
LEGO: Language Model Building Blocks

Anonymous ACL submission

Abstract

Large language models (LLMs) are essential001
in natural language processing (NLP) but are002
costly in fine-tuning and inference, and involve003
invasive data collection. Task-specific small004
language models (SLMs) offer a cheaper al-005
ternative but lack robustness and generaliza-006
tion. This paper proposes a novel technique007
to combine SLMs and construct a robust, gen-008
eral LLM. Using state-of-the-art LLM prun-009
ing strategies, we create task- and user-specific010
SLM building blocks that are efficient for fine-011
tuning and inference while also preserving user012
data privacy. Utilizing Federated Learning and013
a novel aggregation scheme, we can compile014
an LLM from distributed SLMs, maintaining015
robustness without high costs and preserving016
user data privacy.017

1 Introduction018

Large Language Models (LLMs) represent a sig-019

nificant advance in Natural Language Processing020

(NLP) with their remarkable ability to generalize021

across queries and tasks. These models are typi-022

cally fine-tuned using large, diverse datasets de-023

rived from high-quality instruction data (Gupta024

et al., 2022).025

LLMs are not, however, a one-size-fits-all solu-026

tion. Running LLMs on small devices like IoT de-027

vices or smartphones is not possible due to their re-028

source limitations. Downstream LLM applications029

that value privacy, such as personal conversational030

AI, become untenable due to data privacy concerns,031

as user data must stay on personal devices or pri-032

vate networks and cannot be shared globally. These033

constraints, created by private user data, apply to034

both fine-tuning and inference.035

LLMs are traditionally fine-tuned in a central-036

ized manner, where data is aggregated from raw037

user interactions and shared globally to fine-tune a038

single global model. In contrast, Federated Learn-039

ing (FL) is a collaborative learning approach that040

allows client models to learn from users while pre- 041

serving their privacy (McMahan et al., 2017). FL 042

utilizes distributed fine-tuning with localized client 043

models trained on localized user interactions, re- 044

sulting in a global model created by aggregating 045

client model weights. While FL preserves data pri- 046

vacy and addresses the complexity of fine-tuning, 047

it does not resolve the high cost of inference with 048

LLMs. 049

Small Language Models (SLMs) address the 050

high cost of inference as well as fine-tuning, al- 051

lowing for a greater range of client devices. While 052

SLMs are more efficient, the cheaper performance 053

comes at the expense of robustness and general- 054

ization across broad tasks, conversational interac- 055

tions, and advanced LLM capabilities. Further- 056

more, SLMs are not typically designed to be com- 057

posable, constraining FL architecture to an either- 058

or choice: choose SLMs at the cost of robustness, 059

or choose the original LLMs that limit their utility 060

due to size and complexity. 061

For resource-constrained scenarios like chatbots 062

on small devices, there is a critical need for com- 063

putationally efficient (fine-tuning and inference), 064

robust, general, and private methods that facilitate 065

different sizes and architectures of models depend- 066

ing on the computational resources of the device. 067

To enhance client flexibility in distributed con- 068

versational AI systems, we introduce Language 069

MOdel BuildinG BlOcks (LEGO), a model- 070

agnostic technique for integrating small language 071

models (SLMs) with diverse heterogeneous archi- 072

tectures. LEGO enables efficient fine-tuning and in- 073

ference, preserves privacy, optimizes performance 074

across varied resource constraints, and aids in de- 075

veloping robust and generalizable large language 076

models (LLMs). Our approach utilizes an SLM- 077

based federated learning system where each SLM 078

is derived from an LLM, allowing them to be com- 079

bined to reconstruct the original LLM. By treating 080

SLMs as building blocks, LEGO effectively assem- 081

1

bles them into a cohesive LLM.082

Through the use of LEGO, we demonstrate a083

flexible FL system that broadens the range of possi-084

ble client devices by enabling different sized mod-085

els for different sized devices. Through numerous086

experiments, we display that when using LEGO,087

smaller models are better learners and therefore088

yield more robust models. We also demonstrate089

that one client learning from local data translates090

to all clients having learned, and that SLMs can be091

treated as composable entities that can be combined092

to form an LLM.093

With the proposed LEGO approach, the major con-094

tributions of this work include095

• A method to compose SLMs together to yield096

a robust and generalizable LLM097

• A privacy-preserving FL architecture to serve098

these composable client-side heterogeneous099

SLMs100

• A method to optimize client-side SLMs101

against heterogeneous resource budgets for102

efficient fine-tuning and inference103

The rest of this paper is organized as the follow-104

ing: Section 2 gives background information. Sec-105

tion 3 details the methodology behind the LEGO106

approach and its components. Section 4 covers the107

experiments we performed to validate LEGO and108

houses their results. Section 5 discusses the related109

work. Section 6 concludes the paper and Section 7110

lists our study’s limitations.111

2 Background112

2.1 Model Compression113

In recent years, Knowledge Distillation (KD)114

has become widely used in NLP to compress115

LLMs (Hinton et al., 2015). Previous works have116

demonstrated that knowledge can be effectively117

distilled from LLMs to create task-specific small118

language models (SLMs). These KD-produced119

small models perform better than full-sized LLMs120

when fine-tuned on specific tasks, but do so at the121

cost of general robustness (Xu et al., 2024).122

One alternative to KD is pruning, a method that123

involves the selective omission of model parame-124

ters with minimal contributions to the learning pro-125

cess. Primitive pruning techniques have proven suc-126

cessful, enhancing the cost-effectiveness of large127

pre-trained models (Xia et al., 2023).128

Recently, more nuanced pruning approaches129

have been discussed in the literature, improv-130

ing over more traditional methods like magni- 131

tude pruning. Specifically, two state-of-the-art 132

pruning methods are widely discussed in the 133

literature—SparseGPT (Frantar and Alistarh, 2023) 134

and Wanda (Sun et al., 2023). Whereas traditional 135

magnitude pruning operates by pruning weights 136

with the largest magnitude, these pruning tech- 137

niques instead track weight activations, and prune 138

weights with the lowest amount of activation. 139

SparseGPT creates and solves a layer-wise re- 140

construction problem to determine the weight acti- 141

vations, while Wanda instead takes the product of a 142

weight’s magnitude and the norm of its associated 143

input activations to determine what to prune. 144

Regardless, in the context of LLM compression, 145

both these techniques present significant advan- 146

tages over KD, as pruning is less computationally 147

expensive. Whereas KD requires substantial post- 148

training time for the distilled models, pruning can 149

produce SLMs without these costs. 150

2.2 Federated Fine-Tuning 151

Federated Learning (FL) is a distributed training 152

methodology that trains a model across multiple 153

decentralized devices while allowing data to re- 154

main on user machines (McMahan et al., 2017). In 155

Conventional FL, each client device has its own 156

native model and trains it on user inputs. Instead of 157

sharing this client data globally, the models instead 158

share their own model weights, aggregating them 159

with other client weights. This creates a global up- 160

date that encodes knowledge gained from all model 161

updates without compromising data privacy. 162

This same methodology can be applied to LLM 163

fine-tuning. Instead of fine-tuning on globally 164

shared user data, client models can fine-tune on 165

local data and have their weights shared and aggre- 166

gated. This approach eases many of the barriers to 167

data collection compared to traditional centralized 168

fine-tuning, as users can retain privacy over their 169

instructions while contributing to the model. 170

Two fundamental assumptions are often made 171

in both traditional FL and FL for fine-tuning. The 172

first is that all data is i.i.d, meaning that not only 173

do all clients have similar amounts of data, but 174

that the the ratio of content within each are similar. 175

The study of non-i.i.d data distributions in FL is 176

often referred to as heterogeneous FL, with many 177

strategies and techniques being proposed to offset 178

the effects of data heterogeneity. 179

The second assumption is that all model architec- 180

2

Figure 1: The LEGO workflow. An LLM is first pruned to create SLMs, then each SLM is assigned to a client.
Each client then fine-tunes its SLM on its local data. After fine-tuning, the models are aggregated to create a global
update. The global update is then applied to all the client SLMs as well as a global LLM. Eventually, after enough
updates, a final global LLM is derived.

tures in FL systems are identical, allowing for the181

aggregation of model weights when creating global182

updates. Heterogeneity in model architecture there-183

fore presents unique challenges in FL. Differing184

client model architectures impede the use of stan-185

dard aggregation techniques like FedAvg due to186

varying parameter sizes.187

Much like data-heterogeneous FL, many strate-188

gies have been proposed to offset the effect of189

model heterogeneity, allowing for model-agnostic190

FL. Previous work surrounding model-agnostic191

FL points towards using a proxy unlabeled public192

dataset to unify trained weights between different193

models (Huang et al., 2022). This approach allows194

the construction of a cross-correlation matrix to195

learn a generalizable representation under domain196

shift. However, due to the generality of LLMs, find-197

ing and using a large and diverse enough dataset198

to unify models distilled for diverse specific down-199

stream tasks is impractical.200

3 Methodology201

Motivated by the need for efficient fine-tuning202

and inference for private, resource-constrained203

scenarios, we propose a model-agnostic FL sys-204

tem Language MOdel BuildinG BlOcks (LEGO).205

Much like stacking small building blocks together206

to create a larger structure, we stack small language207

models (SLMs) together to create a larger, more 208

robust Large Language Model (LLM). 209

LEGO employs a two-step approach. First, we 210

obtain SLMs of different sizes by pruning an LLM. 211

We then deploy these SLMs in an FL environment, 212

eventually aggregating them into an LLM. Figure 1 213

shows the LEGO workflow in greater detail. The 214

SLMs produced by the pruning process are the 215

local client models in the FL environment. We pro- 216

duce SLMs of different sizes and model architec- 217

tures to better match the various computational bud- 218

gets of client devices. We use a full-sized LLM as 219

the global model, meaning that every client model 220

is a sub-network of the global model. 221

To produce a fine-tuned LLM using the client 222

SLMs, we begin with the process of federated fine- 223

tuning. First, the selected client SLMs for each 224

round are fine-tuned on their respective client’s 225

local data. They are then aggregated with each 226

other, creating a global update. This global update 227

is then applied to all client SLMs and the global 228

LLM. We repeat this process for every round of FL, 229

eventually forming a robust, fine-tuned LLM built 230

from the updates supplied by the fine-tuned client 231

SLMs. 232

For all studies and experiments, we impose the 233

following conditions: 234

• All fine-tuning is done using LoRA (Hu et al., 235

2021), resulting in a more computationally 236

3

efficient fine-tuning process237

• All aggregation occurs over the LoRA238

adapters, allowing for decreased communi-239

cation cost and more efficient aggregation.240

• All fine-tuning is done over the databricks-241

dolly-15k dataset or a subset of it. This dataset242

was generated by Databricks and covers eight243

different capability domains from the Instruct-244

GPT paper (Ouyang et al., 2022).245

3.1 Model Pruning246

For our experiments, we simulate an FL system247

on our cluster. We examine 4 model sparsity lev-248

els (0%, 25%, 50%, and 75%), where each per-249

centage indicates the proportion of weights that250

have been removed. To create the SLMs, we use251

SparseGPT (Frantar and Alistarh, 2023) to remove252

the weights from a LLaMA-7B LLM, inducing the253

specified level of sparsity in each model.254

3.2 Model-agnostic Federated Learning255

If SLMs are the building blocks, then FL is the256

process of assembling the blocks into a structure,257

and the resulting LLM is the final structure built258

from those blocks. We create a model-agnostic FL259

environment to allow aggregation between different260

sized SLMs, and the global LLM. At the end of261

the FL process, we obtain a fine-tuned global LLM262

constructed through the aggregation of SLMs. We263

select SLMs that would be representative of client264

devices depending on the experiment.265

Algorithm 1 Federated Fine-Tuning with
Heterogeneous Models

Initialization:
Each client n initializes LLM with parameter sparsity wn.
M ← ∅; K communication rounds; k ← 0.
Training Loop:
while k ≤ K do

Update M to select clients based on sparsity.
for each client n ∈M do

Select model for n with wn.
∆wk+1,n ← InstructionTune(∆wk,n).

end for
∆wk+1 ← HeteAgg({∆wk+1,n : n ∈M}).
k ← k + 1.

end while
Outcome:
Derive final adapters ∆wK ; update global LLM w.

Algorithm 1 details our FL system, where clients266

would be assigned their respective SLMs with wn267

sparsity, representing the sparsity present in both268

the model and the LoRA adapter. The clients are se-269

lected for fine-tuning through a client selection pro-270

cess (dependent on the scenario). During the train- 271

ing loop, clients fine-tune their LoRA adapters on 272

local data created from a subset of the databricks- 273

dolly-15k dataset. After fine-tuning, each of the 274

selected clients has their LoRA adapters aggregated 275

with each other to form a global update through 276

the HeteAgg method—our heterogeneous model 277

aggregation scheme detailed in Algorithm 2 . This 278

global update is then applied to each of the client 279

SLMs in addition to the global LLM. After the 280

training loop is complete, we can derive our final 281

adapters and global updates. 282

Algorithm 2 Model Heterogeneous Aggregation
(HeteAgg)

Define global model g initialized to a baseline state.
for each client in selected clients set do

Load client model state dictionary: s
Identify Pcommon, the set of common parameters be-

tween s and g
Initialize Pavg ← ∅
for each parameter p ∈ Pcommon do

Load ps from s and pg from g
Define masks Ms ← (ps ̸= 0), Mg ← (pg ̸= 0)
Mcombined ←Ms ∧Mg

pnew ← where(Mcombined, (ps + pg)/2, ps + pg −
where(Ms, ps, pg))

Pavg[p]← pnew
end for
Update g with Pavg

end for

In our HeteAgg approach, we begin by insta- 283

tiating a global LLM to hold the eventual global 284

update. This global update is formed by aggre- 285

gating the client SLMs. This is done by access- 286

ing each of the selected client’s LoRA adapters, 287

and creating a mask for it based on its sparsity. 288

This sparse mask is then aggregated with the global 289

LLM’s LoRA adapter wherever there is overlap 290

between the mask and the adapter. Since sparsity 291

is represented by a parameter magnitude ’0’ in the 292

SLM’s LoRA adapters, this process effectively av- 293

erages the nonzero parameters between the client 294

and global models. 295

By only aggregating across the nonzero weights, 296

we can retain the sparsity in the client model’s 297

adapter without halving the global adapter’s 298

weights when there is no corresponding nonzero 299

value. This process of mask creation and aggrega- 300

tion occurs for every client in the selected client 301

group, forming a global update through the global 302

LLM’s adapter. Since every client SLM is a sub- 303

model of the LLM, we can apply the global up- 304

date to each client in the same manner again using 305

HeteAgg, averaging across each client’s nonzero 306

4

weights.307

Figure 2: A symbolic representation of our heteroge-
neous aggregation method

Figure 2 represents our heterogeneous aggrega-308

tion method, where the blue matrix represents the309

global LoRA adapter, and the red matrix represents310

a sparsified client LoRA adapter. The left-hand311

side displays each adapter at timestep ti, before312

aggregation. During aggregation, the blue and red313

parameters average to create purple parameters for314

non-zero red (client) parameters. For zero-valued315

red (client) parameters, the updated client model316

retains its sparsity (upper right matrix), whereas the317

updated global LoRA adapter uses the blue (global)318

parameter values. As a result, the updated global319

adapter is a 0% sparsity adapter. Thus, the right-320

hand side displays each adapter at timestep ti+1,321

where the parameters are aggregated only when322

there is an overlap between the corresponding non-323

zero parameters of each model.324

4 Experiments325

To rigorously examine the efficacy of our LEGO326

methodology, we conduct experiments to answer327

the following questions:328

• Do different sparsity models learn differ-329

ently? By federating and aggregating SLMs330

of strictly different sizes, we can test if the331

specific weights being tuned are similar in332

each size of model, allowing for knowledge333

transfer.334

• Can the composition of SLMs yield a robust335

LLM? By strictly using SLMs in an FL sys-336

tem, we can test if their aggregation produces337

a robust LLM.338

• Can task-specific SLMs stack together like 339

building blocks to construct a generalizable 340

LLM? By fine-tuning each client SLM on a 341

unique, specific task, and aggregating them 342

together, we can test if they can produce a sin- 343

gle, robust LLM that retains each component 344

SLM’s domain knowledge. 345

We compare LEGO with these baselines: 346

• A FedIT-produced global model resulting 347

from 4 LLaMA-7B models fine-tuned over 348

i.i.d data. This baseline is the ideal case for 349

FedIT. 350

• A FedIT-produced global model resulting 351

from 8 task-specifc LLaMA-7B models where 352

each model is only fine-tuned on one of the 353

8 different domain areas of databricks-dolly- 354

15k. 355

FedIT is a foundational FL framework that our 356

code extends (Zhang et al., 2023). The authors 357

use an LLaMA-7B model with LoRA adapters and 358

they sequentially fine-tune each adapter and then 359

aggregate using FedAvg into the global model. 360

Since the computational cost of HeteAgg is the 361

same as FedAvg, all speedups in LEGO are a direct 362

result of model pruning (Sun et al., 2023; Frantar 363

and Alistarh, 2023). During our experiments, we 364

observe up to a 1.7× speedup in inference and up 365

to a 1.4× speedup in fine-tuning using SparseGPT- 366

produced SLMs when compared to 0% sparsity 367

LLMs. 368

4.1 Heterogeneous Aggregation Validation 369

When using building blocks, we often encounter 370

blocks of varying sizes. To create a cohesive struc- 371

ture, we must stack these differently sized blocks 372

ontop of one another. This concept is the central to 373

our LEGO methodology, as much like the blocks, 374

different sized SLMs must be assembled together 375

to create a robust LLM. 376

Figure 3: A representation of how three different SLMs
can be stacked (aggregated) together using blocks,
where each color is representative of the SLM’s knowl-
edge.

5

Table 1: Average Model Performance Over Benchmarks

Composition Sparsity Level Pruned Fine-Tuned Aggregated

4 Strictly Heterogeneous Models

0% 0.559 0.563 0.568
25% 0.554 0.561 0.565
50% 0.529 0.526 0.542
75% 0.384 0.412 0.396

5 SLMs With i.i.d Data Distribution
0% 0.559 - 0.568
50% 0.529 - 0.541

8 Task-Specific SLMs
0% 0.559 - 0.571
75% 0.240 - 0.411

FedIT: 4 LLMs With i.i.d Data Distribution 0% 0.569 - 0.567
FedIT: 8 Task-Specific LLMs 0% 0.569 - 0.563

Figure 3 illustrates how SLMs of various sizes—377

each being represented by different color blocks—378

are stacked together. When being stacked, simi-379

lar to Figure 2, we see that wherever there is an380

overlap, the average is taken between the overlap-381

ping blocks. The final, resultant block consists of382

three sections: the top red layer, where the largest383

block does not overlap with others; the bottom pur-384

ple layer, an average of the blue and red where385

two blocks overlap; and the middle white section,386

where all three blocks overlap. This averaging of387

colors is representative of the knowledge being388

transferred between the models.389

In the case of LEGO, successful stacking of390

heterogeneous SLMs causes each model to learn391

from each other, with knowledge transferring be-392

tween models. Thus, this experiment tests the393

effectiveness of HeteAgg, our "stacking" mech-394

anism, by creating an FL environment with exclu-395

sively heterogeneous clients. We set a scenario396

with four clients, each with different sparsity lev-397

els (0%, 25%, 50%, and 75%). Each client has an398

i.i.d portion of localized data to fine-tune on.399

Table 1 displays the performance of different-400

sized models for a model composition with 4401

strictly heterogeneous models. We benchmark per-402

formance at three different stages: when the LLM403

was initially pruned before fine-tuning (Pruned),404

when the model is fine-tuned on local data (Fine-405

Tuned), and the final adapters after all FL rounds406

and global updates (Aggregated). As displayed407

in the table, we see that fine-tuning improves per-408

formance for all model sizes, with a significant409

performance gain at the 75% sparsity level. The410

aggregation stage improves performance for all411

model sizes at 0%-50% sparsity but degrades at412

75% sparsity.413

Comparing against the FedIT-produced baseline 414

with 4 strictly homogeneous LLMs, we see that 415

when using heterogeneous models, an equally ro- 416

bust 0% LLM is produced. While, the 25% spar- 417

sity model is equally robust, performance begins 418

degrading at 50% sparsity. 419

The 75% sparsity model’s degraded perfor- 420

mance is likely due to the SLM’s limited size. 421

Previous work has shown that smaller models 422

are better learners for specific tasks, resulting in 423

more strongly tuned weights to offset size con- 424

straints (Turc et al., 2019; Raffel et al., 2020). Dur- 425

ing aggregation with larger models, the stronger 426

learned representation in smaller models become 427

diluted by the larger model’s weaker representa- 428

tion, causing degraded performance in the smaller 429

model. 430

The 0% sparsity LLM resulting from our four ag- 431

gregated heterogeneous client models matches the 432

FedIT benchmark performance of four aggregated 433

LLMs. These results show that LEGO can account 434

for clients that have diverged from their learned 435

representations due to high sparsity or overfitting 436

client data.. 437

4.2 Building Blocks Methodology Validation 438

When building large structures, it is common to as- 439

semble smaller sub-units individually before com- 440

bining them into the final form. Similarly, with 441

LEGO, we can fine-tune smaller models individu- 442

ally, treating them as sub-units that are then aggre- 443

gated together to produce a final LLM. 444

We test whether LEGO has the same capability 445

by exclusively composing SLMs, and aggregating 446

them together to create a robust LLM. This exper- 447

iment tests the transferability of knowledge from 448

SLMs to an LLM using LEGO. We employ five 449

6

50% sparsity client SLMs for fine-tuning and ag-450

gregating, and apply the resulting global updates to451

a 0% sparsity global LLM.452

The results of this experiment, composed with453

5 SLMs with i.i.d data distribution, are in Table 1.454

Despite only fine-tuning SLMs, we achieved a 0%455

LLM better than the FedIT LLM produced from 4456

LLMs with an i.i.d data distribution. These results457

demonstrate that LEGO allow for knowledge trans-458

fer from strictly smaller models to a larger model459

in an effective manner.460

4.3 Task-specific Knowledge Transfer461

Validation462

Just as not all (SLM) building blocks are the same463

size, they may not necessarily be the same shape.464

Regardless of the size or shape, the requirement is465

that they can stack together. LEGO demonstrates466

this principle.467

Figure 4: 3 differently shaped building blocks being
combined to create a larger block

Figure 4 shows three blocks of differing shapes468

being combined to create a new, larger block that469

encompasses the different shapes. The same can470

be done with SLMs, where each SLM can be cov-471

ering a different task or scenario, but be aggregated472

together to create a robust LLM that covers the473

diverse tasks of its components.474

The experiment of this section evaluates knowl-475

edge transfer in a non-i.i.d data distribution sce-476

nario. We use eight 75% sparsity client SLMs; each477

fine-tuned on one of the eight capability domains478

in the databricks-dolly-15k dataset. We apply the479

resulting global updates from the client aggregation480

stages to a global LLM.481

The results of this experiment consisting of 8482

task-specific SLMs are in Table 1, demonstrating483

that despite each model being fine-tuned on a differ-484

ent task, the knowledge transfers between models,485

resulting in a more robust global 0% sparsity LLM486

than any of the previous experiments.487

This can most likely be attributed to the small488

size of the SLMs. As discussed before, previous489

work in KD has shown that smaller models are490

more adept learners when it comes to task spe-491

cific models. To our knowledge, no previous study492

has explored task-specific SLMs in the context of493

pruning. However, our results demonstrate that 494

the same task-specific adaptation strength present 495

in KD-produced SLMs is also present in pruning- 496

produced SLMs, despite not distilling over select 497

tasks. 498

The learned representations in the SLMs are 499

more strongly reflective of their fine-tuning data 500

due to their limited size. Thus, when aggregating 501

the SLMs with the global LLM, the LLM obtains 502

the stronger task specific representations from the 503

SLMs. The LLM gains this knowledge while being 504

bolstered by its larger size, creating a more robust 505

model. 506

Thus, the results demonstrate that smaller mod- 507

els make better task-specific learners, and their 508

knowledge can be effectively transferred to larger 509

models, yielding robust LLMs while only fine- 510

tuning SLMs. 511

The the LEGO produced 0% sparsity LLM 512

formed by 8 task-specific SLMs outperforms the 513

FedIT baseline with 8 task-specific LLMs, despite 514

only using SLMs a quarter of the size. 515

Additionally, we further test how well knowl- 516

edge transfers between the SLMs. To do so, we 517

track the performance of client SLMs over time, 518

evaluating their performance after every global up- 519

date. 520

Figure 5: The performance of clients after each global
update.

Figure 5 demonstrates that after every communi- 521

cation round, the performance of the client SLMs 522

increase. Thus, we can determine that if one model 523

learns, then they all learn. 524

5 Related Work 525

Works on heterogeneous federated learning in the 526

context of pretrained language models are sparse. 527

The first paper to cover the topic in-depth was 528

InclusiveFL (Liu et al., 2022), where the authors 529

used layer-pruned BERT models in a federated sys- 530

tem and aggregate across layers. The authors found 531

7

layer-pruning to have a negligible effect on BERT’s532

performance - something that does not apply to533

modern LLMs.534

This can be attributed to the emergent large-535

magnitude features in LLMs, which are sparse536

and distributed randomly across layers and have a537

significant effect on LLM performance (Dettmers538

et al., 2022). While Wanda and SparseGPT avoid539

this, layer pruning cannot do so. We experimentally540

confirm this in Appendix A.2.541

We can extend this reasoning to similar ap-542

proaches focused on layer selection that are543

only tested on encoder-style LLMs, like FedPep-544

TAO (Che et al., 2023).545

We then look to homogeneous model FL applied546

to larger, decoder-style LLMs. FedIT (Zhang et al.,547

2023) acts as the representation of traditional FL548

throughout our work, using FedAvg for aggregation549

as mentioned in Section 4. However, FedAvg can-550

not adapt to heterogeneous models, and as pointed551

out by other works, cannot account for heteroge-552

neous ranks in the LoRA adapter(Bai et al., 2024).553

Newer works have continued to model them-554

selves after FedIT’s use of LoRA. Recently, en-555

abling heterogeneous LoRA ranks in FL has been556

discussed in the literature. For example, FlexLORA557

computes a weighted average of LoRA adapters558

with different LoRA ranks, and then uses SVD559

for redistribution (Bai et al., 2024). However,560

FlexLoRA assumes model homogeneity among561

client models, which is what allows for adaptive562

rank pruning in the LoRA adapter.563

The advantages of rank pruning do not translate564

to the advantages of model pruning. Model pruning565

allows for more efficient fine-tuning and inference,566

whereas pruning LoRA only translates to more ef-567

ficient fine-tuning, with the same inference costs568

as the initial LLM. Thus, in FlexLoRA, model se-569

lection is constrained by weakest device. Pruning570

allows larger models (LLMs) to run on more pow-571

erful devices, and smaller models (SLMs) to run572

on weaker devices.573

Additionally, this aggregation technique relies574

on multiplying each client’s LoRA adapters, A and575

B, together, where A ∈ Rr×n and B ∈ Rn×r.576

The multiplication results in the server creating the577

full-sized weights for every client model before ag-578

gregating them together. This extremely resource579

intensive operation limits the scalability of the tech-580

nique relative to ours, where the LoRA modules581

stay separate.582

However, LEGO does not have to exclusively 583

operate over PEFT adapters. The same approach 584

and aggregation methods used for LoRA adapters 585

can be performed with the actual client weights, or 586

with the multiplied LoRA adapters. This means 587

that rank-pruning techniques can be applied with 588

or on top of LEGO, further decreasing SLM size, 589

at the cost of increased computation for the server. 590

6 Conclusions 591

In this work, we have introduced LEGO, a build- 592

ing block methodology for federated fine-tuning 593

of LLMs. By allowing for the use of pruned 594

LLMs, we can use SLMs as task-specific learn- 595

ers for resource-constrained devices, and use them 596

as building blocks, stacking them into a fully ro- 597

bust LLM. This is enabled through our simple yet 598

effective aggregation scheme, HeteAgg, which al- 599

lows for the aggregation of heterogeneous SLMs. 600

Through experimentation, we prove that LEGO 601

is effective, allowing for SLMs to be stacked to- 602

gether like building blocks. We demonstrate that 603

smaller models make better learners, which trans- 604

lates to stronger models, and also show that individ- 605

ual client learning translates to all models learning. 606

By enabling heterogeneous client resource bud- 607

gets, LEGO creates a more scalable and resource- 608

efficient FL system for private conversational AI. 609

7 Limitations 610

Our approach has limitations caused by prioritizing 611

efficiency. As mentioned in Section 3, we operate 612

over client LoRA adapters. Each LoRA module A 613

and B is aggregated separately, which introduces 614

noise to the resulting weights, as 615∑
A×

∑
B︸ ︷︷ ︸

LEGO

̸=
∑

(A×B)︸ ︷︷ ︸
Noise-Free Aggregation.

616

Despite the noise, however, we show experimen- 617

tally that LEGO produces robust models. 618

References 619

Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao, 620
and Yaliang Li. 2024. Federated fine-tuning of 621
large language models under heterogeneous lan- 622
guage tasks and client resources. arXiv preprint 623
arXiv:2402.11505. 624

Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen 625
Zhou, Victor S Sheng, Huaiyu Dai, and Dejing Dou. 626
2023. Federated learning of large language models 627

8

with parameter-efficient prompt tuning and adaptive628
optimization. arXiv preprint arXiv:2310.15080.629

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,630
Ashish Sabharwal, Carissa Schoenick, and Oyvind631
Tafjord. 2018. Think you have solved question an-632
swering? try arc, the ai2 reasoning challenge. arXiv633
preprint arXiv:1803.05457.634

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke635
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-636
tiplication for transformers at scale. Advances in637
Neural Information Processing Systems, 35:30318–638
30332.639

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-640
sive language models can be accurately pruned in641
one-shot. In International Conference on Machine642
Learning, pages 10323–10337. PMLR.643

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,644
Sid Black, Anthony DiPofi, Charles Foster, Laurence645
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,646
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,647
Jason Phang, Laria Reynolds, Hailey Schoelkopf,648
Aviya Skowron, Lintang Sutawika, Eric Tang, An-649
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.650
2023. A framework for few-shot language model651
evaluation.652

Samyak Gupta, Yangsibo Huang, Zexuan Zhong,653
Tianyu Gao, Kai Li, and Danqi Chen. 2022. Recov-654
ering private text in federated learning of language655
models. Advances in Neural Information Processing656
Systems, 35:8130–8143.657

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,658
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.659
2021. Measuring massive multitask language under-660
standing.661

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.662
Distilling the knowledge in a neural network.663

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan664
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and665
Weizhu Chen. 2021. Lora: Low-rank adaptation of666
large language models.667

Wenke Huang, Mang Ye, and Bo Du. 2022. Learn from668
others and be yourself in heterogeneous federated669
learning. In Proceedings of the IEEE/CVF Confer-670
ence on Computer Vision and Pattern Recognition,671
pages 10143–10153.672

Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang,673
Lingjuan Lyu, Hong Chen, and Xing Xie. 2022. No674
one left behind: Inclusive federated learning over675
heterogeneous devices. In Proceedings of the 28th676
ACM SIGKDD Conference on Knowledge Discovery677
and Data Mining, pages 3398–3406.678

Brendan McMahan, Eider Moore, Daniel Ramage,679
Seth Hampson, and Blaise Aguera y Arcas. 2017.680
Communication-efficient learning of deep networks681
from decentralized data. In Artificial intelligence and682
statistics, pages 1273–1282. PMLR.683

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 684
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 685
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 686
2022. Training language models to follow instruc- 687
tions with human feedback. Advances in neural in- 688
formation processing systems, 35:27730–27744. 689

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 690
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 691
Wei Li, and Peter J Liu. 2020. Exploring the lim- 692
its of transfer learning with a unified text-to-text 693
transformer. Journal of machine learning research, 694
21(140):1–67. 695

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 696
Kolter. 2023. A simple and effective pruning ap- 697
proach for large language models. arXiv preprint 698
arXiv:2306.11695. 699

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina 700
Toutanova. 2019. Well-read students learn better: 701
On the importance of pre-training compact models. 702
arXiv preprint arXiv:1908.08962. 703

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi 704
Chen. 2023. Sheared llama: Accelerating language 705
model pre-training via structured pruning. 706

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, 707
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao, 708
and Tianyi Zhou. 2024. A survey on knowledge dis- 709
tillation of large language models. arXiv preprint 710
arXiv:2402.13116. 711

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 712
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 713
machine really finish your sentence? 714

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan 715
Li, Ruiyi Zhang, Guoyin Wang, and Yiran Chen. 716
2023. Towards building the federated gpt: Federated 717
instruction tuning. arXiv preprint arXiv:2305.05644. 718

A Appendix 719

A.1 Comparison of Pruning Methods 720

As discussed in the Background section, there are 721

two pruning techniques that dominate the literature. 722

We test both SparseGPT and Wanda and analyze 723

the best pruning technique to use. 724

The results in table 2 show that SparseGPT pro- 725

duces more robust models on average, with a sig- 726

nificant advantage at higher levels of sparsity. How- 727

ever, SparseGPT is more computationally expen- 728

sive when pruning, while Wanda is computationally 729

inexpensive. 730

This provides us a few insights. The first is 731

that regardless of pruning strategy, performance 732

degrades significantly beyond 50% sparsity. The 733

second is that while more computationally expen- 734

sive, SparseGPT may be necessary at high sparsity 735

9

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830

Table 2: Comparison of SparseGPT and Wanda Pruned Models

Sparsity Level SparseGPT Wanda
Pruned Fine-tuned Pruned Fine-tuned

0% 0.5694 0.5760 0.5694 0.5741
25% 0.5654 0.5784 0.5672 0.5731
50% 0.5144 0.5244 0.5195 0.5377
75% 0.2989 0.3631 0.2692 0.2916

Table 3: All models were pruned from LLaMA-7B and evaluated over HellaSwag (Zellers et al., 2019). The
Fine-tuned models were fine-tuned over databricks-dolly-15k. Bolded scores are the best in sparsity level.

levels or more resource constrained client devices,736

as it not only produced a more robust model, but737

the increase in performance due to fine-tuning was738

almost double that of Wanda.739

Given these insights, the superior pruning740

method depends on the use case scenario. If we are741

defining rigid model sizes and assert that client de-742

vices will be initialized with one of these ’default’743

model sizes, then SparseGPT would be superior.744

This is especially true given our compute budget745

is capable of fine-tuning LLMs and performing in-746

ference, since SparseGPT is relatively cheap com-747

pared to those tasks if not being performed for ever748

device initialization. Thus, we can use SparseGPT749

to generate various model sizes/sparsity’s before750

the FL process begins, and assign models accord-751

ingly.752

However, in practice, creating a methodology to753

calculate the ideal model size given the device’s754

compute budget would return more robust client755

models for users in the FL system. In this sce-756

nario, when a client is initialized, a model would be757

pruned according to their compute budget, mean-758

ing a lightweight process like Wanda would be759

superior.760

However it is worth noting that, with the ex-761

ception of high sparsity scenarios, the difference762

between the two pruning method’s performances is763

negligible. Therefore, our results should be gener-764

alizable to both pruning methods.765

Additionally, as pruning methods continue to766

evolve, the performance of pruned models will767

improve. Therefore its important evaluate model768

performance in our experiments with the limita-769

tions of current pruning techniques, but as pruning770

techniques improve, our methodologies and results771

would generalize to them and should scale accord-772

ingly.773

In order to confirm if our experimental results774

are generalizable to other pruning techniques, we775

also test the Wanda-pruned SLMs for our HeteAgg 776

experiment. We perform the same experiment in- 777

volving 4 models at different sparsity levels, with 778

its results displayed in table 4. 779

Figure 6: Performance of federated SparseGPT-pruned
models relative to federated Wanda-pruned models
when evaluated on HellaSwag (Zellers et al., 2019)

When plotted against SparseGPT’s performance 780

in figure 6, we see that the effects of our FL ap- 781

proach are near identical. For sparsity ≥ 50%, we 782

see that the results are nearly identical, and the 783

performance gap displayed by the fine-tuned 50% 784

sparsity SparseGPT-pruned model is corrected after 785

model aggregation. 786

While the performance on HellaSwag is dif- 787

ferent at high sparsity, that can be attributed to 788

Wanda’s weaker pruning ability at high sparsity 789

levels. When viewing the Wanda and SparseGPT 790

pruned 75% sparsity models, we see the drop in 791

performance due to aggregation after fine-tuning is 792

nearly identical. 793

Therefore, since the performance is nearly iden- 794

tical, and the only significant difference in perfor- 795

mance can be attributed to the initial model per- 796

formance as opposed to our FL system, we can 797

generalize our FL method to other current pruning 798

techniques. 799

A.2 Experimental Comparison with 800

InclusiveFL 801

In order to confirm the effect of emergent large- 802

magnitude features in LLMs discussed in Section 5, 803

we experimentally compare InclusiveFL and layer 804

10

Table 4: Performance of Wanda pruned models on HellaSwag (Zellers et al., 2019)

Sparsity Level Pruned Fine-Tuned Aggregated
0% 0.5694 0.5741 0.5799
25% 0.5672 0.5731 0.5802
50% 0.5195 0.5377 0.5393
75% 0.2692 0.2916 0.2717

pruning to LEGO and activation pruning. To do so,805

we layer-prune LLaMA-7B and modify our Het-806

eAgg function to perform layer-wise aggregation.807

We pruned LLaMA-7B to 24 and 16 layers,808

equivalent to 25% and 75% sparsity. We then put809

these two models and a 0% sparsity LLaMA-7B810

model in the federated environment from Algo-811

rithm 1, modifying the HeteAgg function to follow812

the pseudocode in the InclusiveFL paper. For clos-813

est comparison we take select results from Section814

4.1 and Table 1.815

In Table 5, we can see that even before feder-816

ation, layer pruning fails to conserve model per-817

formance after pruning. This can be attributed to818

the emergent large-magnitude features in LLMs,819

as described in Section 5 (Dettmers et al., 2022).820

After federation, the fine-tuning and aggregation821

process degraded the performance, proving that822

this approach does not work for LLMs.823

A.3 Experimental Setup and Performance824

For all of the experiments, due to hardware limita-825

tions we use a client selection strategy that sequen-826

tially chooses clients. We use a client participation827

rate of 0.1, with a local batch size of 64 and a maxi-828

mum of 10 epochs. For our LoRA adapter settings,829

we chose a rank and alpha of 16, and only target830

the q_proj.831

Table 1 showed the average model performance832

for each model. The individual results for each833

benchmark of each model is held in Table 6. We834

evaluate each model on HellaSwag (Zellers et al.,835

2019), MMLU (Hendrycks et al., 2021), SciQ, and836

ARC (Clark et al., 2018). We evaluate the models837

using the EleutherAI Language Model Evaluation838

Harness (Gao et al., 2023).839

11

Table 5: Performance of layer-pruning (Liu et al., 2022) compared to activation pruning (our study).

Sparsity / Layers Pruned Fine-tuned & Aggregated
SparseGPT Layer-Pruning SparseGPT Layer-Pruning

Full Sized 0.5694 0.5694 0.5836 0.5148
25% Sparsity / 24 Layers 0.5654 0.3957 0.5801 0.3658
50% Sparsity / 16 Layers 0.5144 0.3021 0.5411 0.3014

Sparsity (%) Stage HellaSwag MMLU SciQ Arc
4 Strictly Heterogeneous Models

0 Pruned 0.569 0.299 0.947 0.419
0 Fine-Tuned 0.576 0.295 0.950 0.429
0 Aggregated 0.584 0.301 0.953 0.435

25 Pruned 0.565 0.292 0.938 0.422
25 Fine-Tuned 0.578 0.286 0.944 0.437
25 Aggregated 0.580 0.295 0.944 0.442

50 Pruned 0.514 0.292 0.935 0.375
50 Fine-Tuned 0.524 0.267 0.932 0.379
50 Aggregated 0.541 0.292 0.932 0.404

75 Pruned 0.299 0.230 0.809 0.197
75 Fine-Tuned 0.363 0.237 0.828 0.221
75 Aggregated 0.317 0.229 0.832 0.206

5 SLMs With iid Data Distribution
0 Pruned 0.569 0.299 0.947 0.419
0 Aggregated 0.581 0.296 0.953 0.443

50 Pruned 0.514 0.292 0.935 0.375
50 Aggregated 0.540 0.291 0.935 0.399

8 Task-Specific SLMs
0 Pruned 0.569 0.299 0.947 0.419
0 Aggregated 0.586 0.298 0.953 0.446

75 Pruned 0.299 0.230 0.233 0.197
75 Aggregated 0.359 0.241 0.813 0.233

FedIT: 4 LLMs
0 Aggregated 0.575 0.286 0.956 0.453

FedIT: 8 Task-Specific LLMs
0 Aggregated 0.570 0.279 0.951 0.452

Table 6: Model Performance Across Different Configurations and Datasets

12

