
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EMERGENCE IN NON-NEURAL MODELS:
GROKKING MODULAR ARITHMETIC VIA AVERAGE
GRADIENT OUTER PRODUCT

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks trained to solve modular arithmetic tasks exhibit grokking, the
phenomenon where the test accuracy improves only long after the model achieves
100% training accuracy in the training process. It is often taken as an example
of “emergence”, where model ability manifests sharply through a phase transi-
tion. In this work, we show that the phenomenon of grokking is not specific
to neural networks nor to gradient descent-based optimization. Specifically, we
show that grokking occurs when learning modular arithmetic with Recursive Fea-
ture Machines (RFM), an iterative algorithm that uses the Average Gradient Outer
Product (AGOP) to enable task-specific feature learning with kernel machines.
We show that RFM and, furthermore, neural networks that solve modular arith-
metic learn block-circulant features transformations which implement the previ-
ously proposed Fourier multiplication algorithm.

1 INTRODUCTION

In recent years the idea of “emergence” has become an important narrative in machine learning.
While there is no broad agreement on the definition (Rogers & Luccioni, 2023), it is often argued
that “skills” emerge during the training process once certain data size, compute, or model size thresh-
olds are achieved (Wei et al., 2022; Arora & Goyal, 2023). Furthermore, these skills are believed to
appear rapidly, exhibiting sharp and seemingly unpredictable improvements in performance at these
thresholds. One of the simplest and most striking examples supporting this idea is “grokking” mod-
ular arithmetic (Power et al., 2022; Nanda et al., 2023). A neural network trained to predict modular
addition or another arithmetic operation on a fixed data set rapidly transitions from near-zero to per-
fect (100%) test accuracy at a certain point in the optimization process. Surprisingly, this transition
point occurs long after perfect training accuracy is achieved. Not only is this contradictory to the
traditional wisdom regarding overfitting but, as we will show, some aspects of grokking do not fit
neatly with our modern understanding of “benign overfitting” Bartlett et al. (2021); Belkin (2021).

Despite a large amount of recent work on emergence and, specifically, grokking, (see, e.g., (Power
et al., 2022; Liu et al., 2023; Nanda et al., 2023; Thilak et al., 2022; Furuta et al., 2024; Miller et al.,
2024)), the nature or even existence of the emergent phenomena remains contested. For example,
the recent paper Schaeffer et al. (2023) suggests that the rapid emergence of skills may be a “mirage”
due to the mismatch between the discontinuous metrics used for evaluation, such as accuracy, and
the continuous loss used in training. The authors argue that, in contrast to accuracy, the test (or
validation) loss or some other suitably chosen metric may decrease gradually throughout training
and thus provide a useful measure of progress. Another possible progress measure is the training
loss. As SGD-type optimization algorithms generally result in a gradual decrease of the training
loss, one may posit that skills appear once the training loss falls below a certain threshold in the
optimization process. Indeed, such a conjecture is in the spirit of classical generalization theory,
which considers the training loss to be a useful proxy for the test performance Mohri et al. (2018).

In this work, we show that sharp emergence in modular arithmetic arises entirely from feature learn-
ing, independently of other aspects of modeling and training, and is not predicted by the standard
measures of progress. We then clarify the nature of feature learning leading to the emergence of
skills in modular arithmetic. We discuss these contributions in further detail below.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Ac
cu

ra
cy

RFM Iterations
Sq

ua
re

 L
os

s

Learned Feature (AGOP) Matrices

Figure 1: Recursive Feature Machines grok the modular arithmetic task f∗(x, y) = (x+ y)mod 59.

Summary of the contributions. We demonstrate empirically that grokking modular arithmetic:
(1) is not specific to neural networks; (2) is not tied to gradient-based optimization methods; (3) is
not predicted by training or test loss1, let alone accuracy.

Specifically, we show grokking for Recursive Feature Machines (RFM) (Radhakrishnan et al.,
2024a), an algorithm that iteratively uses the Average Gradient Outer Product (AGOP) to enable
task-specific feature learning in general machine learning models. In this work, we use RFM to en-
able feature learning in kernel machines, which are a class of predictors with no native mechanism
for feature learning. In this setting, RFM iterates between three steps: (i) training a kernel machine,
f , to fit training data; (ii) computing the AGOP matrix of f , M , over the training data to extract
task-relevant features; and (iii) transforming input data, x, using the learned features via the map
x→Ms/2x for a matrix power s > 0 (see Section 2 for details).

In Fig. 1 we give a representative example of RFM grokking modular addition, despite not using any
gradient-based optimization methods and achieving perfect (numerically zero) training loss at every
iteration. We see that during the first few iterations both the test loss and and test accuracy remain at
the constant (random) level. Around iteration 10 the test loss starts improving and, a few iterations
later, test accuracy quickly transitions to 100%. We also observe that even early in the iteration,
structure emerges in AGOP feature matrices (see Fig. 1). The gradual appearance of structure in
these feature matrices is striking given that the training loss is identically zero at every iteration and
that the test loss does not significantly change until iteration 8. The striped patterns observed in
feature matrices correspond to matrices whose sub-blocks are circulant with entries that are constant
along the “long” diagonals which wrap around the matrix.2 Such circulant feature matrices are key
to learning modular arithmetic. In Section 3 we demonstrate that standard kernel machines using
random circulant features easily learn modular operations. As these random circulant matrices are
generic, we argue that no additional structure is required to solve modular arithmetic.

To demonstrate that the feature matrices evolve toward this structure (including for multiplication
and division under an appropriate re-ordering of the input coordinates), we introduce two “hidden
progress measures” (Barak et al., 2022): (1) Circulant deviation, which measures constancy of
the diagonals of a matrix, and (2) AGOP alignment, which measures similarity between the feature
matrix at iteration t and the AGOP of a fully trained model. We will see that both of these measures
show gradual (initially nearly linear) progress toward a model that generalizes.

1We note that for neural networks trained by SGD, emergence cannot be decoupled from training loss, as
non-zero loss is required for training to occur at all.

2Feature sub-matrices may also be constant on anti-diagonals. We also refer to these matrices as circulant.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We further argue that emergence in fully connected neural networks trained on modular arithmetic
identified in prior work (Gromov, 2023; Liu et al., 2022) is analogous to that for RFM and is exhib-
ited through the AGOP (see Section 4). By visualizing covariances of network weights, we observe
that these models also learn block-circulant features to grok modular arithmetic. We demonstrate
that these features are highly correlated with the AGOP of neural networks, corroborating prior ob-
servations from Radhakrishnan et al. (2024a). Furthermore, paralleling our observations for RFM,
our progress measures indicate gradual progress toward a generalizing solution during neural net-
work training. Finally we demonstrate that training neural networks on data transformed by random
block-circulant matrices dramatically decreases training time needed to learn modular arithmetic.

Why are these learned block circulant features effective for modular arithmetic? We provide support-
ing theoretical evidence that circulant features result in kernel machines implementing the Fourier
Multiplication Algorithm (FMA) for modular arithmetic (see Section 5). For the case of neural net-
works, several prior works have argued empirically and theoretically that neural networks learn to
implement the FMA to solve modular arithmetic (Nanda et al., 2023; Varma et al., 2023; Morwani
et al., 2024). While kernel RFM and neural networks utilize different classes of predictive models,
our results suggest that they discover similar algorithms for implementing modular arithmetic.

By decoupling feature learning from predictor training, our results provide evidence for emergent
properties of machine learning models arising purely as a consequence of their ability to learn fea-
tures. We hope our work will help isolate the underlying mechanisms of emergence and shed light
on the key practical concern of how, when, and why these seemingly unpredictable transitions occur.

Paper outline. Section 2 reviews preliminary concepts. In Section 3, we demonstrate emergence
with RFM and show AGOP features consist of circulant blocks. Section 4, shows that neural network
features are circulant and are captured by the AGOP. In Section 5, we prove that kernel machines
learn the FMA with circulant features. We provide a discussion and conclude in Section 6.

2 PRELIMINARIES

Learning modular arithmetic. Let Zp = Z/pZ denote the field of integers modulo a prime p and
let Z∗

p = Zp\{0}. We learn modular functions f∗(a, b) = g(a, b)mod p where f∗ : Zp×Zp → Zp,
a, b ∈ Zp, and g : Z× Z→ Z is an arithmetic operation on a and b, e.g. g(a, b) = a+ b. Note that
there are p2 discrete input pairs (a, b) for all modular operations except for f∗(a, b) = (a÷b)mod p,
which has p(p− 1) inputs as the denominator cannot be 0.

To train models on modular arithmetic tasks, we construct input-label pairs by one-hot encoding the
input and label integers. Specifically, for every pair a, b ∈ Zp, we write the input as ea ⊕ eb ∈ R2p

and the output as ef∗(a,b) ∈ Rp, where ei ∈ Rp is the i-th standard basis vector in p dimensions and
⊕ is concatenation. The training dataset consists of a random subset of n = r×N input/label pairs,
where r is the training fraction and N = p2 or p(p− 1) is the number of possible discrete inputs.

Circulant matrices. The features that RFMs and neural networks learn in order to solve modular
arithmetic contain blocks of circulant matrices, which are defined as follows. Let σ : Rp → Rp

be the cyclic permutation which acts on a vector u ∈ Rp by shifting its coordinates by one cell
to the right: [σ(u)]j = uj−1mod p , for j ∈ [p]. We write the ℓ-fold composition of this map
σℓ(u) ∈ Rp with entries [σℓ(u)]j = uj−ℓmod p. A circulant matrix C ∈ Rp×p is determined by
a vector c = [c0, . . . , cp−1] ∈ Rp, and has rows (in order from first to last): c, σ(c), . . . , σp−1(c).
Feature matrices may also have have constant anti-diagonals (so-called Hankel matrices). To ease
terminology, we will use the word circulant to refer to both Hankel and circulant matrices.

Average Gradient Outer Product (AGOP). The AGOP matrix, which will be central to our dis-
cussion, is defined as follows.

Definition 2.1 (AGOP). Given a predictor f : Rd → Rc with c outputs, f(x) ≡
[f0(x), . . . , fc−1(x)], let ∂f(x′)

∂x ∈ Rd×c be the Jacobian (transposed) of f evaluated at some point

x′ ∈ Rd with entries [∂f(x
′)

∂x]s,ℓ = ∂fℓ(x
′)

∂xs
. Then, for f trained on a set of data points {x(j)}nj=1,

with x(j) ∈ Rd, the Average Gradient Outer Product (AGOP), G, is defined as,

G(f ; {x(j)}nj=1) =
1

n

n∑
j=1

∂f(x(j))

∂x

∂f(x(j))

∂x

⊤

∈ Rd×d. (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Ac
cu
ra
cy

(%
)

RFM Iterations

Te
st

Lo
ss

RFM Iterations RFM Iterations RFM Iterations

Te
st
 L
os
s
of

Co
rr
ec
t

Ou
tp
ut
 C
la
ss

Ci
rc
ul
an
t

De
vi
at
io
n

AG
OP

Al
ig
nm
en
t

RFM Iterations RFM Iterations RFM Iterations RFM Iterations

Accuracy & Loss

Progress Measures

Add Sub Mul Div

A

B

RFM
Circ:
frob

Figure 2: RFM with the quadratic kernel on modular arithmetic with modulus p = 61 trained for
30 iterations. (A) Test accuracy, test loss (mean squared error) over all output coordinates, and test
loss of the correct class output coordinate do not change in the first 8 iterations and then, sharply
transition. (B) Circulant deviation and AGOP alignment show gradual progress towards generalizing
solutions despite accuracy and loss metrics not changing in the initial iterations. For multiplication
(Mul) and division (Div), circulant deviation is measured with respect to the feature sub-matrices
after reordering by the discrete logarithm.

For simplicity, we omit the dependence on the dataset in the notation. Top eigenvectors of AGOP can
be viewed as the “most relevant” input features, those input directions that influence the output of a
general predictor (for example, a kernel machines or a neural network) the most. As a consequence,
the AGOP can be viewed as a task-specific transformation that can be used to amplify relevant
features and improve sample efficiency of machine learning models.

Indeed, a line of prior works (Yuan et al., 2023; Trivedi et al., 2014; Hristache et al., 2001) have used
the AGOP to improve the sample efficiency of predictors trained on multi-index models, a class of
predictive tasks in which the target function depends on a low-rank subspace of the data. Though
the study of AGOP has been motivated by these multi-index examples, we will see that the AGOP
can be used to recover useful features for modular arithmetic that are, in fact, not low-rank.

AGOP and feature learning in neural networks. Radhakrishnan et al. (2024a) posited that AGOP
was a mechanism through which neural networks learn features. In particular, the authors introduce
the Neural Feature Ansatz (NFA) stating that for any layer ℓ of a trained neural network with weights
Wℓ, the Neural Feature Matrix (NFM), WT

ℓ Wℓ, are highly correlated to the AGOP of the model
computed with respect to the input of layer ℓ. The NFA suggests that neural networks learn features
at each layer by utilizing the AGOP. For more details on the NFA, see Appendix C.

Recursive Feature Machine (RFM). Importantly, AGOP can be computed for any differentiable
predictor, including those such as kernel machines that have no native feature learning mechanism.
As such, the authors of Radhakrishnan et al. (2024a) developed an algorithm known as RFM, which
iteratively uses the AGOP to extract features. Below, we present the RFM algorithm used in conjunc-
tion with kernel machines. Suppose we are given data samples (X, y) ∈ Rn×d × Rn where X con-
tains n samples denoted {x(j)}nj=1. Given an initial symmetric positive-definite matrix M0 ∈ Rd×d,
and Mahalanobis kernel k(·, · ;M) : Rd × Rd → R, RFM iterates the following steps for t ∈ [T]:

Step 1 (Predictor training): f (t)(x) = k(x,X;Mt)α with α = k(X,X;Mt)
−1y ; (2)

Step 2 (AGOP update): Mt+1 = [G(f (t))]s ; (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where s > 0 is a matrix power and k(X,X;M) ∈ Rn×n denotes the matrix with entries
[k(X,X;M)]j1j2 = k(x(j1), x(j2);M) for j1, j2 ∈ [n]. In this work, we select s = 1

2 for
all experiments (see Algorithm 1 for complete pseudocode). We use the following two Maha-
lanobis kernels: (1) the quadratic kernel, k(x, x′;M) =

(
x⊤Mx′)2 ; and (2) the Gaussian kernel

k(x, x′;M) = exp
(
−∥x− x′∥2M/L

)
, where for z ∈ Rd, ∥z∥2M = z⊤Mz, and L is the bandwidth.

3 EMERGENCE WITH RECURSIVE FEATURE MACHINES

We now show that RFM exhibits sharp transitions in performance on modular arithmetic tasks (ad-
dition, subtraction, multiplication, and division) due to the emergence of block-circulant features.

Add

Sub Mul
(reordered)

Div
(reordered)

Learned Feature Matrices (AGOP)

A

C
Mul

(original)
Div

(original)

B

Figure 3: RFM with the quadratic ker-
nel for modular arithmetic with p = 61.
(A) The square root of the kernel AGOPs
for addition (Add), subtraction (Sub) vi-
sualized without their diagonals to empha-
size the off-diagonal blocks. (B) Square
root of the kernel AGOP for multiplication
(Mul), division (Div). (C) For Mul and
Div, rows and columns of each sub-matrix
is re-ordered by the discrete log. base 2.

We will use a modulus of p = 61 and train RFM with
quadratic and Gaussian kernel machines (experimental
details are provided in Appendix D). As we solve ker-
nel ridgeless regression exactly, all iterations of RFM
result in zero training loss and 100% training accuracy.
The top two rows of Fig. 2A show that the first several
iterations of RFM result in near-zero test accuracy and
approximately constant, large test loss. Despite these
standard progress measures initially not changing, con-
tinuing to iterate RFM leads to a dramatic, sharp in-
crease to 100% test accuracy and a corresponding de-
crease in the test loss later in the iteration process.

Sharp transition in loss of correct output coordi-
nate. It is important to note that our total loss func-
tion is the square loss averaged over p = 61 classes.
It is thus plausible that, due to averaging, the near-
constancy of the total square loss over the first few iter-
ations conceals steady improvements in the predictions
of the correct class. However, in Fig. 2A (third row) we
show that the test loss for the output coordinate (logit)
of the correct class closely tracks the total test loss.

Emergence of block-circulant features in RFM. To
understand RFM generalization, we visualize the 2p×
2p feature matrix given by the square root of the AGOP
from the final iteration of RFM. We first visualize the
feature matrices for RFM trained on modular addition/-
subtraction in Fig. 3A. Their visually-evident striped
structure suggests a more precise characterization:
Observation 1 (Block-circulant features). Feature ma-
trix M∗ ∈ R2p×2p at the final iteration of RFM on modular addition/subtraction is of the form

M∗ =

(
A C⊤

C A

)
, (4)

where A,C ∈ Rp×p, C is an asymmetric circulant matrix. , A = c1I + c211
⊤ for scalars c1, c2.

Similarly to addition and subtraction, RFM successfully learns multiplication and division. Yet,
in contrast to addition and subtraction, the structure of feature matrices for these tasks, shown in
Fig. 3B, is not at all obvious. Nevertheless, re-ordering the rows and columns of the feature matrices
for these tasks brings out their hidden circulant structure of the form stated in Eq. (4). We show the
effect of re-ordering in Fig. 3C (see also Appendix Fig. 1 for the evolution of re-ordered and original
features during training).

We briefly discuss the reordering procedure below and provide further details in Appendix E. To
reorder, we use the fact of group theory that the multiplicative group Z∗

p is a cyclic group of order
p − 1 (e.g., Koblitz (1994)). By definition of the cyclic group, there exists at least one element
g ∈ Z∗

p, known as a generator, such that Z∗
p = {gi ; i ∈ {1, . . . , p − 1}}. As we will see, re-

ordering the rows and columns of the AGOP by powers of a generator reveals circulant structure.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For modular multiplication/division, the map taking gi to i is known as the discrete logarithm base
g (Koblitz, 1994, Ch.3). It is natural to expect block-circulant feature matrices to arise in modular
multiplication/division after reordering by the discrete log as the discrete log converts modular mul-
tiplication/division into modular addition/subtraction. We note the recent work Doshi et al. (2024)
also used the discrete log to reorder coordinates in the context of constructing a solution for solving
modular multiplication with neural networks.

Progress measures. We propose and examine two measures of feature learning, circulant deviation
and AGOP alignment.

Circulant deviation. As the final feature matrices contain circulant sub-blocks, a natural progress
measure for learning modular arithmetic with RFM is how far AGOP feature matrices are from
a block-circulant matrix. For a feature matrix M , let A denote the bottom-left sub-block of M .
We define circulant deviation as the total variance of the (wrapped) diagonals of A normalized by
the norm ∥A∥2F . In particular, let S ∈ Rp×p → Rp×p denote the shift operator, which shifts
the ℓ-th row of the matrix by ℓ positions to the right. Also let Var(v) =

∑p−1
j=0(vj − Ev)2 be

the variance of a vector v. If A[j] denotes the j-th column of A, we define circulant deviation D
as: D(A) = 1

∥A∥2
F

∑p−1
j=0 Var(S(A)[j]). As circulant matrices are constant along their (wrapped)

diagonals, they have a circulant deviation of 0.

We see in Fig. 2B (top row) that circulant deviation exhibits gradual improvement through the course
of training with RFM. We find that for the first 10 iterations, while the training loss is numerically
zero and the test loss does not improve, circulant deviation exhibits gradual, nearly linear, improve-
ment. The improvements in circulant deviation reflect visual improvements in features, as was also
shown in Fig. 1. These curves also provide further support for Observation 1, as the circulant devi-
ation is close to 0 at the end of training.

Circulant deviation depends crucially on the observation that for modular arithmetic the feature
matrices contained circulant blocks. For more general tasks, we may not be able to identify such
structure. Thus, we propose a second, more general progress measure, AGOP alignment.

AGOP alignment. Given two matrices A,B ∈ Rd×d, let ρ(A,B) denote the standard cosine simi-
larity between these two matrices when vectorized. Specifically, let Ã, B̃ ∈ Rd2

denote the vector-
ization of A and B respectively, then ρ(A,B) = ⟨Ã,B̃⟩

∥Ã∥ ∥B̃∥ .

Te
st
 L
os
s

Te
st
 A
cc
ur
ac
y
(%
)

Te
st
 L
os
s

Te
st
 A
cc
ur
ac
y
(%
)

Training fraction (%) Training fraction (%)

Add Mul

Figure 4: Random circulant features
generalize with standard kernels for
modular arithmetic. RFM with the
Gaussian kernel on addition (Add) and
multiplication (Mul) for modulus p =
61 is compared to a base Gaussian ker-
nel machine trained on random circulant
features (for Mul, the sub-blocks are cir-
culant after re-ordering by the discrete
logarithm base 2).

If Mt denotes the AGOP at iteration t of RFM (or epoch
t of a neural network) and M∗ denotes the final AGOP of
the trained RFM (or neural network), then AGOP align-
ment at iteration t is given by ρ(Mt,M

∗). The same mea-
sure of alignment was used in Zhu et al. (2024), except
their alignment was computed with respect to the AGOP
of the ground truth model. Note that as modular opera-
tions are discrete, in our setting there is no unique ground
truth model for which AGOP can be computed.

Like circulant deviation, AGOP alignment exhibits grad-
ual improvement in the regime that test loss is constant
and large (see Fig. 2B, bottom row). Moreover, AGOP
alignment is a more general progress measure since it
does not require assumptions on the structure of the
AGOP. For instance, AGOP alignment can be measured
without reordering for modular multiplication/division.
While AGOP alignment does not require a specific form
of the final features, it is still an a posteriori measurement
of progress as it requires access to the features of a fully
trained model.

Random circulant features allow standard kernels to
generalize. We conclude this section by providing fur-
ther evidence that the form of feature matrices given in
Observation 1 is key to enabling generalization in kernel

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Ac
cu
ra
cy

(%
)

Epochs

Lo
ss

Epochs Epochs Epochs

Lo
ss
 o
f

Co
rr
ec
t

Ou
tp
ut
 C
la
ss

Ci
rc
ul
an
t

De
vi
at
io
n

AG
OP

Al
ig
nm
en
t

Epochs Epochs Epochs Epoch

Accuracy & Loss

Progress Measures

Add Sub Mul Div

A

B

NN
Circ:
frob

Figure 5: One hidden layer fully-connected networks with quadratic activations trained on modular
arithmetic with p = 61 trained for 50 epochs with the square loss. (A) Test accuracy, test loss
over all outputs, and test loss of the correct class output do not change in the initial iterations. (B)
Progress measures for circulant deviation and AGOP alignment. Circulant deviation for Mul and
Div are computed after reordering by the discrete logarithm base 2.

machines trained to solve modular arithmetic tasks. We now show that a transformation with a
generic block-circulant matrix enables kernels machines to learn modular arithmetic. We generate
a random circulant matrix C by first sampling entries of the first column i.i.d. from the uniform
distribution on [0, 1] ⊂ R and then shifting the column to generate the remaining columns of C. We
construct M∗ in Observation 1 with c1 = 1, c2 = −1/p. For modular addition, we transform the
input data by mapping xab = ea ⊕ eb to x̃ab = (M∗)

1
4xab , and then train on the new data pairs

(x̃ab, ea+bmod p) for a subset of all possible pairs (a, b) ∈ Z2
p. Note that transforming data with

(M∗)
1
4 is akin to using s = 1/2 in RFM.

We do the same for modular multiplication after reordering the random circulant by the discrete
logarithm as described above. The experiments in Fig. 4 show that standard kernel machines trained
on feature matrices with random circulant blocks outperform RFM that learns such features through
AGOP. We also find that directly enforcing circulant blocks in the sub-matrices of Mt throughout
RFM iterations accelerates grokking and improves test loss (see Appendix F, Appendix Fig. 2).
These experiments provide direct evidence that the structure in Observation 1 is key for generaliza-
tion on modular arithmetic and, furthermore, no additional structure beyond a generic circulant is
required.

4 EMERGENCE IN NEURAL NETWORKS THROUGH AGOP
We now show that grokking in two-layer neural networks relies on the same principles as grokking
by RFM. Specifically we demonstrate that (1) block-circulant features are key to neural networks
grokking modular arithmetic; and (2) our measures (circulant deviation and AGOP alignment) in-
dicate gradual progress towards generalization, while standard measures of generalization exhibit
sharp transitions. All experimental details are provided in Appendix D.

Grokking with neural networks. We first reproduce grokking with modular arithmetic using fully-
connected networks as identified in prior works (Fig. 5A) (Gromov, 2023). In particular, we train
one hidden layer fully connected networks f : R2p → Rp of the form f(x) = W2ϕ(W1x) with
quadratic activation ϕ(z) = z2 on modulus p = 61 data with a training fraction 50%.

Consistent with prior work (Gromov, 2023) and analogously to RFMs, neural networks exhibit an
initial training period where the train accuracy reaches 100%, while test accuracy is at 0% and test

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Add Sub Mul (reordered) Div (reordered)

NN
AGOP

NFM

B

A

Figure 6: Feature matrices from one hidden layer neural networks with quadratic activations trained
on addition, subtraction, multiplication, and division modulo 61. The Pearson correlations between
the NFM and square root of the AGOP for each task are 0.955 (Add), 0.942 (Sub), 0.924 (Mul),
0.929 (Div). Mul and Div are shown after reordering by the discrete logarithm base 2.

loss does not improve (see Fig. 5A). After this point, we see that the accuracy rapidly improves to
achieve perfect generalization. We further verify that the sharp transition in test loss is not an artifact
of averaging the loss over all output coordinates. In the third row of Fig. 5A we show that the test
loss of the individual correct output coordinate closely tracks the total loss.

Emergence of block-circulant features in neural networks. To understand the features learned
by neural networks we visualize the first layer Neural Feature Matrix, defined as follows.
Definition 4.1. Given a fully connected network f(x) = a⊤ϕ(W1x), the first layer Neural Feature
Matrix (NFM) is the matrix W⊤

1 W1 ∈ R2p×2p.

The NFM is the un-centered covariance of network weights and has been used in prior work in order
to understand the features learned by various neural network architectures at any layer (Radhakrish-
nan et al., 2024a; Trockman et al., 2022). Fig. 6A displays the NFM for one hidden layer neural
networks with quadratic activations trained on modular arithmetic tasks. For addition/subtraction,
we find that the NFM exhibits block circulant structure, akin to the feature matrix for RFM. As
described in Section 3 and Appendix E, we reorder the NFM for networks trained on multiplica-
tion/division with respect to a generator for Z∗

p in order to observe block-circulant structure (see
Appendix Fig. 4A for a comparison of multiplication/division NFMs before and after reordering).
The block-circulant structure in both the NFM and the feature matrix of RFM suggests that the two
models are learning similar sets of features.

The work Radhakrishnan et al. (2024a) posited that AGOP is the mechanism through which neural
networks learn features. The authors stated their claim in the form of the Neural Feature Ansatz
(NFA), which states that NFMs are proportional to a matrix power of AGOP through training (see
Eq. (5) for a restatement of the NFA). As such, we additionally compute the square root of the AGOP
to examine the features learned by neural networks trained on modular arithmetic tasks. We visualize
the square root of the AGOPs of these trained models in Fig. 6B and also find that the square root
of the AGOP and the NFM are highly correlated (greater than 0.92), where Pearson correlation is
equal to cosine similarity after centering the inputs to be mean 0. Moreover, we find that the square
root of AGOP of neural networks again exhibits the same structure as stated in Observation 1 (see
Appendix Fig. 4B for a comparison of multiplication/division AGOPs before and after reordering).

Random circulant maps improve generalization of neural networks. To further establish the
importance and generality of block-circulant features, we demonstrate that training networks on
inputs transformed with a random block-circulant matrix greatly accelerates learning. In Fig. 7, we
compare the performance of neural networks trained on one-hot encoded modulo p integers and the
same integers transformed with a random block-circulant matrix. At a training fraction of 17.5%,
we find that networks trained on transformed integers achieved 100% test accuracy within several
hundred epochs and exhibit little delayed generalization while networks trained on non-transformed
integers do not achieve 100% test accuracy even within 3000 epochs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Epochs Epochs

Ac
cu
ra
cy
 (
%)

Ac
cu
ra
cy
 (
%)

Sq
ua
re
 L
os
s

Sq
ua
re
 L
os
s

NN Random Circulant + NN

17.5% - ¼ M matrix

Add

Epochs Epochs

Ac
cu
ra
cy
 (
%)

Ac
cu
ra
cy
 (
%)

Sq
ua
re
 L
os
s

Sq
ua
re
 L
os
s

NN Random Circulant + NN

Mul

Figure 7: Random circulant features speed up generalization in neural networks for modular arith-
metic tasks. We compare one hidden layer MLPs with quadratic activations trained on modular
addition and multiplication for p = 61 using standard one-hot encodings or those transformed by
random circulant matrices (re-ordered by the discrete logarithm for multiplication).

Progress measures. Given that the square root of the AGOP of neural networks exhibits block-
circulant structure, we can use circulant deviation and AGOP alignment to measure gradual progress
of neural networks toward a generalizing solution. As before, we measure circulant deviation in
the case of multiplication/division after reordering the feature submatrix by a generator of Z∗

p. In
Fig. 5B, we see that our measures indicate gradual progress in contrast to sharp transitions in the
standard measures of progress shown in Fig. 5A. There is a period of 5-10 epochs where circulant
deviation and AGOP alignment improve while test loss and test accuracy do not. As was the case of
RFM, these metrics reveal gradual progress of neural networks toward generalizing solutions.

5 FOURIER MULTIPLICATION ALGORITHM FROM CIRCULANT FEATURES

We have seen so far that features containing circulant sub-blocks enable generalization for RFMs
and neural networks across modular arithmetic tasks. We now provide theoretical support that shows
how kernel machines equipped with such circulant features learn generalizing solutions. In particu-
lar, we show that there exist block-circulant feature matrices, as in Observation 1, such that kernel
machines equipped with these features and trained on all available data for a given modulus p solve
modular arithmetic through the Fourier Multiplication Algorithm (FMA). Notably, the FMA has
been argued both empirically and theoretically in prior works to be the solution found by neural
networks to solve modular arithmetic (Nanda et al., 2023; Zhong et al., 2024).

The FMA is a specific solution for implementing modular arithmetic that first represents the data by
its Discrete Fourier Transform (DFT). Intuitively, transforming the data with circulant matrices ex-
tracts the DFT of the one-hot encoded vectors following the well-known fact that circulant matrices
can be diagonalized using the matrix that encodes the DFT (Gray et al., 2006). We state our result
informally here (for more details on the FMA, the precise theorem, and its proof, see Appendix G).
Theorem 5.1 (Circulant features give the FMA). Training on all of the discrete data for any mod-
ular operation, for each output class ℓ ∈ {0, · · · , p − 1}, suppose we train a separate quadratic
kernel predictor and particular block-circulant feature matrices Mℓ (having the structure in Obser-
vation 1). Then, the concatenated predictor given by kernel ridgeless regression on each output is
equivalent to the Fourier Multiplication Algorithm for that modular operation.

Notably, the FMA is defined over all of R2p, not just on one-hot encoded inputs. Thus, not only do
neural networks and RFM learn similar features, we have established a setting where kernel meth-
ods equipped with block-circulant feature matrices learn the same out-of-domain solution as neural
networks for these tasks. This result is interesting, in part, as the only constraint for generalization
on these tasks is to obtain perfect accuracy on inputs that are standard basis vectors.

6 DISCUSSION AND CONCLUSIONS

Most classical analyses of generalization relied on the training loss serving as a proxy for the test loss
and thus a useful measure of generalization. Empirical results of deep learning have upended this

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

long-standing belief. In many settings, predictors that fit the data exactly can still generalize, thus
invalidating training loss as a predictor of test performance. This has led to the recent developments
in understanding benign overfitting, in neural networks as well as in classical kernel and linear mod-
els Belkin (2021); Bartlett et al. (2021). Since the training loss may not predict generalization, the
common suggestion has been to use the validation loss computed on a separate validation dataset.
Emergent phenomena, such as grokking, show that we cannot rely even on validation performance
at intermediate training steps to predict generalization at the end of training. Indeed, validation loss
at a certain iteration may not be indicative of the validation loss itself only a few iterations later.
Further, contrary to Schaeffer et al. (2023), we show these phase transitions in performance are not
generally “a mirage” since, as we observe in this work, they are not always predicted by a priori
measures of performance, continuous or discontinuous. Instead, emergence is fully determined by
feature learning, which is difficult to observe without having access to a fully trained model. Indeed,
the progress measures discussed in this work, as well as those suggested in, e.g., Barak et al. (2022);
Nanda et al. (2023); Doshi et al. (2024) can be termed a posteriori progress indicators. They all
require either understanding of the algorithm implemented by a generalizing trained model (such as
our circulant deviation, the Fourier gap considered in Barak et al. (2022), or the Inverse Participation
Ratio in Doshi et al. (2024)) or access to such a model (e.g. AGOP alignment).

Consider generalizing features for modular multiplication shown in Fig. 3. The original features
shown in panel B of this figure do not have an easily identifiable pattern. In contrast, re-ordered
features in panel C are clearly striped, containing block-circulants. As discussed in Section 3, re-
ordering of features requires understanding that the multiplicative group Z∗

p is cyclic of order p− 1.
While a well-known result, it is far from obvious a priori. It is thus plausible that in other settings
hidden feature structures may be hard to identify due to a lack of mathematical insight.

Why is learning modular arithmetic surprising? The task of learning modular operations is
different from many other statistical machine learning tasks. In continuous ML settings, we typically
posit that the “ground truth” target function is smooth in an appropriate sense. Hence any general
purpose algorithm capable of learning smooth functions (such as, for example, k-nearest neighbors)
should be able to learn the target function given enough data. Primary differences between learning
algorithms are thus in sample and computational efficiency. In contrast, it is unclear what principle
leads to learning modular arithmetic from partial observations. There are many ways to fill in the
missing data and we do not know a simple inductive bias, to guide us toward a solution. Several
recent works argued that margin maximization with respect to certain norms can account for learning
modular arithmetic (Morwani et al., 2024; Lyu et al., 2023; Mohamadi et al., 2024). While the
direction is promising, general underlying principles are not yet clear.

Analyses of grokking. Recent works (Kumar et al., 2024; Lyu et al., 2023; Mohamadi et al., 2024)
argue that grokking occurs in neural networks through a two phase mechanism that transitions from a
“lazy” regime, with no feature learning, to a “rich” feature learning regime. Our experiments clearly
show that grokking in RFM does not undergo such a transition. For RFM on modular arithmetic
tasks, our progress measures indicate that the features evolve gradually toward the final circulant
matrices, even as test performance initially remains constant (Fig. 2). Grokking in these settings
is entirely due to the gradual feature quality improvement and two-phase grokking does not occur.
Additionally, we have not observed significant evidence of “lazy” to “rich” transition as a mechanism
for grokking in our experiments with neural networks, as most of our measures of feature learning
start improving early on in the training process (improvement in circulant deviation measure is
delayed for addition and subtraction, but not for multiplication and division, while AGOP feature
alignment initially shows near linear improvement for all tasks), see Fig. 5. Our observations for
neural networks are in line with the results in (Doshi et al., 2024; Nanda et al., 2023), where their
proposed progress measures, Inverse Participation Ratio and Gini coefficients of the weights in the
Fourier domain, are shown to increase prior to improvements in test loss and accuracy for modular
arithmetic.

Conclusions. In this paper, we showed that grokking modular arithmetic happens in feature learning
kernel machines in a manner very similar to what has been observed in neural networks. Remarkably
we observe that feature learning can happen independently of improvements in both training and
test loss. Not only does this finding reinforce the narrative of rapid emergence of skills in neural
networks, it is also not easily explicable within the framework of the existing generalization theory.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Navid Ardeshir, Daniel J. Hsu, and Clayton H. Sanford. Intrinsic dimensionality and generalization
properties of the r-norm inductive bias. In Gergely Neu and Lorenzo Rosasco (eds.), Proceedings
of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine Learning
Research, pp. 3264–3303. PMLR, 12–15 Jul 2023. URL https://arxiv.org/pdf/2206.
05317.

Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language models.
arXiv preprint arXiv:2307.15936, 2023. URL https://arxiv.org/pdf/2307.15936.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hid-
den progress in deep learning: Sgd learns parities near the computational limit. Advances in Neu-
ral Information Processing Systems, 35:21750–21764, 2022. URL https://openreview.
net/pdf?id=8XWP2ewX-im.

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
Acta numerica, 30:87–201, 2021. URL https://arxiv.org/pdf/2103.09177.

Daniel Beaglehole, Adityanarayanan Radhakrishnan, Parthe Pandit, and Mikhail Belkin. Mech-
anism of feature learning in convolutional neural networks. arXiv preprint arXiv:2309.00570,
2023. URL https://arxiv.org/pdf/2309.00570.

Daniel Beaglehole, Ioannis Mitliagkas, and Atish Agarwala. Feature learning as alignment:
a structural property of gradient descent in non-linear neural networks. arXiv preprint
arXiv:2402.05271, 2024a. URL https://arxiv.org/pdf/2402.05271.

Daniel Beaglehole, Peter Súkenı́k, Marco Mondelli, and Mikhail Belkin. Average gradient outer
product as a mechanism for deep neural collapse. arXiv preprint arXiv:2402.13728, 2024b. URL
https://arxiv.org/pdf/2402.13728.

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through
the prism of interpolation. Acta Numerica, 30:203–248, 2021. URL https://arxiv.org/
pdf/2105.14368.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022. URL
https://arxiv.org/pdf/2206.15144.

Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent. ML
Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022),
2023. URL https://arxiv.org/abs/2303.06173.

Darshil Doshi, Tianyu He, Aritra Das, and Andrey Gromov. Grokking modular polynomials.
International Conference on Learning Representations (ICLR): BGPT Workshop, 2024. URL
https://arxiv.org/abs/2406.03495.

Hiroki Furuta, Gouki Minegishi, Yusuke Iwasawa, and Yutaka Matsuo. Interpreting grokked
transformers in complex modular arithmetic. arXiv preprint arXiv:2402.16726, 2024. URL
https://arxiv.org/pdf/2402.16726.

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends® in Com-
munications and Information Theory, 2(3):155–239, 2006. URL https://ee.stanford.
edu/˜gray/toeplitz.pdf.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023. URL
https://arxiv.org/pdf/2301.02679.

11

https://arxiv.org/pdf/2206.05317
https://arxiv.org/pdf/2206.05317
https://arxiv.org/pdf/2307.15936
https://openreview.net/pdf?id=8XWP2ewX-im
https://openreview.net/pdf?id=8XWP2ewX-im
https://arxiv.org/pdf/2103.09177
https://arxiv.org/pdf/2309.00570
https://arxiv.org/pdf/2402.05271
https://arxiv.org/pdf/2402.13728
https://arxiv.org/pdf/2105.14368
https://arxiv.org/pdf/2105.14368
https://arxiv.org/pdf/2206.15144
https://arxiv.org/abs/2303.06173
https://arxiv.org/abs/2406.03495
https://arxiv.org/pdf/2402.16726
https://ee.stanford.edu/~gray/toeplitz.pdf
https://ee.stanford.edu/~gray/toeplitz.pdf
https://arxiv.org/pdf/2301.02679

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Sre-
bro. Implicit regularization in matrix factorization. Advances in neural information processing
systems, 30, 2017.

Judy Hoffman, Daniel A Roberts, and Sho Yaida. Robust learning with jacobian regularization.
arXiv preprint arXiv:1908.02729, 5(6):7, 2019.

Marian Hristache, Anatoli Juditsky, Jorg Polzehl, and Vladimir Spokoiny. Structure adaptive
approach for dimension reduction. Annals of Statistics, pp. 1537–1566, 2001. URL https:
//projecteuclid.org/journals/annals-of-statistics/volume-29/
issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.
1214/aos/1015345954.full.

Neal Koblitz. A course in number theory and cryptography, volume 114. Springer Science &
Business Media, 1994.

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the tran-
sition from lazy to rich training dynamics. International Conference on Learning Representations
(ICLR), 2024. URL https://openreview.net/pdf?id=vt5mnLVIVo.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-
wards understanding grokking: An effective theory of representation learning. Advances in Neu-
ral Information Processing Systems, 35:34651–34663, 2022.

Ziming Liu, Eric J. Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic
data. International Conference on Learning Representations (ICLR), 2023. URL https:
//openreview.net/pdf?id=zDiHoIWa0q1.

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon Shaolei Du, Jason D Lee, and Wei Hu. Dichotomy of
early and late phase implicit biases can provably induce grokking. In The Twelfth International
Conference on Learning Representations (ICLR), 2023. URL https://openreview.net/
forum?id=XsHqr9dEGH.

Jack Miller, Charles O’Neill, and Thang Bui. Grokking beyond neural networks: An empirical
exploration with model complexity. Transactions on Machine Learning Research (TMLR), 2024.
URL https://openreview.net/pdf?id=ux9BrxPCl8.

Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica J. Sutherland. Why do you
grok? a theoretical analysis on grokking modular addition. In Forty-first International Con-
ference on Machine Learning (ICML), 2024. URL https://openreview.net/forum?
id=ad5I6No9G1.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT Press, 2018.

Ankur Moitra. Algorithmic aspects of machine learning. Cambridge University Press, 2018.

Depen Morwani, Benjamin L. Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham Kakade.
Feature emergence via margin maximization: case studies in algebraic tasks. International
Conference on Learning Representations (ICLR), 2024. URL https://openreview.net/
pdf?id=i9wDX850jR.

Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A Erdogdu.
Neural networks efficiently learn low-dimensional representations with sgd. arXiv preprint
arXiv:2209.14863, 2022. URL https://arxiv.org/pdf/2209.14863.

12

https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://openreview.net/pdf?id=vt5mnLVIVo
https://openreview.net/pdf?id=zDiHoIWa0q1
https://openreview.net/pdf?id=zDiHoIWa0q1
https://openreview.net/forum?id=XsHqr9dEGH
https://openreview.net/forum?id=XsHqr9dEGH
https://openreview.net/pdf?id=ux9BrxPCl8
https://openreview.net/forum?id=ad5I6No9G1
https://openreview.net/forum?id=ad5I6No9G1
https://openreview.net/pdf?id=i9wDX850jR
https://openreview.net/pdf?id=i9wDX850jR
https://arxiv.org/pdf/2209.14863

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. International Conference on Learning Representa-
tions (ICLR), 2023. URL https://openreview.net/pdf?id=9XFSbDPmdW.

Suzanna Parkinson, Greg Ongie, and Rebecca Willett. Relu neural networks with linear layers are
biased towards single- and multi-index models. arXiv preprint arXiv:2305.15598, 2023. URL
https://arxiv.org/pdf/2305.15598.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Mecha-
nism of feature learning in deep fully connected networks and kernel machines that recursively
learn features. arXiv preprint arXiv:2212.13881, 2022.

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Mecha-
nism for feature learning in neural networks and backpropagation-free machine learning mod-
els. Science, 383(6690):1461–1467, 2024a. doi: 10.1126/science.adi5639. URL https:
//www.science.org/doi/abs/10.1126/science.adi5639.

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Dmitriy Drusvyatskiy. Linear recursive fea-
ture machines provably recover low-rank matrices. arXiv preprint arXiv:2401.04553, 2024b.
URL https://arxiv.org/pdf/2401.04553.

Anna Rogers and Sasha Luccioni. Position: Key claims in llm research have a long tail of footnotes.
In Forty-first International Conference on Machine Learning, 2023. URL https://arxiv.
org/pdf/2308.07120.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=ITw9edRDlD.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv:2206.04817, 2022. URL https://arxiv.org/abs/2206.04817.

Shubhendu Trivedi, Jialei Wang, Samory Kpotufe, and Gregory Shakhnarovich. A consistent es-
timator of the expected gradient outerproduct. In UAI, pp. 819–828, 2014. URL https:
//www.columbia.edu/˜skk2175/Papers/GOP-UAI.pdf.

Asher Trockman, Devin Willmott, and J Zico Kolter. Understanding the covariance structure of
convolutional filters. arXiv preprint arXiv:2210.03651, 2022.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explain-
ing grokking through circuit efficiency. International Conference on Learning Representations
(ICLR), 2023. URL https://openreview.net/pdf?id=7Zbg38nA0J.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
Transactions on Machine Learning Research (TMLR), 2022. URL https://openreview.
net/pdf?id=yzkSU5zdwD.

Gan Yuan, Mingyue Xu, Samory Kpotufe, and Daniel Hsu. Efficient estimation of the central mean
subspace via smoothed gradient outer products. arXiv preprint arXiv:2312.15469, 2023. URL
https://arxiv.org/pdf/2312.15469.

13

https://openreview.net/pdf?id=9XFSbDPmdW
https://arxiv.org/pdf/2305.15598
https://www.science.org/doi/abs/10.1126/science.adi5639
https://www.science.org/doi/abs/10.1126/science.adi5639
https://arxiv.org/pdf/2401.04553
https://arxiv.org/pdf/2308.07120
https://arxiv.org/pdf/2308.07120
https://openreview.net/forum?id=ITw9edRDlD
https://arxiv.org/abs/2206.04817
https://www.columbia.edu/~skk2175/Papers/GOP-UAI.pdf
https://www.columbia.edu/~skk2175/Papers/GOP-UAI.pdf
https://openreview.net/pdf?id=7Zbg38nA0J
https://openreview.net/pdf?id=yzkSU5zdwD
https://openreview.net/pdf?id=yzkSU5zdwD
https://arxiv.org/pdf/2312.15469

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
stories in mechanistic explanation of neural networks. Advances in Neural Information Processing
Systems, 36, 2024.

Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan, and Mikhail Belkin. Catapults in sgd:
spikes in the training loss and their impact on generalization through feature learning. Interna-
tional Conference on Machine Learning (ICML), 235, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 1 Recursive Feature Machine (RFM) (Radhakrishnan et al., 2024a)

Require: X, y, k, T, L ▷ Train data: (X, y), base kernel: k, iters.: T , matrix power: s, and
bandwidth: L
M0 = Id
for t = 0, . . . , T − 1 do

Solve α← k(X,X;Mt)
−1y ▷ f (t)(x) = k(x,X;Mt)α

Mt+1 ← [G(f (t))]s

end for
return α,MT−1 ▷ Solution to kernel regression: α, and feature matrix: MT−1

A BROADER DISCUSSION

Low rank learning. The problem of learning modular arithmetic can be viewed as a type of matrix
completion – completing the p× p matrix (so-called Cayley table) representing modular operations,
from partial observations. The best studied matrix completion problem is low rank matrix comple-
tion, where the goal is to fill in missing entries of a low rank matrix from observing a subset of the
entries (Moitra, 2018, Ch.8). While many specialized algorithms exist, it has been observed that
neural networks can recover low rank matrix structures Gunasekar et al. (2017). Notably, in a devel-
opment paralleling the results of this paper, low-rank matrix completion can provably be performed
by linear RFMs using the same AGOP mechanism Radhakrishnan et al. (2024b).

It is thus tempting to posit that grokking modular operations in neural networks or RFM can be
explained as a low rank prediction problem. Indeed modular operations can be implemented by an
index 4 model, i.e., a function of the form f = g(Ax), where x ∈ R2p and A is a rank 4 matrix (see
Appendix L for the construction). It is a plausible conjecture as there is strong evidence, empirical
and theoretical, that neural networks are capable of learning such multi-index models Damian et al.
(2022); Mousavi-Hosseini et al. (2022) as well as low-rank matrix completion. Furthermore, a phe-
nomenon similar to grokking was discussed in (Radhakrishnan et al., 2022, Fig. 5, 6) in the context
of low rank feature learning for both neural networks and RFM. However, despite the existence of
generalizeable low rank models, the actual circulant features learned by both Neural Networks and
RFM are not low rank. Interestingly, this observation mirrors the problem of learning parity func-
tions through neural network inspired minimum norm interpolation, which was analyzed in Ardeshir
et al. (2023). While single-directional (index one) solutions exist in that setting, the authors show
that the minimum norm solutions are all multi-dimensional.

Explanations for deep learning Finally, this work adds to the growing body of evidence that
the AGOP-based mechanisms of feature learning can account for some of the most interesting phe-
nomena in deep learning. These include generalization with multi-index models (Parkinson et al.,
2023), deep neural collapse (Beaglehole et al., 2024b), and the ability to perform low-rank matrix
completion (Radhakrishnan et al., 2024b). Thus, RFM provides a framework that is both practically
powerful and serves as a theoretically tractable model of deep learning.

B ADDITIONAL PRELIMINARIES

For completeness we replicate the algorithm definition for Recursive Feature Machines (RFM) pro-
vided by Radhakrishnan et al. (2024a) in Algorithm 1. This procedure recursively fits a kernel
estimator for a chosen base kernel, k, then updates the feature matrix, M , by computing a matrix
power of the Average Gradient Outer Product (AGOP) for that estimator. The algorithm termi-
nates after a total of T iterations. The final estimator and feature matrix are then returned by the
algorithm.

C NEURAL FEATURE ANSATZ

While the NFA has been observed generally across depths and architecture types (Radhakrishnan
et al., 2024a; Beaglehole et al., 2023; 2024a), we restate this observation for fully-connected net-
works with one hidden-layer of the form f(x) = a⊤ϕ(W1x).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Ansatz 1 (Neural Feature Ansatz for one hidden layer). For a one hidden-layer neural network fNN

and a matrix power α ∈ (0, 1], the following holds:

W⊤
1 W1 ∝ G(fNN)s . (5)

Note that this statement implies that W⊤
1 W1 and G(fNN)s have a cosine similarity of ±1.

In this work, we choose α = 1
2 , following the main results in Radhakrishnan et al. (2024a). While

the absolute value of the cosine similarity is written in Eq. (5) to be 1, it is typically a high value less
than 1, where the exact value depends on choices of initialization, architecture, dataset, and training
procedure. For more understanding of these conditions, see Beaglehole et al. (2024a).

D MODEL AND TRAINING DETAILS

Gaussian kernel: Throughout this work we take bandwidth L = 2.5 when using the Mahalanobis
Gaussian kernel. We solve ridgeless kernel regression using NumPy on a standard CPU.

Neural networks: Unless otherwise specified, we train one hidden layer neural networks with
quadratic activation functions and no biases in PyTorch on a single A100 GPU. Models are trained
using AdamW with hidden width 1024, batch size 32, learning rate of 10−3, weight decay 1.0, and
standard PyTorch initialization. All models are trained using the Mean Squared Error loss function
(square loss).

For the experiments in Appendix Fig. 5, we train one hidden layer neural networks with quadratic
activation and no biases on modular addition modulo p = 61. We use 40% training fraction, PyTorch
standard initialization, hidden width of 512, weight decay 10−5, and AGOP regularizer weight 10−3.
Models are trained with vanilla SGD, batch size 128, and learning rate 1.0.

E REORDERING FEATURE MATRICES BY GROUP GENERATORS

Our reordering procedure uses the standard fact of group theory that the multiplicative group Z∗
p is

a cyclic group of order p − 1 Koblitz (1994). By definition of the cyclic group, there exists at least
one element g ∈ Z∗

p, known as a generator, such that Z∗
p = {gi ; i ∈ {1, . . . , p− 1}}.

Given a generator g ∈ Z∗
p, we reorder features according to the map, ϕg : Z∗

p → Z∗
p, where if h = gi,

then ϕg(h) = i. In particular, given a matrix B ∈ Rp×p, we reorder the bottom right (p−1)×(p−1)
sub-block of B as follows: we move the entry in coordinate (r, c) with r, c ∈ Z∗

p to coordinate
(ϕg(r), ϕg(c)). For example if g = 2 in Z∗

5, then (2, 3) entry of the sub-block would be moved to
coordinate (1, 3) since 21 = 2 and 23 mod5 = 3. In the setting of modular multiplication/division,
the map ϕg defined above is known as the discrete logarithm base g (Koblitz, 1994, Ch.3). The
discrete logarithm is analogous to the logarithm defined for positive real numbers in the sense that
it converts modular multiplication/division into modular addition/subtraction. Lastly, in this setting,
we note that we only reorder the bottom (p−1)×(p−1) sub-block of B as the first row and column
are 0 (as multiplication by 0 results in 0).

Upon re-ordering the p × p off-diagonal sub-blocks of the feature matrix by the map ϕg , the fea-
ture matrix of RFM for multiplication/division tasks contains circulant blocks as shown in Fig. 3C.
Thus, the reordered feature matrices for these tasks also exhibit the structure in Observation 1. As a
remark, we note that there can exist several generators for a cyclic group, and thus far, we have not
specified the generator g we use for re-ordering. For example, 2 and 3 are both generators of Z∗

5 since
{2, 22, (23 mod5), (24 mod5)} = {3, (32 mod5), (33 mod5), (34 mod5)} = Z∗

5. Lemma K.1 im-
plies that the choice of generator does not matter for observing circulant structure. As a convention,
we simply reorder by the smallest generator.

F ENFORCING CIRCULANT STRUCTURE IN RFM
We see that the structure in Observation 1 gives generalizing features on modular arithmetic when
the circulant C is constructed from the RFM matrix. We observe that enforcing this structure at
every iteration, and comparing to the standard RFM model at that iteration, improves test loss and
accelerates grokking on e.g. addition (Appendix Fig. 2). The exact procedure to enforce this struc-
ture is as follows. We first perform standard RFM to generate feature matrices M1, . . . ,MT . Then
for each iteration of the standard RFM, we construct a new M̃t on which we solve ridgeless kernel

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

regression for a new α and evaluate on the test set. To construct M̃ , we take D = diag (Mt) and
first let M̃ = D−1/2MD−1/2, to ensure the rows and columns have equal scale. We then reset the
top left and bottom right sub-matrices of M̃ as I − 1

p11
T , and replace the bottom-left and top-right

blocks with C and C⊤, where C is an exactly circulant matrix constructed from Mt. Specifically,
where c is the first column of the bottom-left sub-matrix of Mt, column ℓ of C is equal to σℓ(Mt).

G FOURIER MULTIPLICATION ALGORITHM FROM CIRCULANT FEATURES

As stated in the main text, using certain circulant matrices, kernel regression will learn the Fourier
Multiplication Algorithm (FMA). We state the FMA for modular addition/subtraction from Nanda
et al. (2023) below. While these prior works write this algorithm in terms of cosines and sines, our
presentation simplifies the statement by using the DFT.

Complex inner product and Discrete Fourier Transform (DFT). In our theoretical analysis in
Section 5, we will utilize the following notions of complex inner product and DFT. The complex
inner product ⟨·, ·⟩C is a map from Cd × Cd → C of the form

⟨u, v⟩C = u⊤v̄ , (6)

where v̄j is the complex conjugate of vj . Let i =
√
−1 and let ω = exp(−2πi

d). The DFT is the map
F : Cd → Cd of the form F(u) = Fu, where F ∈ Cd×d is a unitary matrix with Fij = 1√

d
ωij . In

matrix form, F is given as

F =
1√
d


1 1 1 · · · 1
1 ω ω2 · · · ωd−1

1 ω2 ω4 · · · ω2(d−1)

...
...

...
. . .

...
1 ωd−1 ω2(d−1) · · · ω(d−1)(d−1)

 . (7)

Fourier Multiplication Algorithm for modular addition/subtraction. Consider the modular ad-
dition task with f∗(a, b) = (a + b)mod p. For a given input x = x[1] ⊕ x[2] ∈ R2p, the FMA
generates a value for output class ℓ, yadd(x; ℓ), through the following computation:

1. Compute the Discrete Fourier Transform (DFT) for each digit vector x[1] and x[2], which
we denote x̂[1] = Fx[1] and x̂[2] = Fx[2] where the matrix F is defined in Eq. (7).

2. Compute the element-wise product x̂[1] ⊙ x̂[2].

3. Return
√
p · ⟨x̂[1] ⊙ x̂[2], Feℓ⟩C where eℓ denotes ℓ-th standard basis vector and ⟨·, ·⟩C

denotes the complex inner product (see Eq. (6)).

This algorithmic process can be written concisely in the following equation:

yadd(x; ℓ) =
√
p ·

〈
Fx[1] ⊙ Fx[2], Feℓ

〉
C . (8)

Note that for x = ea ⊕ eb, the second step of the FMA reduces to

Fea ⊙ Feb =
1
√
p
Fe(a+b)mod p . (9)

Using the fact that F is a unitary matrix, the output of the FMA is given by

√
p ·

〈
1
√
p
Fe(a+b)mod p, Feℓ

〉
C
= e⊤(a+b)mod pF

⊤F̄eℓ = e⊤(a+b)mod peℓ = 1{(a+b)mod p=ℓ} .

(10)

Thus, the output of the FMA is a vector e(a+b)mod p, which is equivalent to modular addition. We
provide an example of this algorithm for p = 3 in Appendix J.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Remarks. We note that our description of the FMA uses all entries of the DFT, referred to as fre-
quencies, while the algorithm as proposed in prior works allows for utilizing a subset of frequencies.
Also note that the FMA for subtraction, written ysub, is similar and given by

ysub(x; ℓ) =
√
p ·

〈
Fx[1] ⊙ Fep−ℓ−1, Fx[2]

〉
C . (11)

Having described the FMA, we now state our theorem.

Theorem G.1. Given all of the discrete data
{(

ea ⊕ eb, e(a−b)mod p

)}p−1

a,b=0
, for each output class

ℓ ∈ {0, · · · , p − 1}, suppose we train a separate kernel predictor fℓ(x) = k(x,X;Mℓ)α
(ℓ) where

k(·; ·;Mℓ) is a quadratic kernel with Mℓ =

(
0 Cℓ

(Cℓ)⊤ 0

)
and C ∈ Rp×p is a circulant matrix

with first row e1. When α(ℓ) is the solution to kernel ridgeless regression for each ℓ, the kernel pre-
dictor f = [f0, . . . , fp−1] is equivalent to Fourier Multiplication Algorithm for modular subtraction
(Eq. (11)).

As C is circulant, Cℓ is also circulant. Hence, each Mℓ has the structure described in Observation 1,
where A = 0. Note our construction differs from RFM in that we use a different feature matrix
Mℓ for each output coordinate, rather than a single feature matrix across all output coordinates.
Nevertheless, Theorem G.1 provides support for the fact that block-circulant feature matrices can be
used to solve modular arithmetic.

We provide the proof for Theorem G.1 in Appendix K. The argument for the FMA for addition
(Eq. (8)) is identical provided we replace Cℓ with CℓR and (Cℓ)⊤ with (CℓR)⊤ in each Mℓ, where
R is the Hankel matrix that reverses the row order (i.e. ones along the main anti-diagonal, zero’s
elsewhere), whose first row is ep−1. An analogous result follows for multiplication and division
under re-ordering by a group element, as described in Section 3.

Our proof uses the well-known fact that circulant matrices can be diagonalized using the DFT matrix
(Gray et al., 2006) (see Lemma K.2 for a restatement of this fact). This fundamental relation intu-
itively connects circulant features and the FMA. By using kernels with block-circulant Mahalanobis
matrices, we effectively represent the one-hot encoded data in terms of their Fourier transforms. We
conjecture that this implicit representation is what enables RFM to learn modular arithmetic with
more general circulant matrices when training on just a fraction of the discrete data.

H GROKKING MULTIPLE TASKS

Throughout the main paper, we focused on modular arithmetic settings for a single task. In more
general domains such as language, one may expect there to be many “skills” that need to be learned.
In such settings, it is possible that these skills are grokked at different rates. While a full discussion
is beyond the scope of this work, to illustrate this behavior, we performed additional experiments
in here, where we train RFM on a pair of modular arithmetic tasks simultaneously and demonstrate
that different tasks are indeed grokked at different points throughout training.

We train RFM to simultaneously solve the following two modular polynomial tasks: (1) x+ymod p
; (2) x2 + y2 mod p for modulus p = 61. We train RFM with the Mahalanobis Gaussian kernel
using bandwidth parameter L = 2.5. Training data for both tasks is constructed from the same
80% training fraction. In addition to concatenating the one-hot encodings for x, y, we also append
an extra bit indicating which task to solve (0 indicating task (1) and 1 indicating task (2)). The
classification head is shared for both tasks (e.g. output dimension is still Rp).

In Appendix Fig. 3, we observe that there are two sharp transitions in the test loss and test accuracy.
By decomposing the loss into the loss per task, we observe that RFM groks task (1) prior to grokking
task (2). Overall, these results illustrate that grokking of different tasks can occur at different training
iterations.

I AGOP REGULARIZATION AND WEIGHT DECAY FOR GROKKING MODULAR
ARITHMETIC.

It has been argued in prior work that weight decay (ℓ2 regularization on network weights) is neces-
sary for grokking to occur when training neural networks for modular arithmetic tasks (Varma et al.,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

2023; Davies et al., 2023; Nanda et al., 2023). Under the NFA (Eq. (5)), which states that W⊤
1 W1 is

proportional to a matrix power of G(f), we expect that performing weight decay on the first layer,
i.e., penalizing the loss by ∥W1∥2F = tr(W⊤

1 W1), should behave similarly to penalizing the trace of
the AGOP, tr(G(f)), during training.3 To this end, we compare the impact of using (1) no regular-
ization; (2) weight decay; and (3) AGOP regularization when training neural networks on modular
arithmetic tasks. In Appendix Fig. 5, we find that, akin to weight decay, AGOP regularization leads
to grokking in cases where using no regularization results in no grokking and poor generalization.
These results provide further evidence that neural networks solve modular arithmetic by using the
AGOP to learn features.

J FMA EXAMPLE FOR p = 3

We now provide an example of the FMA for p = 3. Let x = e1 ⊕ e2. In this case, we expect the
FMA to output the vector e0 since (1 + 2)mod 3 = 0. Following the first step of the FMA, we
compute

x̂[1] = Fe1 =
1√
3
[1, ω, ω2]⊤ ; x̂[2] = Fe2 =

1√
3
[1, ω2, ω4]⊤ , (12)

which are the first and second columns of F , respectively. Then their element-wise product is given
by

Fe1 ⊙ Fe2 =
1

3
[1, ω3, ω6]⊤ =

1

3
[1, 1, 1]⊤ =

1√
3
Fe0 , (13)

which is 1√
3

times the first column of the DFT matrix. Finally, we compute the outputs
√
3
〈

1√
3
Fe0, Feℓ

〉
C

for each ℓ ∈ {0, 1, 2}. As F is unitary, yadd(e1 ⊕ e2; ℓ) = 1{1+2=ℓmod 3}, so
that coordinate 0 of the output will have value 1, and all other coordinates have value 0.

K ADDITIONAL RESULTS AND PROOFS

Lemma K.1. Let C ∈ Rp×p with its first row and column entries all equal to 0. Let the (p −
1)× (p− 1) sub-block starting at the second row and column be C×. Then, C× is either circulant
after re-ordering by any generator q of Z∗

p, or C× is not circulant under re-ordering by any such
generator.

Proof of Lemma K.1. We prove the lemma by showing that for any two generators q1, q2 of Z∗
p, if

C× is circulant re-ordering with q1, then it is also circulant when re-ordering by q2.

Suppose C× is circulant re-ordering with q1. Let i, j ∈ {1, . . . , p − 1}. Note that by the circulant
assumption, for all s ∈ Z,

Cqi1,q
j
1
= Cqi+s

1 ,qi+s
1

, (14)

where we take each index modulo p.

As q2 is a generator for Z∗
p, we can access all entries of C× by indexing with powers of q2. Further,

as q1 is a generator, we can write q2 = qk1 , for some power k. Let a ∈ Z. Then,

Cqi2,q
j
2
= Cqki

1 ,qkj
1

= Cqki+ka
1 ,qkj+ka

1

= C
q
k(i+a)
1 ,q

k(j+a)
1

= Cqi+a
2 ,qj+a

2
.

Therefore, C is constant on the diagonals under re-ordering by q2, concluding the proof.

We next state Lemma K.2, which is used in the proof of Theorem G.1.

3We note this regularizer been used prior work where AGOP is called the Gram matrix of the input-output
Jacobian Hoffman et al. (2019).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lemma K.2 (See, e.g., Gray et al. (2006)). Circulant matrices U can be written (diagonalized) as:

U = FDF̄⊤ ,

where F is the DFT matrix, F̄⊤ is the element-wise complex conjugate of F⊤ (i.e. the Hermitian of
F), and D is a diagonal matrix with diagonal

√
p · Fu, where u is the first row of U .

We now present the proof of Theorem G.1, restating the theorem below for the reader’s convenience.

Theorem. Given all of the discrete data
{(

ea ⊕ eb, e(a−b)mod p

)}p−1

a,b=0
in modular subtraction

task, for each output class ℓ ∈ {0, · · · , p − 1}, we train a separate kernel predictor fℓ(x) =

k(x,X;Mℓ)α
(ℓ). Here k(·, ·;Mℓ) is a quadratic kernel with Mℓ =

(
0 Cℓ

(Cℓ)⊤ 0

)
and C ∈ Rp×p

is a circulant matrix with first row e1. When α(ℓ) is the solution to kernel ridgeless regression for
each ℓ, the kernel predictor f = [f0, . . . , fp−1] is equivalent to Fourier Multiplication Algorithm
for modular subtraction (Eq. (11)).

Proof of Theorem G.1. We present the proof for modular subtraction as the proof for addition fol-
lows analogously. We write the standard kernel predictor for class ℓ on input x = x[1] ⊕ x[2] ∈ R2p

as,

fℓ(x) =

p−1∑
a,b=0

α
(ℓ)
a,bk (x, ea ⊕ eb;Mℓ) ,

where we have re-written the index into kernel coefficients for class ℓ, α(ℓ) ∈ Rp×p, so that the
coefficients are multi-indexed by the first and second digit. Specifically, now α

(ℓ)
a,b is the kernel

coefficient corresponding to the representer k(·, x) for input point x = ea ⊕ eb. Recall we use a
quadratic kernel, k(x, z;Mℓ) = (x⊤Mℓz)

2. In this case, the kernel predictor simplifies to,

fℓ(x) =

p−1∑
a,b=0

α
(ℓ)
a,b

(
x⊤
[1]C

ℓeb + e⊤a C
ℓx[2]

)2

.

Then, the labels for each pair of input digits, written as a matrix Y (ℓ) ∈ Rp×p for the ℓ-th class
where the row and column index the first and second digit respectively, are Y (ℓ) = C−ℓ.

For x = ea′ ⊕ eb′ , i.e. x in the discrete dataset, we have,

fℓ(x) =

p−1∑
a,b=0

α
(ℓ)
a,b

(
δ(a,b′−ℓ) + δ(a′,b−ℓ) + 2δ(a,b′−ℓ)δ(a′,b−ℓ)

)
= e⊤b′−ℓα

(ℓ)1+ 1⊤α(ℓ)ea′+ℓ + 2e⊤b′−ℓα
(ℓ)ea′+ℓ

= e⊤b′C
−ℓα(ℓ)1+ 1⊤α(ℓ)C−ℓea′ + 2e⊤b′C

−ℓα(ℓ)C−ℓea′

= e⊤b′
(
C−ℓα11⊤ + 11⊤αC−ℓ + 2C−ℓαC−ℓ

)
ea′ ,

where δ(u,v) = 1{u=v}. Let fℓ(X) ∈ Rp×p be the matrix of function values of fℓ, where
[fℓ(X)]a,b = fℓ(ea ⊕ eb), and, therefore, fℓ(ea ⊕ eb) = e⊤a fℓ(X)eb. Then, to solve for α(ℓ),
we need to solve the system of equations for α,

fℓ(X) =
(
C−ℓα11⊤ + 11⊤αC−ℓ + 2C−ℓαC−ℓ

)⊤
= C−ℓ

⇐⇒ C−ℓα11⊤ + 11⊤αC−ℓ + 2C−ℓαC−ℓ = Cℓ

Note, by left-multiplying both sides by C−ℓ, we see this equation holds iff,

C−2ℓα11⊤ + 11⊤αC−ℓ + 2C−2ℓαC−ℓ = I .

Note the solution is unique as the kernel matrix is full rank. We posit the solution α such that
C−2ℓαC−ℓ = 1

2I + λ11⊤, which is α = 1
2C

3ℓ + λ11⊤. Then, solving for λ, we require,

11⊤ + 2pλ11⊤ + 2λ11⊤ = 0 ,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

which implies λ = − 2
2p+2 . Substituting this value of λ and simplifying, we see finally that

fℓ(x) = x⊤
[1]C

−ℓx[2]. Therefore, using that circulant matrices are diagonalized by C =
√
pFDF̄⊤

(Lemma K.2) and F̄⊤F = I , where D = diag (Fe1), we derive,
fℓ(x) =

√
p · x⊤

[1]FD−ℓF̄⊤x[2]

=
√
p · x⊤

[1]Fdiag (Fep−ℓ−1) F̄
⊤x[2]

=
√
p ·

〈
Fx[1] ⊙ Fep−ℓ−1, Fx[2]

〉
C

which is the output of the FMA on modular subtraction.

L LOW RANK SOLUTION TO MODULAR ARITHMETIC

Addition We present a solution to the modular addition task whose AGOP is low rank, in contrast
to the full rank AGOP recovered by RFM and neural networks.

We define the “encoding” map Φ : Rp → C as follows. For a vector a = [a0, . . . , ap−1],

Φ(a) =

p−1∑
k=0

ak exp

(
k2πi

p

)
.

Notice that Φ is a linear map such that Φ(ek) = exp
(

k2πi
p

)
. Notice also that Φ is partially invertible

with the “decoding” map Ψ : C→ Rp.

Ψ(z) = m̃ax

(〈
z, exp

(
0 · 2πi

p

)〉
, . . .

〈
z, exp

(
(p− 1) · 2πi

p

)〉)
.

Above m̃ax is a function that makes all entries zero except for the largest one and the inner product
is the usual inner product in C considered as R2. Thus

Ψ

(
exp

(
k · 2πi

p

))
= ek . (15)

Ψ is a nonlinear map C → Rp. While it is discontinuous but can easily be modified to make it
differentiable.

By slight abuse of notation, we will define Φ : Rp × Rp → C2 on pairs:
Φ(ej , ek) = (Φ(ej),Φ(ek)) .

This is still a linear map but now to C2.

Consider now a quadratic map M on C2 → C given by complex multiplication:
M(z1, z2) = z1z2 .

It is clear that the composition ΨMΦ implements modular addition
ΨMΦ(ej , ek) = e(j+k)mod p

Furthermore, since Φ is a liner map to a four-dimensional space, the AGOP of the composition
ΨMΦ is of rank 4.

Multiplication The construction is for multiplication is very similar with modifications which we
sketch below. We first re-order the non-zero coordinates by the discrete logarithm with base equal
to a generator of the multiplicative group eg (see Appendix E), while keeping the order of index 0.
Then, we modify Φ to remove index a0 from the sum for inputs a. Thus for multiplication,

Φ(a) =

p−1∑
k=1

ak exp

(
k · 2πi
p− 1

)
,

Hence that Φ(e0) = 0, Φ(eg) = exp
(

2πi
p−1

)
and Φ(egk) = exp

(
k·2πi
p−1

)
. We extend Φ to Rp × Rp

as in Eq. 15 above. Note that Φ and the re-ordering together are still a linear map of rank 4.

Then, the “decoding” map, Ψ(z), will be modified to return 0, when z = 0, and otherwise,

Ψ(z) = gm̃ax(⟨z,exp(0·2πi
p−1)⟩,...⟨z,exp((p−2)·2πi

p−1)⟩) .
M is still defined as above. It is easy to check that the composition of ΨMΦ with reordering
implements modular multiplication modulo p and furthermore, the AGOP will also be of rank 4.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Iter 1 Iter 5 Iter 10 Iter 15
Mu
l

Mu
l
(r
eo
rd
er
ed
)

Appendix Figure 1: AGOP evolution for quadratic RFM trained on modular multiplication with
p = 61 before reordering (top row) and after reordering by the logarithm base 2 (bottom row).

RFM Iterations RFM Iterations

Te
st
 A
cc
ur
ac
y
(%
)

Te
st
 L
os
s

Appendix Figure 2: We train a Gaussian kernel-RFM on x+ymod97 and plot test loss and accuracy
versus RFM iterations. We also evaluate the performance of the same model upon modifying the M
matrix to have exact block-circulant structure stated in Observation 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

RFM Iterations RFM Iterations RFM Iterations

Te
st

Lo
ss

Te
st

Ac
cu
ra
cy

Both Tasks:
x + y and x2 + y2

Task 1:
x2 + y2

Task 2:
x + y

Appendix Figure 3: RFM with the Gaussian kernel trained on two modular arithmetic tasks with
modulus p = 61. Task 1 is to learn x2 + y2 mod p and task 2 is to learn x+ ymod p.

Mul Mul (reordered) Div Div (reordered)

NN
AGOP

NFM

B

A

Appendix Figure 4: (A) We visualize the neural feature matrix (NFM) from a one hidden layer
neural network with quadratic activations trained on modular multiplication and division, before
and after reordering by the discrete logarithm. (B) We visualize the square root of the AGOP of the
neural network in (A) before and after reordering.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Epochs Epochs

Ac
cu
ra
cy

Ac
cu
ra
cy

Sq
ua
re
 L
os
s

Sq
ua
re
 L
os
s

Weight Decay AGOP Regularization

Epochs

Ac
cu
ra
cy

Sq
ua
re
 L
os
s

No Regularization

0.4 training fractionAppendix Figure 5: One hidden layer fully connected networks with quadratic activations trained
on modular addition with p = 61 with vanilla SGD. Without any regularization the test accuracy
does not go to 100% whereas using weight decay or regularizing using the trace of the AGOP result
in 100% test accuracy and grokking.

Te
st

 S
qu

ar
e

Lo
ss

Te
st

 A
cc

ur
ac

y
(%

) AG
OP

Al
ig

nm
en

t

Training Fraction (%)Training Fraction (%)Training Fraction (%)

Appendix Figure 6: We train kernel-RFMs for 30 iterations using the Mahalanobis Gaussian kernel
for x+ymod97. We plot test accuracy, test loss, and AGOP alignment versus percentage of training
data used (denoted training fraction). All models reach convergence (i.e., both the test loss and test
accuracy no longer change) after 30 iterations. We observe a sharp transition in test accuracy with
respect to the training fraction, but we observe gradual change in test loss and AGOP alignment with
respect to the training data fraction.

24

