, none of the existing methods{f] (Liu et al., [2024} 2025b) incorporates this feedback into the
LLM-assisted iterative process. In contrast, F2R explicitly recognizes the importance of feedback
and leverages it as a central component of reasoning. As a result, F2R learns from the feedback,
corrects prior mistakes, and avoids repeated errors in subsequent iterations. As demonstrated by
the experimental results in Sec. 5] guidance approaches that target reasoning (ChemReasoner and
F2R) generally outperform those that focus on actions (RL-Guider and ChatDrug). Moreover, F2R
surpasses ChemReasoner due to its feedback-driven reasoning mechanism.

Knowledge Accumulation. Chemists often build intuition by recognizing recurring structural pat-
terns: similar molecules often exhibit similar behaviors. To capture this, F2R stores optimization
trajectories and extracts transferable SAR patterns. Specifically, these patterns are not used merely
to suggest a single action (Liu et al.,|2025b)) or retrieve a similar molecule (Liu et al.|[2024); instead,
they provide higher-level guidance that inspires the LLM to think about why a transformation may
work and how it might be adapted to the new context. In this way, accumulated SAR knowledge
serves as a source of reasoning, not just imitation. Importantly, LLMs might produce misleading rea-
soning that leads to incorrect results; these historical experiences and knowledge are self-reflected
against the domain feedback, offering a more reliable source of knowledge and reasoning.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of F2R through a series of experiments on various
types of molecules, including small molecules, peptides, and proteins following (Liu et al., [2024).
More details on these tasks are provided in Appendix [C]

Setup. We compare F2R against the raw LLM without auxiliary guidance (Base LLM), ChatDrug,
ChemReasoner, RL-Guider, and F2R itself. Similar to RL-Guider, F2R requires historical optimiza-
tion results to demonstrate the effectiveness of knowledge accumulation. We construct a greedy
coreset of small molecules, peptides, and proteins from the remaining dataset (excluding the test
set). The size of this subset matches that of the test set. We perform molecular optimization tasks on
this coreset as the initial historical results. For peptides and proteins, we do not compare with RL-
Guider since it is not implemented in the original work. The proposed F2R method and all baselines
are LLM-agnostic; we select GPT-4.1 and Gemini-2.5-Flash as the backbone models for evaluation.
We follow the experimental setup described in|Liu et al.|(2024). Specifically, the maximum number
of iterations, K, is set to 2. In the first round (K = 0), no guidance is provided. If the results are
unsatisfactory, a second round is conducted with suggestions given to all methods. Likewise, if the

3RL-Guider (Liu et al., 2025b) incorporates feedback only as a reward signal for training the RL agent; the
LLM itself does not receive feedback on the optimized molecules.
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Table 2: Results on 16 single-objective small molecule optimization tasks. The best and second-best
results are highlighted in and blue, respectively. F2R consistently achieves the highest success
ratios in 15 out of 16 tasks with ChatGPT-4.1 and 14 out of 16 tasks with Gemini-2.5-Flash. These
results demonstrates the effectiveness of feedback-driven reasoning and knowledge accumulation.

ChatGPT-4.1 Gemini-2.5-Flash
Task A Base  Chat Chem RL- F2R Base  Chat Chem RL- F2R
LLM Drug Reasoner Guider LLM Drug Reasoner Guider
0 | 81.00 83.50 83.50 85.50  99.00 | 85.00 81.00 84.00 82.50  99.00
0.5 | 84.00 81.50 84.00 83.50  96.00 | 80.50 81.50 76.50 79.50  96.00
0 [ 85.00 85.50 84.50 85.50  99.00 | 95.50 97.00 98.00 91.50  99.00
0.5 | 72.00 56.00 76.50 63.50  81.50 | 87.50 87.00 88.50 87.00  95.50
0 | 46.00 61.50 73.50 47.50  69.00 | 79.00 77.50 79.50 73.50  83.50
6.00  20.00 18.00 8.50 21.00 | 16.50 27.00 22.50 19.50  30.50

More soluble in water

Less soluble in water

More like a drug

o
W

Less like a drug 0 | 6850 61.50  72.50 65.00 890.00 | 70.50 68.50  85.50 69.50  78.50
0.1 | 16,50 28.50  52.00 2450 63.50 | 44.00 43.00  67.00 53.50  65.00
Hieher permeabilit 0 | 3150 53.50  81.50 4750  94.50 | 92.50 91.00  91.00 93.00  97.00
gherp Y 19.50 36.50  62.50 34.00 74.00 | 52.50 62.00  63.00 61.50  79.00
" 87.00 8550  88.00 86.50 99.00 | 86.00 86.50  83.50 8450  99.00

Lower permeability

87.00 83.50 88.50 86.50  97.50 | 85.00 81.50 82.00 84.50  98.50
74.00  69.00 76.50 77.50  97.00 | 80.50 82.50 78.50 74.50  99.00
19.00 23.00 34.00 20.50  42.50 | 44.00 44.00 57.00 44.50  68.50
80.00  78.00 85.50 81.00  97.50 | 74.50 70.50 75.00 70.50  98.00
13.00 26.50 19.50 22.50  41.50 | 16.50 15.00 47.00 15.50  52.50

More hydro-bond acceptors

—_ —_
— o= Olc 9o

More hydro-bond donors

results remain unsatisfactory, a third round is carried out. We follow the prompts exactly from |[Liu
et al.| (2024; 2025b) for the baseline methods, except that we additionally enforce compliance with
the required format by employing Structured Outputs with a JSON schema.

Evaluation Metric. The performance is evaluated using the success ratio, defined as the proportion
of generated molecules that are both valid and meet the desired target property, relative to the total
number of optimization tasks. Note that this differs from the hit ratio used in Liu et al.| (2024),
where the ratio is computed as the number of successful results over the number of valid results.
The success ratio is a stricter measure of performance also adopted in |[Liu et al| (2025b)). The
success ratio lower than hit ratio, particularly for small-molecule optimization tasks, as it is more
common for LLMs to produce invalid SMILES strings.

5.1 CONVERSATIONAL MOLECULAR OPTIMIZATION WITH SMALL MOLECULES

We evaluate the performance of F2R against baseline methods on small molecules. The test
molecules are sampled from the ZINC dataset, and following [Liu et al.| (2024)), the evaluation is
conducted on a set of 200 molecules. The molecular properties considered in this study can be
deterministically computed using RDKit (Landrum et al. 2013).

Evaluation. An edited molecule is deemed successful if its property value improves by at least A
compared to the original molecule. For instance, if A = 0.1 and the goal is to increase solubility,
then the solubility of the modified molecule must exceed that of the original by at least 0.1 unit to
be counted as a success. We evaluate under two settings: (1) Single-objective optimization, where
the goal is to improve a single property value, and (2) Multi-objective optimization, where the goal
is to improve two property values simultaneously.

Results and Discussion. We present the results for single-objective optimization in Table 2] and for
multi-objective optimization in Table @ We provide the visualization of an optimization task and
the relevant history retrieved from historical knowledge in Table ] Clearly, leveraging historical
knowledge provides substantial guidance in accomplishing this task. In addition, in a case study
presented in Appendix [D.4] we showcase that feedback-driven reasoning helps the LLM correct its
own mistakes (self-guided reflection). Clearly, F2R consistently outperforms the baseline methods.
It achieves the highest success ratio in 15 out of 16 tasks with ChatGPT-4.1 and in 14 out of 16 tasks
with Gemini-2.5-Flash for single-objective optimization. Moreover, it attains the highest success
ratio across all multi-objective optimization tasks with both LLMs. Overall, we observe the trend
that Gemini-2.5-Flash slightly outperforms ChatGPT-4.1, while being a smaller model for fast in-
ference. This can be attributed to its reasoning capabilities; Gemini-2.5-Flash is a reasoning model
with internal chain of thought (CoT) reasoning. This emphasizes the importance of reasoning in
molecular optimization tasks.
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Table 3: Visualization of an optimization task to make the input molecule more like a drug and the
relevant SAR patterns from historical knowledge. Clearly, leveraging historical knowledge provides
substantial guidance in accomplishing this task. We only show part of the SAR and reasoning due
to length limits.

Input Molecule Output Molecule Reasoning
N SAR: 1. Addition of a second
N
L ! fluorine enhances metabolic
I?nl gia(/)lr::fiale N/ ] N;// /TQ stability and drug-likeness; 2.
g Chlorine substitution does not
CCCN(CCN) CCCN(CCN) enhance drug-like......
Celesc2ceeeel2 Cclesc2ecc(F)ecl2
S Reasoning:  Based on the
Current e ) history and SAR feedback,
Obtimization S~ introducing a fluorine to the
P Task i aromatic system is a proven
N strategy to enhance drug-
NCC(CN)=CN[C@ @H] NCC(CN)=CN[C@@H] likeness......
(elece(Feclieleces] (clece(Fyeel)elece(Fsl

Table 4: Results on 12 multi-objective small molecule optimization tasks. The best and second-best
results are highlighted in and blue, respectively. F2R achieves the highest success ratios for all
tasks. It should be noted that certain tasks are sufficiently challenging that all methods yield very
low success ratios; however, F2R still demonstrates improvements on such a limited search space.

ChatGPT-4.1 Gemini-2.5-Flash
Task A Base  Chat Chem RL- F2R Base  Chat Chem RL- F2R
LLM Drug Reasoner Guider LLM Drug Reasoner Guider
More soluble in water 0,0 79.50  74.50 82.50 83.50 96.00 | 76.00 78.00 78.50 77.50  93.00
More hydro-bond acceptors 0.5, 1 | 20.00 26.50 39.00 28.50  40.50 | 38.50 31.00 44.00 36.50  59.50
Less soluble in water 0,0 17.00 16.50 23.00 17.50  50.00 | 63.50 61.00 61.50 57.50  77.50
More hydro-bond acceptors 0.5, 1 0.00 4.00 0.50 1.00 4.50 | 13.50 13.00 14.00 13.00  25.00
More soluble in water 0,0 86.00 84.00 86.00 88.50  98.50 | 73.00 72.00 70.00 70.50  96.50
More hydro-bond donors 0.5,1 | 57.50 42.50 48.00 38.50 63.00 | 33.50 30.50 60.00 41.50  71.50
Less soluble in water 0,0 4.00 16.50 28.00 21.00 54.50 | 64.00 64.00 65.50 64.50  78.50
More hydro-bond donors 0.5, 1 0.00 1.00 1.50 1.50 3.00 8.50  10.00 9.50 10.50  16.00
More soluble in water 0,0 8.00  16.50 11.00 12,50  25.50 | 5.50  4.50 3.50 5.00 8.50
Higher permeability 0.5,10 | 0.00 3.00 3.00 2.50 4.50 0.50 1.00 0.50 0.50 1.00
More soluble in water 0,0 86.00 85.50 85.50 84.50 98.50 | 83.00 80.00 81.00 83.560  98.00
Lower permeability 0.5,10 | 86.50 80.00 81.00 84.50  95.50 | 82.00 79.50 79.00 83.560  95.00

The performance of ChatDrug and RL-Guider does not show any consistent improvement over even
the base LLM. We suspect that recent advanced LLMs possess sufficient chemical knowledge and
reasoning capabilities such that external guidance on actions does not enhance reasoning; instead, it
may mislead the model and even constrain its reasoning ability as the action is given. In contrast,
ChemReasoner achieves the second best success ratio in most of the tasks because it leverages LLMs
to reason and plan to achieve the optimization objective, thereby enabling guidance on explicit rea-
soning. This emphasizes the importance of guiding LLMs to better reasoning rather than providing
static recommendations on actions to take.

5.2 CONVERSATIONAL MOLECULAR OPTIMIZATION WITH IMMUNOGENIC BINDING
PEPTIDES

We evaluate the performance of F2R against baseline methods on immunogenic binding peptides.
The test examples are sampled from the experimental dataset of peptide-MHC binding affini-
ties (O’ Donnell et al., 2020). This dataset contains 149 human MHC Class I proteins (alleles) and
309 thousand peptides. We randomly pick 500 target-source pairs from 30 common MHC proteins
(alleles) following [Liu et al.|(2024) exactly.

Evaluation. The actual bindings require wet-lab experiments, which are expensive and prohibited
for large-scale evaluation. MHCflurry2.0 (O’Donnell et al., [2020) is used as a pseudo-oracle to pre-
dict the peptide-MHC binding affinity. The success of peptide optimization must meet two criteria:
(1) the resulting peptide should exhibit a higher binding affinity to the target allele than the original
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peptide; and (2) the binding affinity between the edited peptide and the target allele must exceed a
specified threshold. Following [Liu et al.| (2024), we set this threshold to be one-half of the average
binding affinity observed in experimental data for the target allele. There are both single objective
and multi-objective tasks; single objective tasks only require the peptide to bind to one target al-
lele type, whereas multi-objective tasks require the peptide to bind to two target allele types. The
detailed tasks are provided in Appendix [C}

Results and Discussion. Similar to the case of small molecules, Gemini-2.5-Flash generally out-
performs ChatGPT-4.1, underscoring the importance of reasoning. Across the benchmarks, F2R
consistently achieves the best performance in 7 out of 8 tasks for both ChatGPT-4.1 and Gemini-2.5-
Flash, while being a second in the remaining task. Although not as strong as F2R, ChemReasoner
also demonstrates competitive results. Overall, these findings highlight the critical role of providing
explicit reasoning guidance, thereby reinforcing the effectiveness of our method. This is a structural
optimization task for binding, and it is non-trivial to visualize whether a structural change improves
binding. However, a case study illustrating the optimization process for a peptide-optimization task
is provided in Appendix [D-4]to clarify the procedure.

Table 5: Results on 8 peptide optimization tasks. The task descriptions that correspond to these task
IDs are provided in Appendix [C] The best and second-best results are highlighted in and blue,
respectively. F2R consistently achieves the highest success ratios in 7 out of 8 tasks. These results
demonstrate the generalizability of F2R to peptide tasks.

ChatGPT-4.1 Gemini-2.5-Flash

Task | Base Chat Chem F2R Base  Chat Chem F2R
LLM Drug Reasoner LLM Drug Reasoner

301 3.40  62.80 84.80 95.60 | 93.80 94.60 96.20 98.20
302 46.60  40.60 51.60 55.80 | 60.20 51.00 64.00 72.20
303 2.60  52.80 61.80 66.80 | 77.80 85.40 90.20 87.20
304 53.80 35.80 59.60 64.00 | 43.20 40.00 45.20 56.40
305 47.00  34.80 56.20 63.80 | 50.40 43.80 50.40 67.80
306 25.20  61.60 80.60 78.20 | 79.60 87.20 90.00 95.40
401 28.20 15.40 27.60 34.40 | 19.80 14.60 15.60 26.80
402 10.40 12.00 11.80 13.80 | 16.00 10.80 13.80 17.60

5.3 CONVERSATIONAL MOLECULAR OPTIMIZATION WITH PROTEIN SECONDARY
STRUCTURES

We evaluate the performance of F2R against baseline methods on protein secondary structures.
TAPE (Rao et al.| [2019) is a benchmark for protein sequence property prediction, including the
secondary structure prediction task. We use the test set of TAPE as our testing examples follow-
ing|Liu et al.| (2024])) exactly.

Table 6: Results on 2 protein optimization tasks. The best and second-best results are highlighted
in and blue, respectively. F2R achieves the highest success ratios in both tasks. These results
demonstrate the generalizability of F2R to protein tasks.

ChatGPT-4.1 Gemini-2.5-Flash

Task Base  Chat Chem F2R Base Chat Chem F2R
LLM Drug Reasoner LLM Drug Reasoner

More helix structures 72.58  74.42 78.34 86.18 | 69.59 72.81 76.50 82.72
More strand structures | 53.23  47.24 64.98 74.19 | 58.29 55.76 61.06 66.82

Evaluation. We use a pretrained secondary structure prediction model, ProteinCLAP-EBM-NCE
from ProteinDT (Liu et al., [2025a)), to evaluate the edited proteins. An edit is considered successful
if the output protein sequences have more secondary structures than the input sequences.

Results and Discussion. The results are presented in Table [6] F2R consistently outperforms all
baseline methods, further highlighting its generalizability to proteins. Consistent with the results on
small molecules and peptides, ChemReasoner achieves the second-best performance, underscoring
the importance of explicit guidance for reasoning. In Table [7] we also provide visualization of
two optimization tasks alongside the LLM’s reasoning, where retrieved historical knowledge offers
substantial guidance in completing the tasks.

Discussion on the Performance. Overall, we have observed that LLMs, especially when equipped
with F2R, perform very well on these molecular optimization tasks. Importantly, we are the first to
demonstrate very high success rates (sometimes exceeding 95%) on many tasks in the previously
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Table 7: Visualization of two optimization tasks aimed at producing more helix structures and more
strand structures, respectively. The input protein is shown in light grey, and the final optimized pro-
tein is shown in red. In these examples, the LLM leverages relevant historical knowledge and learns
from prior patterns to guide the optimization toward the desired secondary-structure enrichment.

Task Input&Output Proteins Reasoning
Based on the feedback from history, suc-
M cessful edits specifically increase helix con-
ore . - . .
Helix tent by targeting loop and coil regions (rich
S in glycine, proline, or serine) ) and strategi-
tructures . . . . .
cally introducing helix-promoting residues
such as alanine (A), leucine (L),......
Based on prior feedback and structure-
More activity relationships, I specifically re-
Strand placed or inserted multiple strand-favoring
Structures residues (V, I, F, Y, W, T) at positions not al-
ready dominated by these amino acids, par-
ticularly in regions......

established test set of (2024). Consequently, future work can reasonably omit these low-
difficulty cases, as our results show. We discuss this in more detail and provide a reasonable list of
updated tasks in Appendix [D.1]

5.4 ADDITIONAL RESULTS AND VISUALIZATION

We conduct ablation studies to demonstrate that: @ Both feedback-driven reasoning and knowledge
accumulation are crucial components of LLM-assisted molecular optimization pipelines; and @
As the knowledge base grows, the guidance it provides becomes more effective, leading to higher
success rates. The results are provided in Appendix[D.2} We provide failure analysis for all methods
in Appendix [D.3] We provide several case studies in Appendix that illustrate how feedback-
driven reasoning and historical knowledge enable the LLM to make correct decisions. We also
provide additional general visualization for all three types of optimization tasks (small molecules,
immunogenic binding peptides, and protein secondary structures) in Appendix [D.3}

6 CONCLUSION, LIMITATION, AND FUTURE WORK

In this work, we introduce F2R, a novel framework that employs a multi-agent system to au-
tonomously accumulate, distill, and reuse historical knowledge and reasoning traces for more ef-
ficient and effective LLM-assisted molecular optimization. Specifically, F2R is the first to explicitly
learn from detailed optimized outcomes, capturing not only actions but also the rationales behind
successes and failures. By combining a dynamic historical knowledge base with an agentic SAR
memory, F2R progressively refines its optimization strategies through experience-driven counter-
factual replay, addressing key limitations of existing predefined guidance approaches. Experimental
results across small molecules, peptides, and proteins demonstrate F2R’s superior performance and
transparent reasoning compared to strong baselines, validating the benefits of experience accumula-
tion and agentic memory systems in complex molecular optimization tasks.

Limitation and Future Work. As a fully autonomous system relying on LLMs, F2R’s effectiveness
is ultimately limited by the reasoning accuracy and domain knowledge of the underlying language
models. It remains a limitation and an avenue for future work to enhance the capabilities of the
backbone LLMs. In particular, the proposed feedback mechanism and historical entries may pro-
vide a natural basis for reinforcement learning fine-tuning (RLFT), enabling models to iteratively
refine their reasoning and domain adaptation. In addition, it could be of great potential to develop
multi-agent systems for molecular optimization that allow the interaction of LLMs and various do-
main tools in a collaborative ecosystem, collectively advancing the efficiency and reliability of au-
tonomous discovery. In addition, it is interesting to examine cases where incorrect reasoning leads
to successful results, or where correct reasoning does not, and whether these situations cause error
accumulation and propagation.

10
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LLM USAGE

LLMs are used only at the sentence level to help improve readability and reduce typos and gram-
matical errors. LLMs are also used as coding agents (Coding CoPilot) in the programming process.
All LLM-generated objects, including code, text, suggestions, etc., have been carefully verified by
the authors before use.

A TABLE OF NOTATIONS

We summarize notations used throughout this paper in Table 8]

Table 8: Summary of Notations.

Notation | Description

Tin Input molecule (SMILES strings, peptide and protein sequences).

¢ Textual task or optimization objective.

Tout Final optimized molecule produced by the LLM.

K Maximum number of allowed optimization iterations.

T Optimized molecule at iteration .

xé Guidance (feedback, SAR knowledge, etc.) provided to the LLM at iteration .
a; Action taken by the LLM at iteration ¢ (e.g., structural edit).
T Reasoning provided by the LLM at iteration ¢ (why the action was taken).
fi Domain feedback on the optimized molecule x; (validity, property change, etc.).
i Self-reflection of the LLM at iteration ¢, based on f;.

Pegit Structured prompt template requiring action and reasoning output.
P Extracted structural pattern (e.g., hydroxyl — amino substitution).
c Condition under which a structural pattern p holds (e.g., for aromatic rings).

m All iterative messages (dialogue history) between user and LLM in an optimization

task.

e; Knowledge entry for optimization task j: {xin, z(, p, ¢, (@;, a;, 74, fi, Vi)vi }-
& Historical knowledge base of all accumulated entries.

Ex, Subset of £ containing tasks with the same target ;.

Kretrieval Number of historical entries retrieved.
R* Retrieved subset of Kpeuievas most relevant entries for a new task.
sim(-,-) | Similarity function (Tanimoto similarity for small molecules, Levenshtein distance for
peptides/proteins).

Din Property values of the input molecule.
Di Property values of the optimized molecule z;.

B ADDITIONAL DETAILS FOR F2R

B.1 VALIDITY AND FEEDBACK

Small Molecules. For small molecules, we use the Chem.MolFromSmiles () method from
RDKit. First of all, we detect if there are characters that are not possible to appear in a SMILES
string by regular expression (rule-based). Then, if the SMILES string contains only valid characters,
we use RDKit to test for validity. In particular, there are several common reasons for it to fail.
@ Kekulization failures: There are aromatic atoms that can’t be assigned alternating single/double
bonds. @ Valence errors: Atom exceeds its allowed valence. @ Caromaticity assignment: Mixing
aromatic and non-aromatic atoms in a ring inconsistently. @ Ring problems: Missing ring closure
digits (unclosed rings). We carefully design templates to convert the error messages into natural

14
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language for LLM feedback. It is rare, but there are other potential errors, we directly use the error
message as the feedback in such case.

Peptides and Proteins. Peptides and proteins are represented as sequences of amino acids using the
standard one-letter code. Among the 26 English alphabets, 20 correspond to the canonical amino
acids, 2 (U and O) represent rare amino acids, and 4 (B, Z, J, X) are reserved for ambiguous or
unknown residues. In principle, any combination of these letters forms a syntactically valid se-
quence, although not all combinations correspond to chemically plausible or biologically functional
proteins. For validation, we detect invalid characters using regular expressions. If only valid letters
are present, the sequence is accepted as a valid peptide/protein string. Depending on the task, we
can restrict to only the canonical amino acids or unambiguous residues. Additional biological plau-
sibility checks (e.g., domain detection or similarity search) may also be applied depending on the
downstream task.

B.2 TANIMOTO SIMILARITY AND LEVENSHTEIN DISTANCE

Small Molecules. For small molecules represented in SMILES, Tanimoto similarity measures the
similarity between two molecules based on their chemical First, SMILES strings are converted into
molecular fingerprints (binary) by RDKit. Then, the Tanimoto similarity coefficient is defined as:

_JANnB|

S(4.B) = {1 p

€ [0,1],

where A and B are two binary fingerprint vectors, |A N B is the number of common bits set to 1 in
both fingerprints, | A U B| is the number of bits to 1 in either fingerprint.

Peptides and Proteins. For peptide and protein sequences, the Levenshtein distance provides a
way to measure sequence similarity by counting the minimum number of edit operations required to
transform one amino acid sequence into another. The Levenshtein distance between two amino acid
sequences a and b (of lengths |a| and |b| respectively) is defined as lev(a, b):

|al if o] =0
1 if |a| =0
lev(tail(a), tail(b)) if head (a) = head(d),

lev(a,b) = lev(tail(a), b),
)

( )
1+ min ¢ lev(a, tail(d)), otherwise.
lev(tail(a), tail(b))

Here, head(z) denotes the first character of the sequence x (i.e., the first amino acid), and tail(z)
is the remainder of the sequence after removing the first character. The recurrence relation captures
three types of edit operations: (1) Deletion: removing an amino acid from a to align with b; (2)
Insertion: adding an amino acid into a to align with b; (3) Substitution: replacing one amino acid
in @ with another to match b. Thus, the Levenshtein distance lev(a, b) corresponds to the minimum
number of insertions, deletions, and substitutions needed to transform sequence « into sequence b.

B.3 PROMPTS

We give an example of conversation messages for F2R for a complete optimization round.

We have the following system prompt following prior work:

System Prompt

You are a helpful chemistry expert with extensive knowledge of drug design.

In the first round, we ask the LLM to generate 5 edited candidates following the exact setup as in|Liu
et al.[(2024)), and the first that does not contain invalid characters will be taken as the edited drug.
Note that we now require the reasoning traces and edited drugs to be structured as a json object
through Structured Outputs with a JSON schema. All baselines adopt this strategy to ensure that the
edited drugs are structured.

15
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First Round Task Prompt

<task_prompt>. The output <drug_type> should be similar to the input molecule. Give me
5 <drug_type> in string representation only.

Give me a short reasoning first, and then a listed of <drug_type> under the key
“edited_drugs”.

Return the result as a json object in the following format:

{{“reasoning”: <reasoning>,

“edited_drugs”: [<stringl>, <string2>, <string3>, <stringd>, <string5>] }}

The task prompts are given in details in Appendix [C|below. If the edited drug in the first round is
not valid or does not satisfy the property requirements:

Iterative Round Task Prompt

The generated drug <edited_drug> is evaluated: <autonomous_domain_feedback>.

Here is the history and feedback from the most similar molecule for the same task:

- The original drug is: <input_drug>

- The edited drug is: <edited_drug>

- The feedback on the attemp from evaluation: <autonomous_domain_feedback>

- Potential structure-activity relationship summarized from the same task: <SAR_patterns>
However, you should remember that it does not always apply to your task.

Can you give me a new <drug_type>? This time, return only one <drug_type> in string
format.

Return the result as a json object in the following format:

{{ “reasoning”: <reasoning>,

“edited_drugs”: [<string1>] }}

After the task in completed or the maximum number of iterations is reached, the LLM is asked to
summarize the conversation and identify transferable SAR patterns:

SAR Task Prompt

1. Summarize in concise sentences why these edits were successful or not. This should also
include certain reasoning and how to improve. Be explicit and relatively short.

2. If you see any clear structure—activity relationship (SAR) trend across different molecules,
state in precise and very short phrases. If you do not see any obvious SAR pattern, just return
an empty string.

Return ONLY the following JSON object:

{{ “summary”: <concise bullet or sentence per peptide, keep in a single string>,

“sar””: [<very short SAR statement or empty string>] } }

C TASK DESCRIPTION AND TASK PROMPTS

Small Molecules. For small molecules, the task is to edit the SMILES string to satisfy the task
requirements listed in Table [2] and Table [] respectively (e.g. “more soluble in water”). The task
prompt is:

Task Prompt for Small Molecules

Can you make the molecule <input_smiles_string> <task_requirements>?

Peptides. For peptides, the task is to modify a peptide that binds to a source allele type so that it
can bind to given target allele type(s), which is a common task in peptide design and immunology
research. The task prompt is:
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Task Prompt for Peptides

We want a peptide that binds to <target_allele_types>. We have a peptide <input_peptide>
that binds to <source_allele_type>, can you help modify it?

The task IDs and their corresponding source and target allele types are given in Table[9]

Table 9: Target allele type(s) and source allele type for peptide optimization.

Task ID Source Allele Type Target Allele Type(s)

301 HLA-C*16:01 HLA-B*44:02

302 HLA-B*08:01 HLA-C*03:03

303 HLA-C*12:02 HLA-B*40:01

304 HLA-A*11:01 HLA-B*08:01

305 HLA-A*24:02 HLA-B*08:01

306 HLA-C*12:02 HLA-B*40:02

401 HLA-A*29:02 HLA-B*08:01 and HLA-C*15:02
402 HLA-A*03:01 HLA-B*40:02 and HLA-C*14:02

Proteins. For proteins, the task is to modify a protein sequence so that more amino acids adopt
desired secondary structures, specifically a-helix (more helix structure) or S-strand (more strand
structure) conformations. The task prompt is:

Task Prompt for Small Molecules

We have a protein <input_protein_sequence> <. Can you modify it by making more amino
acids into the <desired_secondary_structure_type> (secondary structure)?

D ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSION

D.1 DISCUSSION ON SATURATED RESULTS

We follow the experimental setup as well as the exact test tasks introduced in the pioneering work
ChatDrug [2024). However, as we have shown in Sec.[5] LLMs equipped with reasoning
and memory capabilities can achieve very high success rates on many of these tasks with the recent
development of powerful LLMs. These saturated results suggest that the current set of test problems
may need to be updated. At its current stage, LLLM-assisted molecular optimization is not intended
to replace human experts; rather, we aim to explore the potential and limits of LLMs in chemical
reasoning and in performing these tasks. Therefore, it is important to develop a representative test
set that is sufficiently challenging and covers a broader range of problem types. As LLMs continue
to scale, gain power, and exhibit advanced reasoning capabilities, the overall cost, computationally
or monetarily, required to use them also rises. The test set introduced in ChatDrug, which consists
of more than 10, 000 individual optimization tasks, becomes unaffordable if performed on advanced
models. Therefore, it is also important to limit the number of individual optimization tasks. To
address this need, we advocate for a reduced task set based on our experimental results and observa-
tions. For all optimization tasks where F2R achieves a success rate above 90%, future work should
randomly sample and retain only 10% of those tasks. For tasks with a success rate above 80%, future
work should keep a randomly sampled subset consisting of 20% of the tasks. Future work should
combine these subsets into three tasks based on molecular type (Small Molecule — Easy, Peptide —
Easy, or Protein — Easy) and report the results jointly for each type.
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D.2 ABLATION STUDY

Separating Feedback-Driven Knowledge and Historical Knowledge. We conduct an ablation
study to disentangle the effects of feedback-driven reasoning and historical knowledge from knowl-
edge accumulation. Specifically, we use only the feedback (F2R-Feedback) as guidance and only the
historical knowledge entries (F2R-Hist.) as guidance, respectively. We select the last four single-
objective small molecule optimization tasks where F2R significantly outperforms the base LLM,
allowing us to clearly attribute the observed performance gains. The results are presented in Ta-
ble Clearly, both contribute to the superior performance of F2R; feedback accounts for more
substantial performance gains, but historical knowledge also plays a critical role that further im-
proves performance.

Table 10: Ablation study on 4 single-objective small molecule optimization tasks with Gemini-
Flash-2.5. Clearly, both feedback driven reasoning and historical knowledge accumulation are im-
portant to the superior performance fo F2R.

Base F2R- F2R-

LLM Hist. Feedback Y2R
8050 8650  94.00  99.00
44.00 5050  58.50  68.50
7150 7850 9150  98.00
16.50 39.00 4550  52.50

Task

More hydro-bond acceptors

More hydro-bond donors

= =

Size and Retrieval Count of Historical Knowledge. In this ablation study, we investigate how the
size of the historical knowledge database and the number of retrieved entries influence the model’s
performance. Given the cost of extensive experimentation, we perform this ablation study on only
the first task introduced above (More hydro-bond acceptors with A = 0). We test with 3 different
historical knowledge sizes 100, 200, and 500 (200 is used for all small molecule optimization tasks
in the main paper), and 3 different retrieval counts 1, 3, and 5 (3 is used for all small molecule
optimization tasks in the main paper). In addition, we do not provide domain feedback in this
experiment; only historical knowledge is used to control the variable. The results are provided
in Table [TT] These results indicate that enlarging the historical knowledge dataset leads to clear
improvements in success rate. However, increasing the retrieval count does not reliably enhance
performance, especially when the available historical knowledge remains limited. This is likely
because when the database is small, it contains relatively few relevant historical examples, and
retrieving unrelated entries may introduce distracting or misleading information, ultimately limiting
the benefit of larger retrieval counts.

Table 11: Ablation study on the impact of size of the historical knowledge database (V) and the
number of retrieved entries (Kreyieval ) fOr the small-molecule optimization task “More hydro-bond
acceptors” with A = 0, using Gemini-Flash-2.5.

retrieval NN 100 200 500

1 80.50 82.50 83.00
3 84.50 86.50 86.50
5 84.00 86.00 87.50

D.3 FAILURE ANALYSIS

We provide the reasons for failure for each method to offer another perspective on the sources of im-
provement achieved by F2R. For peptides and proteins, the primary source of failure comes from not
meeting the task requirements (e.g., the optimized peptide does not bind to the target allele type, or
the optimized protein does not contain more amino acids in the desired secondary structures). There
are almost no cases in which an invalid peptide or protein is produced. Therefore, the main benefit
of feedback and memory in F2R is to guide the LLM toward satisfying the task requirements. For
small molecule optimization, we find that LLMs often make invalid SMILES strings, which can be
seen in the failure count of each method in Table[I2} Clearly, methods incorporating reasoning (F2R
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and ChemReasoner) demonstrate strong performance in meeting property requirements. However,
ChemReasoner does not reduce SMILES syntax errors. In contrast, F2R achieves both satisfactory
property values and significantly fewer syntax errors, thanks to the use of feedback and memory.
Note that ChemReasoner appears to have fewer failures due to not satisfying property requirements;
however, this should be interpreted with caution, as it also produces a large number of syntax er-
rors. These syntax errors may arise in difficult tasks where the model attempts extreme edits that
ultimately violate SMILES grammar.

Table 12: Failure analysis of all methods for small-molecule optimization with A = 0 using
ChatGPT-4.1. The numbers are reported in the format S/P/I, where S denotes the number of suc-
cesses, P denotes the number of failures due to not satisfying property requirements, and I denotes
the number of failures caused by invalid SMILES strings. Clearly, methods incorporating reason-
ing (F2R and ChemReasoner) demonstrate strong performance in meeting property requirements.
However, ChemReasoner does not reduce SMILES syntax errors. In contrast, F2R achieves both
satisfactory property values and significantly fewer syntax errors, thanks to the use of feedback and
memory.

Task F2R BaseLLM ChatDrug ChemReasoner RL-Guider
More soluble in water 198/1/1 162/2/36 167/3/30 167/0/33 171/1/28
Less soluble in water 198/0/2 170/1/29 171/4/25 169/0/31 171/1/28
More like a drug 138/51/11 92/731/35 123/49/28 147/24 /29 95/71/34
Less like a drug 178/16/6 137/22/41 123/32/45 145/ 14 /41 130/24 /46
Higher permeability 189/6/5 63/86/51 107 /50743 163/7/30 95/56/49
Lower permeability 198/0/2 174/0/26 171/5/724 176/0/24 173/8/719
More hydro-bond acceptors 1947274 14872750 138/71755 153/07/47 15574741
More hydro-bond donors 195/21/3 160/2/38 156/8/36 171/0/29 162/14/24
Total 1488 /78 /34 | 1106/188/306 | 1156/158/286 | 1291/45/264 | 1152/179/269

D.4 CASE STUDIES: FEEDBACK DRIVEN SELF-REFLECTION AND HISTORICAL KNOWLEDGE

We provide several case studies to showcase instances where feedback-driven reasoning and histori-
cal knowledge lead to successful optimization, whereas without them, the LLM struggles to produce
a satisfying molecule. One case study is provided for each type of molecule (small molecules, pep-
tides, and proteins), using either feedback-driven reasoning or historical knowledge to illustrate the
optimization process. However, we note that for all molecule types, both feedback-driven reasoning
and historical knowledge significantly aid the LLM in performing these tasks.

D.4.1 FEEDBACK-DRIVEN REASONING

We first provide a case study that showcases instances where the LLM initially produces an invalid
molecule, and we then provide detailed feedback to the LLM. We also perform the same experiment
without detailed feedback from domain tools, using only a success indicator as done in prior works.
To do this, we reuse the same messages until feedback so that the input molecule and the optimized
molecule from the first iteration are the same. In this case, the LLM makes the same mistake of
producing an invalid molecule.

With Feedback:

e Input Molecule: Cniccc(C(=0O)Nc2sc3c(c2C#N)CCC3)ccl=0

e Task: More soluble in water

* Optimized Molecule (1st iteration): HOCH2clIcc(Sc2cc3cccec3[nH]2)cccl1C=0 (This is
an invalid molecule due to a syntax error in the methylene group)

* Feedback:
The generated drug HOCHZ2clcc(Sc2cc3ccccc3[nH]2)cecl C=O0 is checked by experts and
it is NOT valid because of RDKit error: “syntax error while parsing; check for mistakes
around position 1, failed to parse SMILES.”

* Reasoning:
The previous SMILES HOCH2clcc(...) was syntactically incorrect for a hydroxymethyl
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group. The corrected SMILES replaces the methyl group with a hydroxymethyl group
(CH20H) by explicitly defining the bond from the ring carbon to the new carbon, which
is then bonded to oxygen, thereby increasing water solubility through the addition of a
hydroxyl group.

* Optimized Molecule (2nd iteration): c/(CO)cc(Sc2cc3ccece3[nH]2)ccclC=0 (This is a
valid molecule that is more soluble in water)

Without Feedback:

* Input Molecule: Cniccc(C(=0O)Nc2sc3c(c2C#N)CCC3)ccl=0
e Task: More soluble in water

* Optimized Molecule (1st iteration): HOCH2clIcc(Sc2cc3cccec3[nH]2)cccl1C=0 (This is
an invalid molecule due to a syntax error in the methylene group)

¢ Feedback:
Your provided sequence HOCH2cIcc(Sc2cc3cccec3[nH]2)cccl C=0 is not correct.

¢ Reasoning:
A small polar modification near the aromatic core can improve water solubility while re-
taining overall scaffold similarity. Introducing a hydroxyl-bearing substituent increases
hydrogen-bonding capacity without drastically changing the molecule’s shape.

* Optimized Molecule (2nd iteration): OCH2Cclcc(Sc2cc3ccccc3[nH]2)ccclC=0 (This
is still an invalid molecule due to a syntax error in the methylene group)

Clearly, in this example, the LLM is able to identify and correct its own mistake once explicit
structural feedback is provided. With guidance, the model transitions from producing an invalid
SMILES string to generating a syntactically valid molecule that reflects the intended functional
modification. In contrast, without feedback, the LLM repeats the same mistake, the syntax error in
the methylene group remains uncorrected. This demonstrates the effectiveness of feedback-driven
reasoning in guiding the model toward correct outputs..

D.4.2 HISTORICAL KNOWLEDGE

We present two cases showing the role of historical knowledge in optimization: an example where
the model benefits from prior successes, and another example where it learns from past failures to
avoid repeating the same errors.

Learning from Past Success:

¢ Input Peptide: ITAPTVRQY

» Task: We want a peptide that binds to HLA-B*44:02. We have a peptide ITAPTVRQY that
binds to HLA-C*16:01, can you help modify it?

* Optimized Peptide (1st iteration): /PAPTVRQY (This is a valid peptide; however, it does
not bind to HLA-B*44:02)

* Historical Knowledge:
Original Peptide: AEAGVRLLSY; Optimized Peptide:AEAGVRLLSW; Summary: Substitu-
tion to W at the C-terminus enhanced binding to HLA-B*44:02

* SAR:
C-terminal tryptophan (W) substitution improves HLA-B*44:02 binding

¢ Reasoning:
The feedback from ’History 2’ indicated that substituting the C-terminal Tyrosine (Y)
with Tryptophan (W) significantly enhanced binding to HLA-B*44:02 (AEAGVRLLSY —
AEAGVRLLSW). Given that the current peptide ITAPTVRQY also has a Tyrosine at its C-
terminus, replacing it with Tryptophan is a direct application of a previously successful
modification to improve HLA-B*44:02 binding.

* Optimized Peptide (2nd iteration): /TAPTVRQW (This is a valid peptide, and it binds to
HLA-B*44:02)
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Learning from Past Failure:

* Input Protein: MRGSHHHH...... (Lengthy protein Sequence)
» Task: Making more amino acids into the strand structure (secondary structure)

* Optimized Protein (1st iteration): DQVGKSPN...... (It does not have more amino acids
in the strand structure)

* Historical Knowledge:
Edits 1, 2, and 5 failed to increase strand-forming amino acids likely due to minor side-
chain substitutions or loop/helix-preserving changes......

* SAR:
Fluorine substitution and heteroaromatic ring incorporation improve drug-likeness

¢ Reasoning:

Based on prior feedback and histories, simply substituting residues one by one is not always
sufficient to promote additional strand (beta-sheet) structure. To improve strand (beta-
sheet) propensity based on the feedback, I applied more extensive and targeted substitutions
in predicted loop/coil regions and at the edges of existing beta sheets, using amino acids
with a strong tendency to promote beta-strand conformation (V, L E Y, T, Q, E, D, A, G). I
emphasized patchwise replacement rather than single-residue changes, aligning stretches
of V. I F, Y for extended backbone and avoiding substitutions in core (likely functionally
essential) regions.

* Optimized Protein (2nd iteration): DQVGKSPN...... (It has more amino acids in the
strand structure)

D.5 ADDITIONAL VISUALIZATION OF RESULTS

We provide additional visualization for all three types of optimization tasks—small molecules, im-
munogenic binding peptides, and protein secondary structures—to offer a clearer qualitative and
visual understanding of the results of LLM-assisted molecular optimization. Specifically, the visu-
alization of input and optimized small molecules are shown in Fig.[I3] For peptides, we provide the
visualization using position weight matrices (PWMs) in Fig.[2] PWMs have been widely used for
the visualization of protein motifs (patterns), and they plot the distribution of each amino acid at the
corresponding position. Thus, more important motifs with higher probabilities will be marked with
higher letters. The visualization of input and optimized proteins are shown in Fig.[T4]

Table 13: Visualization of six small molecule optimization tasks.

(a) Task: More soluble in water (b) Task: Less soluble in water (c) Task: More like a drug

Input Molecule Optimized Molecule Input Molecule Optimized Molecule Input Molecule Optimized Molecule
O oA GOl Aot O&@ O OIJ

CCC(=0)NICCCN(C(=0) CC(0)C(=0)NICCCN(C(=0) 0=C(NCeleeeol)C(=0)Nel 0=C(NCeleeeol)C(=0)Nel N#CeleeeeeINICCON(C(=0) CeleeeecINICCON(C(=0)

Joe3e2)CC1 Joe3e2)CC1 cee(Oc2cee(Chec2)nel cee(Oc2eee(Clec2C)ncl NCC(=0)N2CCCCC2)CCL NCC(=0)N2CCCCC2)CCl

(d) Task: Less like a drug (e) Task: Higher permeability (f) Task: Lower permeability
Input Molecule Optimized Molecule Input Molecule Optimized Molecule Input Molecule Optimized Molecule
b

CCNC(=0)elece(C) CCNC(=0)elece(C) 0=C(NCCICCelese(-c2cece 0=C(NCCICClclese NCeleee(C(=0)Ne2eee(Cle NCeleee(C(=0)Ne2eee(Cle

¢(NC(=0)CCCO)c1 (NC(=0)CCCOC(=0)0)c] (0Cc3ccce(Fe3)cnl (-c2ccec(C)e2nl (S(=0)(=0)N3CCCC3)e2)ccl (S(=0)(=0)N3CCC(0)C3)e2)ccl
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Visualization for Peptide Optimization

1‘ 1‘ 1‘
0 0 0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

(a) Motifs of input peptides (b) Motifs of edited peptides (c) Motifs of experimental peptides

Figure 2: Visualization of peptide optimization with ChatGPT-4.1 for the task of optimizing peptides
that bind to HLA-C16:01 into peptides that bind to HLA-B44:02. We provide the visualization using
position weight matrices (PWMs). PWMs have been widely used for the visualization of protein
motifs (patterns), and they plot the distribution of each amino acid at the corresponding position.
Thus, more important motifs with higher probabilities will be marked with higher letters.

Table 14: Visualization of four protein optimization tasks. The input protein is shown in light grey,
and the final optimized protein is shown in red.

Task Input&Output Proteins Input&Output Proteins

More
Helix
Structures

More
Strand
Structures
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