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ABSTRACT

Synthetic training data generation with Large Language Models (LLMs) offer a
promising solution to the challenge of obtaining large, labeled datasets for train-
ing classifiers. When rapid model deployment is critical, such as in classifying
emerging social media trends or combating new forms of online abuse tied to cur-
rent events, the ability to generate training data is invaluable. While prior research
has examined the comparability of synthetic data to human-labeled data, this study
introduces a novel sampling algorithm, based on the maximum coverage problem,
to select a representative subset from a synthetically generated dataset. Our results
demonstrate that training a classifier on this contextually sampled subset achieves
superior performance compared to training on the entire dataset. This “less is
more” approach not only improves model accuracy but also reduces the volume
of data required, leading to potentially more efficient model fine-tuning.

1 INTRODUCTION

In recent years, the remarkable advancement in large language models (LLMs) from companies like
OpenAI Achiam et al. (2023) or Google Comanici et al. (2025); Team et al. (2025) have dramatically
expanded the capability to generate extensive synthetic textual data. Such synthetic data promises
substantial utility for training machine learning models, especially in domains where human-labeled
data are prohibitively costly, inaccessible due to privacy or ethical constraints, or impractical to ac-
quire at scale Bunte et al. (2021); Ding et al. (2022). Consequently, synthetic data generation has
quickly become an appealing alternative for tuning models for various downstream tasks, includ-
ing text classification, sentiment analysis, relation extraction, and information retrieval Meng et al.
(2022).

However, the mere abundance of synthetic data does not guarantee superior model performance.
Increasing evidence demonstrates that naively utilizing large synthetic datasets introduces critical
pitfalls: notably, redundancy and imbalance Gandhi et al. (2024); Liu et al. (2024); Long et al.
(2024). LLM-generated samples frequently exhibit redundancy by over-representing certain com-
mon patterns or phrases, potentially saturating datasets with semantically repetitive information.
Consider hate speech detection, where nuanced distinctions between offensive, sarcastic, or context-
dependent language are crucial: when prompted to generate training examples, an LLM may pro-
duce many straightforwardly toxic utterances, yet underrepresent borderline, coded, or indirect
forms of harm Gandhi et al. (2024); Hao et al. (2024). Such skewed representation not only dilutes
the informative value of synthetic datasets but actively harms model generalization and robustness
by obscuring valuable minority cases. Consequently, models trained on these synthetic corpora risk
becoming overly specialized on frequent cases, compromising predictive accuracy on more nuanced
real-world scenarios.

Motivated by these gaps, we propose Adaptive Coverage Sampling (ACS), a novel method that effec-
tively curates synthetic text datasets by carefully balancing redundancy, representational diversity,
and computational efficiency. ACS uniquely frames synthetic data downsampling as a structured
maximum-coverage optimization problem defined over a graph representation of the data. Specifi-
cally, synthetic text samples are first embedded into a latent semantic space, forming nodes within a
complete graph where edges represent semantic similarity. Our approach leverages a binary search
to systematically determine the optimal similarity threshold for edge pruning, thus inducing a sparser
subgraph. Subsequently, a greedy maximum-coverage approximation algorithm selects the subset
of k samples maximizing representational coverage, where coverage is defined as the proportion of
the dataset “covered” by the selected subset and its similarity-neighbors.
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Figure 1: Overview of the ACS pipeline. (1) Prompt an LLM to generate a large pool of synthetic
samples under user-specified constraints. (2) Samples are embedded into a semantic space and
connected into a complete, weighted similarity graph. (3) Perform a binary search over edge-weight
threshold to induce a subgraph. (4) Greedy max-cover procedure then iteratively selects the k nodes
(highlighted in dark blue) that together cover desired fraction of the remaining graph (uncovered
nodes depicted as white). (5) Selected subset is returned for downstream model training.

A key strength of ACS lies in its use of a theoretically grounded binary search procedure to tune
the pruning threshold, automating the trade-off between dataset compactness and semantic cover-
age. This allows the method to systematically filter out repetitive or redundant samples that might
otherwise hinder model performance.

We evaluate ACS across several NLP tasks—including sentiment classification, relation extraction,
and named entity recognition—and find that models fine-tuned on ACS-selected subsets match or
outperform those trained on full synthetic datasets typically with just 10–30% of the original corpus.
These results highlight the promise of principled data selection in synthetic data regimes: by iden-
tifying compact yet diverse training sets, ACS improves generalization while significantly reducing
training compute cost. In doing so, our approach moves beyond heuristic-driven methods, offering
a scalable and theoretically informed path toward more effective use of synthetic data.

2 RELATED WORK

Large Language Models. LLMs, built upon the transformer architecture introduced by Vaswani
(2017), have transformed language processing, achieving unprecedented performance across a
broad spectrum of tasks including language modeling, translation, classification, and question-
answering Brown (2020); Rae et al. (2021); Taylor et al. (2022). These models leverage massive-
scale pretraining on extensive datasets to encode rich linguistic and factual knowledge, enabling
fluent and contextually relevant text generation Team et al. (2024). Consequently, the sophistica-
tion of LLM-generated content increasingly blurs the line between synthetic and authentic human-
written text Hartvigsen et al. (2022); Sahu et al. (2022); Tang et al. (2023); Ye et al. (2022). This
indistinguishability raises an intriguing question: under what conditions and to what extent can
LLM-generated data replace or complement human-annotated examples for training machine learn-
ing models?

Synthetic Training Data Generation. High-quality datasets crucially underpin the performance
and generalization capabilities of modern machine learning systems. However, acquiring diverse
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and representative labeled data from human annotators is frequently costly, labor intensive, and
fraught with privacy or ethical challenges Kurakin et al. (2023); Gilardi et al. (2023); Hosking et al.;
Singh et al.. Moreover, human-generated annotations inherently carry biases or inconsistencies, po-
tentially limiting their effectiveness in certain contexts. To overcome these limitations, synthetic
data generation has emerged as a promising alternative, aimed at artificially populating underrepre-
sented data regions and mitigating biases or gaps in existing datasets Gandhi et al. (2024); Liu et al.
(2024).

To address data scarcity in specialized or emerging domains, researchers frequently employ data
augmentation techniques to enhance model robustness and accuracy Ding et al. (2020); Wei & Zou
(2019). Moreover, semi-supervised learning Miyato et al. (2016), multi-task learning Glorot et al.
(2011), unsupervised pretraining Devlin (2018); Raffel et al. (2020), and few-shot learning Deng
et al. (2020); He et al. (2021) constitute alternative frameworks for learning from limited labeled
examples. However, while effective in certain contexts, these approaches typically presume access
to at least some high-quality human-generated examples as seed data, limiting their broader appli-
cability.

Leveraging LLMs for Synthetic Data. LLMs offer a compelling approach to synthetic data gen-
eration due to their fluency, versatility, and capacity to mimic diverse linguistic styles and content
structures Ding et al. (2022). Recent studies have demonstrated promising outcomes leveraging
prompt-based methods (zero and few-shot) for generating training data for NLP tasks Long et al.
(2024). The effectiveness of synthetic datasets produced by these models depends critically on task
characteristics, including the complexity of label spaces Ding et al. (2022), the inherent subjectivity
or ambiguity of the task Li et al. (2023), and crucially, the diversity and representativeness of gener-
ated samples Hao et al. (2024). Though the models are promising, these factors can impede naively
employed models trained on synthetic datasets, potentially exacerbating redundancy and bias. Thus,
underscoring the necessity of methods to carefully select or filter synthetic samples to maximize
utility and minimize detrimental impacts.

Data Filtering and Downsampling. Filtering datasets to identify informative subsets for training
constitutes a widely explored solution to the challenges posed by redundancy and imbalance, where
conventional data selection techniques frequently rely on heuristic-based strategies and sample re-
weighting schemes Albalak et al. (2024); Coleman et al. (2019); Maharana et al. (2023); Paul et al.
(2021); Pleiss et al. (2020); Sorscher et al. (2022); Toneva et al. (2018); Xia et al. (2022); Zheng
et al.. These methods largely revolve around assigning differential importance to data points based
on criteria such as correctness, informativeness, or influence on model parameters Guo et al. (2022).

Heuristic approaches typically leverage training dynamics or statistical properties of samples. For
instance, dataset cartography Swayamdipta et al. (2020) identifies and emphasizes data points clas-
sified as difficult or ambiguous through repeated training runs. Influence functions quantify individ-
ual data sample contributions by approximating how their exclusion alters model parameters Koh
& Liang (2017). Other methods, such as EL2N scoring Paul et al. (2021), forgetting scores Toneva
et al. (2018), and prototypicality assessments Sorscher et al. (2022), attempt to prioritize or prune
samples based on specific diagnostic measures. Recent studies have further explored the utility
of LLM-based raters to directly score or filter synthetic samples based on quality heuristics. No-
tably, Chen et al. (2023) proposed AlpaGasus, demonstrating that a curated, high-quality synthetic
subset significantly improves downstream model performance over full synthetic datasets. How-
ever, their approach entails repeated queries to an LLM to iteratively refine sample sets, yielding a
black-box rating metric which necessitates a computational (and potentially monetary) overhead in
addition to careful threshold tuning.

In contrast, our ACS methodology provides a principled, computationally efficient, and explainable
solution for optimal synthetic subsets without extensive manual tuning or iterative refinement. By
formulating the selection problem as a graph-based maximum coverage optimization and leveraging
an adaptive binary search to systematically adjust similarity thresholds, ACS ensures theoretical
rigor and practical efficacy. Crucially, ACS consistently demonstrates superior performance using
significantly smaller synthetic subsets compared to prior filtering methods, thereby establishing a
new benchmark for efficient and effective synthetic data utilization.
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3 PRELIMINARIES & METHODOLOGY

In this section, we detail our comprehensive pipeline for curating a representative subset from large
synthetic datasets, specifically designed to improve model training efficiency and downstream task
performance. We begin by describing the generation and preprocessing of synthetic textual data,
then present multiple baseline downsampling methods employed for comparative evaluation. Sub-
sequently, we introduce and rigorously define our novel ACS method, highlighting its theoretical
foundations and practical implementation. Finally, we describe our approach for fine-tuning the
BERT model with the selected subset.

3.1 SYNTHETIC DATA GENERATION

We utilize a synthetic corpus of text generated by GPT-3.5 Achiam et al. (2023). The corpus em-
ployed is based on established prompt templates tailored to specific downstream tasks (e.g. senti-
ment analysis), as detailed by prior work Ding et al. (2022). Each dataset is balanced across labels
to ensure sufficient diversity, carefully selecting an equal number of data points per label. While
synthetic datasets provide vast training material, redundancy frequently arises as similar semantic
content is generated repeatedly Long et al. (2024).

3.2 DOWNSAMPLING METHODS.

To mitigate redundancy and maximize representational coverage, we explore several distinct down-
sampling techniques. Our goal is to select a subset of size k < N from an initial corpus of size N ,
preserving data diversity while enhancing computational efficiency.

Baseline Methods. We benchmark our novel ACS approach against widely used benchmark meth-
ods. Random sampling henceforth refers to uniformly at random selecting k samples from the cor-
pus. EL2N Paul et al. (2021) ranks samples by the average L2 distance between model predictions
and true labels across early training checkpoints, emphasizing persistently challenging examples.
Forgetting scores Toneva et al. (2018) count transitions between correct and incorrect model pre-
dictions per sample during training, emphasizing samples near the decision boundary. Prototypical-
ity Sorscher et al. (2022) which computes class-specific embeddings and prioritizes samples closest
to their class centroids, capturing representative class examples. LLM rater (AlpaGasus) Chen
et al. (2023) employs GPT-3.5 to assign quality ratings to each synthetic input-output pair, retain-
ing only the highest ranked samples, thereby enhancing subset quality through language-model-
informed filtering. Each baseline is implemented to rank the dataset according to the respective
criteria, selecting the top k samples for training.

Adaptive Coverage Sampling. ACS introduces a graph-based max-coverage sampling technique
to systematically select representative subsets. Samples are first embedded into a latent semantic
space using Gecko embeddings Lee et al. (2024), though ACS is broadly compatible with alter-
native embedding methods.We construct a similarity graph where each node represents a sample,
and edges indicate cosine similarity exceeding a dynamic threshold. This threshold is optimized
via a binary search to achieve a user-specified graph coverage level. Coverage formally quantifies
representational breadth:
Definition 3.1 (Coverage). Let G = (V,E) be a graph with vertex set V , edge set E, and self-loop
for all vertices. A subset H ⊆ V of size |H| = k achieves coverage c ∈ [0, 1] if∣∣∣∣∣⋃

i∈H

Ni

∣∣∣∣∣ = c · |V |

where Ni is the neighborhood of vertex i ∈ H (ie. i covers the elements of Ni, including itself).

A coverage of 1.0 thus ensures every node is either selected or directly adjacent to a selected node,
while lower coverage levels strategically exclude less representative samples. We leverage the fol-
lowing theorem guaranteeing monotonicity of an exact solution to the max cover problem with
respect to similarity thresholds on the pruned graph, validating our subsequent binary search proce-
dure.
Theorem 3.2. Let D be a dataset, and for each similarity threshold si, construct a similarity graph
Gi(V,Ei), where V represents the data points and (u, v) ∈ Ei if and only if the cosine similarity
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between u and v exceeds si. Let Hi ⊆ V be the set of k samples selected by the max coverage
algorithm on Gi, and let ci denote the coverage achieved by Hi. For any two thresholds si and sj
such that sj < si, the similarity graph Gj(V,Ej) has a coverage cj ≥ ci when maximally covered
by k samples.

Proof. Consider two similarity thresholds si and sj such that sj < si. The corresponding similarity
graphs Gi(V,Ei) and Gj(V,Ej) are constructed by adding edges between data points whose cosine
similarity exceeds si and sj , respectively. Since sj < si, it follows that Ei ⊆ Ej ; that is, Gj

includes all the edges from Gi, possibly with additional edges.

Now, let Hi ⊆ V be the set of k samples selected by the max coverage algorithm on Gi, which
achieves coverage ci. The coverage ci is defined as the proportion of vertices in V that are adjacent
to at least one vertex in Hi. Since Ei ⊆ Ej , the set of neighbors of each vertex in Hi in Gi is a
subset of the neighbors of the same vertex in Gj . Therefore, the coverage achieved by Hi in Gj is
at least as large as the coverage in Gi. More formally, if Hj is the set of k samples selected by the
max coverage algorithm on Gj , we have:

cj =

∣∣∣∣∣∣
⋃

v∈Hj

Nj(v)

∣∣∣∣∣∣ and ci =

∣∣∣∣∣ ⋃
v∈Hi

Ni(v)

∣∣∣∣∣ ,
where Nj(v) and Ni(v) denote the neighborhoods of v in Gj and Gi, respectively. Since Ei ⊆ Ej ,
we have Ni(v) ⊆ Nj(v) for all v ∈ V , implying that the coverage in Gj is at least as large as the
coverage in Gi. Therefore, cj ≥ ci.

The monotonicity of coverage allows us to find the largest similarity threshold that achieves a cov-
erage equal to, or greater than, the target coverage. This thresholding ensures that the max coverage
component of ACS focuses on the most relevant and diverse samples to achieve the target coverage.
We note that the max coverage problem is NP-hard Feige (1998), and that our implementation uses
the greedy approximation Hochbaum (1996) which is not guaranteed to be monotonic. However,
we show that, in practice, this monotonicity persists (see Section 4.1).

Leveraging this result, we conduct a binary search on the similarity threshold for edge pruning and
execute the greedy max cover algorithm. Specifically, we sequentially select the node of highest
degree, add the selected node and all of its neighbors to the set of “covered nodes” and repeat until
k nodes are selected. We subsequently compute the coverage of the full dataset from the selected
subset and, based on this coverage’s deviation from the target, adjust the threshold in accordance
with the binary search until convergence. The k selected points from the max cover execution on
the optimally pruned graph are finally returned.

To ensure scalability and enhance representational diversity, we impose a maximum nearest neigh-
bors constraint per node, significantly reducing computational complexity and ensuring effective
coverage. Specifically, we define a strict constraint dmax, a bound ensuring sufficient but limited
graph connectivity, derived via the extended pigeonhole principle: dmax > cN/k. This constraint
further improves computational tractability and sample diversification, analgous to scalability tech-
niques like Locality-Sensitive Hashing (LSH) with limited bucket sizes Shekkizhar et al. (2023).

3.3 COMPARATIVE EXPERIMENTS

After generating and downsampling the synthetic dataset to obtain k training samples, we employ
two comparative measures. First, we fine-tune a BERT model Devlin (2018) on the selected subset
and report the F1-scores as a function of the number of subsamples selected for model training1.
We use the BERTbase, uncased model (108 million parameters) and fine-tune it for multiple epochs
(the exact number is defined for each respective experiment in Section 5). The model’s weights
are mostly initialized using pre-trained weights, while the parameters of the final classification layer
(2048 units) are randomly initialized. Specifically, the weights of this layer are initialized from a nor-
mal distribution with a mean of 0 and a standard deviation of 0.02, following standard practices for
fine-tuning transformer-based models.Devlin (2018); Dodge et al. (2020); Lan (2019); Liu (2019).

1We here use F1, rather than accuracy, to remain robust to potential class imbalances in the test sets.
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Figure 2: (L) Coverage of data increases with k or when decreasing the similarity threshold. Colors
correspond to the fixed similarity thresholds depicted in the legend. (R) Model accuracy as a function
of coverage level for the sentiment analysis tasks. Performance peaks at a coverage level below 1.0.

The fine-tuning process uses a batch size of 16, a learning rate of 2 × 10−5, and a dropout rate of
0.1. All experiments are conducted on a high-performance GPU cluster with 16GB of RAM, with
n = 5 distinct random seeds used for model initialization. Details of the implementation, including
all hyperparameters, are provided in the supplementary material, along with the training codes.

Second, we compute the self-bilingual evaluation understudy (or SelfBLEU) metric as a quantifi-
able measure of subset diversity Zhu et al. (2018). Thismetric computes word similarity between
sentences or documents within a dataset. A higher SelfBLEU score indicates a dataset with higher
self-similarity, thus the reciprocal is used as a diversity measure.

4 EMPIRICAL ANALYSIS OF ACS

In this section, we empirically validate critical aspects of our sampling method. Specifically, we first
verify the empirical monotonicity of coverage as a function of similarity threshold for the greedy
approximate algorithm for the max coverage problem, aligning with the theoretical guarantees pro-
vided by Theorem 3.2. We then systematically identify and analyze the coverage parameter value,
demonstrating that coverage below 1.0 consistently yields better performance in downstream tasks.

4.1 EMPIRICAL VALIDATION OF MONOTONICITY

A central assumption is ACS is that coverage monotonically increases or remains constant as the
similarity threshold decreases, as formally established for the exact max coverage solution. To
confirm this assumption’s practical validity under the greedy approximation algorithm Hochbaum
(1996), we conducted detailed empirical experiments across varying similarity thresholds.

We focus initially on the synthetic textual data generated to emulate the SST2 sentiment analysis
task Socher et al. (2013). This synthetic dataset comprises short movie reviews labeled as positive
or negative sentiments. Additional validation on other datasets, is provided in the supplementary
materials.Each text sample was first embedded into a latent semantic space using Gecko embed-
dings Lee et al. (2024). Subsequently, similarity graphs were constructed for multiple fixed sim-
ilarity thresholds, after which the greedy max-coverage approximation algorithm was executed to
select subsets of varying sizes k. As illustrated in the left-hand plot of Figure 2, coverage con-
sistently exhibits monotonic behavior: as the similarity threshold decreases (adding more edges),
coverage either remains constant or strictly increases, validating our core theoretical assumption in
practical scenarios. Notably, the maximum possible coverage (full coverage, c = 1) is achieved
quickly at lower thresholds, while all plots achieve a minimal coverage of c = k/N.

4.2 DETERMINING THE OPTIMAL COVERAGE LEVEL

While full coverage (c = 1) intuitively seems optimal, in practice, we demonstrate that lower cov-
erage values yield better model performance. We hypothesize that this is due to the exclusion of
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redundant or noisy samples. To systematically investigate this, we varied the coverage parameter
across a broad range of values, maintaining a fixed subset size of k for the synthetic SST2 dataset
(with analogous findings for additional tasks reported in the Appendix A.1).

For each coverage setting, ACS selected a subset of exactly k samples which achieved an effec-
tive coverage of the target. Using these subsets, we fine-tuned BERTbase models and evaluated their
accuracy on a human-annotated test set. The resulting accuracy trends are presented on the right
Figure 2. Notably, accuracy significantly improves as the target coverage increases from lower lev-
els, reflecting greater representational completeness. However, accuracy consistently peaks before
reaching full coverage, with performance slightly deteriorating at or near the full coverage (c = 1).
These results robustly support our assertion that carefully selecting subsets with moderate coverage
offers superior model generalization and training efficiency.

5 FINE-TUNING FOR DOWNSTREAM TASKS

In this section, we rigorously evalute the performance of ACS against several established base-
line downsampling methods on multiple NLP benchmarks. Specifically, we assess sequence-level
tasks (sentiment analysis and relation extraction) and a token-level task (named entity recognition),
demonstrating ACS’s consistent advantages in terms of model performance and diversity of selected
subsets. These evaluations compliment one another: improved performance corresponding to higher
diversity in the selected subsets and vice versa. We note that, while our analysis explores perfor-
mance across a range of subset sizes (k), in a practical application, the optimal value of k could be
determined efficiently by monitoring model performance on a held-out validation set.

5.1 SEQUENCE-LEVEL TASKS

Sentiment Analysis. We first evaluate our approach on the binary sentiment classification task
using the synthetic corpus from Ding et al. (2022), designed to emulate the SST2 dataset Socher
et al. (2013). This dataset contains N = 6, 000 synthetic movie reviews, equally split between
positive and negative sentiments. Following the prior literature Ding et al. (2022), we fine-tune
a BERTbase model for 32 epochs (with early stopping) on subsets selected by each downsampling
method.

Figure 3 compares the performance (F1-score) of ACS against the baseline methods, averaging re-
sults over five random initializations of the BERT classification layer weights. ACS consistently
outperforms alternative methods across all subset sizes, with particularly notable improvements at
smaller subset sizes. Remarkably, ACS achieves performance comparable to training on the full
synthetic dataset (black dashed line) using only approximately 10% of the data, underscoring its
effectiveness in isolating highly informative samples. We note that while ACS performs the best, all
methods (apart from random) yield aggressively pruned datasets which can match performance on
the full dataset. This suggests that for the simpler task of positive or negative sentiment detection,
only a few meaningful examples are needed to train a sophisticated classifier to effectively catego-
rize the inputs. To further elucidate why ACS in particular achieves superior performance, Figure
3 further plots diversity (inverse SelfBLEU score) across subset sizes. ACS-selected subsets con-
sistently exhibit greater diversity compared to baseline methods, strongly correlating with improved
downstream task performance. This enhanced diversity seems to mitigate redundancy and better
equips models to generalize effectively, particularly when training data sizes are limited.

Relation Extraction. Relation extraction, exemplified by the FewRel dataset Han et al. (2018),
represents a significantly more challenging classification task due to its large set of 64 distinct rela-
tion labels. The task involves predicting the labeled relation between two marked entities within a
sentence, necessitating both greater diversity and precision in the synthetic data generation process.
For instance, the sentence, “Chester Alan Arthur, 21st President of the United States, died of this
disease on November 18, 1886,” could be labeled with the relation “head of government” to capture
the connection between Arthur and his role as President. This increased complexity necessitates
careful selection of diverse and informative examples. We employ the synthetic corpus of relation
extraction data from Ding et al. (2022), uniformly sampling N = 12, 800 examples spread across
all relation labels in accordance with the FewRel dataset. The BERTbase model is fine-tuned over 3
epochs as in the prior work.
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20 0.8108 0.8227 0.8149 0.8246 0.7848 0.8368
30 0.8079 0.8195 0.7919 0.8163 0.8142 0.8335
40 0.8238 0.8223 0.8168 0.8319 0.7737 0.8312
50 0.8148 0.8195 0.8262 0.8267 0.8049 0.8425
60 0.8148 0.8360 0.8350 0.8227 0.8220 0.8388
70 0.8099 0.8195 0.8268 0.8209 0.8125 0.8368
80 0.8139 0.8275 0.8298 0.8304 0.8305 0.8357
90 0.8122 0.8409 0.8357 0.8251 0.8170 0.8452

100 0.8176 0.8176 0.8176 0.8176 0.8176 0.8176

Figure 3: (L) F1 scores (top) and SelfBLEU diversity (bottom) for SST2 as a function of subset size,
comparing downsampling methods. Horizontal dotted line represents model performance when
trained on all available data (no pruning). (R) Tabulated F1 results corresponding with plots.
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30 0.3486 0.3512 0.3444 0.3487 0.3391 0.3732
40 0.3494 0.3568 0.3566 0.3494 0.3579 0.3744
50 0.3595 0.3520 0.3677 0.3489 0.3619 0.3730
60 0.3546 0.3647 0.3597 0.3609 0.3648 0.3684
70 0.3634 0.3542 0.3682 0.3665 0.3640 0.3749
80 0.3512 0.3618 0.3695 0.3647 0.3663 0.3654
90 0.3689 0.3681 0.3604 0.3628 0.3676 0.3785

100 0.3729 0.3729 0.3729 0.3729 0.3729 0.3729

Figure 4: (L) F1 scores (top) and SelfBLEU diversity (bottom) for FewRel as a function of subset
size, comparing downsampling methods. Horizontal dotted line represents model performance when
trained on all available data (no pruning). (R) Tabulated F1 results corresponding with plots.

Figure 4 presents the F1-score results on the synthetic FewRel dataset, clearly demonstrating that
ACS consistently surpasses the baseline methods at nearly all data subsampling proportions. Similar
to the sentiment analysis task, ACS achieves competitive or superior performance using just 30% of
the available synthetic data. Figure 4 provides additional support by showing that subsets selected
by ACS, again, obtain substantially lower SelfBLEU scores, indicating greater representational di-
versity. This enhanced diversity is particularly valuable for relation extraction, which benefits from
nuance and varied training examples to better capture the complex semantic relations between enti-
ties.

5.2 TOKEN-LEVEL TASK: NAMED ENTITY RECOGNITION

We lastly validate ACS on the token-level named entity recognition (NER) task using a synthetic
corpus generated to match the AI domain split of CrossNER Liu et al. (2021). This task involves
labeling each token in a sentence with one of 14 distinct entity classes or a null identifier. For
example, on the sentence: “We evaluated BERT using the SQuAD benchmark and compared its
performance with BiDAF on multiple F1-score metrics.” a classifier would have to mark the relevant

8
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10 0.1820 0.1850 0.1905 0.1789 0.1917 0.2502
20 0.3122 0.3283 0.3142 0.3394 0.3202 0.3851
30 0.3289 0.3459 0.3366 0.3523 0.3526 0.3830
40 0.3483 0.3547 0.3434 0.3696 0.3674 0.3806
50 0.3675 0.3593 0.3538 0.3747 0.3699 0.3820
60 0.3745 0.3764 0.3721 0.3736 0.3867 0.3921
70 0.3673 0.3788 0.3745 0.3727 0.3860 0.3945
80 0.3731 0.3814 0.3785 0.3763 0.3812 0.3958
90 0.3745 0.3787 0.3809 0.3781 0.3788 0.3877

100 0.3842 0.3842 0.3842 0.3842 0.3842 0.3842

Figure 5: (L) F1 scores (top) and SelfBLEU diversity (bottom) for CrossNER as a function of subset
size, comparing downsampling methods. Horizontal dotted line represents model performance when
trained on all available data (no pruning). (R) Tabulated F1 results corresponding with plots.

tokens (BERT, SQuAD, BiDaF, F1-score) with the labels (Tool, Dataset, Tool, Metric) respectively.
The synthetic corpus used here contains N = 3, 000 sentences, each carefully generated to reflect
diverse entity mentions. We crucially highlight for this token-level classification task, we still deploy
ACS on the sentence embeddings to isolate the most representative samples. The selected sentences
are subsequently parsed back into their tokenization for classification. We fine-tune a BERTbase
model specific to the NER task Rajapakse et al. (2024) over 50 epochs, applying early stopping to
prevent overfitting.

Figure 5 illustrates ACS’s performance on the token-level classification task. Using only 20% of
the original synthetic dataset, ACS achieves accuracy comparable to training on the entire dataset.
Furthermore, ACS consistently selects subsets with notably greater diversity, as evidenced by lower
SelfBLEU scores compared to baselines. This confirms ACS’s capability to effectively capture a
wide representation of the dataset, even for precise token-level predictions.

6 DISCUSSION

Our experiments convincingly demonstrate that ACS effectively distills large synthetic datasets into
smaller, highly representative subsets, significantly enhancing model training efficiency and accu-
racy. Several distinctive strength set ACS apart from existing downsampling and filtering methods.
First, ACS reliably identifies remarkably small subsets—often around 20% or even less of the orig-
inal synthetic dataset—that allow models to achieve performance matching or surpassing that of
models trained on the full dataset. This capability underscores the potential efficiency gains and
practical utility of ACS in real-world scenarios, especially when computational resources or training
time are limited. Second, unlike many alternative methods that require fitting multiple models or
extensive hyperparameter tuning to gauge sample importance, ACS does not depend on repeated
training iterations. Instead, our method leverages a straightforward binary search on a similarity
graph. Third, ACS does not rely on label information during the subset selection phase, making it
broadly applicable to both supervised and unsupervised scenarios. This feature notably enhances
its versatility, enabling effective deployment in diverse data scenarios without requiring preliminary
labeling efforts. Lastly, ACS explicitly focuses on identifying optimal collections of data points
rather than individual samples with maximal individual contribution. This collection oriented ap-
proach ensures that the selected subsets comprehensively represent the overall dataset diversity and
structure, rather than emphasizing potentially redundant or outlier points that individually maximize
some criterion. As such, ACS offers a robust, efficient, and versatile approach to synthetic data
distillation, delivering substantial improvements in downstream task performance through highly
informative and diverse subsets.
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Figure 6: Empirical results for the FewRel dataset. (L) Coverage of data increases with k or when
decreasing the similarity threshold. Colors correspond to the fixed similarity thresholds depicted
in the legend. (R) Model accuracy as a function of coverage level for the sentiment analysis tasks.
Performance peaks at a coverage level below 1.0.

Figure 7: Empirical Results for the CrossNER dataset. (L) Coverage of data increases with k or
when decreasing the similarity threshold. Colors correspond to the fixed similarity thresholds de-
picted in the legend. (R) Model accuracy as a function of coverage level for the sentiment analysis
tasks. Performance peaks at a coverage level below 1.0.

A OMITTED RESULTS

We here present the empirical analysis of Section 4 on the FewRel and CrossNER datasets. We
further present a sensitivity analysis to the max degree parameter for all of the datasets.

A.1 EMPIRICAL ANALYSIS OF ACS

We begin with the empirical ACS validation of Section 4 for the remaining datasests. In both in-
stances, we observe consistent monotonicity in the coverage as a function of k-selection with de-
creasing similarity thresholds, as well as improved downstream task performance with coverage
values less than 1.0. Figure 6 presents the empirical results for the FewRel dataset and Figure 7 for
CrossNER. In both instances, the greedy approximation to max coverage exhibits monotonicity as
needed for the binary search procedure. We further see that full coverage is non-optimal in most
instances, further motivating our usages of coverage = 0.9 throughout the experimental results.

B SCALABILITY OF ADAPTIVE COVERAGE SAMPLING

In large-scale settings, the computational cost of optimizing the similarity threshold τ for ACS can
become prohibitive due to the O(n2) complexity of evaluating pairwise similarities. Though we
can speed up such computations with methods such as Locality Sensitive Hasing (LHS) or hop-
spanner methods Carey et al. (2022); Epasto et al. (2021); Halcrow et al. (2020), we further propose
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a scalable variant of ACS that conducts threshold selection on a small random subset of the data.
For a desired downsampling value of k ≪ N , we uniformly at random select a small subgraph of
N ′ < N nodes and run the ACS procedure on the reduced instance. Once the optimal edge similarity
threshold τ∗ is identified on this subset, it is reused to construct the similarity graph and perform
ACS on the full dataset. This approach significantly reduces computational cost while maintaining
effective coverage.

Formally, let G = (V,E) be the similarity graph constructed on the full dataset, where edges are
defined between points with similarity exceeding a threshold τ . Let V ′ ⊂ V denote a uniformly
random subsample of size N ′, and let G′ = (V ′, E′) be the induced subgraph. For any subset
S ⊂ V , we define the normalized coverage as the fraction of nodes in V that are neighbors of some
node in S under threshold τ . We proceed to show that threshold tuning on the subsample generalizes
well to the full dataset, in the following proposition.
Proposition B.1. Let S0 be a fixed subset of nodes. Let U0 = {u ∈ V |∃v ∈ S0 : sim(u, v) ≥ τ}
be the set of all nodes in V covered by S0. The true coverage of S0 is C(S0;V ) = |U0|

|V | . Let V ′ ⊂ V

be a uniform random sample of N ′ nodes drawn without replacement. The sample coverage is
C(U0 ∩ V ′;V ) = |U0∩V ′|

|V ′| . Then, with probability at least 1− δ:

|C(S0;V )− C(U0 ∩ V ′;V ′)| ≤ ε

where ε =
√

ln(2/δ)
2N ′ .

Proof. We have a population of size |V | = N containing a sub-population of “covered” nodes of
size |U0|. The true proportion of covered nodes is p = |U0|

N = C(S0;V ). We draw a random
sample V ′ of size N ′ without replacement and calculate the sample proportion of covered nodes,
which is p̂ = C(U0∩V ′;V ′). From here, we can apply Hoeffding’s inequality for sampling without
replacement to bound the deviation of the sample proportion from the true value:

Pr [|p̂− p| ≥ ε] ≤ 2 exp(−2N ′ε2).

To ensure that the probability of the error exceed ε is no more than a failure probability of δ, we
equate the right hand side of the above equation to δ and solve for ε to obtain the desired result.

This proposition establishes that threshold selection on a small sample yields an accurate coverage
estimate on the full dataset, with the accuracy improving for larger datasets.

To validate this claim empirically, we conducted a series of experiments across the datasets used in
the main text (sentiment analysis, relation extraction, and named entity recognition). In each setting,
we selected a random subset of the data at varying proportions, ranging from very small to nearly
the full dataset. For each subset, we used binary search to identify the threshold τ∗ such that the
greedy ACS procedure on the subset achieved a fixed target of 90% coverage with k examples. We
then applied this same threshold τ∗ to construct the similarity graph for the full dataset and ran the
greedy max coverage to select a size-K subset, measuring the resulting coverage over all data points.

Figure 10 summarizes the results. Each plot corresponds to a different dataset (SST2, FewRel, or
CrossNER). The x-axis represents the fraction of the dataset used to compute the optimial threshold,
and the y-axis shows the actual coverage obtained on the full dataset using that threshold. A shaded
band indicates an ε-envelope centered at the target coverage of 90% where ε is set to be 5 × 10−3.
Across all settings, we observe that even small subsamples, often less than 20% of the full dataset,
yield thresholds that generalize well. As the sample size increases, the coverage rapidly converges
to the target, and variance remains low throughout.

These results provide strong empirical support for the scalable ACS approach. By selecting a thresh-
old on a small, randomly drawn subset, we can achieve nearly identical coverage behavior on the
full dataset, enabling efficient and accurate training data selection in large-scale scenarios without
repeated expensive graph construction or threshold tuning.

We note that the above experiments, in line with Proposition B.1 do not impose any max degree
constraints on the similarity graph. We demonstrate that even when such constraints are imposed, the
scalability of optimal threshold remains. In Figure 10, we again impose the max degree constraint
of 2 · c · N/k and set a target coverage of 0.5.
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Figure 8: Coverage transfer from subsample to full dataset. Each point corresponds to a threshold
τ∗ optimized on a random subset of a given size and evaluated for coverage on the full dataset. The
gray band denotes a small tolerance range around the 90% target. Results show threshold transfer
achieves accurate and stable coverage across various dataset sizes. (Top Left) SST2, (Bottom Left),
CrossNER, (Bottom Right) FewRel.
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Figure 9: Coverage transfer from subsample to full dataset. Each point corresponds to a threshold
τ∗ optimized on a random subset of a given size and evaluated for coverage on the full dataset. The
gray band denotes a small tolerance range around the 30% and 50% targets. Results show threshold
transfer achieves accurate and stable coverage across various dataset sizes. (Left) SST2, and (Right)
CrossNER.

Figure 10: Coverage transfer from subsample to full dataset. Each point corresponds to a threshold
τ∗ optimized on a random subset with max degree constraint of a given size and evaluated for
coverage on the full dataset. The gray band denotes a small tolerance range around the 50% target.
Results show threshold transfer achieves accurate and stable coverage across various dataset sizes.
(Left) SST2, (Middle) FewRel and (Right) CrossNER.
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