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ABSTRACT

Dimension reduction algorithms aim to embed high-dimensional datasets into a
low-dimensional space in such a way that important structural properties, such as
clusters and manifolds, are preserved. Most such methods are designed for static
data, and naively applying them to time-dependent data can lead to unstable em-
beddings which do not meaningfully capture the temporal evolution of the data. In
this paper, we propose a new variant of the t-SNE algorithm for time-dependent
data, TC-tSNE (Temporally Coherent t-SNE) in which an extra term is added
to the cost function to promote temporal coherence: the notion that a data point
which has a similar position in two time frames should be embedded to similar po-
sitions at those times. Importantly, this notion captures temporal similarities over
the entire time domain and can therefore capture long-range temporal patterns,
not just local ones. We demonstrate the effectiveness of our method for visualis-
ing dynamic network embedding, and we evaluate our method on six benchmark
datasets using a collection of metrics, which capture the structural quality and the
temporal coherence of the embeddings. We compare our method with existing
dynamic visualisation algorithms and find that it performs competitively.

1 INTRODUCTION

Exploratory analysis of complex datasets is a fundamental task across science, industry and govern-
ment, and often starts with data visualisation. Good visualisation algorithms can reveal the important
structural properties of a dataset, such as clusters, manifolds and outliers, which may not be imme-
diately apparent from the raw data. In recent years, neighbor-embedding algorithms such t-SNE
(Van der Maaten & Hinton, 2008) and UMAP (McInnes et al., 2018), and their many variants, have
proved enormously successful for this task, for example becoming a standard part of the scientific
practice in genomics (Kobak & Berens, 2019), neuroscience (Dimitriadis et al., 2018), molecular
biology (Li et al., 2017) and many other fields.

In many domains, datasets have a natural temporal component, and data points change and evolve
through time. Examples include collaborative document editing, neural imaging, dynamic networks
and video and sound recording. One might hope that a good visualisation algorithm could also
reveal the important temporal patterns in such datasets, such as trends, seasonalities, changepoints
and reversals to previous states.

While there is a highly-developed literature on data visualisation for static data, comparatively little
work has focused on data visualisation algorithms for time-dependent data. As well as represent-
ing the spatial properties of the data, such algorithms face the additional challenge of faithfully
representing its temporal evolution. We refer to this desideratum as temporal coherence.

In a temporally coherent embedding, embedded positions should only move when the corresponding
data points move; clusters in the embedding space should merge and split as they do in the data; and
should a data point reverse to previous position, the corresponding embedded position should reverse
too. Embeddings which fail to achieve this goal may mislead a user into thinking that a change
has happened when it has not, or that two data points have switched places when they have not.
Simultaneously achieving high spatial quality, and maintaining temporal coherence is a challenging
task, and most existing algorithms seem to favour one goal or the other. In this paper, we present a
strategy which achieves both.
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2 EXISTING STRATEGIES FOR TIME-DEPENDENT DATA VISUALISATION

To see why this is such a challenging task, we present six existing strategies and describe their failure
modes. The first four are simple plug-in adjustments to existing base methods, while the final two
adjust the cost function by adding additional terms which aim to promote temporal coherence.

Independent. The simplest possible strategy for time-dependent data visualisation is to take a
static embedding algorithm and apply it to each time frame independently. Unfortunately, this tends
to lead to highly unstable embeddings. To see why this is, consider an embedding algorithm whose
objective function depends only on interpoint distances in the data and embedding spaces, such as
t-SNE or UMAP. In this case, small changes in the initialisation, data and any randomness into the
optimisation procedure can result in dramatic rotations in the embedding space. PCA suffers the
same fate due to the ambiguity of the signs of eigenvectors and the ordering of the dimensions by
eigenvalue. One benefit of this strategy is that it tends to produce embeddings with the highest
spatial quality.

Global. On the other end of the spectrum is the global strategy, in which all timeframes and com-
bined into a single dataset and embedded as one. By construction, this strategy will produce tem-
porally coherent embeddings and it forms the basis of a variety of existing dynamic visualisation
algorithms (Hu et al., 2010; Fujiwara et al., 2018; 2020; Crnovrsanin et al., 2009). In the context
of dynamic network embedding, a recent line of works apply a global embedding strategy to obtain
temporally coherent variants of spectral and skip-gram-based graph embedding algorithms (Gal-
lagher et al., 2021; Modell et al., 2023; Davis et al., 2023). Despite this, positioning each data point
relative to all other data points at all time points can lead to poor spatial quality which can be par-
ticularly prevalent in the context of visualisation, where one has access to at most three dimensions.

Aligned. A simple strategy to alleviate the problems of the independent embedding strategy is
to apply a post-hoc transformation to the embeddings at each timeframe to align them with the
previous timeframes. This is typically achieved using sequential orthogonal Procrustes alignments
(Schönemann, 1966). This strategy has been used in a number time-dependent embedding algo-
rithms including visualisation (Crnovrsanin et al., 2009), temporal analysis using word embeddings
(Kim et al., 2014; Yao et al., 2018; Szymanski, 2017; Kulkarni et al., 2015) and temporal network
embeddings (Singer et al., 2019; Zhou et al., 2019; Cape, 2021). The alignment strategy makes the
implicit assumption that the data evolves smoothly, and that temporally adjacency timeframes are
similar. Even if this holds, the strategy also suffers from drift in the long-term, and if it does not, it
can be highly unstable. For these reasons, long-range temporal relationships are not reliable.

Continuous. Another strategy which applies to optimisation-based methods is to sequentially op-
timise each timeframe, initialing the optimisation of the embedding for timeframe t with the embed-
ding computed for timeframe t − 1. We refer to this as the continuous strategy. This strategy has
been employed in the context of temporal word and network embeddings (Kim et al., 2014; Zhou
et al., 2019; Szymanski, 2017), however it unfortunately suffers from many of the same drawbacks
as the alignment strategy.

Velocity-penalised. This strategy involves simultaneously optimising the embeddings for each
time frame subject to an additional penalty term in the cost function which penalises large move-
ments in the latent space. We refer to this approach as the velocity penalised approach. Rauber et al.
(2016) apply this approach to the t-SNE algorithm, and optimise the cost function

C =

T∑
t=1

Ct +
λ

2n

n∑
i=1

T∑
t=2

∥∥yti − yt−1
i

∥∥2 ,
where Ct is the usual t-SNE cost function for timeframe t, and yti is the embedded position of data
point i at time t. This strategy has also been applied in the context of temporal graph layouts (Xu
et al., 2013; Leydesdorff & Schank, 2008) and temporal network and word embeddings (Yao et al.,
2018; Singer et al., 2019; Zhou et al., 2019; Rastelli & Corneli, 2023). The strategy has two distinct
failure modes which can prevent it from maintaining temporal: firstly, if two data points meet and
then diverge, the cost function will “forget” where they came from, and secondly, if there are abrupt
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changes in the data, the velocity penalisation term will prevent the embeddings from capturing this
change.

Guided. In this strategy, introduced for time-dependent t-SNE embeddings by Vernier et al.
(2021), the embeddings for each timeframe are optimised independently with respect to their usual
cost function plus a shared global cost function, which guides the placement of the points and en-
courages temporal coherence. Different forms of this guide lead to different variants of the algo-
rithm. One variant, Landmark Dynamic t-SNE, chooses m landmark points and adds either a global
PCA, or global asymmetric t-SNE penalty to the objective for these points. Another variant, Princi-
pal Component Dynamic t-SNE guides embeddings towards a global PCA.

3 OUR STRATEGY

One of the major drawbacks of the aforementioned strategies for time-dependent data visualisation,
with the exception of the global and guided strategies, is that they only aim to promote temporal
coherence over short time-scales. However, many important exploratory analyses require temporal
coherence over long time-scales. In these contexts, these strategies are inappropriate and could lead
to misleading inferences. In this section, we will informally outline our strategy, which is funda-
mentally different from any of those outlined above. Our strategy can be applied to any neighbor-
embedding method, and we will outline informally in this section. In the next section, we will
formally describe an variant of our strategy based on t-SNE, which we called TC-tSNE (Temporally
Coherent t-SNE).

3.1 STRUCTURAL AND TEMPORAL COHERENCE

We will assume that our dataset is made up of n datapoints, each observed over T timeframes,
and we will denote the ith datapoint at the tth timeframe by xt

i . Similarly, we will let yti denote
the embedding of the ith datapoint at timeframe t. A neighbor-embedding objective function is
designed so that points which are nearby in the data space and positioned close to each other in the
embedding space. If an embedding achieves this goal for every timeframe, informally we will say
that it is spatially coherent. In symbols, an embedding is spatially coherent if and only if

∥xt
i − xt

j∥ is small ⇐⇒ ∥yti − ytj∥ is small for all i, j ∈ [n], t ∈ [T ]. (1)

Analogously, we will define the (informal) notion of temporal coherence as follows: we say an
embedding is temporally coherence if every point that has similar positions in the data space at two
different timeframes has similar positions in the embedding space at those timeframes. In symbols,
we say an embedding is temporally coherent if and only if

∥xt
i − xs

i∥ is small ⇐⇒ ∥yti − ysi ∥ is small for all i ∈ [n], t, s ∈ [T ]. (2)

Importantly, our notion of temporal coherence covers all time ranges, both long and short.

Many of the aforelisted strategies, such as the aligned, continuous and velocity-penalised strategies
do not aim to satisfy this notion of temporal coherence. Instead, they only aim to satisfy what we
will refer to as local temporal coherence, where s = t− 1.

3.2 A STRUCTURAL - TEMPORAL DUALITY

One might notice that, upon swapping the datum and time indicies, the temporal coherence definition
(2) becomes equivalent to the structural coherence definition (1). This motivates us to consider cost
functions of the following form:

C :=
1

T

T∑
t=1

Ct +
λ

n

n∑
i=1

C̃i (3)

where Ct denotes a cost function of a chosen base method with respect to the dataset {xt
1, . . . , x

t
n},

and C̃i denotes a cost function of a chosen base method with respect to the dataset {x1
i , . . . , x

t
i}.

We will refer to these cost functions as the spatial and temporal costs respectively. Notice that each

3
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data points (and each embedded point) appears in exactly one spatial cost term and one temporal
cost term and therefore the gradients have the simple form:

∂C

∂yti
=

1

T
· ∂C

t

∂yti
+

λ

n
· ∂C̃i

∂yti
.

One key advantage of this strategy is that it can be plugged into any neighbor embedding algorithm
with little modification to the code. One simply needs to compute the gradients using the base
method for the relevant datapoints. Computationally, each of our gradient calculations involves
calculating the base-method gradient on T datasets of n points and n datasets if T points.

4 TC-TSNE: TEMPORALLY COHERENT T-SNE

In this section, we formally describe a specific version of our strategy which we have found to
work extraordinarily well in practice. For the spatial cost function we use the t-SNE (t-Distributed
Stochastic Neighbor Embedding) cost function, and for the temporal cost function, we use the sym-
metric Stochastic Neighbour Embedding (SNE) (Hinton & Roweis, 2002) cost function. The reason
for using SNE over t-SNE for the temporal costs, is that t-SNE induces clustering which can be
desirable in the spatial domain, but is not necessarily meaningful in the temporal domain. In addi-
tion to the parameter λ, the spatial and temporal qualities of the will be controlled by user-specified
spatial and temporal perplexity parameters, µ and µ̃ respectively.

For completeness, we will briefly describe the temporal and spatial costs and gradients derived from
the SNE and t-SNE objectives.

Temporal gradients (SNE). The SNE objective aims to match the conditional probabilities that
a data point would select another as its neighbour if neighbours were picked in proportion to their
probability density under a Gaussian centered at it, in the data space and the embedding space.
For each i ∈ [n], we define a joint probability distribution P̃i over the data point i at all pairs of
timeframes {(xt

i , x
s
i )}t ̸=s via

p̃tsi :=
p̃
t|s
i + p̃

s|t
i

2
where p̃

s|t
i =

exp(−∥xt
i − xs

i ∥2/2σ̃t
i )∑

r ̸=t exp(−∥xt
i − xr

i ∥2/2σ̃t
i )

where σ̃t
i is a parameter which is chosen such that µ̃ = 2

∑
s p̃

s|t
i log2 p̃

s|t
i , where µ̃ is a user-specified

temporal perplexity parameter.

We define a joint distribution Q̃i over the embedding of datum i at all pairs of timeframes
{(yti , ysi )}t̸=s via

q̃tsi :=
exp(−∥yti − ysi ∥2)∑

r ̸=u exp(−∥yri − yui ∥2)
.

The temporal cost for the ith datum is then given by the Kullback-Leibler divergence between P̃i

and Q̃i. That is

C̃i := DKL(P̃i∥Q̃i) =
∑
t ̸=s

p̃tsi log
p̃tsi
q̃tsi

,

the gradients of which is given by

∂C̃i

∂yti
= 4

∑
s̸=t

(p̃tsi − q̃tsi )(yti − ysi ).

Spatial gradients (t-SNE). For the spatial costs, we employ the t-SNE objective, which induces
clustering in the embedding space by matching Gaussian densities in the data space with heavier
tailed Student’s t-distribution densities in the embedding space. As in SNE, for each t ∈ [T ], we
define a joint probability distribution Pt , over all pairs of data points at timeframe t, {(xt

i , x
t
j)}i̸=j

via

ptij :=
pti|j + ptj|i

2
where ptj|i =

exp(−∥xt
i − xt

j∥2/2σt
i )∑

r ̸=t exp(−∥xt
i − xt

j∥2/2σt
i )

4
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Face-to-face interactions between pupils in a primary school in Lyon
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Class 2B

Class 3A
Class 3B

Class 4A
Class 4B

Class 5A
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Figure 1: One-dimensional TC-tSNE applied to UASE dynamic network embeddings of a face-
to-face interaction network of pupils at a primary school in Lyon. Colors correspond to the class
memberships of the pupils.

where σt
i is a parameter which is chosen such that µ = 2

∑
s pt

j|i log2 pt
j|i , where µ̃ is a user-specified

temporal perplexity parameter.

The joint distribution Qt over all pairs of embeddings at timeframe t, {(yti , ytj)}i ̸=j is defined via

qtij :=

(
1 + ∥yti − ytj∥2

)−1∑
k ̸=l (1 + ∥ytk − ytl ∥2)

−1

The spatial cost for the tth timeframe is then given by the Kullback-Leibler divergence between Pt

and Qt . That is

Ct := DKL(Pt∥Qt) =
∑
t̸=s

ptij log
ptij
qtij

,

and the gradients are given by

∂Ct

∂yti
= 4

∑
j ̸=i

(ptij − qtij)(y
t
i − ytj)

(
1 + ∥yti − ytj∥2

)−1
.

Optimisation. In our experiments, we optimise (3.2) using the vanilla gradient descent with mo-
mentum algorithm described in the original t-SNE paper (Van der Maaten & Hinton, 2008), and
apply the early exaggeration strategy. However, our gradients can be easily plugged into accelerated
algorithms such as Barnes-Hut (Van Der Maaten, 2014) and Fast-Fourier-Transform-accelerated
algorithms (Linderman et al., 2017; 2019) which scale significantly better than the original imple-
mentation. For brevity, we refer the reader to the references for details of optimisation strategies.

5 CASE STUDY: VISUALISATION OF DYNAMIC NETWORK EMBEDDINGS

A key motivation for this work was to create a tool for visualising the evolutions of dynamic net-
works. A recent line of works have developed spectral embedding algorithms for dynamic net-
works with temporal coherence guarantees of the kind discussed here. By nature, these are lin-
ear dimension-reduction methods, and as such, often require a moderate number of dimensions to
capture all the salient information in the data. For the datasets we have studied, this is typically

5
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08:30 - 09:00 09:30 - 10:00 10:30 - 11:00 

11:00 - 11:30 11:45 - 12:15 12:30 - 13:00 

13:00 - 13:30 13:45 - 14:15 14:45 - 15:15 

15:30 - 16:00 16:00 - 16:30 16:45 - 17:15 

Class 1A
Class 1B

Class 2A
Class 2B

Class 3A
Class 3B

Class 4A
Class 4B

Class 5A
Class 5B

Figure 2: Two-dimensional TC-tSNE applied to UASE dynamic network embeddings of a face-
to-face interaction network of pupils at a primary school in Lyon. Colors correspond to the class
memberships of the pupils.
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Global t-SNE
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Continuous t-SNE
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Landmark Dynamic t-SNE (PCA guide)
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Landmark Dynamic t-SNE (t-SNE guide)
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Principal Component Dynamic t-SNE
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Figure 3: Some alternative time-dependent visualisation algorithms applied the data described in
Section 5.
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somewhere between 5 and 100 dimensions — certainly more than the three available to the human
eye.

Both of the aforementioned papers study a dataset of face-to-face interactions between pupils at a
primary school in Lyon and compute time-evolving embeddings of the pupils based on their interac-
tion patterns. Details of the study and data collection can be found in Stehlé et al. (2011). Gallagher
et al. (2021) plot the first two coordinates of the embeddings and Modell et al. (2023) individually
perform one-dimensional global PCA to subsets of the pupils corresponding to year groups, which
they plot against a time axis. Both of these approaches are unsatisfactory, and fail to clearly present
the rich underlying structure in the data. TC-tSNE provides a solution.

To demonstrate this, for a given day, we first construct a sequence of 100 graphs obtained by taking
a 30-minute sliding window over the school day in steps of 5 minutes, and placing an edge in
the relevant graph if there was a physical interaction recording between two students during the
time window. We then apply the Unfolded Adjacency Spectral Embedding algorithm of Gallagher
et al. (2021) into 9 dimensions, which we normalise to lie on the unit sphere (following the Real
Data section in that paper). When a pupil has no interactions in a timeframe we treat that point
as missing. We apply TC-tSNE into one-dimension with the λ parameter set to 0.3, the spatial
perplexity parameter set to µ = 30 and the temporal perplexity parameter set to µ̃ = 5.

Figure 1 shows the TC-tSNE embedding plotted against time, where we have interpolated time-
frames piecewise-linearly and coloured lines according to the class to which the pupil belongs. Even
without knowing any more about the data, one can clearly see the separation of classes during the
morning and afternoon periods, and the merging of classes into two groups during the lunch period.

Figure 2 shows a collection of timeframes from a two-dimensional TC-tSNE applied to the same
data. The plots clearly present the separation of pupils during class times, mingling during break
times, and the return of students to their classes.

For comparison, Figure 3 shows one-dimensional visualisations of these network embeddings using
the t-SNE based methods described in Section 2. We were unable to apply the velocity-penalised
dynamic t-SNE algorithm of Rauber et al. (2016) since it cannot handle missing values in the data.
Where there were hyperparameters to tune, we chose the parameters which looks best by eye, how-
ever none of these existing methods show the same level of fidelity as TC-tSNE.

As expected, Independent t-SNE has the worst temporal coherence and Global t-SNE has the worst
spatial quality of all the methods. Aligned t-SNE does a slightly better job than Independent t-SNE
at maintaining some local temporal coherence, although the improvement is minor. Continuous t-
SNE does a better job at balancing temporal coherence and spatial quality, although many of the
classes return to different positions after the lunch break. Both Landmark Dynamic t-SNE methods
(Vernier et al., 2021) perform poorly in terms of spatial quality, with neither clearly showing the
separation of pupils into two groups during the lunch break. Principal Component Dynamic t-SNE
(Vernier et al., 2021) performs well in terms of temporal coherence, although the spatial clustering
is much less clear than in the TC-tSNE embedding.

6 QUANTITATIVE EVALUATION

In this section, we present at a quantitative comparison of our method, TC-tSNE, against some of
the methods described in Section 2.

Methods. We compare to independent, global and aligned PCA and t-SNE, continuous t-SNE,
the velocity penalized dynamic t-SNE algorithm (D-tSNE) of Rauber et al. (2016), the Landmark
Dynamic t-SNE (LD-tSNE) algorithm (with PCA and t-SNE guides) and Principal Component Dy-
namic t-SNE (PCD-tSNE) algorithms of Vernier et al. (2021). For all t-SNE based methods, we
used a perplexity of either 10, 20 or 30, depending on the dataset which was chosen by eye before
the experiment using independent t-SNE embeddings.

Metrics. To evaluate the methods we employ five spatial metrics introduced in Espadoto et al.
(2019) and Vernier et al. (2021) and we introduce a new temporal metric which measures temporal
coherence across all time-ranges. We employ four metrics which measure the local quality of the
embeddings: Neighborhood preservation, Neighborhood hit, Trustworthiness and Continuity. Each

8
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Figure 4: Spatial vs temporal coherence metrics for a variety of time-dependent visualisation algo-
rithms on a set of benchmark datasets.
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of these metrics is parametrised by a number-of-nearest neighbors. Following Vernier et al. (2021),
we compute the metrics for a range of 20 values of k ranging from 1% to 20% of the data (except
Neighborhood hit, where to take values of k from 0.25% to 5% of the data), and record the average.
For a given metric and dataset, we report the average of these four metrics, each summed over all
data points and timeframes. We call the value the neighborhood metric. In addition, we consider
spatial Shepard diagram metrics, which measure a correlation coefficient of a scatterplot of inter-
point distances in the data space against interpoint distances in the embedding space. We do this
using Pearson correlation, Spearman rank and Kendall Tau coefficients, and report the average of
these three.

To measure local temporal coherence, Vernier et al. (2021) introduced a temporal version of the
Shepard diagram metric which measures the correlation of the scatter plot of interpoint distances
between individual datapoints at neighboring timeframes. We introduce a variant of this metric
which measures the correlation of the scatter plot of interpoint distances between individual data-
points across all timeframes. We will refer to this metric as the temporal Shepard diagram metric.

Datasets. For our comparison, we use six datasets. The first “bifurcating gaussians” is a synthetic
dataset of 250 Gaussian blobs which are initially separated into five groups, merge, remain merged
for some time before returning to their original positions. The other five datasets, “cartolastd”,
“fashion”, “qtables”, “sorts” and “walk” and taken from Vernier et al. (2020) and descriptions of
them can be found there.

Results. For each dataset, Figure 4 shows the temporal Shepard diagram metric, plotted against the
neighborhood metric and the spatial Shepard diagram metric for each of the methods. For methods
with hyperparameters, we computed the metrics for a variety of parameter choices and plotted the
metrics for all the choices which were not uniformly dominated by another hyperparameter choice
on both the spatial and temporal axes.

For most datasets, our method performs competitively sometimes achieving the best temporal and
spatial metrics, and is never among the worst.

7 CONCLUSION

In this paper, we have presented a new strategy for temporally coherent visualisation of time-
dependent data. We have presented a specific variant of this strategy, TC-tSNE, which we have
shown to perform excellently at the task of visualising a dynamic network embedding. Our algo-
rithmic framework opens new possibilities for exploratory analysis of time-dependent datasets, and
we are excited to see how our method can be used in the applied sciences. In future work, we hope
to apply our strategy to other neighbor-embedding methods such as UMAP, and to understand how
our ideas can be applied for network and word embeddings.
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