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Abstract

While LLMs excel at generating code snippets, they often fall short in agentic pro-
gramming scenarios that require sustained, iterative interaction with a development
environment. This shortcoming persists even in massive-scale models with explicit
reasoning capabilities such as Claude Sonnet-4.5-Thinking and GPT-5-Codex, sug-
gesting a fundamental gap in metacognitive capabilities: the ability to self-assess,
deliberate, and correct course during a complex task. Energy-Based Transformers
(EBT) have recently been proposed as a method of improving scaling performance
on complex tasks that require thinking and deliberation. EBTs perform multiple
forward passes at inference while modeling uncertainty and validating predictions,
in an attempt to mimic human System 2 thinking, which is related to deliberate
and effortful metacognitive reasoning. In this work we propose a framework for as-
sessing the metacognitive reasoning capabilities of EBTs for code generation tasks.
Our core contribution is a feedback-aware inference mechanism that dynamically
scales the model’s "thinking depth" (number of forward passes) based on external
feedback. Our proposed framework supports an optional human-in-the-loop mode
where code engineers can interact with the model and control the degree of for-
ward pass reasoning through feedback. This proposed approach has the potential
to allow LLMs to interact with human programmers as another member of the
code engineering team, and dramatically improve the speed and quality of human
generated code by interacting with an LLM agent.

1 Introduction

In human psychology, metacognition is a notoriously difficult concept to concretely define and
measure [2,|17,[38,[37]], with significant debate over whether or not Artificial Intelligence (AI) models
will ever be capable of metacognition as it exists in humans. Some research argues against this
position [34,[3]], and other research argues in favor [7} |16]]. Outside of the debate over whether Al
systems could theoretically exhibit features of higher level consciousness like metacognition, there
is also considerable discussion over whether or not current Al systems already exhibit this type of
reasoning. Again, with some arguing in favor [6} 28] |12} |20]], and others arguing against [5} 36} 44].

One common feature of metacognition as it is described in psychology and cognitive science is the
process of reasoning over one’s thought processes [ 18 |1]], such as by assessing what information
is known and what is not known[45]], or what previously reasoned pieces of information are incor-
rect [39]. Generative Artificial Intelligence (GAI) models have been proposed as one method to equip
Al systems with metacognitive reasoning [[11}|50], using methods such as Large Language Models
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(LLMs) to repeatedly take in as input previous model outputs [30], in an attempt reason over what
information is and is not known by the model [11].

Using LLMs with hundreds of billions to trillions of parameters can enable these systems to generate
output while performing reasoning over previously generated information [48]]. However, it can
be difficult for models that reason over their previous outputs to determine when information they
previously generated is in fact incorrect [47, (29} 25]]. As a result, reasoning LLMs still lag behind
humans in tasks that require reasoning over their thought processes while interacting with complex
environments, such as when writing code in an agentic setting [49] or assessing long inputs of code
that may have errors [43]], making current LLMs difficult to integrate directly on programming teams
as an independent agent. A related finding within the domain of human identification of Al generated
code has shown that Al written code is easier to identify as malicious compared to code written by
humans [32]].

Energy based transformers have been proposed as one method of achieving so-called ‘System 2’
thinking [20]], or the slow and deliberate thinking that humans perform when task demands complex
and thoughtful reasoning [|24, |14, [23| |15]], which has been related to metacognition [42, 33| |41} [8]. If
EBTs can truly exhibit system 2 thinking, they should be able to produce improved metacognitive
reasoning such as accurately reasoning over previous output through a deep understanding of un-
certainty, thoughtfully validating their previous and subsequent outputs, and dynamically allocating
additional computational resources to outputs that are identified as being highly relevant.

In this work, we present a method for assessing the metacognitive reasoning capabilities of EBTs.
This is done to answer the following research questions:

RQI. Do scaling improvements of EBTs extend to agentic code generation, and if so why.

RQ2. Do the proposed features of EBTs exhibit metacognitive reasoning when generating code.

RQ3. Can feedback on code generation be used to improve outputs at inference time with EBTs.
However, it is important to note that this work is merely an outline of the process of assessing EBTs
for metacognitive capabilities in software generation. We do not perform experiments testing the

effectiveness of our proposed approach because we hope to develop our reasoning assessment method
more thoroughly before performing costly experimentation.

2 Metacognitive Reasoning Assessment

2.1 EBT Algorithms

Algorithm 1: TRAINING Algorithm 2: INFERENCE
Input: Context z, Target y, EBM Ejy(z, 7)) Input: Context x, EBM Ejy(x, 7))
Hparams: Steps N, Step Size «, Loss J(+) Hparams: Steps N, Step Size o, Samples M
Sample gy ~ N(0, I); forjzl,..A.,Mdo
fori=0,...,.N—1do Sample o ; ~ N(0,1);

| D1 < G — Vg, Eo(x, 9i); fori =0,...,N —1do A
L+ J(in,y): | Gt < Pig — oV,  Eo(@,3i);
return £, update Fy; return §* = argmin; Fy(z, 9N ;);

The EBT training algorithms above are replicated from [20]], to allow us to describe the features
of EBT models that make them useful for testing metacognitive reasoning. Algorithm [I] details
how EBTs are trained to predict the output y given the context x by learning to minimize the
energy Ey(x,y) which correlates to the inverse of the likelihood of the output with respect to the
input. At inference time Algorithm [2]is used to allow for dynamic allocation of optimization of the
energy minimization process, allowing for flexibility in the amount of compute resources given to
determining any given output relative to the input.

2.2 Coding with EBTs

Three important features of EBTs make them a good target for our proposed method of assessing
metacognitive reasoning in code generation. These are Dynamic Compute Allocation, Modeling



Uncertainty and Prediction Verification. In the remainder of this section we describe each of these
model features and how they are related to our goal of assessing metacognitive reasoning in code
generation. After this, we describe how we can use EBTs in a code generation task to assess
metacognitive reasoning while integrating either human programmers or additional reasoning models.

2.3 Modeling Uncertainty

Writing quality code can be difficult for both humans and Al, partially due to the challenge of when
to spend more temporal and reasoning resources and when to go with one’s first instinct. Much of
the time spent writing code is so-called boilerplate or code that humans have written many times
in the past, only requiring small changes. However, important parts of programming decisions
require more thought when writing, with significant negative impacts to code quality arising from
incorrect solutions at critical points [35] |21} [40]. This is an important aspect of metacognitive
reasoning, since a high degree of awareness over uncertainty allows humans to allocate more
computational and temporal resources to these critical points in decision making. In EBTs this
issue is addressed by training a model (Algorithm|[I)) to assign a scalar energy value to inputs which
corresponds to their likelihood [20]. EBTs leverage probabilistic Energy-Based Models (EBMs) that
define a probability distribution using a Botlsmann distribution py(z) = exp(—Fy(x))/Z(6) where
Z(0) = [ exp(—Ey(x))dx [20,9,13]. This allows for a deeper understanding of when the model is
more or less sure about its output. Though importantly, this probability distribution is not the typically
LLM formulation of uncertainty, as the probabilities do not require normalization and energies are
measured in arbitrary units making direct comparison of different model energy predictions difficult
[26]

2.4 Prediction Verification

EBTs allow for prediction verification by using the forward passes of the model at inference time
to effectively replicate a GAN discriminator by producing an energy verification [20]]. Verifying
predictions is another important quality of agents with metacognition abilities [46]. When humans
attempt to verify their reasoning, they typically try to think about their answers using a different
reasoning method than the one that they used to generate their answers [22]. This allows humans to
determine the accuracy of their answers by confirming them in multiple different ways, while also
allowing them to flexibly reason about their previous behaviors and thought processes [[10]]. In our
proposed assessment pipeline, prediction verification is not only a method of generating next token
predictions but also a way for the model to reassess previously generated output based on feedback
from external sources.

2.5 Dynamic Compute Allocation

EBTs can control the number of energy optimization steps that they use at inference to find the best
solution [20]. In real-world problems, there is often a challenge of how much compute resources to
allocate to finding a solution, since spending too many resources on problems that are simple or less
impactful can take up resources that would be better allocated elsewhere [27,|31]. We propose that
this dynamic compute allocation feature of EBTs is highly related to metacognitive reasoning. As a
result, EBTs can think harder about their responses depending on a variety of features of the task
at hand. For instance, humans can respond to both low certainty and high impact of decisions by
thinking harder about a problem [19]: which they can control through metacognition. When humans
are less confident in their answers or they know their answers are highly impactful, they can allocate
more cognitive resources to different areas of a decision making problem [4].

3 Metacognition Assessment Pipeline

Our proposed approach to assessing the metacognitive reasoning in code generation of Energy-
Based Transformers is shown in Figure|l|using two examples of possible model output, one of the
correct next token prediction and the other of the incorrect next token prediction. Importantly, in
this example the output is a function call ‘.iterrows()’ but in reality would be a single token. This
illustrative example is shown to describe how our proposed method could be used to generate code in
a collaborative and agentic context. In both the correct and incorrect next token prediction examples,
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Figure 1: Diagram of our proposed assessment pipeline for testing metacognitive reasoning capability
in code generation. Top: Both blue regions show next token prediction for software generation in
which the context is the existing generated code which is input into the EBT to make a prediction of
the energy landscape. Middle: In pink, this energy is minimized through multiple forward passes
to find the lowest energy and highest probability next token. Left White: In this correct next token
prediction example, the energy optimization process began near the global minimum of the correct
response ‘.iterrows()’. This leads to the correct next token which is inserted into the code before being
approved by either a human programmer or a separate LLM model. Right White: In this incorrect
next token prediction example, the energy optimization begins near a local minimum of the incorrect
but plausible sounding next token ‘.rows()’. This leads to the incorrect next token prediction which is
inserted into the code before being rejected by either the human programmer or separate LLM model.
After rejection, the optimization step is repeated in an attempt to find the true global minimum.

the code context is the same ‘for row in data’, but the location of the initial predicted token within the
energy optimization step is different. In the correct next token prediction example, the correct next
token ‘.itterows()’ corresponds to both the local and global minimum, meaning that the process of
repeated forward passes is able to find the correct solution.

In the incorrect next token prediction example, there is a local minimum ‘.rows’ that corresponds
to an incorrect but reasonably likely next token to predict. As a result of this local minimum, the
forward passing of the model is not able to find the correct next token to predict. Here, we suggest an
intervention using human approval which, when denied, will loop back to the energy optimization
step and produce additional model forward passes in an attempt to find the global minimum and thus
the correct response. In this assessment, updating the next token prediction to the correct token after
receiving feedback represents correct reasoning, while failure represents incorrect reasoning.

Algorithm [3] describes our approach to integrating a human into the pipeline of metacognition
assessment. This is done by replicating the inference time algorithm of the standard EBT approach
and augmenting it with a human programmer. This human programmer is assumed to take the
form of a function H(-) that takes as input the output of the model §* and categorizes it as either
correct H(§*) = 1 or incorrect H (§*) = 0. After the output §* is generated, the human determines
if it is correct, if it isn’t H(§*) # 1 then the number of steps is increased by the step increase
hyperparameter N <— N + n;. If it is correct then the output is accepted. We only perform one
check for the accuracy of the output and use a binary categorization because we assume that human
programmers may not be able to give highly accurate measure of confidence for their categorization,
and that querying them for accuracy categorization will be costly.

The method for integrating a similar approach as the human in the loop method but instead using an
LLM to categorize code accuracy is described in Algorithm [ Here, instead of only categorizing
output as correct or incorrect we assume a range of possible confidence scores for the output of
the main code generation method. In this example, we show two different thresholds ¢y, %; for
code generation confidence. This allows us to use the same number of separate step increase hyper
parameters ng, n to increase the number of steps for the energy minimization process, depending on
the confidence threshold. In application a range of possible sizes of thresholds and hyper parameters



is possible. This is done with the assumption that LLM categorization will be less costly than human
categorization, but still costly enough to necessitate avoiding categorization at every step of the
energy minimization process.

Algorithm 4: LLM ASSISTED METACOGNI-
Algorithm 3: HUMAN IN THE LOOP  TION ASSESSMENT

METACOGNITION ASSESSMENT Input: Context 2, EBM Ey(x, ) LLM M(-)
Input: Context 2z, EBM Ejy(x, ) Human Hparams: Steps NV, Step Size o, Samples M
H() Step Increases ng, n1, Thresholds ¢, t1
Hparams: Steps IV, Step Size o, Samples M, for j=1,...,Mdo
Step Increase n Sample jjo ; ~ N(0, I):
forj=1,...,M do fori=0,...,N —1do
Sample :l)07j ~ N(O, I); ‘ yi-ﬁ-Lj — yi,j — avf,m. Eg(x, gi,j);
fori =0,...,N —1do R return §* = argmin; Eq(z, iy ,;);
| i1 < Gig — Vi, Eo(@,9i5); if M(y) < to then
return §* = argmin; Ey(z,9n,;); N < N +ng
if H(y*) # 1 then goto: 1
N N+n else if M (j*) < t; then
goto: 1 N N+ny
goto: 1

4 Discussion

In this work, we propose a method for assessing the metacognitive reasoning capabilities of EBTs
using two different possible methods. In the first, a human programmer is used to verify or reject
possible responses that EBTs generate. In the second, an LLM is used to assess the accuracy of
responses, either the same model or a separate one trained specifically to verify code. In both of these
methods, ‘passing’ the assessment corresponds to correctly identifying the next token to generate
after recieving feedback. Alongside these proposed assessment methods we describe two algorithms
that slightly edit the inference time algorithm of EBTs, to account for this external feedback.

The three central capabilities of EBTs that we are interested in assessing with respect to metacognitive
reasoning capability are predicting uncertainty, validating their predictions, and allowing for dynamic
allocation of compute resources. EBTs are unique from other LLM methods in that these three
features are inherent to their functioning, rather than estimated or calculated separately as an external
functionality. This is important as it means that other LLM approaches do not allow for a better
understanding of where and why there may be issues in generated code. This fits in well with human-
in-the-loop applications because it can direct programmers attention to areas of the code where the
EBT model is potentially more fragile, where energy was not spent, and help users understand why
models made mistakes, at least in relation to energy.

There are some limitations to the specific method of assessing metacognition that we describe in this
work, though we believe that through simple alterations these can be accounted for. One issue to
using the LLMs M (-) and Humans H (-) to check the code generated by the main model is that this
would significantly slow down the LLM generated coding process. However, we believe that this
issue can be accounted for by only querying the human or LLM to check the response on occasion.
This could be controlled through the introduction of an additional hyperparameter that controls when
to check with the Human or LLM based on the final energy at the last step of energy optimization
E¢(x,yn ;). Another option would be to generate full code blocks, with additional information on
the amount of energy used on each token, to draw programmer attention to specific areas.
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