LEGO: Language Model Building Blocks

Anonymous ACL submission

Abstract

Large language models (LLMs) are essential
in natural language processing (NLP) but are
costly in fine-tuning and inference, and involve
invasive data collection. Task-specific small
language models (SLMs) offer a cheaper al-
ternative but lack robustness and generaliza-
tion. This paper proposes a novel technique
to combine SLMs and construct a robust, gen-
eral LLM. Using state-of-the-art LLM prun-
ing strategies, we create task- and user-specific
SLM building blocks that are efficient for fine-
tuning and inference while also preserving user
data privacy. Utilizing Federated Learning and
a novel aggregation scheme, we can compile
an LLM from distributed SLMs, maintaining
robustness without high costs and preserving
user data privacy.

1 Introduction

Large Language Models (LLMs) represent a sig-
nificant advance in Natural Language Processing
(NLP) with their remarkable ability to generalize
across queries and tasks. These models are typi-
cally fine-tuned using large, diverse datasets de-
rived from high-quality instruction data (Gupta
et al., 2022).

LLMs are not, however, a one-size-fits-all solu-
tion. Running LLMs on small devices like IoT de-
vices or smartphones is not possible due to their re-
source limitations. Downstream LLM applications
that value privacy, such as personal conversational
Al become untenable due to data privacy concerns,
as user data must stay on personal devices or pri-
vate networks and cannot be shared globally. These
constraints, created by private user data, apply to
both fine-tuning and inference.

LLMs are traditionally fine-tuned in a central-
ized manner, where data is aggregated from raw
user interactions and shared globally to fine-tune a
single global model. In contrast, Federated Learn-
ing (FL) is a collaborative learning approach that

allows client models to learn from users while pre-
serving their privacy (McMahan et al., 2017). FL.
utilizes distributed fine-tuning with localized client
models trained on localized user interactions, re-
sulting in a global model created by aggregating
client model weights. While FL preserves data pri-
vacy and addresses the complexity of fine-tuning,
it does not resolve the high cost of inference with
LLMs.

Small Language Models (SLMs) address the
high cost of inference as well as fine-tuning, al-
lowing for a greater range of client devices. While
SLMs are more efficient, the cheaper performance
comes at the expense of robustness and general-
ization across broad tasks, conversational interac-
tions, and advanced LLM capabilities. Further-
more, SLMs are not typically designed to be com-
posable, constraining FL architecture to an either-
or choice: choose SLMs at the cost of robustness,
or choose the original LLMs that limit their utility
due to size and complexity.

For resource-constrained scenarios like chatbots
on small devices, there is a critical need for com-
putationally efficient (fine-tuning and inference),
robust, general, and private methods that facilitate
different sizes and architectures of models depend-
ing on the computational resources of the device.

To enhance client flexibility in distributed con-
versational Al systems, we introduce Language
MOdel BuildinG BlOcks (LEGO), a model-
agnostic technique for integrating small language
models (SLMs) with diverse heterogeneous archi-
tectures. LEGO enables efficient fine-tuning and in-
ference, preserves privacy, optimizes performance
across varied resource constraints, and aids in de-
veloping robust and generalizable large language
models (LLMs). Our approach utilizes an SLM-
based federated learning system where each SLM
is derived from an LLM, allowing them to be com-
bined to reconstruct the original LLM. By treating
SLMs as building blocks, LEGO effectively assem-

bles them into a cohesive LLM.

Through the use of LEGO, we demonstrate a
flexible FL system that broadens the range of possi-
ble client devices by enabling different sized mod-
els for different sized devices. Through numerous
experiments, we display that when using LEGO,
smaller models are better learners and therefore
yield more robust models. We also demonstrate
that one client learning from local data translates
to all clients having learned, and that SLMs can be
treated as composable entities that can be combined
to form an LLM.

With the proposed LEGO approach, the major con-
tributions of this work include
* A method to compose SLMs together to yield
a robust and generalizable LLM

* A privacy-preserving FL architecture to serve
these composable client-side heterogeneous
SLMs

* A method to optimize client-side SLMs
against heterogeneous resource budgets for
efficient fine-tuning and inference

The rest of this paper is organized as the follow-
ing: Section 2 gives background information. Sec-
tion 3 details the methodology behind the LEGO
approach and its components. Section 4 covers the
experiments we performed to validate LEGO and
houses their results. Section 5 discusses the related
work. Section 6 concludes the paper and Section 7
lists our study’s limitations.

2 Background

2.1 Model Compression

In recent years, Knowledge Distillation (KD)
has become widely used in NLP to compress
LLMs (Hinton et al., 2015). Previous works have
demonstrated that knowledge can be effectively
distilled from LLMs to create task-specific small
language models (SLMs). These KD-produced
small models perform better than full-sized LLMs
when fine-tuned on specific tasks, but do so at the
cost of general robustness (Xu et al., 2024).

One alternative to KD is pruning, a method that
involves the selective omission of model parame-
ters with minimal contributions to the learning pro-
cess. Primitive pruning techniques have proven suc-
cessful, enhancing the cost-effectiveness of large
pre-trained models (Xia et al., 2023).

Recently, more nuanced pruning approaches
have been discussed in the literature, improv-

ing over more traditional methods like magni-
tude pruning. Specifically, two state-of-the-art
pruning methods are widely discussed in the
literature—SparseGPT (Frantar and Alistarh, 2023)
and Wanda (Sun et al., 2023). Whereas traditional
magnitude pruning operates by pruning weights
with the largest magnitude, these pruning tech-
niques instead track weight activations, and prune
weights with the lowest amount of activation.

SparseGPT creates and solves a layer-wise re-
construction problem to determine the weight acti-
vations, while Wanda instead takes the product of a
weight’s magnitude and the norm of its associated
input activations to determine what to prune.

Regardless, in the context of LLM compression,
both these techniques present significant advan-
tages over KD, as pruning is less computationally
expensive. Whereas KD requires substantial post-
training time for the distilled models, pruning can
produce SLMs without these costs.

2.2 Federated Fine-Tuning

Federated Learning (FL) is a distributed training
methodology that trains a model across multiple
decentralized devices while allowing data to re-
main on user machines (McMahan et al., 2017). In
Conventional FL, each client device has its own
native model and trains it on user inputs. Instead of
sharing this client data globally, the models instead
share their own model weights, aggregating them
with other client weights. This creates a global up-
date that encodes knowledge gained from all model
updates without compromising data privacy.

This same methodology can be applied to LLM
fine-tuning. Instead of fine-tuning on globally
shared user data, client models can fine-tune on
local data and have their weights shared and aggre-
gated. This approach eases many of the barriers to
data collection compared to traditional centralized
fine-tuning, as users can retain privacy over their
instructions while contributing to the model.

Two fundamental assumptions are often made
in both traditional FL and FL for fine-tuning. The
first is that all data is i.i.d, meaning that not only
do all clients have similar amounts of data, but
that the the ratio of content within each are similar.
The study of non-i.i.d data distributions in FL is
often referred to as heterogeneous FL, with many
strategies and techniques being proposed to offset
the effects of data heterogeneity.

The second assumption is that all model architec-

Client Model

i ssignmen Local Fine-Tuning
(/, LLM Pruning \ / Assig t //,, ~
A\ -»>
7
- o « > -
N .
- B}/ \ “H / N * Y,
/" E A =~ B
I =l == T
[! I G ‘EE
mm
\ / b Aggregatio/n/

Model Updates

Figure 1: The LEGO workflow. An LLM is first pruned to create SLMs, then each SLM is assigned to a client.
Each client then fine-tunes its SLM on its local data. After fine-tuning, the models are aggregated to create a global
update. The global update is then applied to all the client SLMs as well as a global LLM. Eventually, after enough

updates, a final global LLM is derived.

tures in FL systems are identical, allowing for the
aggregation of model weights when creating global
updates. Heterogeneity in model architecture there-
fore presents unique challenges in FL. Differing
client model architectures impede the use of stan-
dard aggregation techniques like FedAvg due to
varying parameter sizes.

Much like data-heterogeneous FL, many strate-
gies have been proposed to offset the effect of
model heterogeneity, allowing for model-agnostic
FL. Previous work surrounding model-agnostic
FL points towards using a proxy unlabeled public
dataset to unify trained weights between different
models (Huang et al., 2022). This approach allows
the construction of a cross-correlation matrix to
learn a generalizable representation under domain
shift. However, due to the generality of LL.Ms, find-
ing and using a large and diverse enough dataset
to unify models distilled for diverse specific down-
stream tasks is impractical.

3 Methodology

Motivated by the need for efficient fine-tuning
and inference for private, resource-constrained
scenarios, we propose a model-agnostic FL sys-
tem Language MQOdel BuildinG BlOcks (LEGO).
Much like stacking small building blocks together
to create a larger structure, we stack small language

models (SLMs) together to create a larger, more
robust Large Language Model (LLM).

LEGO employs a two-step approach. First, we
obtain SLMs of different sizes by pruning an LLM.
We then deploy these SLMs in an FL environment,
eventually aggregating them into an LLM. Figure 1
shows the LEGO workflow in greater detail. The
SLMs produced by the pruning process are the
local client models in the FL environment. We pro-
duce SLMs of different sizes and model architec-
tures to better match the various computational bud-
gets of client devices. We use a full-sized LLM as
the global model, meaning that every client model
is a sub-network of the global model.

To produce a fine-tuned LLM using the client
SLMs, we begin with the process of federated fine-
tuning. First, the selected client SLMs for each
round are fine-tuned on their respective client’s
local data. They are then aggregated with each
other, creating a global update. This global update
is then applied to all client SLMs and the global
LLM. We repeat this process for every round of FL,
eventually forming a robust, fine-tuned LLM built
from the updates supplied by the fine-tuned client
SLMs.

For all studies and experiments, we impose the
following conditions:

* All fine-tuning is done using LoRA (Hu et al.,

2021), resulting in a more computationally

efficient fine-tuning process

e All aggregation occurs over the LoRA
adapters, allowing for decreased communi-
cation cost and more efficient aggregation.

* All fine-tuning is done over the databricks-
dolly-15k dataset or a subset of it. This dataset
was generated by Databricks and covers eight
different capability domains from the Instruct-
GPT paper (Ouyang et al., 2022).

3.1 Model Pruning

For our experiments, we simulate an FL system
on our cluster. We examine 4 model sparsity lev-
els (0%, 25%, 50%, and 75%), where each per-
centage indicates the proportion of weights that
have been removed. To create the SLMs, we use
SparseGPT (Frantar and Alistarh, 2023) to remove
the weights from a LLaMA-7B LLM, inducing the
specified level of sparsity in each model.

3.2 Model-agnostic Federated Learning

If SLMs are the building blocks, then FL is the
process of assembling the blocks into a structure,
and the resulting LL.M is the final structure built
from those blocks. We create a model-agnostic FL
environment to allow aggregation between different
sized SLMs, and the global LLM. At the end of
the FL process, we obtain a fine-tuned global LLM
constructed through the aggregation of SLMs. We
select SLMs that would be representative of client
devices depending on the experiment.

Algorithm 1 Federated Fine-Tuning with
Heterogeneous Models

Initialization:
Each client n initializes LLM with parameter sparsity w,.
M <+ 0; K communication rounds; k <+ 0.
Training Loop:
while £ < K do
Update M to select clients based on sparsity.
for each clientn € M do
Select model for n with wy,.
Awpi1,n, + InstructionTune(Awg, .y,).
end for
Awgq1 < HeteAgg({Awg41,n : n € M}).
k+—k+1.
end while
QOutcome:
Derive final adapters Aw ; update global LLM w.

Algorithm 1 details our FL system, where clients
would be assigned their respective SLMs with w,,
sparsity, representing the sparsity present in both
the model and the LoRA adapter. The clients are se-
lected for fine-tuning through a client selection pro-

cess (dependent on the scenario). During the train-
ing loop, clients fine-tune their LoORA adapters on
local data created from a subset of the databricks-
dolly-15k dataset. After fine-tuning, each of the
selected clients has their LoRA adapters aggregated
with each other to form a global update through
the HeteAgg method—our heterogeneous model
aggregation scheme detailed in Algorithm 2 . This
global update is then applied to each of the client
SLMs in addition to the global LLM. After the
training loop is complete, we can derive our final
adapters and global updates.

Algorithm 2 Model Heterogeneous Aggregation
(HeteAgg)

Define global model g initialized to a baseline state.
for each client in selected clients set do
Load client model state dictionary: s
Identify Pcommon, the set of common parameters be-
tween s and g
Initialize Payg + 0
for each parameter p € Peommon dO
Load p, from s and p, from g
Define masks Ms < (ps # 0), My < (pg # 0)
Mcombincd — M.s A Mg
Prew < Where(Mcombined, (ps + pg)/2,ps +pg —
Where(MS »Ps) pg))
Pavg [p] < Dnew
end for
Update g with Payg
end for

In our HeteAgg approach, we begin by insta-
tiating a global LLM to hold the eventual global
update. This global update is formed by aggre-
gating the client SLMs. This is done by access-
ing each of the selected client’s LoRA adapters,
and creating a mask for it based on its sparsity.
This sparse mask is then aggregated with the global
LLM’s LoRA adapter wherever there is overlap
between the mask and the adapter. Since sparsity
is represented by a parameter magnitude 0’ in the
SLM’s LoRA adapters, this process effectively av-
erages the nonzero parameters between the client
and global models.

By only aggregating across the nonzero weights,
we can retain the sparsity in the client model’s
adapter without halving the global adapter’s
weights when there is no corresponding nonzero
value. This process of mask creation and aggrega-
tion occurs for every client in the selected client
group, forming a global update through the global
LLM'’s adapter. Since every client SLM is a sub-
model of the LLM, we can apply the global up-
date to each client in the same manner again using
HeteAgg, averaging across each client’s nonzero

weights.

Cmmm

EEEECE

CEOEEE

EEEECE

S EOEEEE

EEEEEE OEEEE] EEEC

EEEEER EEEECN Clent Adapter at 4y
EENEEN . L5 _S5S
ENEEEE EEEECE
EEEEEE ECEEEE

ENEEEE ECEEE

Global Adapter at f; Client Adapter at t; Q |_ :] L J D

ENEEE

EEEEEE

DEEEEE

ENEEEE

EEEEEE

Aggregation
Step

Global Adapter at £+

Resulting
Adapters

Figure 2: A symbolic representation of our heteroge-
neous aggregation method

Figure 2 represents our heterogeneous aggrega-
tion method, where the blue matrix represents the
global LoRA adapter, and the red matrix represents
a sparsified client LoRA adapter. The left-hand
side displays each adapter at timestep t;, before
aggregation. During aggregation, the blue and red
parameters average to create purple parameters for
non-zero red (client) parameters. For zero-valued
red (client) parameters, the updated client model
retains its sparsity (upper right matrix), whereas the
updated global LoRA adapter uses the blue (global)
parameter values. As a result, the updated global
adapter is a 0% sparsity adapter. Thus, the right-
hand side displays each adapter at timestep ¢;1,
where the parameters are aggregated only when
there is an overlap between the corresponding non-
zero parameters of each model.

4 Experiments

To rigorously examine the efficacy of our LEGO
methodology, we conduct experiments to answer
the following questions:

* Do different sparsity models learn differ-
ently? By federating and aggregating SLMs
of strictly different sizes, we can test if the
specific weights being tuned are similar in
each size of model, allowing for knowledge
transfer.

* Can the composition of SLMs yield a robust
LLM? By strictly using SLMs in an FL sys-
tem, we can test if their aggregation produces
arobust LLM.

* Can task-specific SLMs stack together like
building blocks to construct a generalizable
LLM? By fine-tuning each client SLM on a
unique, specific task, and aggregating them
together, we can test if they can produce a sin-
gle, robust LLM that retains each component
SLM’s domain knowledge.

We compare LEGO with these baselines:

* A FedIT-produced global model resulting
from 4 LLaMA-7B models fine-tuned over
1.i.d data. This baseline is the ideal case for
FedIT.

* A FedIT-produced global model resulting
from 8 task-specifc LLaMA-7B models where
each model is only fine-tuned on one of the
8 different domain areas of databricks-dolly-
15k.

FedIT is a foundational FL framework that our
code extends (Zhang et al., 2023). The authors
use an LLaMA-7B model with LoRA adapters and
they sequentially fine-tune each adapter and then
aggregate using FedAvg into the global model.

Since the computational cost of HeteAgg is the
same as FedAvg, all speedups in LEGO are a direct
result of model pruning (Sun et al., 2023; Frantar
and Alistarh, 2023). During our experiments, we
observe up to a 1.7x speedup in inference and up
to a 1.4x speedup in fine-tuning using SparseGPT-
produced SLMs when compared to 0% sparsity
LLMs.

4.1 Heterogeneous Aggregation Validation

When using building blocks, we often encounter
blocks of varying sizes. To create a cohesive struc-
ture, we must stack these differently sized blocks
ontop of one another. This concept is the central to
our LEGO methodology, as much like the blocks,
different sized SLMs must be assembled together
to create a robust LLM.

SRRt

Figure 3: A representation of how three different SLMs
can be stacked (aggregated) together using blocks,
where each color is representative of the SLM’s knowl-
edge.

Table 1: Average Model Performance Over Benchmarks

Composition Sparsity Level Pruned Fine-Tuned Aggregated
0% 0.559 0.563 0.568
) 25% 0.554 0.561 0.565
4 Strictly Heterogeneous Models 50% 0.529 0.526 0.542
75% 0.384 0.412 0.396
e e 0% 0.559 - 0.568
5 SLMs With i.i.d Data Distribution 50% 0.529 i 0.541
. 0% 0.559 - 0.571
8 Task-Specific SLMs 759% 0.240 i 0411
FedIT: 4 LLMs With i.i.d Data Distribution 0% 0.569 - 0.567
FedIT: 8 Task-Specific LLMs 0% 0.569 - 0.563

Figure 3 illustrates how SLMs of various sizes—
each being represented by different color blocks—
are stacked together. When being stacked, simi-
lar to Figure 2, we see that wherever there is an
overlap, the average is taken between the overlap-
ping blocks. The final, resultant block consists of
three sections: the top red layer, where the largest
block does not overlap with others; the bottom pur-
ple layer, an average of the blue and red where
two blocks overlap; and the middle white section,
where all three blocks overlap. This averaging of
colors is representative of the knowledge being
transferred between the models.

In the case of LEGO, successful stacking of
heterogeneous SLMs causes each model to learn
from each other, with knowledge transferring be-
tween models. Thus, this experiment tests the
effectiveness of HeteAgg, our "stacking" mech-
anism, by creating an FL environment with exclu-
sively heterogeneous clients. We set a scenario
with four clients, each with different sparsity lev-
els (0%, 25%, 50%, and 75%). Each client has an
i.i.d portion of localized data to fine-tune on.

Table 1 displays the performance of different-
sized models for a model composition with 4
strictly heterogeneous models. We benchmark per-
formance at three different stages: when the LLM
was initially pruned before fine-tuning (Pruned),
when the model is fine-tuned on local data (Fine-
Tuned), and the final adapters after all FL rounds
and global updates (Aggregated). As displayed
in the table, we see that fine-tuning improves per-
formance for all model sizes, with a significant
performance gain at the 75% sparsity level. The
aggregation stage improves performance for all
model sizes at 0%-50% sparsity but degrades at
75% sparsity.

Comparing against the FedIT-produced baseline
with 4 strictly homogeneous LLMs, we see that
when using heterogeneous models, an equally ro-
bust 0% LLM is produced. While, the 25% spar-
sity model is equally robust, performance begins
degrading at 50% sparsity.

The 75% sparsity model’s degraded perfor-
mance is likely due to the SLM’s limited size.
Previous work has shown that smaller models
are better learners for specific tasks, resulting in
more strongly tuned weights to offset size con-
straints (Turc et al., 2019; Raffel et al., 2020). Dur-
ing aggregation with larger models, the stronger
learned representation in smaller models become
diluted by the larger model’s weaker representa-
tion, causing degraded performance in the smaller
model.

The 0% sparsity LLM resulting from our four ag-
gregated heterogeneous client models matches the
FedIT benchmark performance of four aggregated
LLMs. These results show that LEGO can account
for clients that have diverged from their learned
representations due to high sparsity or overfitting
client data..

4.2 Building Blocks Methodology Validation

When building large structures, it is common to as-
semble smaller sub-units individually before com-
bining them into the final form. Similarly, with
LEGO, we can fine-tune smaller models individu-
ally, treating them as sub-units that are then aggre-
gated together to produce a final LLM.

We test whether LEGO has the same capability
by exclusively composing SLMs, and aggregating
them together to create a robust LLM. This exper-
iment tests the transferability of knowledge from
SLMs to an LL.M using LEGO. We employ five

50% sparsity client SLMs for fine-tuning and ag-
gregating, and apply the resulting global updates to
a 0% sparsity global LLM.

The results of this experiment, composed with
5 SLMs with 1.i.d data distribution, are in Table 1.
Despite only fine-tuning SLMs, we achieved a 0%
LLM better than the FedIT LLM produced from 4
LLMs with an i.i.d data distribution. These results
demonstrate that LEGO allow for knowledge trans-
fer from strictly smaller models to a larger model
in an effective manner.

4.3 Task-specific Knowledge Transfer
Validation

Just as not all (SLM) building blocks are the same
size, they may not necessarily be the same shape.
Regardless of the size or shape, the requirement is
that they can stack together. LEGO demonstrates
this principle.

>

Figure 4: 3 differently shaped building blocks being
combined to create a larger block

Figure 4 shows three blocks of differing shapes
being combined to create a new, larger block that
encompasses the different shapes. The same can
be done with SLMs, where each SLM can be cov-
ering a different task or scenario, but be aggregated
together to create a robust LLM that covers the
diverse tasks of its components.

The experiment of this section evaluates knowl-
edge transfer in a non-i.i.d data distribution sce-
nario. We use eight 75% sparsity client SLMs; each
fine-tuned on one of the eight capability domains
in the databricks-dolly-15k dataset. We apply the
resulting global updates from the client aggregation
stages to a global LLM.

The results of this experiment consisting of 8
task-specific SLMs are in Table 1, demonstrating
that despite each model being fine-tuned on a differ-
ent task, the knowledge transfers between models,
resulting in a more robust global 0% sparsity LLM
than any of the previous experiments.

This can most likely be attributed to the small
size of the SLMs. As discussed before, previous
work in KD has shown that smaller models are
more adept learners when it comes to task spe-
cific models. To our knowledge, no previous study
has explored task-specific SLMs in the context of

pruning. However, our results demonstrate that
the same task-specific adaptation strength present
in KD-produced SLMs is also present in pruning-
produced SLMs, despite not distilling over select
tasks.

The learned representations in the SLMs are
more strongly reflective of their fine-tuning data
due to their limited size. Thus, when aggregating
the SLMs with the global LLM, the LLM obtains
the stronger task specific representations from the
SLMs. The LLM gains this knowledge while being
bolstered by its larger size, creating a more robust
model.

Thus, the results demonstrate that smaller mod-
els make better task-specific learners, and their
knowledge can be effectively transferred to larger
models, yielding robust LLMs while only fine-
tuning SLMs.

The the LEGO produced 0% sparsity LLM
formed by 8 task-specific SLMs outperforms the
FedIT baseline with 8 task-specific LLMs, despite
only using SLMs a quarter of the size.

Additionally, we further test how well knowl-
edge transfers between the SLMs. To do so, we
track the performance of client SLMs over time,
evaluating their performance after every global up-
date.

0416
0414

g 0412

£

5 0410

©

2 0.408

g

2
0.406

0.404

1 2 3 6 7 8

4 5
Number of Aggregations

Figure 5: The performance of clients after each global
update.

Figure 5 demonstrates that after every communi-
cation round, the performance of the client SLMs
increase. Thus, we can determine that if one model
learns, then they all learn.

5 Related Work

Works on heterogeneous federated learning in the
context of pretrained language models are sparse.
The first paper to cover the topic in-depth was
InclusiveFL (Liu et al., 2022), where the authors
used layer-pruned BERT models in a federated sys-
tem and aggregate across layers. The authors found

layer-pruning to have a negligible effect on BERT’s
performance - something that does not apply to
modern LLMs.

This can be attributed to the emergent large-
magnitude features in LLMs, which are sparse
and distributed randomly across layers and have a
significant effect on LLM performance (Dettmers
et al., 2022). While Wanda and SparseGPT avoid
this, layer pruning cannot do so. We experimentally
confirm this in Appendix A.2.

We can extend this reasoning to similar ap-
proaches focused on layer selection that are
only tested on encoder-style LLMs, like FedPep-
TAO (Che et al., 2023).

We then look to homogeneous model FL applied
to larger, decoder-style LLMs. FedIT (Zhang et al.,
2023) acts as the representation of traditional FL
throughout our work, using FedAvg for aggregation
as mentioned in Section 4. However, FedAvg can-
not adapt to heterogeneous models, and as pointed
out by other works, cannot account for heteroge-
neous ranks in the LoRA adapter(Bai et al., 2024).

Newer works have continued to model them-
selves after FedIT’s use of LoRA. Recently, en-
abling heterogeneous LoRA ranks in FL has been
discussed in the literature. For example, Flex LORA
computes a weighted average of LoRA adapters
with different LoRA ranks, and then uses SVD
for redistribution (Bai et al., 2024). However,
FlexLoRA assumes model homogeneity among
client models, which is what allows for adaptive
rank pruning in the LoRA adapter.

The advantages of rank pruning do not translate
to the advantages of model pruning. Model pruning
allows for more efficient fine-tuning and inference,
whereas pruning LoRA only translates to more ef-
ficient fine-tuning, with the same inference costs
as the initial LLM. Thus, in FlexLoRA, model se-
lection is constrained by weakest device. Pruning
allows larger models (LLMs) to run on more pow-
erful devices, and smaller models (SLMs) to run
on weaker devices.

Additionally, this aggregation technique relies
on multiplying each client’s LoRA adapters, A and
B, together, where A € R™™ and B € R™*".
The multiplication results in the server creating the
full-sized weights for every client model before ag-
gregating them together. This extremely resource
intensive operation limits the scalability of the tech-
nique relative to ours, where the LoORA modules
stay separate.

However, LEGO does not have to exclusively
operate over PEFT adapters. The same approach
and aggregation methods used for LORA adapters
can be performed with the actual client weights, or
with the multiplied LoRA adapters. This means
that rank-pruning techniques can be applied with
or on top of LEGO, further decreasing SLM size,
at the cost of increased computation for the server.

6 Conclusions

In this work, we have introduced LEGO, a build-
ing block methodology for federated fine-tuning
of LLMs. By allowing for the use of pruned
LLMs, we can use SLMs as task-specific learn-
ers for resource-constrained devices, and use them
as building blocks, stacking them into a fully ro-
bust LLM. This is enabled through our simple yet
effective aggregation scheme, HeteAgg, which al-
lows for the aggregation of heterogeneous SLMs.
Through experimentation, we prove that LEGO
is effective, allowing for SLMs to be stacked to-
gether like building blocks. We demonstrate that
smaller models make better learners, which trans-
lates to stronger models, and also show that individ-
ual client learning translates to all models learning.
By enabling heterogeneous client resource bud-
gets, LEGO creates a more scalable and resource-
efficient FL system for private conversational Al.

7 Limitations

Our approach has limitations caused by prioritizing
efficiency. As mentioned in Section 3, we operate
over client LoRA adapters. Each LoRA module A
and B is aggregated separately, which introduces
noise to the resulting weights, as

Y Ax> B # Y (AxB)
N—_———— N————

LEGO Noise-Free Aggregation.

Despite the noise, however, we show experimen-
tally that LEGO produces robust models.

References

Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao,
and Yaliang Li. 2024. Federated fine-tuning of
large language models under heterogeneous lan-
guage tasks and client resources. arXiv preprint
arXiv:2402.11505.

Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen
Zhou, Victor S Sheng, Huaiyu Dai, and Dejing Dou.
2023. Federated learning of large language models

with parameter-efficient prompt tuning and adaptive
optimization. arXiv preprint arXiv:2310.15080.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318-
30332.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323-10337. PMLR.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Samyak Gupta, Yangsibo Huang, Zexuan Zhong,
Tianyu Gao, Kai Li, and Dangi Chen. 2022. Recov-
ering private text in federated learning of language
models. Advances in Neural Information Processing
Systems, 35:8130-8143.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Wenke Huang, Mang Ye, and Bo Du. 2022. Learn from
others and be yourself in heterogeneous federated
learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 10143-10153.

Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang,
Lingjuan Lyu, Hong Chen, and Xing Xie. 2022. No
one left behind: Inclusive federated learning over
heterogeneous devices. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 3398-3406.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273-1282. PMLR.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2023. Sheared llama: Accelerating language
model pre-training via structured pruning.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024. A survey on knowledge dis-
tillation of large language models. arXiv preprint
arXiv:2402.13116.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence?

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, Guoyin Wang, and Yiran Chen.
2023. Towards building the federated gpt: Federated
instruction tuning. arXiv preprint arXiv:2305.05644.

A Appendix
A.1 Comparison of Pruning Methods

As discussed in the Background section, there are
two pruning techniques that dominate the literature.
We test both SparseGPT and Wanda and analyze
the best pruning technique to use.

The results in table 2 show that SparseGPT pro-
duces more robust models on average, with a sig-
nificant advantage at higher levels of sparsity. How-
ever, SparseGPT is more computationally expen-
sive when pruning, while Wanda is computationally
inexpensive.

This provides us a few insights. The first is
that regardless of pruning strategy, performance
degrades significantly beyond 50% sparsity. The
second is that while more computationally expen-
sive, SparseGPT may be necessary at high sparsity

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830

Table 2: Comparison of SparseGPT and Wanda Pruned Models

Sparsity Level SparseGPT Wanda
Pruned Fine-tuned Pruned Fine-tuned
0% 0.5694 0.5760 0.5694 0.5741
25% 0.5654 0.5784 0.5672 0.5731
50% 0.5144 0.5244 0.5195 0.5377
75% 0.2989 0.3631 0.2692 0.2916

Table 3: All models were pruned from LLaMA-7B and evaluated over HellaSwag (Zellers et al., 2019). The
Fine-tuned models were fine-tuned over databricks-dolly-15k. Bolded scores are the best in sparsity level.

levels or more resource constrained client devices,
as it not only produced a more robust model, but
the increase in performance due to fine-tuning was
almost double that of Wanda.

Given these insights, the superior pruning
method depends on the use case scenario. If we are
defining rigid model sizes and assert that client de-
vices will be initialized with one of these ’default’
model sizes, then SparseGPT would be superior.
This is especially true given our compute budget
is capable of fine-tuning LLMs and performing in-
ference, since SparseGPT is relatively cheap com-
pared to those tasks if not being performed for ever
device initialization. Thus, we can use SparseGPT
to generate various model sizes/sparsity’s before
the FL process begins, and assign models accord-
ingly.

However, in practice, creating a methodology to
calculate the ideal model size given the device’s
compute budget would return more robust client
models for users in the FL system. In this sce-
nario, when a client is initialized, a model would be
pruned according to their compute budget, mean-
ing a lightweight process like Wanda would be
superior.

However it is worth noting that, with the ex-
ception of high sparsity scenarios, the difference
between the two pruning method’s performances is
negligible. Therefore, our results should be gener-
alizable to both pruning methods.

Additionally, as pruning methods continue to
evolve, the performance of pruned models will
improve. Therefore its important evaluate model
performance in our experiments with the limita-
tions of current pruning techniques, but as pruning
techniques improve, our methodologies and results
would generalize to them and should scale accord-
ingly.

In order to confirm if our experimental results
are generalizable to other pruning techniques, we

10

also test the Wanda-pruned SLMs for our HeteAgg
experiment. We perform the same experiment in-
volving 4 models at different sparsity levels, with
its results displayed in table 4.

Figure 6: Performance of federated SparseGPT-pruned
models relative to federated Wanda-pruned models
when evaluated on HellaSwag (Zellers et al., 2019)

When plotted against SparseGPT’s performance
in figure 6, we see that the effects of our FL ap-
proach are near identical. For sparsity > 50%, we
see that the results are nearly identical, and the
performance gap displayed by the fine-tuned 50%
sparsity SparseGPT-pruned model is corrected after
model aggregation.

While the performance on HellaSwag is dif-
ferent at high sparsity, that can be attributed to
Wanda’s weaker pruning ability at high sparsity
levels. When viewing the Wanda and SparseGPT
pruned 75% sparsity models, we see the drop in
performance due to aggregation after fine-tuning is
nearly identical.

Therefore, since the performance is nearly iden-
tical, and the only significant difference in perfor-
mance can be attributed to the initial model per-
formance as opposed to our FL system, we can
generalize our FL. method to other current pruning
techniques.

A.2 Experimental Comparison with
InclusiveFL

In order to confirm the effect of emergent large-
magnitude features in LLMs discussed in Section 5,
we experimentally compare InclusiveFL and layer

Table 4: Performance of Wanda pruned models on HellaSwag (Zellers et al., 2019)

Sparsity Level Pruned Fine-Tuned Aggregated

0% 0.5694 0.5741 0.5799
25% 0.5672 0.5731 0.5802
50% 0.5195 0.5377 0.5393
75% 0.2692 0.2916 0.2717

pruning to LEGO and activation pruning. To do so,
we layer-prune LLaMA-7B and modify our Het-
eAgg function to perform layer-wise aggregation.

We pruned LLaMA-7B to 24 and 16 layers,
equivalent to 25% and 75% sparsity. We then put
these two models and a 0% sparsity LLaMA-7B
model in the federated environment from Algo-
rithm 1, modifying the HeteAgg function to follow
the pseudocode in the InclusiveFL paper. For clos-
est comparison we take select results from Section
4.1 and Table 1.

In Table 5, we can see that even before feder-
ation, layer pruning fails to conserve model per-
formance after pruning. This can be attributed to
the emergent large-magnitude features in LLMs,
as described in Section 5 (Dettmers et al., 2022).
After federation, the fine-tuning and aggregation
process degraded the performance, proving that
this approach does not work for LLMs.

A.3 [Experimental Setup and Performance

For all of the experiments, due to hardware limita-
tions we use a client selection strategy that sequen-
tially chooses clients. We use a client participation
rate of 0.1, with a local batch size of 64 and a maxi-
mum of 10 epochs. For our LoRA adapter settings,
we chose a rank and alpha of 16, and only target
the g_proj.

Table 1 showed the average model performance
for each model. The individual results for each
benchmark of each model is held in Table 6. We
evaluate each model on HellaSwag (Zellers et al.,
2019), MMLU (Hendrycks et al., 2021), SciQ, and
ARC (Clark et al., 2018). We evaluate the models
using the EleutherAl Language Model Evaluation
Harness (Gao et al., 2023).

11

Table 5: Performance of layer-pruning (Liu et al., 2022) compared to activation pruning (our study).

Sparsity / Lavers Pruned Fine-tuned & Aggregated
P y ¥ SparseGPT Layer-Pruning | SparseGPT Layer-Pruning
Full Sized 0.5694 0.5694 0.5836 0.5148
25% Sparsity / 24 Layers 0.5654 0.3957 0.5801 0.3658
50% Sparsity / 16 Layers 0.5144 0.3021 0.5411 0.3014
Sparsity (%) Stage HellaSwag MMLU SciQ Arc
4 Strictly Heterogeneous Models

0 Pruned 0.569 0.299 0947 0.419

0 Fine-Tuned 0.576 0.295 0.950 0.429

0 Aggregated 0.584 0.301 0.953 0.435

25 Pruned 0.565 0.292 0938 0422

25 Fine-Tuned 0.578 0.286 0.944 0.437

25 Aggregated 0.580 0295 0944 0.442

50 Pruned 0.514 0292 0935 0.375

50 Fine-Tuned 0.524 0.267 0932 0.379

50 Aggregated 0.541 0292 0932 0404

75 Pruned 0.299 0.230 0.809 0.197

75 Fine-Tuned 0.363 0.237 0.828 0.221

75 Aggregated 0.317 0.229 0.832 0.206

5 SLMs With iid Data Distribution

0 Pruned 0.569 0.299 0947 0.419

0 Aggregated 0.581 0.296 0.953 0.443

50 Pruned 0.514 0292 0935 0.375

50 Aggregated 0.540 0.291 0.935 0.399

8 Task-Specific SLMs

0 Pruned 0.569 0.299 0947 0.419

0 Aggregated 0.586 0.298 0.953 0.446

75 Pruned 0.299 0.230 0.233 0.197

75 Aggregated 0.359 0.241 0.813 0.233

FedIT: 4 LLMs
0 Aggregated 0.575 0.286 0.956 0.453
FedIT: 8 Task-Specific LLMs
0 Aggregated 0.570 0279 0.951 0452

Table 6: Model Performance Across Different Configurations and Datasets

12

