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ABSTRACT

Designing small molecules that selectively bind to protein targets remains a cen-
tral challenge in drug discovery. While recent generative models leverage 3D
structural data to guide ligand generation, their applicability is limited by the
sparsity and bias of experimentally determined complexes. Here, we introduce
ProtoBind-Diff, a structure-free masked diffusion model that conditions molecular
generation directly on protein sequences via pre-trained language model embed-
dings. Trained on over one million active protein-ligand pairs from BindingDB,
ProtoBind-Diff generates chemically valid, novel, and target-specific ligands with-
out requiring 3D structures for inference. In extensive benchmarking against 3D
structure-based models, ProtoBind-Diff achieves competitive predicted binding
affinity scores and performs well on challenging targets, including those with
limited training data. Despite never being trained on the data that contain bind-
ing pockets, its attention maps align with contact residues, suggesting the model
learns spatially meaningful interaction priors from sequence alone. These results
demonstrate that sequence-conditioned diffusion can enable structure-free, scal-
able ligand discovery across the proteome, including orphan or rapidly emerging
targets.

1 INTRODUCTION

The chemical space of drug-like molecules is estimated to exceed 1060 structures [Polishchuk et al.
(2013)], making exhaustive exploration practically infeasible. Machine learning has emerged as a
powerful tool to generate candidate compounds, guiding discovery beyond what traditional screen-
ing can reach. Generative AI models have been developed to address this challenge, leveraging var-
ious molecular representations, such as text strings, graphs, or 3D structures, and spanning a wide
range of architectures, including transformers [Chithrananda et al. (2020b); Bagal et al. (2021)],
reinforcement learning agents [Loeffler et al. (2024a)], variational autoencoders (VAEs) and gener-
ative adversarial networks (GANs) [Simonovsky & Komodakis (2018); De Cao & Kipf (2018)], and
more recently, diffusion models [Jo et al. (2024); Vignac et al. (2023)].

A promising yet challenging frontier is protein-conditioned molecular generation, where models de-
sign ligands specific to a biological target. Recent approaches have focused on using 3D structures of
protein-ligand complexes or binding pockets (e.g., DiffDock [Corso et al. (2022)], EquiBind [Stärk
et al. (2022)], TargetDiff [Guan et al. (2023)]) to either predict optimal docking poses for given
molecules or generate novel molecules directly within binding sites. However, these models face
several critical limitations. First, many methods assume static binding sites and overlook conforma-
tional flexibility and induced-fit effects, which are often essential for ligand potency. Second, they
rely on paired protein-ligand structural data, which remains limited (fewer than 30,000 complexes in
the PDBbind database [Liu et al. (2015)]) and biased towards well-studied targets and chemotypes.
Third, structure-based optimization can constrain chemical diversity, prioritizing docking fit over
meaningful properties such as drug-likeness, pharmacokinetics, or novelty.

It is important to emphasize that several recent approaches explicitly incorporate protein pocket
flexibility by jointly generating ligand and holo-like pocket conformations from apo structures [Zhou
et al. (2025); Zhang et al. (2024b)]. These methods directly model conformational changes.
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In this work, we propose ProtoBind-Diff, a masked diffusion language model for molecular gen-
eration conditioned on protein sequence, bypassing the need for 3D structures for training. To
develop ProtoBind-Diff, we frame molecular generation as a denoising process over the vocabulary
of molecular tokens by incorporating recent works on discrete diffusion [Sahoo et al. (2024)]. We
propose a mechanism for directed protein-specific generation of molecules by adding condition of
pre-trained embeddings of protein sequence via cross-attention block. To improve robustness and
diversity, we propose cluster-based resampling of training molecules and add token permutation
augmentation. Avoiding the need for 3D structures enabled us to train the model on over one mil-
lion active protein-ligand pairs from BindingDB [Gilson et al. (2016)], a scale far exceeding what is
feasible with structure-based datasets such as PDBbind.

We further demonstrate that ProtoBind-Diff generates molecules that preserve physicochemical
properties of known actives, achieves competitive or superior affinity metrics over structure-based
baselines (Pocket2Mol, PocketFlow), and performs well to low-data targets. To compare the per-
formance of different models, a comprehensive benchmark consisting of 12 protein targets was
constructed consisting of both frequently and infrequently represented proteins in classical training
datasets (PDBBind and BindingDB). On this benchmark, results further demonstrate that Boltz-1
constitutes more objective and discriminative evaluation metrics than Vina docking. Attention anal-
ysis shows that cross-attention heads consistently highlight binding site residues, suggesting that the
model encodes biophysically meaningful interaction patterns.

To summarize, the main contributions of this work are:

• We propose a masked discrete diffusion framework for target-aware molecular generation
that conditions on protein sequence embeddings via cross-attention.

• We propose a dataset resampling scheme that increases the diversity of generated molecules
by clustering similar molecular structures.

• We evaluate on a 12-target benchmark comprising both frequently and sparsely represented
proteins and find that Boltz-1 is more reliable and discriminative than classical docking in
our experiments.

• We show improved molecular quality: our model achieves higher enrichment based on
Boltz-1 evaluation and yields molecular property distributions closer to actives than base-
lines.

• We demonstrate that specific cross-attention heads focus on binding site residues, offering
biologically grounded interpretability.

2 RELATED WORK

Diffusion Language Models. Diffusion models have recently emerged as strong alternatives to
autoregressive methods for discrete data generation [Nie et al. (2025); He et al. (2023)]. Unlike
autoregressive approaches, discrete diffusion enables parallel sampling and bidirectional context,
which is especially important for generating chemically valid and diverse molecules. In [Austin
et al. (2021)], diffusion probabilistic models were extended to discrete categorical data by defining
a forward Markov corruption process and the corresponding ELBO for likelihood-based training.
Lou et al. (2024) proposed a score-based variant that maps discrete tokens to a continuous space,
at the expense of an explicit likelihood. Sahoo et al. (2024) simplified masked diffusion training
through a Rao-Blackwellized ELBO, reducing to mixtures of MLM losses, while Shi et al. (2024)
introduced a continuous-time formulation unifying different modalities. These advances enabled
first applications to molecular strings, e.g., GenMol [Lee et al. (2025)] and PepTune [Tang et al.
(2025)], which demonstrated that masked discrete diffusion can learn molecular syntax and generate
valid compounds. To our knowledge, no prior work integrates protein embeddings as conditioning
inputs into masked discrete diffusion for target-aware molecule generation, which is the focus of
this paper.

Textual Molecular Representation. SMILES strings [Weininger (1988)] remain the dominant se-
quence representation due to their simplicity and compatibility with language models, and have
powered large-scale pretraining [Irwin et al. (2022); Chithrananda et al. (2020a); Lu & Zhang
(2022). Their main drawback is fragility: small perturbations can render molecules invalid. SELF-
IES [Krenn et al. (2020)] guarantee validity but sacrifice simplicity and interpretability. Comparative
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Figure 1: Architecture of the ProtoBind-Diff model. The masked ligand sequence is embedded,
then processed through a stack of transformer decoder blocks. Each block contains multi-head
self-attention with rotary position embeddings, multi-head cross-attention for protein sequence and
timestep conditioning, followed by a normalization layer and a position-wise feed-forward net-
work. Protein sequence information is encoded using pre-trained ESM-2 embeddings and projected
through a linear layer. The final output is passed through a linear layer and SUBS parameterization
to predict the denoised ligand.

studies [Chithrananda et al. (2020a); Gao et al. (2022); Leon et al. (2024)] report mixed results, with
SMILES often outperforming SELFIES in practice. Recently, SAFE [Noutahi et al. (2024)] intro-
duced a fragment-based representation tailored for scaffold decoration and linking. Several masked
diffusion models [Tang et al. (2025); Wang et al. (2025); Lee et al. (2025)] also adopt SMILES
or SAFE, reflecting their robustness and flexibility. In this work, we follow this trend and employ
SMILES with augmentation to improve model generalization.

Context-dependent Molecular Generation. Context-aware molecular generation aims to design
ligands that bind to a specific protein. Protein binding inherently happens in 3D space, so many
models leverage structural information to incorporate protein context. For example, Xu et al. (2021)
introduced a cRNN conditioned on pocket descriptors. Ragoza et al. (2022) proposed one of the
first 3D molecule generators, a conditional VAE that encodes receptor-ligand complexes as 3D
atomic density grids and decodes new ligand density maps, from which discrete molecules are
reconstructed. Li et al. (2021) presented DeepLigBuilder, combining a 3D graph generator with
Monte-Carlo Tree Search to design ligands inside protein pockets. Autoregressive 3D methods
place atoms sequentially in a pocket with GNNs (e.g., GraphBP [Liu et al. (2022)] uses local frames
and a flow head), while Pocket2Mol [Peng et al. (2022)] introduces an E(3)-equivariant pocket
encoder and an efficient conditional sampler that assembles ligands inside 3D pockets, modelling
both geometry and bonding. The field is now dominated by 3D pocket-based diffusion: TargetDiff
[Guan et al. (2023)] jointly denoises coordinates and atom types with an SE(3)-equivariant network
and also provides unsupervised affinity features for ranking, whereas DiffSBDD [Schneuing et al.
(2024)] frames SBDD as an SE(3)-equivariant conditional diffusion process that enables joint 3D
ligand generation with support for constraint-guided inpainting and direct structure optimization.
Complementary directions include PocketFlow [Jiang et al. (2024)], an autoregressive flow model
generating 3D ligands inside protein pockets using chemical constraints, confirmed by wet-lab val-
idated bioactive hits, and TamGen [Wu et al. (2024)], a GPT-like chemical language model for
target-aware SMILES generation and compound refinement. Recent approaches such as FlexSBDD
[Zhang et al. (2024b)] and DynamicFlow [Zhou et al. (2025)] explicitly model induced-fit effects
by jointly updating protein degrees of freedom and ligand poses from apo structures. Despite this
progress, most of these approaches rely on relatively scarce 3D training data, and remain limited to
targets with well-characterized binding pockets and reliable structural information.
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3 METHODS

We trained and evaluated ProtoBind-Diff, a structure-free, protein sequence-conditioned masked
diffusion model for molecular generation. Protein context is provided through ESM-2 [Lin et al.
(2022)] embeddings, which are integrated via cross-attention to guide the reconstruction of masked
tokens in a SMILES string.

3.1 MASKED DISCRETE DIFFUSION

We employ a masked discrete diffusion framework to generate SMILES sequences conditioned on
the protein target. Protobind-Diff follows the MDLM training paradigm with a transformer decoder
[Vaswani et al. (2017)] backbone, enhanced by timestep and protein-sequence conditioning, and also
rotary positional embeddings [Su et al. (2024)]. Our choice of discrete diffusion over autoregressive
modeling is motivated by two factors: (i) the superior computational efficiency of non-autoregressive
parallel decoding, and (ii) the ability of bidirectional attention to exploit molecular context without
depending on a fixed token ordering, which aligns more naturally with molecular representations.

We define masked diffusion in line with MDLM [Sahoo et al. (2024)]. A ligand is represented as a
sequence of tokens x = (x1, . . . ,xL), where each token xl

i ∈ {0, 1}K is a one-hot vector over K
categories (with

∑K
i=1 x

l
i = 1). We define a categorical distribution Cat (·;π) over K classes (with

probabilities given by π ∈ ∆K), where ∆K represents the simplex over K categories. We assume
the K-th category serves as the masking token, with one-hot vector m, i.e., mK = 1.

The forward process q interpolates between each token in clean data sequence xl and a target distri-
bution Cat (·;m) (in case of masked diffusion we set π = m), and is defined as:

q
(
zlt | xl

)
= Cat

(
zlt;αtx

l + (1− αt)m
)
, (1)

where zlt denotes the l-th token in the noisy sequence at time t, with t ranging from t = 0 (clean) to
t = 1 (most noisy). The masking ratio αt ∈ [0, 1] is a strictly decreasing function of t, with α0 ≈ 1
and α1 ≈ 0.

The reverse unmasking process inverts the forward noise process q. An optimal form for the poste-
rior of the reverse process matches the true posterior:

pθ(z
l
s | zlt) = q(zls | zlt,xl) =


Cat(zls; z

l
t), zlt ̸= m,

Cat
(
zls;

(1− αs)m+ (αs − αt)x
l

1− αt

)
, zlt = m.

(2)

where step s < t. The posterior is conditioned on unknown xl, so different parameterization tech-
niques can be used to approximate x with a neural network xθ(zt, t). We used the substitution-
based (SUBS) parameterization approach described in Sahoo et al. (2024). In this parameterization
design, the unmasked tokens remain unchanged during the reverse diffusion, and the clean input
is not masked. Assuming that the forward noise process is applied independently throughout the
sequence, the training objective of xθ, approximated by the negative ELBO, is formulated as

LNELBO = Eq

∫ 1

0

α′
t

1− αt

L∑
l=1

log
〈
xl
θ

(
z1:Lt , t

)
,xl

〉
dt, (3)

where xθ
l is a predicted value of l-th token, l = 1, L. This objective is a weighted average of

masked language modeling (MLM) losses across diffusion timesteps.

3.2 MODEL ARCHITECTURE

At each timestep t, the model receives the masked ligand sequence together with an embedded
protein sequence and a timestep embedding, and predicts per-position logits over a vocabulary of
size K. We adopt the log-linear noise schedule proposed by Sahoo et al. (2024). As the backbone,
we use a Transformer decoder with a cross-attention layer for conditioning Vaswani et al. (2017)
(Figure 1). After the ligand token sequence is embedded, rotary positional embeddings are applied
in the self-attention layer [Su et al. (2024)]. Protein features are obtained from a frozen ESM-2
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model by taking the last hidden-layer representations and projecting them with a linear layer to the
decoder’s hidden size [Lin et al. (2022)]. We concatenate the timestep embedding with the projected
protein embeddings and pass the result to the cross-attention layer. The final linear layer maps
the decoder outputs to logits over the vocabulary, after which we apply the SUBS parameterization.
SUBS ensures the network denoises only masked tokens by passing the logits at unmasked positions
and setting the logit for the mask token m to −∞. Although MDLM originally used a diffusion
Transformer with adaptive layer normalization for timestep conditioning [Peebles & Xie (2022)], we
adopt the architecture above to condition on the full protein sequence. Moreover, the cross-attention
layer directly models interactions between protein and ligand tokens and enables interpretation via
attention maps (see Attention-Based Binding Site Analysis).

To improve generalization and reduce overfitting, we use SMILES augmentation, randomizing
strings while preserving chemical validity as described by Arús-Pous et al. (2019). To reduce re-
dundancy, we cluster highly similar molecules in the training set and sample one representative
per cluster at each epoch, reducing the effective dataset size by a factor of approximately 2.8 (see
Ablation Study for details).

3.3 TRAINING AND INFERENCE SETTINGS

For training, we used the BindingDB database from February 2025, containing 1,167,809 measure-
ments after all cleaning and standardization steps (see Data Preparation for details). By optimizing
the hyperparameter space, we found that the best quality is achieved with learning rate 5 × 10−5,
dropout 0.1, batch size 48, and the following decoder parameters: 8 layers, 8 heads and a hidden
dimension 1,280. During the inference stage, we generated ligand sequences starting from fully
masked sequences of a fixed length (170 tokens), sampling each masked token independently. To
enable the model to adjust some tokens based on their contextual relationships, we used the re-
masking technique introduced in Wang et al. (2025) and nucleus sampling introduced in Holtzman
et al. (2019), both of which significantly reduced the number of invalid ligands generated. We eval-
uated all re-masking options described in Wang et al. (2025), and found that using nucleus sampling
with a threshold of 0.9, the ReMDM-cap scheme with η = 0.1, and 250 sampling steps we achieve
the best performance (see Ablation Study).

4 EXPERIMENTS

4.1 SETUP

To avoid data leakage and ensure a fair comparison with baseline models trained on different
datasets, we did not use a conventional train-test split. Instead, following Liu et al. (2024), we
selected 12 diverse protein targets for the test set, spanning the 7 most common protein families
according to the ChEMBL protein classification [Davies et al. (2015)]. All target sequences from
BindingDB were clustered using CD-HIT [Li & Godzik (2006)] at 60% identity.From the intersec-
tion of the CrossDocked2020 [Francoeur et al. (2020)] and BindingDB datasets, we chose 6 ‘easy’
targets with over 1,000 training examples (ESR1, HCRTR1, JAK1, P2RX3, KDM1A, IDH1), and
6 ‘hard’ targets with few examples (RIOK1, NR4A1, GRIK1, CCR9, FTO, SPIN1). See Table 4
for annotation details. For this table, we consider all protein-ligand pairs in a cluster as training
examples for a target of that cluster.

To assess the overall performance of ProtoBind-Diff, we compared it with three recent generative
models that sample molecules based on 3D protein pockets and have demonstrated strong perfor-
mance: PocketFlow [Jiang et al. (2024)], Pocket2Mol [Peng et al. (2022)], and TargetDiff [Guan
et al. (2023)]. We also added TamGen [Wu et al. (2024)] as a newer model that leverages pre-trained
SMILES embeddings from PubChem [Kim et al. (2025)]. In addition, we selected REINVENT4
[Loeffler et al. (2024b)], a model that generates molecules based on desired chemical properties
without conditioning on protein targets. For each target and model, we generated 1,000 SMILES
strings to evaluate the percentage of unique, diverse, and novel molecules.
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Validity (↑) Uniqueness (↑) Diversity (↑) QED (↑) SAScore (↓) MMD (↓)

BindingDB (refer.) 1.00 ± 0.00 1.00 ± 0.00 0.90 ± 0.08 0.55 ± 0.07 3.14 ± 0.32 0.00 ± 0.00

ProtoBind-Diff 0.72 ± 0.11 0.99 ± 0.03 1.00 ± 0.01 0.58 ± 0.06 2.93 ± 0.33 0.11 ± 0.11
REINVENT4 0.85 ± 0.10 1.00 ± 0.00 0.87 ± 0.13 0.64 ± 0.11 2.32 ± 0.26 0.31 ± 0.17
Pocket2Mol 0.81 ± 0.24 0.45 ± 0.07 0.79 ± 0.10 0.45 ± 0.09 3.94 ± 0.65 0.37± 0.12
PocketFlow 1.00 ± 0.00 0.87 ± 0.04 0.99 ± 0.01 0.54 ± 0.03 2.88 ± 0.27 0.46 ± 0.25
TamGen 1.00 ± 0.00 0.27 ± 0.08 0.87 ± 0.04 0.57± 0.04 3.06 ± 0.42 0.55 ± 0.33
TargetDiff 0.68 ± 0.22 1.00 ± 0.00 1.00 ± 0.00 0.34 ± 0.12 5.19 ± 0.35 0.69 ± 0.25

Table 1: Comparison of general chemical properties for generated molecules across all models.
Each value is the average over 12 test targets. All properties, except validity, are computed after
standardization and duplicate removal. Lower MMD values indicate greater similarity to the Bind-
ingDB reference set and thus better generation quality. Errors represent the values of standard error
of the mean (SEM).

Fraction of Novel Diversity (↑) QED (↑) SAScore (↓) MMD (↓)

ProtoBind-Diff 0.49 ± 0.34 1.00 ± 0.01 0.61 ± 0.05 2.76 ± 0.27 0.18 ± 0.10
REINVENT4 0.84 ± 0.24 0.86 ± 0.14 0.65 ± 0.11 2.29 ± 0.24 0.33 ± 0.17
Pocket2Mol 0.21 ± 0.11 0.89 ± 0.07 0.54 ± 0.09 3.32 ± 0.47 0.37 ± 0.21
PocketFlow 0.82 ± 0.05 0.99 ± 0.01 0.54 ± 0.03 2.84 ± 0.26 0.47 ± 0.26
TamGen 0.25 ± 0.09 0.87 ± 0.04 0.57 ± 0.04 3.04 ± 0.40 0.57 ± 0.33
TargetDiff 0.75 ± 0.15 1.00 ± 0.00 0.35 ± 0.12 5.06 ± 0.34 0.75 ± 0.25

Table 2: Comparison of general chemical properties for generated molecules after applying the
novelty filter at threshold Tsim = 0.5. Values are shown for all generative models and reported
as averages over 12 test targets. Lower MMD values indicate greater similarity to the BindingDB
reference set and therefore better generation quality. The distribution of Tanimoto similarities Tsim

between generated molecules and BindingDB actives is shown in Figure 5.

4.2 PROPERTIES OF GENERATED MOLECULES

During the validation phase, some generated SMILES were found to be invalid or duplicated, as can
be seen in Table 1. These samples were excluded from further analysis. Unlike other methods such
as TamGen and Pocket2Mol, our model demonstrates reasonable diversity and uniqueness scores.
For instance, TamGen produces more than 95% valid molecules, but both uniqueness and diversity
are relatively low. PocketFlow achieves the best performance in terms of validity and uniqueness, but
it predominantly generates molecules with lower molecular weight compared to active compounds
(see Table 1), suggesting a tendency to favor simpler structures. We also observed that validity can be
improved by tuning the parameters of the re-masking sampler during the generation step; however,
this comes at a trade-off against other molecular properties. We prioritize quality of generated
molecules and diversity, since the number of valid molecules can be increased by running more
inference batches.

One of the primary objectives in drug discovery is to generate novel compounds that are structurally
distinct yet retain activity against a given protein target. To assess this, we evaluated model outputs
under a novelty constraint, defining a molecule as novel if its maximum Tanimoto similarity (Tsim)
to any active compound for the same target in BindingDB is less than 0.5. Tanimoto similarity quan-
tifies the overlap between binary molecular fingerprints: a value of 1 denotes identical compounds,
whereas 0 denotes no shared features. We report the fraction of such structurally novel molecules as
the Fraction of Novel value, and evaluate how specific these molecules are to the target (Table 2).

We observe that ProtoBind-Diff and Pocket2Mol tend to generate molecules highly similar to known
actives on ‘easy’ targets, which is reflected in Tanimoto similarity histograms skewed toward 1 (see
Figure 5). Conversely, for ‘hard’ targets, these models generate compounds with lower similar-
ity, shifting histograms toward 0. We interpret high similarity as a potential sign of overfitting.
However, complete dissimilarity may suggest a lack of protein-specific conditioning, an issue par-
ticularly evident in models such as PocketFlow and TamGen (Table 2). Furthermore, unconditional
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Vina (docking score) Boltz-1 (ipTM score) Boltz-2 (binary probability)

BindingDB (active) 3.21 ± 1.40 6.28 ± 1.75 7.78 ± 1.72
ProtoBind-Diff 1.21 ± 0.45 2.30 ± 0.47 3.40 ± 0.91
REINVENT4 1.44 ± 0.51 1.06 ± 0.25 0.52 ± 0.15
Pocket2Mol 5.50 ± 2.20 2.26 ± 0.42 3.07 ± 0.93
PocketFlow 2.40 ± 0.74 1.37 ± 0.26 1.20 ± 0.42
TamGen 0.50 ± 0.25 1.89 ± 0.50 0.82 ± 0.22
TargetDiff 0.49 ± 0.30 1.50 ± 0.22 1.36 ± 0.37

Table 3: Enrichment Factor (EF) analysis of AutoDock Vina (the first column), Boltz-1 (the second
column) and Boltz-2 (the third column) scorers for identifying active molecules above thresholds
compared to randomly selected active molecules from BindingDB. Thresholds used: AutoDock
Vina docking score < –10 kcal/mol, Boltz-1 ipTM score > 0.85 and Boltz-2 affinity probability
binary value > 0.5. Errors represent the values of standard error of the mean (SEM). Data per target
is presented in Tables 7-9.

REINVENT4 model faces challenges in achieving an optimal similarity balance. REINVENT4 also
tends to generate molecules with higher drug-likeness (QED) and lower synthesizability (SAScore)
than reference actives, indicating a preference for chemically simpler compounds (Table 1 and Fig-
ure 6). This may reflect a bias toward general drug-likeness, placing model’s outputs further from
the distribution of known actives.

The performance of a conditional generative model is best assessed by how accurately its gener-
ated molecular distribution recapitulates a ground-truth distribution. To this end, we computed the
Maximum Mean Discrepancy (MMD) across a set of key molecular properties (detailed in Section
Chemical properties). MMD quantifies the divergence between two distributions, where a lower
value signifies a closer match to the properties of real molecules. ProtoBind-Diff consistently out-
performs nearly all competing models across the individual descriptors (Table 6). The sole exception
is REINVENT4, a model that is not target-specific and is explicitly designed to optimize these prop-
erties by construction. Consequently, our model yields an overall distribution of molecular prop-
erties that more closely mirrors that of the reference compounds, even for novel molecules. Mean
molecular property values for each target are shown in Figure 6.

4.3 STRUCTURE-BASED EVALUATION OF GENERATED LIGANDS

In the absence of experimental binding affinity data for the generated molecules, we evaluated their
structural plausibility using two distinct approaches: classical molecular docking with AutoDock
Vina and models Boltz-1/Boltz-2 for biomolecular interaction prediction.

Docking was performed using the standard AutoDock Vina protocol, with the binding site defined
by the position of reference ligands in experimentally determined structures from the Protein Data
Bank (PDB) [Berman et al. (2000)]. All generative models performed well on targets where docking
effectively distinguished active from inactive compounds, for example, ESR1, GRIK1, and CCR9
(Figure 7). However, in most cases, docking exhibited poor discriminatory power. For example,
with targets such as P2RX3, KDM1A, IDH1, RIOK1, NR4A1, FTO and SPIN1, the difference in
the average docking scores between active and inactive molecules was not statistically different.
Notably, for several of these targets, Pocket2Mol and REINVENT4 achieved significantly lower
docking scores than all other models and even true active compounds, e.g., KDM1A, IDH1, RIOK1
and SPIN1.

For all methods, the docking scores of generated compounds varied substantially across targets.
Overall docking performance is summarized in Table 3 using the enrichment factor (EF), which
quantifies whether the concentration of predicted active molecules in the observed set is higher (EF
> 1) or lower (EF < 1) than in the reference set. EF was computed as EF= Cgen

a /Crand
a , where

Cgen
a and Crand

a denote the fractions of active molecules (defined as having a Vina score < −10
kcal/mol) in the generated set and in the random subset of all active molecules from BindingdDB,
respectively.
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Figure 2: Interpretability of ProtoBind-Diff attention. (a) Mean ROC-AUC (± SEM) for binding-
site detection for the eight attention heads of ProtoBind-Diff, averaged over 1,843 annotated se-
quences. Head 8 shows the highest ROC-AUC of 0.72. (b) Predicted pose of a ligand generated
by ProtoBind-Diff (orange) in complex with CCR9 protein (green). The structure was generated
using Boltz-1 model. Inset: Predicted binding interactions between the ligand and amino acid con-
tact residues, based on a 5 Å distance cutoff. (c) Attention weights from head 8 of ProtoBind-Diff,
averaged over ligand tokens and plotted against residue positions in the protein sequence. Atoms in
the molecular graph are colored with intensity proportional to their attention weights. Peaks in the
amino acid sequence align with residues that are in direct contact with the ligand in the predicted
pose, suggesting that the model’s attention mechanism captures spatially relevant interaction signals
from sequence alone.

Based on docking EFs, ProtoBind-Diff ranked below Pocket2Mol and PocketFlow. Notably,
Pocket2Mol exhibited a surprisingly high EF, surpassing even that of the true active molecules. We
attribute this to the fact that both Pocket2Mol and PocketFlow were trained on the CrossDocked2020
dataset, which, although based on crystallographic structures, was heavily augmented (by a factor of
100) with Vina-generated poses. This likely led to overfitting, causing the models to preferentially
generate molecules that score well under Vina. Conversely, the relatively low EF observed for true
actives suggests that the Vina scoring function may not align well with actual binding activity.

To complement docking, we applied the Boltz-1 and Boltz-2, recent open source deep learning
models for protein-ligand structure prediction, to the same sets of generated molecules and targets.
Boltz-1 was used to predict ligand-protein complexes, providing an interface predicted TM-score
(ipTM), a confidence metric that estimates the structural plausibility of the predicted binding inter-
face. Boltz-2 is the next-generation model in the Boltz family, offering improved structural accuracy,
significantly faster performance, and the added capability of binding affinity prediction. Across tar-
gets, the boxplots (Figures 8 and 9) show Boltz-2’s affinity probability yields the strongest separation
between actives and inactives, Boltz-1’s ipTM is second, and both exceed docking. Because both
ProtoBind-Diff and Boltz-2 affinity model were trained on BindingDB, we treat Boltz-2 as poten-
tially biased and use Boltz-1’s ipTM as the primary metric.

For nearly all ‘easy’ targets (ESR1, HCRTR1, JAK1, KDM1A, IDH1, P2RX3), ProtoBind-Diff pro-
duced ipTM score distributions that were comparable to or better than those of structure-based mod-
els, including PocketFlow, Pocket2Mol, and TargetDiff. On ‘hard’ targets, ProtoBind-Diff achieved
the top or near-top ipTM scores for SPIN1, GRIK1, RIOK1, CCR9 and NR4A1. Enrichment re-
sults using Boltz-1 (Table 3) further show stronger discrimination of actives than docking, with
ProtoBind-Diff achieving the highest EF, closely followed by Pocket2Mol.

4.4 ATTENTION-BASED BINDING SITE ANALYSIS

To investigate whether ProtoBind-Diff captures interpretable patterns of protein-ligand interaction,
we analyzed the attention heads in the final decoder layer using 1,843 BioLiP-2 annotated pro-
teins [Zhang et al. (2024a)]. Attention weights were used as unsupervised predictors of binding
site residues (see Attention Visualization and Docking Analysis). Figure 2a presents a bar plot
showing the mean ROC-AUC for each attention head, with the standard errors of the mean (SEM)
across the annotated proteins. Attention head 8 yielded the highest ROC-AUC of 0.716 ± 0.003.
For comparison, a linear classifier trained in a supervised manner on ESM-2 embeddings (using a
similarity-based train/test split) yielded a ROC-AUC of 0.849±0.003. Since ProtoBind-Diff was not
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trained on BioLiP-2 residue labels or other binding pocket data, the strong performance of attention
head 8 indicates that the model independently learns to focus on structurally relevant regions with-
out explicit supervision. This suggests that the model’s attention mechanism encodes biophysically
meaningful patterns.

Figure 2 illustrates a representative case study involving GPCR CCR9, with a ligand generated by
ProtoBind-Diff that achieved a high Boltz-1 ipTM score. The protein-ligand complex was predicted
using the Boltz-1 model based on the CCR9 receptor sequence from PDB entry 5LWE. The pre-
dicted binding pose highlights specific contact residues surrounding the ligand (Figure 2b). We
further extracted attention maps from attention head 8 of the final transformer block, averaging the
weights across all ligand tokens to derive a per-residue weight vector. Remarkably, the attention
profile over the protein sequence (Figure 2c) exhibits distinct peaks at amino acid positions that are
close to the contact residues (Figure 2b) and also captures ligand substructures aligned with these
residues. We further quantified the contributions of individual atoms in the ligand based on their
attention weight values. These results demonstrate that ProtoBind-Diff’s cross-attention mechanism
effectively integrates protein sequence information and ligand structural features, aligning with bio-
physically meaningful interactions that mediate ligand recognition.

5 CONCLUSION AND FUTURE WORKS

We proposed ProtoBind-Diff, a discrete diffusion model designed for ligand generation conditioned
on protein sequences via pre-trained ESM-2 embeddings. Trained on over one million BindingDB
pairs, the model generates valid, drug-like molecules whose physicochemical profiles closely match
those of known actives, while maintaining high novelty and scaffold diversity. On a 12-target bench-
mark spanning frequently and sparsely represented proteins, ProtoBind-Diff attains strong affinity
metrics on Boltz-1 scores and outperforms baselines trained on 3D structures. Furthermore, we
demonstrate that model attention weights align with binding site residues, suggesting genuine ex-
ploitation of sequence context rather than memorization. This represents a paradigm shift from
previous target-aware molecular generation approaches, which rely on 3D structures and pocket se-
lection. Moreover, baselines trained on 3D data often yield docking scores better than those of true
actives, indicating optimization toward the docking objective rather than binding affinity. These re-
sults demonstrate that sequence-only conditioning is a viable and scalable method for ligand design
across the proteome, including targets that lack reliable structures. Looking ahead, we plan to (i) im-
prove the quality of generated molecules by integrating other available ligand–protein datasets con-
taining bioactivity information, such as Papyrus [Béquignon et al. (2023)] (ii) extend conditioning to
protein families or complexes, (iii) try more robust and interpretable molecular representations, such
as SELFIES or SAFE, (iv) include recent approaches such as FlexSBDD and DynamicFlow to the
benchmark, and (v) combine ProtoBind-Diff with reinforcement learning or preference optimiza-
tion using structure-based evaluators such as Boltz-2 as rewards or preference models, in the spirit
of recent work on RL for SDEs and direct preference optimization in SBDD [Zhou et al. (2024a;b);
Cheng et al. (2024)].

DATA AVAILABILITY

All data used in this study are publicly available. Molecule-protein interaction data were obtained
from the BindingDB database (https://www.bindingdb.org), an open-access resource for
binding affinity data. No proprietary datasets were used.
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G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nat. Chem., 4(2):90–98, January 2012.

Esben Bjerrum, Tobias Rastemo, Ross Irwin, Christos Kannas, and Samuel Genheden.
Pysmilesutils – enabling deep learning with the smiles chemical language. June
2021. doi: 10.26434/chemrxiv-2021-kzhbs. URL http://dx.doi.org/10.26434/
chemrxiv-2021-kzhbs.

Xiwei Cheng, Xiangxin Zhou, Yuwei Yang, Yu Bao, and Quanquan Gu. Decomposed direct prefer-
ence optimization for structure-based drug design. arXiv preprint arXiv:2407.13981, 2024.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: large-scale self-
supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885,
2020a.

Sidhant Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: Large-scale self-
supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885,
2020b.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock: Dif-
fusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.

Mark Davies, Michał Nowotka, George Papadatos, Nathan Dedman, Anna Gaulton, Fran-
cis Atkinson, Louisa Bellis, and John P. Overington. Chembl web services: stream-
lining access to drug discovery data and utilities. Nucleic Acids Research, 43:W612,
7 2015. ISSN 13624962. doi: 10.1093/NAR/GKV352. URL /pmc/articles/
PMC4489243//pmc/articles/PMC4489243/?report=abstracthttps:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4489243/.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Jerome Eberhardt, Diogo Santos-Martins, Andreas F. Tillack, and Stefano Forli. Autodock vina
1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical In-
formation and Modeling, 61:3891–3898, 8 2021. ISSN 1549960X. doi: 10.1021/ACS.JCIM.
1C00203/SUPPL FILE/CI1C00203 SI 002.ZIP. URL /doi/pdf/10.1021/acs.jcim.
1c00203.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. J. Cheminform., 1(1):
8, June 2009.

Paul G Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B Iovanisci, Ian Snyder,
and David R Koes. Three-dimensional convolutional neural networks and a cross-docked data set
for structure-based drug design. J. Chem. Inf. Model., 60(9):4200–4215, September 2020.

10

https://dx.doi.org/10.1093/nar/28.1.235
https://dx.doi.org/10.1093/nar/28.1.235
http://dx.doi.org/10.26434/chemrxiv-2021-kzhbs
http://dx.doi.org/10.26434/chemrxiv-2021-kzhbs
/pmc/articles/PMC4489243/ /pmc/articles/PMC4489243/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489243/
/pmc/articles/PMC4489243/ /pmc/articles/PMC4489243/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489243/
/pmc/articles/PMC4489243/ /pmc/articles/PMC4489243/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489243/
/doi/pdf/10.1021/acs.jcim.1c00203
/doi/pdf/10.1021/acs.jcim.1c00203


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a benchmark
for practical molecular optimization. Advances in neural information processing systems, 35:
21342–21357, 2022.

Michael K. Gilson, Tiqing Liu, Michael Baitaluk, George Nicola, Linda Hwang, and Jenny Chong.
Bindingdb in 2015: A public database for medicinal chemistry, computational chemistry and
systems pharmacology. Nucleic Acids Research, 44:D1045–D1053, 2016. ISSN 13624962. doi:
10.1093/NAR/GKV1072,. URL https://pubmed.ncbi.nlm.nih.gov/26481362/.

Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equivariant
diffusion for target-aware molecule generation and affinity prediction. In International Confer-
ence on Learning Representations, 2023.

Jeff Guo, Jon Paul Janet, Matthias R. Bauer, Eva Nittinger, Kathryn A. Giblin, Kostas Papadopou-
los, Alexey Voronov, Atanas Patronov, Ola Engkvist, and Christian Margreitter. Dockstream: a
docking wrapper to enhance de novo molecular design. Journal of Cheminformatics, 13:1–21,
12 2021. ISSN 17582946. doi: 10.1186/S13321-021-00563-7/METRICS. URL https://
jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00563-7.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuan-Jing Huang, and Xipeng Qiu.
Diffusionbert: Improving generative masked language models with diffusion models. In Pro-
ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 4521–4534, 2023.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-
trained transformer for computational chemistry. Machine Learning: Science and Technology, 3
(1):015022, 2022.

Yuanyuan Jiang, Guo Zhang, Jing You, Hailin Zhang, Rui Yao, Huanzhang Xie, Liyun Zhang,
Ziyi Xia, Mengzhe Dai, Yunjie Wu, Linli Li, and Shengyong Yang. PocketFlow is a data-and-
knowledge-driven structure-based molecular generative model. Nat. Mach. Intell., 6(3):326–337,
March 2024.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture, 2024.
URL https://arxiv.org/abs/2302.03596.

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Ben-
jamin A Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, and Evan E Bolton.
PubChem 2025 update. Nucleic Acids Res., 53(D1):D1516–D1525, January 2025.
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Target Samples
(train set)

Dataset
type Protein class UniProt

ID PDB L1 family L2 family

ESR1 4483 easy Nuclear receptor P03372 2r6w Transcription
factor

Nuclear
receptor

HCRTR1 12691 easy GPCR O43613 4zjc Membrane
receptor Family A GPCR

JAK1 12455 easy Kinase P23458 3eyg Enzyme Kinase

P2RX3 5140 easy Ion channel P56373 5svl Ion channel Ligand-gated
ion channel

KDM1A 4622 easy
Protein-protein
interaction
target

O60341 5lhg Epigenetic
regulator Eraser

IDH1 5177 easy Non-kinase
enzyme O75874 4umx Enzyme Oxidoreductase

RIOK1 15 hard Kinase Q9BRS2 4otp Enzyme Kinase

NR4A1 28 hard Nuclear receptor P22736 3v3q Transcription
factor

Nuclear
receptor

GRIK1 335 hard Ion channel P39086 3fv1 Ion channel Ligand-gated
ion channel

CCR9 82 hard GPCR P51686 5lwe Membrane
receptor Family A GPCR

FTO 37 hard Non-kinase
enzyme Q9C0B1 4zs3 Enzyme Oxidoreductase

SPIN1 19 hard Protein-protein
interaction target Q9Y657 5jsj Epigenetic

regulator Reader

Table 4: Table with annotation of chosen proteins for the test set. For each target, we listed the
number of training samples available, the type of dataset (easy/hard), the protein family name, the
UniProt identifier, the PDB code, and the first- and second-level family names (L1 and L2) according
to the ChEMBL classification.

A DATA PREPARATION

We used the BindingDB database from February 2025, containing 3,010,313 measurements, of
which 1,311,211 unique compounds, 9,524 unique targets from various assays and families. Ligands
were presented in SMILES format and proteins were presented in the form of amino acid sequences.
Before training, the data was cleaned using the following procedure:
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1. Sequences lacking a UniProt ID (according to the EMBL-EBI database), with unknown
organism source, or belonging to very rare clusters were removed,

2. Cytochrome P450 and Albumin were excluded from the analysis due to their non-specific
binding to all ligands,

3. All invalid SMILES and SMILES containing very rare tokens (occurring fewer than 100
times in the original dataset) were removed.,

4. Only sequences with lengths between 50 and 1,500 amino acids and ligands containing
between 10 and 80 atoms were retained. Very short sequences do not form stable binding
pockets, while very long protein chains and large ligands were excluded to ensure the model
fit into GPU memory.

For the purpose of replicating the true data distribution during training, only active instances were
chosen. Binary labels were subsequently assigned based on the following criterion: a molecule was
classified as active if at least one of the Ki, Kd or EC50 values exhibited an activity below 1 µM.
The resulting dataset included 1,167,809 samples.

Protein sequences were encoded using a pre-trained protein language model. ESM-2 embeddings,
characterized by 650 million parameters, 33 model layers, and a dimension of 1,280, were selected
for this purpose. The SMILES-formatted ligand sequences were converted to tokens using the PyS-
MILESUtils library [Bjerrum et al. (2021)].

Model ESM-2 model Tsim Validity QED SAScore MMD

No rand. + no sampl. 650M 1.0 0.81±0.04 0.49±0.05 2.68±0.10 0.23±0.06
No rand. + sampl. 650M 1.0 0.51±0.01 0.48±0.00 2.93±0.01 0.35±0.06
Rand. + sampl. 650M 1.0 0.70±0.04 0.49±0.05 2.84±0.08 0.19±0.05
Rand. + sampl. 150M 1.0 0.87±0.00 0.62±0.00 2.52±0.01 0.48±0.08

Model ESM-2 model Tsim
Fraction
of Novel QED SAScore MMD

No rand. + no sampl. 650M 0.5 0.45±0.11 0.55±0.04 2.50±0.07 0.40±0.10
No rand. + sampl. 650M 0.5 0.78±0.04 0.50±0.00 2.85±0.02 0.45±0.10
Rand. + sampl. 650M 0.5 0.50±0.09 0.51±0.05 2.76±0.07 0.28±0.08
Rand. + sampl. 150M 0.5 0.87±0.03 0.63±0.00 2.45±0.02 0.55±0.11

Table 5: Chemical properties of generated molecules from models with different parameters and
protein embeddings. Properties are shown for all generated molecules (the first block) as well as for
those that passed through the novelty filter with Tanimoto threshold Tsim = 0.5 (the second block).
All values were calculated separately for all targets from the separate test set (CA12, DHODH, GLS,
BRD4, TEK, GCKR, PRSS2, TACR3) and then averaged. Errors represent the values of standard
error of the mean (SEM).

B ABLATION STUDY

To find optimal parameter values, the models were tested on a subset of targets not included in our
benchmark, and consisted of both common and rare proteins from BindingDB with the following L2
families annotation: CA12 (Lyase), DHODH (Oxidoreductase), GLS (Hydrolase), BRD4 (Reader),
TEK (Kinase), GCKR (Enzyme), PRSS2 (Protease), and TACR3 (Family A G protein-coupled re-
ceptor). A different test set was chosen so as not to interfere with the results of comparison of our
model with baselines. For each model 1,000 molecules were generated for each target and the results
were then averaged between them.

Model parameters. We compared model configurations by their ability to generate novel, unique
molecules whose properties resemble those of known actives for the same protein. To isolate the
effect of SMILES randomization and molecular sampling strategies, we trained models with and
without these modifications. After filtering for valid molecules, we computed the Tanimoto similar-
ity between each generated compound and all known actives for the corresponding target. Metrics
were reported both over all valid molecules and over the subset with maximum Tanimoto similarity
less than 0.5. As shown in Table 5, all models, except the one trained with sampling only, exhibit no
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Figure 3: Maximum Tanimoto similarity between generated molecules and BindingDB actives for
targets CA12, BRD4, GLS, and PRSS2, across different model and protein embedding configura-
tions. The red dashed line denotes the novelty threshold Tsim = 0.5.

Figure 4: Properties of generated molecules obtained with different parameters of the sampler.
All values were calculated separately for all targets (CA12, DHODH, GLS, BRD4, TEK, GCKR,
PRSS2, TACR3) and then averaged.

significant differences in QED, SAScore, or MMD (computed from multiple chemical descriptors;
see Section Chemical properties). However, without sampling the model strongly overfits to train-
ing set scaffolds and fails to produce novel molecules (Figure 3). We also evaluated two pre-trained
ESM-2 embeddings: one with 650M parameters (33 layers and dimention 1280) and another with
150M parameters (30 layers and dimention 640). The smaller embedding tended to yield more valid
molecules but with higher MMD (Table 5). To strike a balance between quality and computational
efficiency, we chose embeddings with an intermediate size having 650 million parameters. Finally,
uniqueness and diversity did not differ significantly across models.

Sampler parameters. For this experiment, we chose a model with an ESM-2 embedding having
650 million parameters, enabled randomization, and clustering of molecules. To generate samples
for all targets, two sampler parameters (η, ReMDM-cap scheme; p, nucleus parameter; or number of
steps) were fixed, while the third variable was varied. Subsequently, validity, uniqueness, and MMD
metric were calculated for each generated sample. Notably, only the validity metric is affected by the
increase in the number of sampling steps (Figure 4). As the time required for generation increases
proportionally with the number of sampling steps, we selected an optimal value of 250 to facilitate
rapid generation without compromising validity. In Figure 4, it can be seen that in order to generate
molecules with the desired properties, it is better to choose lower values of η and higher values of
nucleus sampling parameter p.

C CHEMICAL PROPERTIES

To estimate the quality of generated molecules, we computed the following metrics: (1) Validity,
which is the proportion of valid molecules among all generated candidates; (2) Uniqueness, which
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is the fraction of unique SMILES strings in their canonical form; (3) FracNovel, which is the the
fraction of molecules with Tanimoto similarity less than 0.5 to the reference molecules; (4) Diversity,
which is the number of unique clusters using Taylor-Butina [Taylor (1995)] clustering algorithm with
Tanimoto similarity cutoff 0.2 divided by the total number of samples.

In addition, we computed the following molecular descriptors: (5) Molecular weight; (6) LogP
(octanol-water partition coefficient); (7) Number of rotatable bonds; (8) TPSA (topological polar
surface area); (9) Number of rings; (10) QED (quantitative estimate of drug-likeness) [Bickerton
et al. (2012)]; (11) SAScore (synthetic accessibility score) [Ertl & Schuffenhauer (2009)]; (12)
Number of heavy (non-hydrogen) atoms; (13) Number of aromatic rings; (14) CSP3 (fraction of
sp3-hybridized carbons) [Lovering et al. (2009)]. Descriptors (5)-(14) were used to compute the
Maximum Mean Discrepancy (MMD) between the generated and reference sets. The closer these
distributions are to those of known actives, the better the generation quality. All metrics and de-
scriptors, except validity, were computed after standardization and duplicate removal, using the
open source cheminformatics library RDKit (https://www.rdkit.org).

Tsim Weight LogP Rot.
Bonds TPSA Rings QED SA

Score
Heavy
Atoms

Arom.
Rings Fsp3 Avg.

ProtoBind-Diff 1.0 0.09 0.08 0.09 0.13 0.12 0.11 0.11 0.10 0.18 0.11 0.11
REINVENT4 1.0 0.15 0.08 0.30 0.24 0.64 0.20 0.71 0.17 0.26 0.30 0.31
Pocket2Mol 1.0 0.37 0.25 0.39 0.27 0.33 0.34 0.51 0.39 0.54 0.36 0.37
PocketFlow 1.0 0.48 0.22 0.27 0.78 0.75 0.16 0.28 0.49 0.70 0.40 0.46
TamGen 1.0 0.73 0.52 0.29 0.20 1.03 0.15 0.29 0.81 1.22 0.26 0.55
TargetDiff 1.0 0.29 0.29 0.56 0.39 0.55 0.61 1.32 0.29 1.88 0.77 0.69

Tsim Weight LogP Rot.
Bonds TPSA Rings QED SA

Score
Heavy
Atoms

Arom.
Rings Fsp3 Avg.

ProtoBind-Diff 0.5 0.18 0.10 0.12 0.21 0.28 0.17 0.19 0.20 0.25 0.14 0.18
REINVENT4 0.5 0.16 0.09 0.32 0.25 0.69 0.21 0.79 0.17 0.29 0.32 0.33
Pocket2Mol 0.5 0.45 0.25 0.38 0.29 0.34 0.26 0.32 0.42 0.63 0.38 0.37
PocketFlow 0.5 0.52 0.22 0.28 0.82 0.81 0.16 0.28 0.53 0.72 0.40 0.47
TamGen 0.5 0.76 0.53 0.29 0.21 1.11 0.14 0.29 0.84 1.28 0.27 0.57
TargetDiff 0.5 0.31 0.30 0.61 0.39 0.80 0.60 1.26 0.32 2.07 0.85 0.75

Table 6: Values of Maximum Mean Discrepancy (MMD) metric from generated molecules to ref-
erence molecules from BindingDB. All metrics are calculated for both all generated molecules (the
first block) and those that passed through the novelty filter (the second block). The results are dis-
played for all generative models, with each number representing the average performance over 12
test targets. Lower MMD value means greater similarity to the reference dataset BindingDB and
indicates better generative quality. The Tanimoto similarity (Tsim) between molecules generated by
all models and active molecules from BindingDB can be seen in Figure 5.

D DOCKING EVALUATION

For each benchmark target and generative model, we generated 1,000 molecules and applied a con-
sistent selection protocol to obtain the final set. After filtering for valid molecules, we computed the
Tanimoto similarity between each generated compound and all known actives for the same target.
Only molecules with a maximum similarity below 0.5 were retained, ensuring structural novelty
with respect to known ligands. From this subset, we randomly sampled up to 100 unique molecules
per target. We used DockStream [Guo et al. (2021)], a molecular docking wrapper for Python, for
the automated preparation of targets, ligand embedding, and docking. The processed crystal struc-
tures and the reference ligand for pocket detection were taken from CrossDocked2020 [Francoeur
et al. (2020)] dataset. The PDB accession codes for each test target are presented in Table 4. The
grid box size was 20 X 20 X 20 Å centered on the position of the center of mass of the reference lig-
and. The docking scores of the generated molecules were obtained for each target using AutoDock
Vina version 1.2.5 [Eberhardt et al. (2021)] with default parameters unless otherwise specified.
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Figure 5: Maximum Tanimoto similarity between molecules generated by different models across
12 benchmark protein targets and known active molecules from BindingDB. Red dashed line indi-
cates the novelty threshold (Tsim = 0.5).
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Figure 6: The main chemical properties of generated molecules for all targets separately from the
test dataset grouped by generative models.
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E BOLTZ EVALUATION

Boltz scores were calculated using the publicly available Boltz-1 and Boltz-2 pre-trained mod-
els, which integrate ligand preparation, pose generation, and scoring into a reproducible workflow.
Boltz-1 was trained on all PDB protein-ligand complexes released before September 30, 2021, with
a resolution of at least 9 Å, as described by Wohlwend et al. (2024). Boltz-2 was trained on PDB
structures with a cutoff of June 1, 2023, as well as artificial samples and binding affinity data (in
particular, PubChem, ChEMBL, and BindingDB) [Passaro et al. (2025)].

To make predictions with both models, we used PDB protein sequences as inputs. In the case of
Boltz-1 model, each ligand was scored based on the interface TM-score (ipTM) for ligand-protein
complex, which estimates the confidence of interfacial structural alignment. We observed that active
molecules consistently show higher ipTM scores than inactive ones (see Figure 8), indicating that
the Boltz-1 interface score can discriminate binders from non-binders. For Boltz-2, we used the
binary affinity probability, which distinguishes actives from inactives well (see Figure 9). Statistical
comparisons and molecules preprocessing were carried out in an analogous manner to that employed
for docking protocols.

F ATTENTION VISUALIZATION AND DOCKING ANALYSIS

From the set of canonical protein sequences of the training set, we selected those that have binding
site annotations in BioLiP-2 [Zhang et al. (2024a)], which resulted in 1843 sequences. For each
selected sequence, we passed an active molecule through the model and extracted the attention
weights of the final layer of the decoder. For every generated ligand, attention scores were averaged
over ligand tokens to obtain a per-residue weight vector. Canonical sequences were segmented into
non-overlapping 3-residue windows; each window was assigned the maximum weight among its
residues. This step allows us to treat near-misses as successful binding site detections. A window
was labeled ‘positive’ if any of its residues overlapped a BioLiP-annotated binding site. We then
computed per-protein ROC-AUC from the window-level labels and scores. The resulting mean
ROC-AUCs across all selected proteins are reported in Figure 2a.

To compare our results to a baseline, we trained a simple logistic regression on ESM-2 embeddings,
using a train-test split based on protein sequence dissimilarity. Protein sequences were clustered
using CD-HIT [Li & Godzik (2006)] at 60% identity, and clusters were randomly divided into train
and test sets. After training the model to predict binding site residues, we evaluated its performance
on the test set using ROC-AUC, following the same windowing procedure. To interpret the attention
weights of our model, we sampled molecules for the C-C chemokine receptor type 9 (CCR9) protein.
Subsequently, a representative molecule with a high Boltz-1 ipTM score for ligand-protein complex
was selected. We focused on attention head 8 since it showed the best ROC-AUC values across all
the analyzed heads. We identified peaks in the resulting profile and highlighted the corresponding
values on the molecule using RDKit; these were then compared to the residues in contact with the
ligand’s docked pose, which was visualized using PyMOL [Schrödinger & DeLano].
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Figure 7: Docking scores of molecules generated by different models for 12 benchmark protein tar-
gets. Each boxplot shows the distribution of docking scores (lower is better). Statistical differences
between selected model pairs were tested using the two-sided Mann-Whitney U test. Significance
thresholds for adjusted p-values (Bonferroni correction): p < 0.05 (*), < 0.01 (**), < 0.001 (***),
< 0.0001 (****).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 8: Boltz-1 scores of molecules generated by different models across 12 benchmark protein
targets. Each boxplot shows the distribution of Boltz-1 scores for generated ligands targeting a
specific protein, grouped by generative model (higher is better). Targets are categorized as ‘easy’
(top two rows) or ‘hard’ (bottom two rows) based on training set coverage. Statistical comparisons
were performed using two-sided Mann-Whitney U tests. Significance thresholds for adjusted p-
values (Bonferroni correction): p < 0.05 (*), < 0.01 (**), < 0.001 (***), < 0.0001 (****).
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Figure 9: Boltz-2 binary affinity probability scores of molecules generated by different models
across 12 benchmark protein targets. Each boxplot shows the distribution of Boltz-2 scores for gen-
erated ligands targeting a specific protein, grouped by generative model (higher is better). Targets
are categorized as ‘easy’ (top two rows) or ‘hard’ (bottom two rows) based on training set cover-
age. Statistical comparisons were performed using two-sided Mann-Whitney U tests. Significance
thresholds for adjusted p-values (Bonferroni correction): p < 0.05 (*), < 0.01 (**), < 0.001 (***),
< 0.0001 (****).
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BindingDB (active) 18.4 1.7 2.1 0.5 0.6 1.1 6.9 0.0 1.0 0.5 0.0 5.5
ProtoBind-Diff 4.9 1.2 0.4 0.0 0.1 0.9 2.9 0.0 0.0 0.2 0.0 3.8
REINVENT4 4.9 2.1 1.0 0.0 0.1 3.1 1.0 0.0 0.0 0.0 0.0 5.2
Pocket2Mol 25.4 1.2 0.0 0.0 3.3 1.4 19.2 0.0 1.0 1.3 8.2 4.9
PocketFlow 7.8 0.5 2.8 0.0 0.3 3.3 7.0 0.0 0.0 1.1 4.9 1.2
TamGen 0.0 0.0 0.0 0.7 0.0 0.0 2.9 0.0 0.0 0.0 0.4 1.9
TargetDiff 4.0 0.3 0.2 0.0 0.1 0.7 0.0 0.0 0.0 0.0 0.2 0.5

Table 7: Enrichment factors for each target based on results of docking. *Indicates targets with
a significant difference (p < 0.05) in Vina docking scores between active and random subsets of
BindingDB (see Figure 7).
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ProtoBind-Diff 2.8 2.8 1.3 1.0 1.0 3.2 1.6 6.6 4.4 1.5 1.0 0.5
REINVENT4 0.8 2.5 0.2 0.6 1.1 0.7 0.5 0.5 3.2 1.4 1.0 0.2
Pocket2Mol 2.4 3.2 1.1 1.8 0.7 0.6 1.2 1.0 5.0 4.3 4.5 1.3
PocketFlow 2.8 1.3 0.5 0.9 1.3 1.0 1.5 1.0 3.6 1.7 0.0 0.8
TamGen 1.5 2.1 1.0 0.7 1.2 0.0 0.8 1.5 1.4 4.0 7.0 1.5
TargetDiff 2.4 2.2 1.3 1.6 1.3 2.7 1.4 0.0 1.9 2.0 0.0 1.2

Table 8: Enrichment factors for each target based on Boltz-1 ipTM scores. *Indicates targets with
a significant difference (p < 0.05) in Boltz-1 ipTM scores between active and random subsets of
BindingDB (see Figure 8).
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BindingDB
(active) 19.9 14.7 13.1 10.3 2.9 2.0 1.3 2.1 11.3 4.3 0.0 11.3

ProtoBind-Diff 12.0 5.2 2.1 0.9 2.0 1.1 1.1 2.7 8.3 1.3 1.8 2.2
REINVENT4 1.3 0.2 0.0 0.3 0.9 0.4 0.2 0.6 1.9 0.5 0.0 0.0
Pocket2Mol 12.2 0.4 0.7 1.2 0.6 1.9 0.9 2.5 6.6 4.4 0.5 4.9
PocketFlow 4.9 0.2 0.0 0.5 1.4 0.2 0.0 0.8 4.0 1.0 0.2 1.1
TamGen 0.2 0.3 0.1 0.7 1.2 0.6 0.2 0.7 1.4 3.1 0.2 1.1
TargetDiff 2.8 0.3 0.3 1.7 0.3 1.0 0.6 0.9 5.1 1.4 0.2 1.9

Table 9: Enrichment factors for each target based on Boltz-2 binary affinity probability scores.
*Indicates targets with a significant difference (p < 0.05) in Boltz-2 scores between active and
random subsets of BindingDB (see Figure 9).
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