
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CIRCUIT COMPLEXITY BOUNDS FOR VISUAL AU-
TOREGRESSIVE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the expressive ability of a specific model is essential for grasping
its capacity limitations. A recent breakthrough in image generation is the intro-
duction of Visual Autoregressive (VAR) Models, which employ a scalable coarse-
to-fine ”next-scale prediction” framework. We investigate the circuit complexity
of the VAR model and establish a bound in this study. Our primary result demon-
strates that the VAR model is equivalent to a simulation by a uniform TC0 thresh-
old circuit with hidden dimension d and poly(d) precision. This is the first study
to rigorously highlight the limitations in the expressive power of VAR models de-
spite their impressive performance. We believe our findings will offer valuable
insights into the inherent constraints of these models and guide the development
of more efficient and expressive architectures in the future.

1 INTRODUCTION

Visual generation has seen widespread applications across various domains, including image restora-
tion (Lin et al., 2025; Guo et al., 2025), augmented reality (Azad et al., 2024b), medical imaging
(Azad et al., 2024a; Ma et al., 2024; Li et al., 2025), and creative industries such as game devel-
opment (Rafner et al., 2020; Chen et al., 2025a). By generating realistic and diverse images from
textual descriptions or other forms of input, visual generation models are transforming how machines
perceive and produce visual content. Among the most popular models for visual generation are Vari-
ational AutoEncoders (VAE) (Doersch, 2016), Generative Adversarial Networks (GAN) (Goodfel-
low et al., 2020), Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), and Flow-based
models (Kingma & Dhariwal, 2018). These models have made notable progress in producing high-
quality, high-resolution, and diverse images, expanding the potential of visual generation through
improvements in realism, diversity, and fidelity.

However, the introduction of the Visual AutoRegressive model (VAR) (Tian et al., 2024) represents
a significant shift in the paradigm in this field. Instead of the traditional “next-token prediction”,
the VAR model adopts a coarse-to-fine “next-scale prediction” approach. Through this innovative
approach, the VAR model is able to capture visual distributions more effectively, exceeding the
performance of diffusion transformers in image generation tasks. Additionally, VAR’s zero-shot
generalization capability spans multiple tasks, including image inpainting and manipulation. These
results suggest that VAR offers a promising direction for autoregressive models in visual generation.

As the VAR model demonstrates its impressive performance, it is crucial to explore the limitations
of the expressiveness of the VAR model. Up to now, the expressiveness from a circuit complexity
perspective of the VAR model remains underexplored. This gap raises an important question:

What are the limitations of the expressive power of the VAR model in terms of circuit complexity?

To explore this issue, we apply circuit complexity theory, which offers valuable tools for analyzing
the computational resources needed for specific tasks. By representing the VAR model as complexity
circuits, we can systematically evaluate their capabilities and determine the lower bounds of the
problems they can address.

In this work, we present a comprehensive theoretical investigation into the circuit complexity bounds
of the VAR models. Our approach involves analyzing and formulating the architecture of the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

VAR model and analyzing the computational complexity of its components, such as pyramid up-
interpolation layers, convolution layers and transformer layers, etc. Finally, we show that uniform
TC0 circuits can efficiently simulate these models.

The primary contributions of our work are summarized below:

• As far as we know, this is the first paper to present a mathematical formulation of the Visual
AutoRegressive model (Section 4).

• We prove that the VAR model with poly(d)-precision, O(1) depth and poly(d) size can be
simulated by a DLOGTIME-uniform TC0 circuit family (Theorem 5.13).

Roadmap. Section 2 offers a summary of the related works. Section 3 introduces the necessary
notations and definitions for the subsequent analysis. In Section 4, we present the mathematical
formulation of the VAR model. Section 5 details the circuit complexity results for the VAR model.
Section 6 presents the conclusions of our work.

2 RELATED WORK

2.1 CIRCUIT COMPLEXITY AND NEURAL NETWORK

In computational theory, circuit complexity (Arora & Barak, 2009) refers to the classification and
analysis of computational problems based on the size and depth of Boolean circuits required to
solve them, aiming to understand the inherent difficulty of problems in terms of circuit resources.
Circuit Complexity has important applications in understanding the capabilities of deep learning
models (Pérez et al., 2019; Hahn, 2020; Liu et al., 2022; Hao et al., 2022; Merrill et al., 2022;
Merrill & Sabharwal, 2023; Feng et al., 2024; Chen et al., 2025b; Li et al., 2024a; Chen et al.,
2024; Li et al., 2024b). Specifically, (Hahn, 2020) investigates the computational boundaries of
self-attention, demonstrating that, despite its effectiveness in NLP tasks, it has difficulty modeling
periodic finite-state languages and hierarchical structures without scaling up the number of layers or
attention heads. (Feng et al., 2024) delves into the theoretical underpinnings of Chain-of-Thought
(CoT) within LLMs, demonstrating its ability to solve complex tasks like arithmetic and dynamic
programming through sequential reasoning process, despite the limitations of bounded-depth Trans-
formers. Recently, (Chen et al., 2025b) shows that Mamba and State-space Models (SSMs) have the
same computational limits as Transformers, residing within the DLOGTIME-uniform TC0 complex-
ity class. To the best of our knowledge, circuit complexity theory has not yet been used to analyze
the computational constraints of Visual AutoRegressive models.

2.2 LIMITATION OF TRANSFORMER ARCHITECTURE

Transformer Architecture has shown remarkable success in various fields, particularly in natural
language processing, reinforcement learning, and computer vision. By leveraging self-attention
mechanisms to capture long-range dependencies, the Transformer has become the architecture of
choice for applications such as machine translation (Raganato & Tiedemann, 2018; Wang et al.,
2019; Yao & Wan, 2020) and image generation (Parmar et al., 2018; Ding et al., 2021; Tian et al.,
2024). Recently, a series of studies have shed insight into the reasoning limitations of Transformer
Architecture (Merrill et al., 2022; Merrill & Sabharwal, 2023; Feng et al., 2024; Merrill & Sabhar-
wal, 2024; Liang et al., 2025; Ke et al.; Chiang, 2024). Specifically, (Merrill et al., 2022) showed
that a generalized form of hard attention can recognize languages that go beyond what the AC0 class
can compute, with the TC0 class serving as an upper bound for the formal languages it can identify.
The study by (Liu et al., 2022) established that softmax-transformers (SMATs) are included in the
non-uniform TC0 class. As a next step, (Merrill & Sabharwal, 2023) demonstrated that SMATs
belong to L-uniform TC0 class. Recently, (Chiang, 2024) demonstrated that average-hard atten-
tion transformers (AHATs), without approximation, and SMATs with floating-point precision of
O(poly(n)) bits, as well as SMATs with at most 2−O(poly(n) absolute error, can all be classified in
the DLOGTIME-uniform TC0 class.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARY

Section 3.1 explains the basics of circuit complexity classes. Section 3.2 introduces key simulations
of floating-point operations, which will be used in later sections for the proofs.

Notations. We apply [n] to represent the set {1, 2, · · · , n} for any positive integer n. The set of
natural numbers is denoted by N := {0, 1, 2, . . .}. Let X ∈ Rm×n be a matrix, where Xi,j refers
to the element at the i-th row and j-th column. When xi belongs to {0, 1}∗, it signifies a binary
number with arbitrary length. In a general setting, xi represents a length p binary string, with each
bit taking a value of either 0 or 1.

3.1 KEY CONCEPTS IN CIRCUIT COMPLEXITY

We discuss several circuit complexity classes, starting with the concept of a boolean circuit.
Definition 3.1 (Boolean Circuit, Definition 6.1 in (Arora & Barak, 2009)). A Boolean circuit with
input size d, where d ∈ N, corresponding to a function that Cd : {0, 1}d → {0, 1}. This circuit can
be typically represented as a directed acyclic graph (DAG). There are d input nodes in the graph, all
with an in-degree of 0. Other nodes are classified as logic gates and are assigned one of the labels
AND, OR, or NOT. We use |Cd| to represent the size of Cd, referring to the count of nodes in the
Boolean circuit.

Therefore, we can proceed to define the languages recognizable by certain families of Boolean
circuits, considering their structural constraints, gate types, and depth. These factors determine the
computational power of the circuits in each family.
Definition 3.2 (Language, Definition 6.2 in (Arora & Barak, 2009)). Let L ⊆ {0, 1}∗ denote a
language. L can be recognized by a Boolean circuits family C if, for every string x ∈ {0, 1}∗, a
Boolean circuit C|x| ∈ C exists, which takes x as input. This circuit has an input length of |x|, and
x ∈ L if and only if C|x|(x) = 1 holds.

Next, the concept of complexity classes will be given, which categorizes computational problems
based on their inherent difficulty, determined by the resources—such as time or space—required
to solve them. In this context, different complexity classes impose constraints on the resources of
Boolean circuits, which can be further characterized by factors such as circuit size, depth, number
of fan-in, and gate types. We introduce the complexity classes as the following

• A language belongs to NCi class if it can be decided by a poly(d) size, O(logi(d)) depth
boolean circuits equipped with restricted fan-in basic gates AND, OR and NOT gates.

• A language belongs to ACi class if it can be decided by a poly(d) size, O(logi(d)) depth
boolean circuits equipped with no-limit fan-in basic gates AND, OR and NOT gates.

• A language belongs to TCi class if it can be decided by a poly(d) size, O(logi(d))
depth boolean circuits equipped with no-limit fan-in basic gates AND, OR, NOT and
MAJORITY gates.

• A language belongs to P class if it can be decided by a deterministic Turing machine in
polynomial time with respect to its input size

There is a folklore regarding the hierarchical relationships between the complexity classes men-
tioned above, for every i ∈ N: NCi ⊆ ACi ⊆ TCi ⊆ NCi+1 ⊆ P. Note that the question of whether
TC0 ⊊ NC1 remains an open problem in circuit complexity.

In theoretical computer science, the uniformity of a complexity class refers to whether the circuit
family in question can be constructed by a uniform algorithm, i.e., an algorithm that outputs a de-
scription of the circuit for any input size. Specifically, L-uniformty requires a Turing machine that
uses O(log(d)) space to output a circuit C which can recognize a given language L ⊆ {0, 1}∗.
Moreover, DLOGTIME-uniformity stipulates that a random access Turing machine must produce a
circuit C that recognizes a given language L ⊆ {0, 1}∗. Except in the case of small circuit complex-
ity classes, where circuits are incapable of simulating the machines that create them, DLOGTIME-
uniformity is the same as L-uniformity. For further discussion on various notions of uniformity, see
(Barrington & Immerman, 1994; Hesse et al., 2002).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Throughout this work, any reference to a uniform TC0 should be understood as referring to a
DLOGTIME-uniform TC0.

3.2 BASIC TOOLS

In this section, we first define floating-point numbers and then illustrate a series of operations in-
volving them. Finally, we analyze the circuit complexity associated with these operations, which is
essential in the later proof.

Definition 3.3 (Floating point number, Definition 9 in (Chiang, 2024)). Let p be an integer repre-
senting precision. Let m ∈ (−2p,−2p−1]∪{0}∪[2p−1, 2p) denote an integer called the significance.
Let e ∈ [−2p, 2p) denote an integer called the exponent. A floating point number with p-bits is com-
posed of the parts m and e, and its value is given by m · 2e. Throughout this paper, the set of all
p-bit floating-point numbers is denoted by Fp.

Then, we move forward to define the round operation of float point numbers.

Definition 3.4 (Rounding Operation, Definition 9 in (Chiang, 2024)). Given a floating point number
x, we use roundp(x) to denote the nearest number to x which is p-bit floating-point.

For the definitions of addition, multiplication, division, comparison, and floor operations on floating-
point numbers as outlined in Definition 3.3, refer to (Chiang, 2024). In this paper, we introduce the
corresponding circuit complexity classes to which these operations belong.

Lemma 3.5 (Operations on floating point numbers in TC0, Lemma 10 and Lemma 11 of (Chiang,
2024)). Assume the precision p ≤ poly(n). Then we have:

• Part 1. Given two p-bits float point numbers x1 and x2. Let the addition, division, and
multiplication operations of x1 and x2 be outlined in (Chiang, 2024). Then, these opera-
tions can be simulated by a size bounded by poly(n) and constant depth bounded by dstd
DLOGTIME-uniform threshold circuit.

• Part 2. Given n p-bits float point number x1, . . . , xn. The iterated multiplication of
x1, x2 . . . , xn can be simulated by a size bounded by poly(n) and constant depth bounded
by d⊗ DLOGTIME-uniform threshold circuit.

• Part 3. Given n p-bits float point number x1, . . . , xn. The iterated addition of x1, x2 . . . , xn

can be simulated by a size bounded by poly(n) and constant depth bounded by d⊕
DLOGTIME-uniform threshold circuit. To be noticed, there is a rounding operation af-
ter the the summation is completed.

Then, we show a lemma stating that we can use a TC0 circuit to simulate the approximated expo-
nential function.

Lemma 3.6 (Approximating the Exponential Operation in TC0, Lemma 12 of (Chiang, 2024)).
Assume the precision p ≤ poly(n). Given any number x with p-bit float point, the exp(x) function
can be approximated by a uniform threshold circuit. This circuit has a size bounded by poly(n) and
a constant depth dexp, and it guarantees a relative error of at most 2−p.

4 MODEL FORMULATION

Section 4.1 presents the overall architecture of the VAR model and divides its processing workflow
into three stages. In Section 4.2, we provide the mathematical formulation for the modules involved
in the pyramid-shaped token map generation stage. Section 4.3 offers the mathematical formulation
for the modules in the feature map reconstruction stage, while Section 4.4 presents the mathematical
formulation for the modules in the VQ-VAE Decoder process stage.

4.1 OVERALL ARCHITECTURE

In this section, We present the overall architecture of the VAR model and divide its processing
workflow into three stages.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

�� �� ���(��)����� ���(��)

�����
copy

Figure 1: Example of the Pyramid Up-Interpolation Layer Φup,2 used in the model.

Stage 1: Pyramid-Shaped Token Maps Generation. Firstly, the VAR model will start by quan-
tizing an initial input token map Xinit ∈ R1×1×d into K multiple scale pyramid-shaped token maps
(r1, . . . , rK), each at an increasingly higher resolution hk×wk. During the k-th autoregressive step,
all the hk×wk will be generated in parallel, conditioned on rk’s prefix r1, . . . , rk−1. In Section 4.2,
we provide a mathematical definition for each module in this stage.

Stage 2: Feature Map Reconstruction. The second stage of the VAR model is to reconstruct the
generated pyramid-shaped token maps r1, . . . , rK into a Feature Map. Specifically, the VAR model
uses an up-interpolation layer to interpolate each of the token maps (r1, ..., rK−1) to the size of
rK and applies a convolution layer to reduce the loss introduced by the interpolation. After this
process, the VAR model sums the K token maps to obtain the desired Feature Map. In Section 4.3,
we provide a mathematical definition for each module in this stage.

Stage 3: Generating Image Using VQ-VAE Decoder. The third stage of VAR model is to use
VQ-VAE Decoder to generate the final output image by taking the input of feature map. We follow
the implementation of (Tian et al., 2024) and regard the VQ-VAE Decoder as a module composed of
fixed-depth ResNet layers, attention layers, and up-interpolation layers. In Section 4.4, we provide
a mathematical definition for each module in this stage.

4.2 STAGE 1: TOKEN MAPS GENERATION

The VAR model uses the VAR Transformer to convert the initialized token map Xinit into a series
of pyramid-shaped token maps. The VAR Transformer alternates between up sample blocks and
attention layers to get the output.

Up Sample Blocks. The k-th up sample block takes as input the initial token map Xinit and the
previous pyramid-shaped token maps X1, . . . , Xk, sets Y1 = Xinit and up samples each Xi into a
new token map Yi+1, and outputs the new pyramid-shaped token maps Y1, . . . , Yk+1.

The upsampling on each token map Xr(r ∈ [k]) uses interpolation with a bicubic spline kernel.
Definition 4.1 (Bicubic Spline Kernel). A bicubic spline kernel is a piecewise cubic function W :
R → R that satisfies W (x) ∈ [0, 1] for all x ∈ R.
Definition 4.2 (Up-interpolation Layer for One-Step Geometric Sequence). The layer ϕup,r

takes the input feature map Xr ∈ Rhr×wr×d and computes the output feature map Yr+1 ∈
Rhr+1×wr+1×d, where hr < hr+1 are the heights, wr < wr+1 are the widths, and d ∈ N
is the hidden dimension. It computes Yr+1 = ϕup,r(Xr) with a bicubic spline kernel W : for
i ∈ [hr+1], j ∈ [wr+1], l ∈ [d],

[Yr+1]i,j,l :=

2∑
s=−1

2∑
t=−1

W (s) · [Xr] i·hr
hr+1

+s, j·wr
wr+1

+t,l ·W (t) (1)

We are now ready to present the up sample block Φ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 4.3 (Pyramid Up-Interpolation Layer Φ). The layer Φup,k takes the initial token map
Xinit and the token maps Xr ∈ Rhr×wr×c(r ∈ [k]) and computes new token maps Yr ∈ Rhr×wr×c.
It sets Y1 = Xinit and computes Yr+1 = ϕup,r(Xr) as in Definition 4.2. The output is the set
consisting Yi(i ∈ [k + 1]).

Attention Layer. After an up sample block, the token maps (after being flattened into a proper
shape) will be input into an attention layer.
Definition 4.4 (Single Attention Layer). Let X ∈ Rn×d denote the input matrix. Let
WQ,WK ,WV ∈ Rd×d denote the weight matrix for query, key, and value, respectively. First,
compute the attention matrix A ∈ Rn×n:

Ai,j := exp(Xi,∗WQW
⊤
KX⊤

j,∗), for i, j ∈ [n].

Then, compute the output: Attn(X) := D−1AXWV , where D := diag(A1n) ∈ Rn×n

Then, we move forward to define the multilayer perceptron layer.
Definition 4.5 (Multilayer Perceptron layer). Given an input matrix X ∈ Fn×d

p . Let i ∈ [n]. We use
gMLP to denote the MLP layer. Specifically, we have

gMLP(X)i,∗ := W ·Xi,∗ + b.

We then proceed to define the layerwise normalization layer.
Definition 4.6 (Layer-wise normalization layer). Given an input matrix X ∈ Fn×d

p . Let i ∈ [n]. We
use gLN to denote the LN layer. Specifically, we have

gLN(X)i,∗ :=
Xi,∗ − µi√

σ2
i

,

where µi :=
∑d

j=1 Xi,j/d, and σ2
i :=

∑d
j=1(Xi,j − µi)

2/d.

VAR Transformer. A VAR Transformer with K layers alternates between the attention layer and up
sample blocks (where the output of each layer is reshaped to a proper shape as the input for the next
layer):
Definition 4.7 (VAR transformer). The transformer TF takes an initial token map Xinit ∈ R1×d,
computes Z0 = Xinit, Zk = Φup,k(Xinit,Attnk(Zk−1)), for k ∈ [K − 1] and finally outputs
AttnK(ZK−1). Here Φup,k is defined in Definition 4.3, Attni is defined in Definition 4.4, Zk−1 is
flatten into shape (

∑k
r=1 hrwr) × d as input for Attnk, and the output of Attnk is reshaped into

Xr ∈ Rhr×wr×c(r ∈ [k]) as input for Φup,k.

For convenience, we often abuse notation slightly and write:

TF(Xinit) := AttnK ◦ Φup,K−1 ◦ · · · ◦ Φup,1 ◦ Attn1(Xinit),

where ◦ denotes function composition.

4.3 STAGE 2: FEATURE MAP RECONSTRUCTION

In phase 2, the VAR model will transform the generated pyramid-shaped token maps into feature
maps. This phase has the following main modules:

Up Sample Blocks. The VAR model performs up-sampling on token maps of different sizes, scaling
them to the size of the final output feature map. In this process, the VAR model will use the up-
interpolation blocks defined in Definition 4.2. To mitigate information loss during token map up-
scaling, the VAR model employs convolution blocks to post-process the up-scaled token maps. We
define the convolution layers as the following:
Definition 4.8 (Convolution Layer). Let h,w ∈ N denote the height and width of the input and
output feature map, respectively. Let cin, cout ∈ N denote the number of channels of the input
feature map and the output feature map, respectively. Let X ∈ Rh×w×cin

p represent the input feature
map. For l ∈ [cout], we use Kl ∈ F3×3×cin

p to denote the l-th convolution kernel. Let p = 1 denote

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the padding of the convolution layer. Let s = 1 denote the stride of the convolution kernel. Let
Y ∈ Rh×w×cout

p represent the output feature map. Then we use ϕconv : Rh×w×cin
p → Rh×w×cout

p

to represent the convolution operation then we have Y = ϕconv(X). Specifically, for i ∈ [h], j ∈
[w], l ∈ [cout], we have

Yi,j,l :=

3∑
m=1

3∑
n=1

cin∑
c=1

Xi+m−2,j+n−2,c ·Kl
m,n,c + b

Remark 4.9. Assumptions of kernel size, padding of the convolution layer, and stride of the convo-
lution kernel are based on the specific implementation of (Tian et al., 2024).

4.4 STAGE 3: VQ-VAE DECODER PROCESS

VAR will use the VQ-VAE Decoder Module to reconstruct the feature map generated in Section 4.3
into a new image. The Decoder of VQ-VAE has the following main modules:

ResNet Layers. In the VQVAE decoder, the ResNet block, which includes two (or more) convolu-
tion blocks, plays a crucial role in improving the model’s ability to reconstruct high-quality outputs.
The convolution blocks help capture spatial hierarchies and patterns in the data, while the residual
connections facilitate better gradient flow and allow the model to focus on learning the residuals
(differences) between the input and output. The definition of convolution block is given in Defini-
tion 4.8.

Attention Layers. The Attention block helps the Decoder fuse information from different locations
during the generation process, which can significantly improve the clarity and detail of the generated
images. When applied to a feature map, the attention mechanism computes attention scores for all
pairs of pixels, capturing their pairwise relationships and dependencies. The definitions of blocks in
attention are given in Section 4.2.

Up Sample Layers. The VQ-VAE decoder uses Up-Sample Blocks to progressively increase the
spatial resolution of the latent representation. The Up-Sample Blocks in VQVAE combine up-
interpolation and convolution blocks to restore the spatial dimensions of the feature maps, facilitat-
ing the reconstruction of the high-resolution output image. The convolution block has already been
defined in Definition 4.8, and the up-interpolation block has already been defined in Definition 4.2.

5 COMPLEXITY OF VAR MODELS

In this section, we present the critical findings on the circuit complexity of crucial operations in the
computation of VAR models.

5.1 COMPUTING UP INTERPOLATION BLOCKS

In this section, we firstly show that the up-interpolation layer ϕup,r defined in Definition 4.2 can be
computed in TC0.
Lemma 5.1 (Up-Interpolation Layer for One-Step Geometric Sequence belongs to TC0 class, infor-
mal version of Lemma B.1). Let m ∈ N denote the number of attention layers in VAR transformer.
Let r ∈ [m − 1]. Let d > 0 denote one positive integer. Let Xinit ∈ F1×d

p denote the initial token

map. Let ϕup,r : Fhr×wr×d
p → F

hr+1×wr+1×d
p be defined in Definition 4.2. Let hr+1 represent the

height of the token map output by ϕup,r. Let wr+1 represent the width of the token map output by
ϕup,r. Assume hm ≤ poly(d) and wm ≤ poly(d). Assume the precision p ≤ poly(d). Then we can
simulate the ϕup,r by a uniform threshold circuit with poly(d) size and constant depth O(1).

Lemma 5.2 (Pyramid Up-Interpolation Layer belongs to TC0 class, informal version of
Lemma B.2). Let m ∈ N denote the number of attention layers in VAR transformer. Let r ∈ [m−1].
Let d > 0 denote one positive integer. Let Xinit ∈ F1×d

p denote the initial token map. Let

Φup,r : F
h[r]×w[r]×d
p → F

h[r+1]×w[r+1]×d
p be defined in Definition 4.3. Assume hm = poly(d)

and wm = poly(d). Assume the precision p ≤ poly(d). Assume m = O(1).

Then, we can simulate Φup,r by a uniform threshold circuit with size bounded by poly(d) and depth
O(1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 COMPUTING ATTENTION MATRIX

Let us begin by recalling that the matrix multiplication of two matrices belongs to TC0.

Lemma 5.3 (Matrix Multiplication belongs to TC0 class, Lemma 4.2 in (Chen et al., 2024)). Assume
the precision p ≤ poly(d) and n1, n2 ≤ poly(d). Let A ∈ Fn1×d

p and B ∈ Fd×n2
p . Then we can

apply a DLOGTIME-uniform threshold circuit with constant depth (dstd+d⊕) and size bounded by
poly(d) to get the matrix product AB.

5.3 COMPUTING SINGLE ATTENTION LAYER

Subsequently, matrix operations can be applied to compute the attention matrix.

Lemma 5.4 (Attention matrix computation belongs to TC0 class, informal version of Lemma B.3).
Let m ∈ N denote the number of attention layers in VAR transformer. Let r ∈ [m]. Assume the
precision p ≤ poly(d). Let d > 0 denote one positive integer. Let Xinit ∈ F1×d

p denote the initial
token map. Let Attnr denote the r-th attention layer in VAR transformer defined in Definition 4.4.
Let Xr ∈ Fnr×d

p denote the input of Attnr. Let WQ,WK ∈ Fd×d
p denote two weight matrix. Assume

hm ≤ poly(d) and wm ≤ poly(d). Assume m = O(1).

Then we can use a size bounded by poly(d) and constant depth 3(dstd+d⊕)+dexp uniform threshold
circuit to compute the attention matrix A defined in Definition 4.4.

Then, we analyze the complete attention layer.

Lemma 5.5 (Single Attention Layer computation in TC0, informal version of Lemma B.4). Let
m ∈ N denote the number of attention layers in VAR transformer. Let r ∈ [m]. Assume the
precision p ≤ poly(d). Let d > 0 denote one positive integer. Let Xinit ∈ F1×d

p denote the initial
token map. Let Attnr denote the r-th attention layer in VAR transformer. Assume hm ≤ poly(d)
and wm ≤ poly(d). Assume m = O(1).

Then we can use a uniform threshold circuit with size bounded by poly(d) and constant depth
6(dstd + d⊕) + dexp to simulate the attention layer Attnr defined in Definition 4.4.

5.4 COMPUTING COMMON COMPONENTS LAYERS

This section outlines the MLP layer circuit complexity.

Lemma 5.6 (MLP computation falls within TC0 class, Lemma 4.5 of (Chen et al., 2025b)). Assume
the precision p ≤ poly(d). Let Xinit ∈ F1×d

p denote the initial token map. Then, we can use a size
bounded by poly(d) and constant depth 2dstd + d⊕ uniform threshold circuit to simulate the MLP
layer in Definition 4.5.

Next, we examine the layer-normalization (LN) layer circuit complexity.

Lemma 5.7 (LN computation falls within TC0 class, Lemma 4.6 of (Chen et al., 2025b)). Assume
the precision p ≤ poly(d). Let Xinit ∈ F1×d

p denote the initial token map. Then we can use a size
bounded by poly(d) and constant depth 5dstd + 2d⊕ + dsqrt uniform threshold circuit to simulate
the Layer-wise Normalization layer defined in Definition 4.6.

5.5 COMPUTING CONVOLUTION BLOCKS

We prove in this section that the convolution layers can be computed within TC0.

Lemma 5.8 (One Kernel Convolution Process in TC0, informal version of Lemma B.5). Let d > 0
denote one positive integer. Let Xinit ∈ F1×d

p denote the initial token map. Let X ∈ Fh×w×cin
p

denote the origin feature map. Let Y ∈ Fh×w×cout
p denote the output feature map. Assume

h,w, cin ≤ poly(d).

Then, we can apply a size bounded by poly(n) and O(1) depth uniform threshold circuit to simulate
one kernel convolution process.

Proposition 5.9 (Multiple Kernel Convolution Process in TC0). Let d > 0 denote one positive
integer. Let Xinit ∈ F1×d

p denote the initial token map.Assume we have k convolution kernel in a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

convolution block. Let k ≤ poly(d). Since the computations of different convolutional kernels can
be parallelizable, then we can apply a size poly(d) and O(1) depth to simulate the whole process.

Proof. This is can be easily derived from Lemma 5.8 and k ≤ poly(d).

5.6 COMPUTING PHASE 1: VAR TRANSFORMER

In this part, we establish that the VAR Transformer defined in Definition 4.7 is within the computa-
tional power of TC0

Lemma 5.10 (VAR Transformer computation in TC0, informal version of Lemma B.6). Let d > 0
denote one positive integer. Let Xinit ∈ F1×d

p denote the initial token map. Assume the number
of attention layers m = O(1). Assume the precision p ≤ poly(d). Then, we can apply a uniform
threshold circuit with size poly(d) and depth O(1) to simulate the VAR Transformer TF defined in
Definition 4.7.

5.7 COMPUTING PHASE 2: FEATURE MAP RECONSTRUCTION

In this section, we show that the feature map reconstruction is within the computational power of
TC0.

Lemma 5.11 (Feature Map Reconstruction computation in TC0.). Let d > 0 denote one positive
integer. Let Xinit ∈ F1×d

p denote the initial token map. Assume the number of the up-interpolation
layers and convolutional layers in the Feature Map Reconstruction phase is constant O(1). Assum-
ing the precision p ≤ poly(d), then we can apply a uniform threshold circuit with size poly(d) and
O(1) depth to simulate the feature map reconstruction operations.

Proof. This can be easily derived from Lemma 5.1 and Proposition 5.9.

5.8 COMPUTING PHASE 3: VQ-VAE DECODER PROCESS

In this section, we show that the VQ-VAE Decoder is within the computational power of TC0

Lemma 5.12 (VQ-VAE Decoder process in TC0, informal version of Lemma B.7). Let d > 0
denote one positive integer. Let Xinit ∈ F1×d

p denote the initial token map. Assume the precision
p ≤ poly(d). Assume the number of the ResNet layers, attention layers, and Up-Sample layers
in VQ-VAE Decoder is constant O(1). Then, we can apply a uniform threshold circuit with size
poly(d) and O(1) depth to simulate the VQ-VAE decoder process.

5.9 MAIN RESULT

We present our main result, which derives the circuit complexity limits for the VAR model.

Theorem 5.13 (Circuit complexity of the VAR model.). Let d > 0 denote one positive integer. Let
Xinit ∈ F1×d

p denote the initial token map. Assuming precision p ≤ poly(d), then we can apply a
uniform threshold circuit to simulate the VAR model, where the circuit has size poly(d) and O(1)
depth.

Proof. This result directly comes from Lemma 5.10, Lemma 5.11 and Lemma 5.12.

6 CONCLUSION

This study provides a comprehensive theoretical analysis of VAR models, deriving key limits on
their computational abilities. Our approach centers on examining the circuit complexity of various
components of VAR models, from the up-interpolation layers and the convolution layers to the at-
tention mechanism. Furthermore, we show that VAR can be expressed as uniform TC0 circuits. This
finding is important because it exposes inherent constraints in the expressiveness of VAR models,
despite their empirical effectiveness.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press, 2009.

Reza Azad, Amirhossein Kazerouni, Moein Heidari, Ehsan Khodapanah Aghdam, Amirali Molaei,
Yiwei Jia, Abin Jose, Rijo Roy, and Dorit Merhof. Advances in medical image analysis with
vision transformers: a comprehensive review. Med Image Anal., 2024a.

Tej D Azad, Anmol Warman, Jovanna A Tracz, Liam P Hughes, Brendan F Judy, and Timothy F
Witham. Augmented reality in spine surgery–past, present, and future. SPINE J, 24(1), 2024b.

D Mix Barrington and Neil Immerman. Time, hardware, and uniformity. In Proceedings of IEEE
9th Annual Conference on Structure in Complexity Theory. IEEE, 1994.

Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit com-
plexity bounds for rope-based transformer architecture. arXiv:2411.07602, 2024.

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-sigma : Weak-to-strong training of diffusion trans-
former for 4k text-to-image generation. In ECCV. Springer, 2025a.

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational limits of
state-space models and mamba via the lens of circuit complexity. In The Second Conference on
Parsimony and Learning (Proceedings Track), 2025b.

David Chiang. Transformers in uniform tc0. arXiv:2409.13629, 2024.

Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou,
Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers.
NeurIPS, 2021.

Carl Doersch. Tutorial on variational autoencoders. arXiv:1606.05908, 2016.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. NeurIPS, 36, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. CACM, 63(11), 2020.

Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
baseline for image restoration with state-space model. In ECCV. Springer, 2025.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. TACL, 8, 2020.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. TACL, 2022.

William Hesse, Eric Allender, and David A Mix Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. JCSS, 65(4), 2002.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS,
2020.

Yekun Ke, Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Curse of attention: A kernel-
based perspective for why transformers fail to generalize on time series forecasting and beyond.
In The Second Conference on Parsimony and Learning (Proceedings Track).

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
NeurIPS, 31, 2018.

Chenxin Li, Xinyu Liu, Wuyang Li, Cheng Wang, Hengyu Liu, Yifan Liu, Zhen Chen, and Yix-
uan Yuan. U-kan makes strong backbone for medical image segmentation and generation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 4652–4660, 2025.

Xiaoyu Li, Yuanpeng Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. On the expressive power of
modern hopfield networks. arXiv:2412.05562, 2024a.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Mingda Wan. Theoretical constraints on
the expressive power of rope-based tensor attention transformers. arXiv:2412.18040, 2024b.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu mlps may
be all you need as practical programmable computers. In International Conference on Artificial
Intelligence and Statistics, pp. 2647–2655. PMLR, 2025.

Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,
and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In
ECCV. Springer, 2025.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2022.

Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, and Bo Wang. Segment anything in medical
images. Nat Commun, 15(1), 2024.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. TACL, 11, 2023.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. NeurIPS,
36, 2024.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. TACL, 10, 2022.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In ICML, 2018.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. In International Conference on Learning Representations, 2019.

Janet Rafner, Arthur Hjorth, Sebastian Risi, Lotte Philipsen, Charles Dumas, Michael Mose Biskjær,
Lior Noy, Kristian Tylén, Carsten Bergenholtz, Jesse Lynch, et al. Crea. blender: a neural
network-based image generation game to assess creativity. In CHI PLAY, 2020.

Alessandro Raganato and Jörg Tiedemann. An analysis of encoder representations in transformer-
based machine translation. In EMNLP Workshop, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML. PMLR, 2015.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839–84865, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 1810–1822, 2019.

Shaowei Yao and Xiaojun Wan. Multimodal transformer for multimodal machine translation. In
ACL, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we introduce the notations we used in appendix. In Section B, we introduce
the missing proofs in Section B.

A NOTATIONS

We apply [n] to represent the set {1, 2, · · · , n} for any positive integer n. The set of natural numbers
is denoted by N := {0, 1, 2, . . .}. Let X ∈ Rm×n be a matrix, where Xi,j refers to the element at
the i-th row and j-th column. When xi belongs to {0, 1}∗, it signifies a binary number with arbitrary
length. In a general setting, xi represents a length p binary string, with each bit taking a value of
either 0 or 1.

B MISSING PROOFS IN SECTION 5

In this section, we present some missing proofs in Section 5.

Lemma B.1 (Up-Interpolation Layer for One-Step Geometric Sequence belongs to TC0 class, for-
mal version of Lemma 5.1). If the following conditions hold:

• Let m ∈ N denote the number of attention layers in VAR transformer.

• Let r ∈ [m− 1].

• Let d > 0 denote one positive integer.

• Let Xinit ∈ F1×d
p denote the initial token map.

• Let ϕup,r : Fhr×wr×d
p → F

hr+1×wr+1×d
p be defined in Definition 4.2.

• Let hr+1 represent the height of the token map output by ϕup,r.

• Let wr+1 represent the width of the token map output by ϕup,r.

• Assume hm ≤ poly(d) and wm ≤ poly(d).

• Assume the precision p ≤ poly(d).

Then we can simulate the ϕup,r by a uniform threshold circuit with poly(d) size and constant depth
O(1).

Proof. Firstly, we consider the computation of each entry in the output token map. For i ∈
[hr+1], j ∈ [wr+1], l ∈ [d], we have

Yi,j,l =

2∑
s=−1

2∑
t=−1

W (s) ·X ih
h′ +s, jw

w′ +t,q ·W (t)

By using the result of Part 1 of Lemma 3.5, we can apply a uniform threshold circuit with constant
depth 2dstd and size bounded by poly(d) to compute each product W (s) · X ih

h′ +s, jw
w′ +t,q · W (t).

Since the products for different s and t can be parallel computed, the uniform threshold circuit’s
depth for all products W (u) ·X ih

h′ +s, jw
w′ +t,q stays 2dstd.

Then, by using the result of Part 3 in Lemma 3.5, we can use a uniform threshold circuit with depth
d⊕ and size bounded by poly(d) to model the sum operation:

2∑
s=−1

2∑
t=−1

W (s) ·X ih
h′ +s, jw

w′ +t,q ·W (t)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hence, we already know that the computation of one entry in the ourput token map can be simulated
by a uniform threshold circuit with depth 2dstd + d⊕ and size bounded by poly(d). Since we can
parallel compute Yi,j,l for all i ∈ [hr+1], j ∈ [wr+1], l ∈ [d]. So the total depth of the uniform
threshold circuit still remains 2dstd + d⊕, and the total size of the uniform threshold circuit still
remains poly(d) which is due to the condition that hr+1 ≤ hm = poly(d), wr+1 ≤ wm = poly(d).

Thus we complete the proof.

Lemma B.2 (Pyramid Up-Interpolation Layer belongs to TC0 class, formal version of Lemma 5.2).
If the following conditions hold:

• Let m ∈ N denote the number of attention layers in VAR transformer.

• Let r ∈ [m− 1].

• Let d > 0 denote one positive integer.

• Let Xinit ∈ F1×d
p denote the initial token map.

• Let Φup,r : F
h[r]×w[r]×d
p → F

h[r+1]×w[r+1]×d
p be defined in Definition 4.3.

• Assume hm = poly(d) and wm = poly(d).

• Assume the precision p ≤ poly(d).

• Assume m = O(1).

Then we can simulate Φup,r by a uniform threshold circuit with size bounded by poly(d) and depth
O(1).

Proof. By Definition 4.3, we know that Φup,r is composed of r layers ϕup,i where i ∈ [r]. Since
for every i ∈ [r], we can use a uniform threshold circuit with size bounded by poly(d) and depth
O(1) to simulate ϕup,i which is due to Lemma 5.1. Then we can derive that we can use a uniform
threshold circuit with size bounded by poly(d) and depth O(1) to simulate Φup,r which is due to
chain these r uniform threshold circuits together, and r ≤ m = O(1).

Then we move forward to present the proof of Lemma 5.4.

Lemma B.3 (Attention matrix computation belongs to TC0 class, formal version of Lemma 5.4). If
the following conditions hold:

• Let m ∈ N denote the number of attention layers in VAR transformer.

• Let r ∈ [m]

• Assume the precision p ≤ poly(d).

• Let d > 0 denote one positive integer.

• Let Xinit ∈ F1×d
p denote the initial token map.

• Let Attnr denote the r-th attention layer in VAR transformer defined in Definition 4.4.

• Let Xr ∈ Fnr×d
p denote the input of Attnr.

• Let WQ,WK ∈ Fd×d
p denote two weight matrix.

• Assume hm ≤ poly(d) and wm ≤ poly(d).

• Assume m = O(1).

Then we can use a size bounded by poly(d) and constant depth 3(dstd+d⊕)+dexp uniform threshold
circuit to compute the attention matrix A defined in Definition 4.4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. By Definition 4.7 and Definition 4.3, we can derive that ni =
∑r

i=1 hiwi. Since for every
i ∈ [r], we have hi ≤ hm ≤ poly(d) and wi ≤ wm ≤ poly(d), we can derive that nr ≤ poly(d).

Based on Lemma 5.3, we can compute the matrix product WQW
⊤
K by using a size bounded by

poly(d) and constant depth dstd + d⊕ uniform threshold circuit.

Then, we move forward to compute the scalar product, which is

ti,j = Xi,∗WQW
⊤
KX⊤

j,∗

And by using the result of Lemma 5.3, we can compute ti,j by applying a uniform threshold circuit,
where the circuit has a polynomial-size bounded by poly(d) and constant depth 2(dstd + d⊕).

In the next step, from Lemma 3.6, we can compute the exponential function Ai,j = exp(ti,j) by
applying a size bounded by poly(d) and constant depth dexp uniform threshold circuit.

After combining depths from all steps, the total depth of the circuit for computing Ai,j is

dtotal = 3(dstd + d⊕) + dexp.

Since we can parallel compute all entries in Ai,j for i, j ∈ [nr], the circuit depth remains 3(dstd +
d⊕) + dexp and size bounded by poly(d).

Thus, we have proven the result.

Here we state the proof of Lemma 5.5.

Lemma B.4 (Single Attention Layer computation in TC0, formal version of Lemma 5.5). If the
following conditions hold:

• Let m ∈ N denote the number of attention layers in VAR transformer.

• Let r ∈ [m]

• Assume the precision p ≤ poly(d).

• Let d > 0 denote one positive integer.

• Let Xinit ∈ F1×d
p denote the initial token map.

• Let Attnr denote the r-th attention layer in VAR transformer.

• Let Xr ∈ Fnr×d
p denote the input of Attnr.

• Let WV ∈ Fd×d
p denote a weight matrix.

• Assume hm ≤ poly(d) and wm ≤ poly(d).

• Assume m = O(1).

Then we can use a uniform threshold circuit with size bounded by poly(d) and constant depth
6(dstd + d⊕) + dexp to simulate the attention layer Attnr defined in Definition 4.4.

Proof. In Definition 4.4, we know that we need to multiply 4 matrix, namely D−1, A,Xr,WV

Firstly, we consider the computation of D := diag(A1nr
). D can be computed using a uniform

threshold circuit of depth d⊕, size poly(d) following Part 3 of Lemma 3.5. By Lemma 5.4, com-
puting A needs a circuit of depth 3(dstd + d⊕) + dexp and size poly(d). Then, we can multiply
AXWV , which can be computed by a depth 2(dstd + d⊕), size poly(d) uniform threshold circuit
following from Lemma 5.3. Finally, we can compute D−1 · AXWV by apply division in parallel,
which can be computed by a depth dstd, size poly(d) uniform threshold circuit following from Part
1 of Lemma 3.5. Chaining above circuit, we have

dtotal = 6(dstd + d⊕) + dexp.

And the size of the circuit is still poly(d). thus we have shown that Attn can be computed by a depth
6(dstd + d⊕) + dexp, size poly(d) uniform threshold circuit.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Then we move forward to present the proof of Lemma 5.8.

Lemma B.5 (One Kernel Convolution Process in TC0, formal version of Lemma 5.8). Under the
premise that the following conditions apply:

• Let d > 0 denote one positive integer.

• Let Xinit ∈ F1×d
p denote the initial token map.

• Let h ∈ N denote the height of the input and output feature map.

• Let w ∈ N denote the width of the input and output feature map.

• Let cin ∈ N denote the number of channels of the input feature map.

• Let X ∈ Fh×w×cin
p denote the origin feature map.

• Let Y ∈ Fh×w×cout
p denote the output feature map .

• Let l ∈ [cout].

• Let Kl ∈ F3×3×cin
p denote the l-th convolution kernel.

• For i ∈ [h] and j ∈ [w].

• Let h,w, cin ≤ poly(d).

Then, we can apply a size bounded by poly(n) and O(1) depth uniform threshold circuit to simulate
one kernel convolution process.

Proof. For each i ∈ [h] and j ∈ [w], we know

Yi,j,l :=

3∑
m=1

3∑
n=1

cin∑
q=1

Xi+m−2,j+n−2,q ·Kl
m,n,q + b

By using the result of Part 1 in Lemma 3.5, we can use a size bounded by poly(d) and O(1) depth
uniform threshold circuit to compute each product Xi+m−1,j+n−1,q · Km,n,q . Furthermore, the
computation of Xi+m−1,j+n−1,q ·Km,n,q can be performed in parallel for all m ∈ [3], n ∈ [3] and
q ∈ [cin]. Therefore, the total depth of the circuit remains O(1), and its size stays poly(d), since
hk × wk × c ≤ poly(d).

Then, we proceed to compute the sum
∑3

m=1

∑3
n=1

∑cin
q=1 Xi+m−2,j+n−2,q ·Kl

m,n,q+b. Using the
result from Lemma 3.5, we can use a size bounded by poly(d) and O(1) depth uniform threshold
circuit to compute the sum. By computing Yi,j for all i ∈ [h], j ∈ [w] in parallel, we maintain
the uniform threshold circuit with O(1) depth and size bounded by poly(d) which is due to h,w ≤
poly(d).

Thus, we can apply a size bounded by poly(d) and O(1) depth uniform threshold circuit to simulate
the one kernel convolution process.

Then we show the proof of Lemma 5.10.

Lemma B.6 (VAR Transformer computation in TC0, formal version of Lemma 5.10). Let d > 0
denote one positive integer. Let Xinit ∈ F1×d

p denote the initial token map. Assume the number
of attention layers m = O(1). Assume the precision p ≤ poly(d). Then, we can apply a uniform
threshold circuit with size poly(d) and depth O(1) to simulate the VAR Transformer TF defined in
Definition 4.7.

Proof. By using the result of Lemma 5.2, we can apply a uniform threshold circuit of size bounded
by poly(d) and O(1) depth to simulate Pyramid Up-Interpolation layer Φup,i defined in Defini-
tion 4.3 for every i ∈ [m− 1].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

By using the result of Lemma 5.5, we can apply a size bounded by poly(d) and O(1) depth uniform
threshold circuit to simulate Attni defined in Definition 4.4 for every i ∈ [m].

By using the result of Lemma 5.6 and Lemma 5.7, we can apply a size bounded by poly(d) and
O(1) depth uniform threshold circuit to simulate gi, for each i ∈ [m].

To compute TF(X), we must compute g1, . . . , gm ,Attn1, . . . ,Attnm and Φup,1, . . . ,Φup,m−1.
Then, we can have that the size of the uniform threshold circuit is bounded by poly(d), and the
total depth of the circuit is O(1), which is due to m = O(1).

Thus, we complete the proof.

Finally we show the proof of Lemma 5.12.

Lemma B.7 (VQ-VAE Decoder process in TC0, formal version of Lemma 5.12). Let d > 0 denote
one positive integer. Let Xinit ∈ F1×d

p denote the initial token map. Assume the precision p ≤
poly(d). Assume the number of the ResNet layers, attention layers and Up-Sample layers in VQ-
VAE Decoder is constant O(1). Then, we can apply a uniform threshold circuit with size poly(d)
and O(1) depth to simulate the VQ-VAE decoder process.

Proof. Firstly, by using the result of Proposition 5.9, we can simulate the ResNet layers by using a
size poly(d) and O(1) depth uniform threshold circuit.

Then, by using the result of Lemma 5.5, we can simulate the attention layers by using a size poly(d)
and O(1) depth uniform threshold circuit.

And, by using the result of Lemma 5.1, we can simulate the Up Sample Blocks by using a size
poly(d) and depth O(1) uniform threshold circuit.

By combing the result above, we have that a size poly(d) and O(1) depth uniform threshold circuit
can be applied to simulate the VQ-VAE decoder process.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

17

	Introduction
	Related Work
	Circuit Complexity and Neural Network
	Limitation of Transformer Architecture

	Preliminary
	Key Concepts in Circuit Complexity
	Basic Tools

	Model Formulation
	Overall Architecture
	Stage 1: Token Maps Generation
	Stage 2: Feature Map Reconstruction
	Stage 3: VQ-VAE Decoder Process

	Complexity of Models
	Computing Up Interpolation Blocks
	Computing Attention Matrix
	Computing Single Attention Layer
	Computing Common Components Layers
	Computing Convolution Blocks
	Computing Phase 1: Transformer
	Computing Phase 2: Feature Map Reconstruction
	Computing Phase 3: VQ-VAE Decoder process
	Main Result

	Conclusion
	Notations
	Missing Proofs in Section 5

