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ABSTRACT

Learning to evaluate and improve policies is a core problem of Reinforcement
Learning (RL). Traditional RL algorithms learn a value function defined for a
single policy. A recently explored competitive alternative is to learn a single
value function for many policies. Here we combine the actor-critic architecture of
Parameter-Based Value Functions and the policy embedding of Policy Evaluation
Networks to learn a single map from policy parameters to expected return that
evaluates (and thus helps to improve) any policy represented by a deep neural
network (NN). The method yields competitive experimental results. In continuous
control problems with infinitely many states, our value function minimizes its
prediction error by simultaneously learning a small set of ‘probing states’ and
a mapping from actions produced in probing states to the policy’s return. The
method extracts crucial abstract knowledge about the environment in form of
very few states sufficient to fully specify the behavior of many policies. A policy
improves solely by changing actions in probing states, following the gradient of
the value function’s predictions. Surprisingly, it is possible to clone the behavior
of a near-optimal policy in Swimmer-v3 and Hopper-v3 environments only by
knowing how to act in 3 and 5 such learned states, respectively. Remarkably, our
value function trained to evaluate NN policies is also invariant to changes of the
policy architecture: we show that it allows for zero-shot learning of linear policies
competitive with the best policy seen during training.

1 INTRODUCTION

Policy Evaluation and Policy Improvement are arguably the most studied problems in Reinforcement
Learning. They are at the root of actor-critic methods (Konda and Tsitsiklis, 2001; Sutton, 1984; Peters
and Schaal, 2008), which alternate between these two steps to iteratively estimate the performance of
a policy and using this estimate to learn a better policy. In the last few years, they received a lot of
attention because they have proven to be effective in visual domains (Mnih et al., 2016; Wu et al.,
2017), continuous control problems (Lillicrap et al., 2015; Haarnoja et al., 2018; Fujimoto et al.,
2018), and applications such as robotics (Kober et al., 2013). Several ways to estimate value functions
have been proposed, ranging from Monte Carlo approaches, to Temporal Difference methods (Sutton,
1984), including the challenging off-policy scenario where the value of a policy is estimated without
observing its behavior (Precup et al., 2001). A limiting feature of value functions is that they are
defined for a single policy. When the policy is updated, they need to keep track of it, potentially
losing useful information about old policies. By doing so, value functions typically do not capture
any structure over the policy parameter space. While off-policy methods learn a single value function
using data from different policies, they have no specific mechanism to generalize across policies and
usually suffer for large variance (Cortes et al., 2010).

Parameter Based Value Functions (PBVFs)(Faccio et al., 2021) are a promising approach to design
value functions that overcome this limitation and generalize over multiple policies. A crucial problem
in the application of such value functions is choosing a suitable representation of the policy. Flattening
the policy parameters as done in vanilla PBVFs is difficult to scale to larger policies. Here we present
an approach that connects PBVFs and a policy embedding method called "fingerprint mechanism"
by Harb et al. (2020). Using policy fingerprinting allows us to scale PBVFs to handle larger NN
policies and also achieve invariance with respect to the policy architecture. Policy fingerprinting was
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introduced to learn maps from policy parameters to expected return offline and prior to this work was
never applied to the online RL setting.

We show in visual classification tasks and in continuous control problems that our approach can
identify a small number of critical "probing states" that are highly informative of the policies
performance. Our learned value function generalizes across many NN-based policies. It combines
the behavior of many bad policies to learn a better policy, and is able to zero-shot learn policies with
a different architecture. We compare our approach with strong baselines in continuous control tasks:
our method is competitive with DDPG (Lillicrap et al., 2015) and evolutionary approaches.

2 BACKGROUND

We consider an agent interacting with a Markov Decision Process (MDP) Stratonovich (1960);
Puterman (2014) M = (S,A, P,R, γ, µ0). The state space S ⊂ RnS and the action space A ⊂ RnA

are assumed to be compact sub-spaces. In the MDP framework, at each time-step t, the agent
observes a state st ∈ S, chooses an action at ∈ A, transitions into state st+1 with probability
P (st+1|st, at), and receives a reward rt = R(st, at). The initial state is chosen with probability
µ0(s). The agent’s behavior is represented by its policy π : S → ∆A: a function assigning for each
state s a probability distribution over the action space. A policy is deterministic when for each state
there exists an action a such that a is selected with probability one. Here we consider parametrized
policies of the form πθ, where θ ∈ Θ ⊂ Rnθ are the policy parameters. The return Rt is defined as
the cumulative discounted reward from time-step t, e.g. Rt =

∑∞
k=0 γ

kR(st+k+1, at+k+1), where
γ ∈ (0, 1] is the discount factor. The agent’s performance is measured by the expected return (i.e.
the cumulative expected discounted reward) from the initial state: J(θ) = Eπθ

[R0]. The state-value
function V πθ (s) = Eπθ

[Rt|st = s] of a policy πθ is defined as the expected return for being in a
state s and following πθ. Similarly, the action-value function Qπθ (s, a) = Eπθ

[Rt|st = s, at = a] of
a policy πθ is defined as the expected return for being in a state s, taking action a and then following
πθ. State and action value functions are related by V πθ (s) =

∫
A πθ(a|s)Qπθ (s, a) da. The expected

return can be expressed in terms of the state and action value functions by integration over the initial
state distribution:

J(θ) =

∫
S
µ0(s)V

πθ (s) ds =

∫
S
µ0(s)

∫
A
πθ(a|s)Qπθ (s, a) dads. (1)

The goal of a RL agent is to find the policy parameters θ that maximize the expected return. Instead
of learning a single value function for a target policy, here we try to estimate the value function of
any policy and maximize it over the set of initial states.

3 GENERAL POLICY EVALUATION

Recent work focused on extending value functions to allow them to receive the policy parameters as
input. This can potentially result in single value functions defined for any policy and methods that can
perform direct search in the policy parameters. We begin by extending the state-value function, and
define the parameter-based state-value function (PSVF) (Faccio et al., 2021) as the expected return
for being in state s and following policy πθ: V (s, θ) = E[Rt|st = s, θ]. Using this new definition,
we can rewrite the RL objective as J(θ) =

∫
S µ0(s)V (s, θ) ds. Instead of learning V (s, θ) for each

state, we focus here on the policy evaluation problem over the set of the initial states of the agent.
This is equivalent to trying to model J(θ) directly as a differentiable function V (θ), which is the
expectation of V (s, θ) over the initial states:

V (θ) := Es∼µ0(s)[V (s, θ)] =

∫
S
µ0(s)V (s, θ) ds = J(πθ). (2)

V (θ) is a parameter-based start-state value function (PSSVF). We consider the undiscounted case
in our setting, so γ is set to 1 throughout the paper. Once V (θ) is learned, direct policy search can
be performed by following the gradient ∇θV (θ) to update the policy parameters. This learning
procedure can naturally be implemented in the actor-critic framework, where a critic value function—
the PSSVF—iteratively uses the collected data to evaluate the policies seen so far, and the actor
follows the critic’s direction of improvement to update itself. As in vanilla PSSVF, we inject noise in
the policy parameters for exploration. The PSSVF actor-critic framework is reported in Algorithm1.
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Algorithm 1 Actor-critic with PSSVF for V (θ)

Input: Differentiable critic Vw : Θ → R with parameters w; deterministic or stochastic actor πθ

with parameters θ; empty replay buffer D
Output : Learned Vw ≈ V (θ)∀θ, learned πθ ≈ πθ∗

Initialize critic and actor weights w, θ
repeat:

Perturb policy: θ′ = θ + ϵ, with ϵ ∼ N (0, σ2I)
Generate an episode s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT with policy πθ′

Compute return r =
∑T

k=1 rk
Store (θ′, r) in the replay buffer D
for many steps do:

Sample a batch B = {(r, θ′)} from D
Update critic by stochastic gradient descent: ∇w E(r,θ′)∈B [(r − Vw(θ

′))2]
end for
for many steps do:

Update actor by gradient ascent: ∇θVw(θ)
end for

until convergence

Policy fingerprinting (Harb et al., 2020) While the algorithm described above is straightforward
and easy to implement, feeding the policy parameters as inputs to the value function remains a
challenge. Recently Harb et al. (2020) showed that a form of policy embedding can be suitable for
this task. Their policy fingerprinting creates a lower-dimensional policy representation. It learns a set
of K ‘probing states’ {s̃k}Kk=1 and an evaluation function U—like the PSSVF. To evaluate a policy
πθ, they first compute the ‘probing actions’ ãk that the policy produces in the probing states. Then
the concatenated vector of these actions is given as input to U : RK×nA → R. While the learned
probing states remain fixed when evaluating multiple policies, the probing actions in such states
depend on the policy we are evaluating. The parameters of the value function V are the probing states
AND the weights of the MLP Uϕ that maps the ‘probing actions’ to the return. When the policy πθ

is deterministic, the probing actions for such policy are the deterministic actions {ãk = πθ(s̃k)}
produced in the probing states 1.

This mechanism has an intuitive interpretation: to evaluate the behavior of an agent, the PSSVF
with policy fingerprinting learns a set of situations (or states), observes how the agent acts in those
situations, and then maps the agent’s actions to a score. Arguably, this is also how a teacher would
evaluate multiple different students by simultaneously learning which questions to ask the students
and how to score the student’s answers.

Therefore the parameters of the value function (probing states and evaluator function) can be learned
by minimizing MSE loss LV between the prediction of the value function and the observed return.
Setting w = {ϕ, s̃1, . . . s̃K}, we retrieve the common notation of Vw(θ) for the PSSVF with finger-
print mechanism. Given a batch B of data (πθ, r) ∈ B, the value function optimization problem
is:

min
w

LV := min
w

E
(πθ,r)∈B

[(Vw(θ)−r)2] = min
ϕ,s̃1,...s̃K

E
(πθ,r)∈B

[(Uϕ([πθ(s̃1), . . . , πθ(s̃K)])−r)2] (3)

If the prediction of the value function is accurate, policy improvement can be achieved by changing
the way a policy acts in the learned probing states in order to maximize the prediction of the value
function, like in the original PSSVF.

This process connects to the same interpretation as before: a student (the policy) observes which
questions the teacher asks and how the teacher evaluates the student’s answers, and subsequently tries
to improve in such a way to maximize the score predicted by the teacher. This iterative method is
depicted in Figure 1. Note that Algorithm1 applies directly to this setting. The only distinction is that
the probing states are part of the learned value function. Throughout this work, with the exception of
the MNIST experiments, we consider deterministic policies.

1If the policy is stochastic, the probing actions are the parameters of the output distribution of the policy in
such states (the vector of probability distribution if the action space is discrete)
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Figure 1: General policy evaluation aims to evaluate any given policy’s return based on the policy’s
actions (referred to as probing actions) in the learned probing states. The policy can be improved
through maximising the prediction of the learned value function via gradient ascent.

4 EXPERIMENTS

This section presents an empirical study of parameter-based value functions (PBVFs) with finger-
printing. We begin with a demonstration that fingerprinting can learn interesting states in MNIST
purely through the designated evaluation task of mapping randomly initialized Convolutional Neural
Networks (CNNs) to their expected loss. We also show that such a procedure could be used to con-
struct a value function for offline improvement in MNIST. Next, we proceed to our main experiments
on continuous control tasks in MuJoCo (Todorov et al., 2012). Here we show that our approach is
competitive with strong baselines like DDPG (Lillicrap et al., 2015) and ARS (Mania et al., 2018),
while it lacks sample efficiency when compared to SAC (Haarnoja et al., 2018). A strength of our
approach is invariance to policy architecture. To illustrate this, we provide results on zero-shot
learning of new policy architectures. Thereafter, we present a detailed analysis of the learned probing
states in various MuJoCo environments. We conclude our study with the surprising observation that
very few probing states are required to clone near-optimal behaviour in certain MuJoCo environments.
An open-source implementation of our code is provided as supplementary material.

4.1 MOTIVATING EXPERIMENTS ON MNIST

We begin our experimental section with an intuitive demonstration of how PBVFs with fingerprinting
work, using the MNIST digit classification problem. The policy is a CNN, mapping images to a
probability distribution over digit classes. The environment simulation consists of running a forward
pass of the CNN on a batch of data and receiving the reward, which in this case is the negative
cross-entropy between the output of the CNN and the labels of the data. The value function learns
to map CNN parameters to the reward (the negative loss) obtained during the simulation. Then
the CNN learns to improve itself only by following the prediction of the value function, without
access to the supervised learning loss. These MNIST experiments can be considered as a contextual
bandit problem, where the initial state (or context) is given by the batch of training data sampled and
there are no transition dynamics. We start with a randomly initialized CNN and value function and
iteratively update them following Algorithm 1. Using only 10 probing states, we obtain a test set
accuracy of 82.5%. When increasing the number of probing states to 50, the accuracy increases to
87%.

Visualization of probing states Figure 2 shows some of the probing states learned by our model,
starting from random noise. During learning, we observe the appearance of various digits (sometimes
the same digit in different shapes). Since probing states are states in which the action of the policy
is informative about its global behavior, it is intuitive that digits should appear. We emphasize that
both the CNNs and the value function are starting from random initializations. The convolutional
filters and the probing states are learned using Algorithm 1, without access to the supervised loss. For
more complex datasets like CIFAR10 our method found it difficult to learn meaningful probing states.
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This is possibly due to the high variance in the training data given a specific class and highlights a
limitation of our method.

Figure 2: Samples of probing states learned while training Algorithm 1 on MNIST.

Offline policy improvement Using this setting, we perform another experiment. We collect one
offline dataset {πθi , li}Ni=1 of N randomly initialized CNN policies and their losses. We constrain
the maximum accuracy of these CNNs in the training set to be 12%. We then use the dataset to train
a value function offline. After training, we randomly initialize a new CNN and take many steps of
gradient ascent through the fixed value function, obtaining a final CNN whose accuracy is around
65% on the test set. Our experiments show that our value function can combine the behavior of many
bad NNs to produce a much better NN in a zero shot manner. We found that also with randomly
initialized policies some digits appear as probing states, although they are less evident than in the
online framework. We include learning curves and probing states for this scenario in Appendix B.1.

4.2 MAIN EXPERIMENTS ON MUJOCO

Here we present our main evaluation on selected continuous control problems from MuJoCo (Todorov
et al., 2012). Since our algorithm performs direct search in parameter space, we choose Augmented
Random Search (ARS) (Mania et al., 2018) as baseline for comparison. Moreover, since our algorithm
employs deterministic policies, off-policy data, and an actor-critic architecture, a natural competitor is
the Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2015), a strong baseline
for continuous control. We also compare our method with the state-of-the-art Soft Actor-Critic
(SAC) (Haarnoja et al., 2018).

Implementation details For the policy architecture, we use an MLP with 2 hidden layers and
256 neurons for each layer. We use 200 probing states and later provide an analysis of them. Our
implementation is based on the public code for Parameter-Based Value Functions. In some MuJoCo
environments like Hopper and Walker, a bad agent can fail and the episode ends after very few
time steps. This results in an excessive number of bad policies in the replay buffer, which can bias
learning. Indeed, by the time a good policy is observed, it becomes difficult to use it for training when
uniformly sampling experience from the replay buffer. We find that by prioritizing more recent data
we are able to achieve a more uniform distribution over the buffer and increase the sample efficiency.
We provide an ablation in Appendix B.2, showing the contribution of this component and of policy
fingerprinting. Like in the original ARS and PBVF papers (Mania et al., 2018; Faccio et al., 2021),
we use observation normalization and remove the survival bonus for the reward. The survival bonus,
which provides reward 1 at each time step for remaining alive in Hopper, Walker and Ant, induces a
challenging local optimum in parameter space where the agent would learn to keep still.

For DDPG and SAC, we use the default hyperparameters, yielding results on par with the best reported
results for the method. For ARS, we tune for each environment step size, number of population and
noise. For our method, we use a fixed set of hyperparameters, with the only exception of Ant. In
Ant, we observe that setting the parameter noise for perturbations to 0.05 results in very rare positive
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returns for ARS and PSSVF (after subtracting the survival bonus). Therefore we use less noise for
this environment. We discuss implementation details and hyperparameters in Appendix A.
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Figure 3: Return as a function of the environment interactions. The solid curve represents the mean
(across 20 runs), and the shaded region represents a 95% bootstrapped confidence interval.

Results Figure 3 shows learning curves in terms of expected return (mean and 95% confidence
interval) achieved by our algorithm and the baselines across time in the environments. Our algorithm
is very competitive with DDPG and ARS. It outperforms DDPG in all environments with the
exception of HalfCheetah and Walker, and displays faster initial learning than ARS. In the Swimmer
environment, DDPG and SAC fails to learn an optimal policy due to the problem of discounting2. On
the other hand, in HalfCheetah, parameter-based methods take a long time to improve, and the ability
of DDPG to give credit to sub-episodes is crucial here to learn quickly. Furthermore, the variance
of our method’s performance is less than DDPG’s and comparable to ARS’s. Like evolutionary
approaches, our method uses only the return as learning data, while ignoring what happens in each
state-action pairs. This is a limitation of our method and it is evident how PSSVF and ARS are less
sample efficient in comparison to SAC in many environments.

In preliminary experiments we tried to learn also a function V (s0, θ), incorporating the information
on the initial state. In practice, we can store in the buffer tuples (s0, θ, r) consisting of initial state,
policy parameters and episodic return. When training the PSSVF (now similar to the PSVF), we
concatenate the initial state to the probing actions and map the vector of probing actions and initial
state to the return. Then policy improvement is achieved by finding the policy parameters that
maximize the value function’s prediction taking an expectation over the initial states sampled from
the buffer. The results were very similar to those we presented in this section, so we decided to use
the more straightforward approach that ignores the initial state and directly maps policy parameters
to expected return. It would be also possible to learn a general value function V (s, θ) for any state,
like in the PSVF algorithm (Faccio et al., 2021). We leave this as future work.

Comparison to vanilla PSSVF A direct comparison to the standard Parameter-Based Value
function is unfeasible for large NNs. This is because in the vanilla PSSVF, flattened policy parameters
are directly fed to the value function. In our policy configuration, the flattened vector of policy
parameters contains about 70K elements, which is significantly more than 200× nA elements used
to represent policies with fingerprinting. Nevertheless, we provide a direct comparison between the
two approaches using a smaller policy architecture which consists of an MLP with 2 hidden layers
and 64 neurons per layer. The complete results are provided in Appendix B.2. Our results in this
setting show that the fingerprint mechanism could be useful even for smaller policies.

2This is a common problem for Temporal Difference methods: the policy optimizing expected return in
Swimmer with γ = 0.99 is sub-optimal when considering the expected return with γ = 1. See the ablation in
Appendix A.3.1 of (Faccio et al., 2021).
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4.3 ZERO-SHOT LEARNING OF NEW POLICY ARCHITECTURES

Here we show that our method can generalize across policy architectures. We train a PSSVF using
NN policies as in the main experiments. Then we randomly initialize a linear policy and start taking
gradient ascent steps through the fixed value function, finding the parameters of the policy that
maximizes the value function’s prediction. In Figure 5 we observe that a near-optimal linear policy
can be zero-shot-learned through the value function even if it was trained using policies with different
architecture. It achieves an expected return of 345, while the return of best NN used for training was
360. Figure 12 (Appendix) shows results for zero-shot learning deep policies in Swimmer. We notice
more variance in the performance, which might be caused by the deep policy overfitting more easily
probing-state/probing-action pairs during the policy improvement phase.

4.4 FINGERPRINT ANALYSIS

Ablation on number of probing states Our experiments show that learning probing states helps
evaluating the performance of many policies, but how many of such probing states are necessary for
learning? We run our main experiments again, with fewer probing states, and discover that in many
environments, a very small number of states is enough to achieve good performance. In particular,
we find that the PSSVF with 5 probing states achieves 314 and 2790 final return in Swimmer and
Hopper respectively, while Walker needs at least 50 probing states to obtain a return above 2000. In
general, 200 probing states represent a good trade-off between learning stability and computational
complexity. We compare the performances of PSSVF versions with varying numbers of probing
states. We use the same hyperparameters as in the main experiments (see Appendix A.2), apart for
the number of probing states. Figure 4 shows that in Hopper and Swimmer 10 probing states are
sufficient to learn a good policy, while Walker needs a larger number of probing states to provide
stability in learning.
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Figure 4: Average return of PSSVF with different number of probing states as a function of the
number of time steps in the environment. The solid line is the average over 10 independent runs; the
shading indicates 95% bootstrapped confidence intervals.
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Figure 5: Performance of a linear pol-
icy (in blue) zero-shot learned (aver-
aged over 5 runs, 95% bootstrapped CI).
The orange line shows the best perfor-
mance of the deep NN when training the
PSSVF.

The most surprising result is that a randomly initialized
policy can learn near-optimal behaviors in Swimmer and
Hopper by knowing how to act only in 3 (5) such crucial
learned states (out of infinitely many in the continuous
state space). To verify this, we manually select 3 of the
5 learned probing states in Swimmer, and compute the
actions of an optimal policy in such states. Then we train
a new, randomly initialized policy, to just fit these 3 data
points minimizing MSE loss. After many gradient steps,
the policy obtains a return of 355, compared to the return
of 364 of the optimal policy that was used to compute such
actions. Figure 15 (in Appendix B.3) includes a detailed
analysis of this experiment. The probing actions are the
vectors [−0.97,−0.86], [−0.18,−0.99], [0.86, 0.68]. In
the plot we notice that when the agent’s state is close
to the first probing state (bottom plot, depicted in blue),
then both components of the actions are close to -1, like the probing action in such state. When
the agent’s state is close to the second state (bottom plot, depicted in orange), the first component

7



Under review as a conference paper at ICLR 2023

of the action moves from -1 to 0 (and then to +1) in a smooth way, while the second component
jumps directly to +1. This behavior is consistent with the second probing action, since the second
component is more negative than the first. Notably, although the distance between the agent’s state
and the third probing state (bottom plot, depicted in green) is never close to zero, such a probing
state is crucial: it induces the agent to take positive actions whenever the other probing states are far
away. We observe similar behavior for other environments, although they need more of such states to
encode the behavior of an optimal policy. Using a similar procedure, we are able to train a randomly
initialized policy in Hopper achieving 2200 return, using only 5 state-action pairs. We provide a
detailed discussion and learning curves for this task in Appendix B.3.

Visualization of RL probing states It is possible to visualize the probing states learned by the
PSSVF. To understand the behaviour in probing states, we initialize the MuJoCo environment to
the learned probing state (when possible) and let it evolve for a few time steps while performing
no action. In Appendix B.3 we show the crucial learned probing states of our previous experiment.
Additional probing states for all environments can be seen in animated form on the website https:
//anonymous260522.github.io/.

5 RELATED WORK

There is a long history of RL algorithms performing direct search in parameter space or policy space.
The most common approaches include evolution strategies, e.g., (Rechenberg, 1971; Sehnke et al.,
2010; 2008; Wierstra et al., 2014; Salimans et al., 2017). They iteratively simulate a population of
policies and use the result to estimate a direction of improvement in parameter space. Evolution
strategies, however, don’t reuse data: the information contained in the population is lost as soon as an
update is performed, making them sample-inefficient. Several attempts have been made to reuse past
data, often involving importance sampling (IS) (Zhao et al., 2013), but these methods suffer from
high variance of the fitness estimator (Metelli et al., 2018). Our method directly estimates a fitness
for each policy observed in the history and makes efficient reuse of past data without involving IS.

Direct search can be facilitated by compressed network search (Koutnik et al., 2010) and algorithms
that distill the knowledge of an NN into another NN (Schmidhuber, 1992). Closely related to our
fingerprint embedding is also the concept of Dataset Distillation (Wang et al., 2018). However,
in our RL setting, learning to distill crucial states from an environment is harder due to the non-
differentiability of the environment. Estimating a global objective function is common in control
theory, where usually a gaussian process is maintained over the policy parameters. This allows to
perform direct policy optimization during the parameter search. Such approaches are often used in
the Bayesian optimization framework (Snoek et al., 2015; 2012), where a tractable posterior over the
parameter space is used to drive policy improvements. Despite the soundness of these approaches,
they usually employ very small control policies and scale badly with the dimension of the policy
parameters. Our method, however, is invariant to policy parametrization.

It is based on a recent class of algorithms that were developed to address global estimation and
improvement of policies. For Policy Evaluation Networks (PVNs) (Harb et al., 2020), an actor-critic
algorithm for offline learning through policy fingerprinting was proposed. PVNs focus on the offline
RL setting. In PVNs, first a dataset of randomly initialized policies with their returns is collected.
Then, once their V (θ) with policy fingerprinting is trained, they perform policy improvement through
gradient ascent steps on V . Their experimental setting is similar to our MNIST offline demonstration,
which we provide just to give an intuition on how policy fingerprinting works. Concurrently,
Parameter-Based Value Functions were developed to provide single value functions able to evaluate
any policy, given a state, state-action pair, or a distribution over the agent’s initial states. PBVFs did
not use any dimensionality reductions techniques such as the policy fingerprinting mechanism, but
demonstrated sample efficiency in the online RL scenario, directly using the flattened parameters
of a neural network as inputs. They exhibited zero-shot learning for linear policies, but failed when
the policy parameters were high-dimensional. Here, however, we demonstrated that PBVFs with
policy fingerprinting mechanisms can be efficient in the online scenario. A minor difference between
our approach and PVNs is that PVNs predict a discretized distribution of the return, whereas our
approach simply predicts the expected return. Our method can be seen like an online version of
PVN without some of the tricks used, or like a version of PSSVF where policy fingerprinting is used.
Fingerprinting itself is similar to a technique for "learning to think" (Schmidhuber, 2015) where one
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NN learns to send queries (sequences of activation vectors) into another NN and learns to use the
answers (sequences of activation vectors) to improve its performance.

Recent work (Tang et al., 2020) learned Parameter-Based State-Value Functions which, coupled with
PPO, improved performance. The authors did not use the value function to directly backpropagate
gradients through the policy parameters, but only exploited the general policy evaluation properties
of the method. They also proposed two dimensionality reduction techniques. The first, called Surface
Policy Representation, consists of learning a state-action embedding that encodes possible information
from a policy πθ. This requires feeding state-action pairs to a common MLP whose output is received
as input to the value function. The MLP is trained such that it allows for both low prediction error in
the value function and low reconstruction error of the action, given a state and the embedding. This
method is not differentiable in the policy parameters, therefore it cannot be used for gradient-based
policy improvement. The second method, called Origin Policy Representation (OPR), consists of
using an MLP that performs layer-wise extraction of features from policy parameters. OPR uses
MLPs to take as input direcly the weight matrix of each layer. This approach is almost identical to
directly feeding the policy parameters to the value function (they concatenate the state to the last
layer of such MLP), and suffers from the curse of dimensionality. Also, OPR was not used to directly
improve the policy parameters, but only to provide better policy evaluation.

Alternative strategies to represent policies have been studied in previous work. One such strategy
aims to learn a representation function mapping trajectories to a policy embedding through an auto-
encoding objective (Grover et al., 2018; Raileanu et al., 2020). In particular, Grover et al. (2018) use
this idea to model the agent’s behavior in a multi-agent setting. The approach presented by Raileanu
et al. (2020) performs gradient ascent steps finding a policy embedding that maximizes the value
function’s predicted return. While this maximization through the value function is similar to our
setting, it relies on a representation function (or policy decoder). Our method does not use a decoder
and instead directly backpropagates the gradients into the policy parameters for policy improvement.
Closer to our fingerprinting setup, Pacchiano et al. (2020) utilize pairs of states and actions (from
the corresponding policy) as a policy representation. However, unlike in our approach, the probing
states are not learned, but sampled from a chosen probing state distribution. Kanervisto et al. (2020)
suggest representing policies based on visited states via Gaussian Mixture Models applied to an
offline dataset of data from multiple policies. The authors mention that their current version of policy
supervectors is intended for analysing policies and is not yet suitable for online optimization. Value
functions conditioned on other quantities include vector-valued adaptive critics Schmidhuber (1991),
General Value Functions (Sutton et al., 2011), and Universal Value Function Approximators (Schaul
et al., 2015). Unlike our approach these methods typically generalize over achieving different goals,
and are not used to generalize across policies.

6 CONCLUSION AND FUTURE WORK

Our approach connects Parameter-Based Value Functions (PBVFs) and the fingerprinting mechanism
of Policy Evaluation Networks. It can efficiently evaluate large Neural Networks, is suitable for
off-policy data reuse, and competitive with existing baselines for online RL tasks. Zero-shot learning
experiments on MNIST and continuous control problems demonstrated our method’s generalization
capabilities. Our value function is invariant to policy architecture changes, and can extract essential
knowledge about a complex environment by learning a small number of situations that are important
to evaluate the success of a policy. A randomly initialized policy can learn optimal behaviors in
Swimmer (Hopper) by knowing how to act only in 3 (5) such crucial learned states (out of infinitely
many in the continuous state space). This suggests that some of the most commonly used RL
benchmarks require to learn only a few crucial state-action pairs. Our set of learned probing states is
instead used to evaluate any policy, while in practice different policies may need different probing
states for efficient evaluation. A natural direction for improving this method and scaling it to more
complex tasks is to generate probing states in a more dynamic way, or learn to retrieve them directly
from the agent’s experience in the replay buffer. Like evolutionary approaches and trajectory based
RL, our method might suffer high variance in stochastic environments or when the variance of the
return over the initial state is high. In such scenario, poor value estimates might prevent policy
improvement or zero-shot learning. Finally, PBVFs are a general framework that also considers value
functions that receive states and state-action pairs as input. We plan to investigate how these value
functions trained by Temporal Differences (Sutton, 1988) behave with policy fingerprinting.
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A IMPLEMENTATION DETAILS

A.1 MNIST IMPLEMENTATION

For our experiments with MNIST we adapt the official code for PSSVF to CNN policies and the
MNIST classification problem.

• Policy architecture: The policy consists of two convolutional layers with 4 and 8 output
channels respectively, 3× 3 kernels and a stride of 1. Each convolutional layer is followed
by ReLU activations. The output from the convolutional layers is flattened and provided to
a fully connected linear layer which outputs the logits for the ten MNIST classes. The logits
are fed into a categorical distribution; the outputs are interpreted as class probabilities.

• Value function architecture: MLP with 2 hidden layers and 64 neurons per layer with bias.
ReLU activations.

• Batch size for computing the loss: 1024

• Batch size for value function optimization: 4

• Buffer size: 1000

• Loss: Cross entropy

• Initialization of probing states: uniformly random in [−0.5, 0.5)

• Update frequency: every time a new episode is collected

• Number of policy updates: 1

• Number of value function updates: 5

• Learning rate policy: 1e-6

• Learning rate value function: 1e-3

• Noise for policy perturbation: 0.05

• Priority sampling from replay buffer: True, with weights 1/x0.8, where x is the number of
episodes since the data was stored in the buffer

• Default PyTorch initialization for all networks.

• Optimizer: Adam

A.2 RL IMPLEMENTATION

Here we report the hyperparameters used for PSSVF and the baselines. For PSSVF, we use the open
source implementation provided by Faccio et al. (2021). For DDPG and SAC, we use the spinning-up
RL implementation (Achiam, 2018), whose results are on par with the best reported results. For ARS,
we adapt the publicly available implementation (Mania et al., 2018) to Deep NN policies.

Shared hyperparameters:

• Policy architecture: Deterministic MLP with 2 hidden layers and 256 neurons per layer with
bias. Tanh activations for PSSVF and ARS. ReLu activations for DDPG and SAC. The
output layer has Tanh nonlinearity and bounds the action in the action-space limit.

• Value function architecture: MLP with 2 hidden layers and 256 neurons per layer with bias.
ReLU activations for PSSVF and DDPG and SAC.

• Initialization for actors and critics: Default PyTorch initialization

• Batch size: 128 for DDPG and SAC. 16 for PSSVF

• Learning rate actor: 1e-3 for DDPG and SAC; 2e-6 for PSSVF

• Learning rate critic: 1e-3 for DDPG and SAC, 5e-3 for PSSVF

• Noise for exploration: 0.05 in parameter space for PSSVF; 0.1 in action space for DDPG

• Actor’s frequency of updates: every episode for PSSVF; every 50 time steps for DDPG and
SAC; every batch for ARS
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• Critic’s frequency of updates: every episode for PSSVF; every 50 time steps for DDPG and
SAC

• Replay buffer size: 100k for DDPG and SAC; 10k for PSSVF

• Optimizer: Adam for PSSVF and DDPG and SAC

• Discount factor: 0.99 for DDPG and SAC; 1 for PSSVF and ARS

• Survival reward adjustment: True for ARS and PSSVF in Hopper, Walker, Ant; False for
DDPG and SAC

• Environmental interactions: 300k time steps in InvertedDoublePendulum; 3M time steps in
all other environments

Tuned hyperparameters:

• Step size for ARS: tuned with values in {1e− 2, 1e− 3, 1e− 4}

• Number of directions and elite directions for ARS: tuned with values in
{[1, 1], [8, 4], [8, 8], [32, 4], [32, 16], [64, 8], [64, 32]}, where the first element denotes the
number of directions and the second element the number of elite directions

• Noise for exploration in ARS: tuned with values in {0.1, 0.05, 0.025}

Hyperparameters for specific algorithms:

PSSVF:

• Number of probing states: 200

• Initialization of probing states: uniformly random in [0, 1)

• Observation normalization: True

• Number of policy updates: 5

• Number of value function updates: 5

• Priority sampling from replay buffer: True, with weights 1/x1.1, where x is the number of
episodes since the data was stored in the buffer

ARS:

• Observation normalization: True

DDPG and SAC:

• Observation normalization: False

• Number of policy updates: 50

• Number of value function updates: 50

• Start-steps (random actions): 10000 time-steps

• Update after (no training): 1000 time-steps

• Polyak parameter: 0.995

• Entropy parameter (SAC): 0.2

A.3 GPU USAGE / COMPUTATION REQUIREMENTS

Each run of PSSVF in the main experiment takes around 2.5 hours on a Tesla P100 GPU. We ran 4
instances of our algorithm for each GPU. We estimate a total of 75 node hours to reproduce our main
RL results (20 independent runs for 6 environments).
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B EXPERIMENTAL DETAILS

B.1 MNIST EXPERIMENTS

Online learning through Algorithm 1 We use PSSVF (Algorithm 1) with the hyperparameters
described in Appendix A.1. Figure 6 shows the performance of PSSVF using CNNs on MNIST with
10 and 50 probing states as a function of the number of interactions with the dataset. Each interaction
consists of perturbing the current policy with random noise, computing the loss of the perturbed
policy on a batch of data, storing the perturbed policy and its loss, and updating.
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Figure 6: On the left: test accuracy of PSSVF as a function of the interactions with the dataset. On
the right: loss of the perturbed CNN on the training set. Average over 5 independent runs and 95%
bootstrapped confidence interval.

Visualization of learned probing states We plot the evolution of some of the probing states,
starting from random noise, until the PSSVF is learned. We consider one run of the previous
experiment with 10 probing states and show how they change during learning. This is depicted in
Figure 7 where randomly initialized probing states slowly become similar to digits.

Offline policy improvement This section describes the offline MNIST experiment of the main
paper. Here every iteration encompasses the following steps. We perturb a randomly initialized
CNN with gaussian noise with standard deviation 0.1. Then we compute the loss on a batch of 1024
training data. If the accuracy on such batch is below 12%, we store the CNN and its loss, otherwise
we discard the data. At every iteration we also train a PSSVF with 200 probing states, using the data
collected (whose accuracy is at most 12%). We repeat this for 90000 iterations. Then, we randomly
initialize a new CNN and train it by taking gradient steps through the fixed PSSVF, without further
seeing training data. In Figure 8 we plot the performance of the zero-shot learned CNN. Surprisingly,
it achieves a test accuracy of 65%, although only CNNs with at most 12% accuracy are used in
training. From the same figure we also observe that the prediction of the PSSVF is quite accurate up
to 80 gradient steps, after which the performance degrades. We use a learning rate of 1e− 3 for the
CNN.

Visualization of learned probing states When training the PSSVF using CNNs whose accuracy is
at most 12%, we also observe the formation of "numbers" as probing states, although they are not as
evident as in the online setting. We provide some examples in Figure 9.

B.2 MAIN EXPERIMENTS ON MUJOCO

To measure learning progress, we evaluate each algorithm for 10 episodes every 10000 time steps.
We use the learned policy for PSSVF and ARS and the deterministic actor (without action noise)
for DDPG. We use 20 independent instances of the same hyperparameter configuration for PSSVF
and DDPG in all environments. When tuning ARS, we run 5 instances of the algorithm for each
hyperparameter configuration. Then we select the best hyperparameter for each environment and
carry out a further 20 independent runs. We report the best hyperparameters found for ARS in Table 1.
In addition to the learning curves of the main paper in Figure 3, we report the final return with a
standard deviation in Table 2.
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Figure 7: From left to right, the 10 probing states learned by the PSSVF using Algorithm 1. Each
column represents 12500 interactions.

Ablation on weighted sampling In Figure 10 we show the benefit of using non-uniform sampling
from the replay buffer in Hopper and Walker environments. We compare uniform sampling (no
weight) to non uniform sampling with weight 1/xk, where k ∈ {1.0, 1.1}, and x is the number of
episodes since the data was stored in the buffer. We achieve the best results in Hopper and Walker for
the choice of x = 1.1. It is interesting to take this into consideration when comparing our approach
to vanilla PSSVF.
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Figure 8: On the left: test accuracy of a random initialized CNN zero-shot learned using a learned
PSSVF. On the right, the prediction of the performance of the CNN given by the PSSVF and the true
performance on the test set. Average over 5 independent runs and 95% bootstrapped c.i.

Figure 9: Samples of probing states learned by the PSSVF using CNNs with at most 12% training set
accuracy.

Table 1: Best hyperparameters for ARS

Environment step size directions noise
Walker2d-v3 0.01 [8,8] 0.05
Swimmer-v3 0.01 [8,4] 0.05
HalfCheetah-v3 0.01 [8,4] 0.05
Ant-v3 0.01 [32,16] 0.01
Hopper-v3 0.01 [8,4] 0.05
InvertedDoublePendulum-v2 0.01 [8,8] 0.025

Table 2: Final return (average over final 20 evaluations)

Environment PSSVF ARS DDPG SAC
Walker2d-v3 2333± 343 1488± 961 2432± 1330 5287± 467
Swimmer-v3 349± 60 342± 21 129± 25 44± 1
HalfCheetah-v3 3067± 820 2497± 611 10695± 1358 13599± 932
Ant-v3 1549± 240 1697± 225 466± 716 5319± 992
Hopper-v3 2969± 165 2340± 199 1634± 1036 3292± 345
InvertedDouble
Pendulum-v2 7649± 2640 4515± 2733 7377± 3770 9235± 227
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Figure 10: Comparison between our algorithm without weighted sampling from the replay buffer and
with weight 1/xk, where k ∈ {1.0, 1.1}. Average over 10 independent runs and 95% bootstrapped
confidence interval.
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Comparison to vanilla PSSVF Here we compare our PSSVF with policy fingerprinting to vanilla
PSSVF. For vanilla PSSVF, we use the best hyperparameters reported by Faccio et al. (2021) when
optimizing policies with 2 hidden layers and 64 neurons per layer and optimizing over the final
rewards. Our algorithm uses the policy architecture of vanilla PSSVF and the hyperparameters of our
main experiments, changing only the learning rate of the policy to 1e− 4 and the noise for policy
perturbations to 0.1. Figure 11 shows that while in Swimmer policy fingerprinting is enough to
achieve an improvement over vanilla PSSVF, in Hopper non-uniform sampling plays an important
role. Note that in the vanilla PSSVF paper, learning rates and perturbation noise are tuned for each
environment, while in our experiments we keep a fixed set of hyperparameters for all environments
to maintain consistency. We expect the performance of our approach to also improve by selecting
hyperparameters separately for each environment.
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Figure 11: Comparison between vanilla PSSVF with no weighted sampling and no fingerprinting,
PSSVF with policy fingerprinting, and our final algorithm that uses also weighted sampling. The
solid line is the average over 10 independent runs; the shading indicates 95% bootstrapped confidence
intervals.

Zero-shot learning of new policy architectures For this task we use the same hyperparameters as
in the main experiments (see Appendix A.2). We use a learning rate of 1e− 4 to zero-shot learn the
linear policy. Figure 12 reports similar results for deep policies.
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Figure 12: Performance of a deep policy (in blue) zero-shot learned (averaged over 5 runs, 95%
bootstrapped CI). The orange line shows the best performance of the deep NN when training the
PSSVF.

B.3 FINGERPRINT ANALYSIS

Learning Swimmer with 3 states We are interested in what is the smallest amount of state-
action pairs we could use to clone an optimal policy. In order to select the 3 transitions we try all
combinations of 3 probing states our of 5 that we used to train our PSSVF. When cloning using all
5 probing states, the performance is very similar to the optimal policy. When choosing 4 out of 5
probing states, we notice that the performance highly depends on which probing state is removed,
suggesting that some of the learned probing states are more important than others. When trying 3 out
of 5 probing states this effect is more evident, and many combinations of 3 probing states lead to poor
cloning performance. Here we report the learning curves for the experiment in the main paper where
we fit a randomly initialized policy using only 3 transitions (see Section 4.4). These 3 transitions
are 3 probing states and the corresponding optimal action (probing action) in those states. We can
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see in Figure 13 that as the MSE loss goes to zero when fitting the 3 transitions, the return of the
policy increases until it almost matches the optimal value. In this experiment we train a PSSVF with
5 probing states following Algorithm 1 for 2M time steps. We manually select a subset of 3 probing
states and act in those states using the learned policy. We then fit a new policy over those 3 transition.
We use a batch size of 3 and a learning rate of 2e− 5 to fit the new policy. The other hyperparameters
are the same as in the main experiments (see Appendix A.2).
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Figure 13: On the left: return of the policy learned using 3 transitions in Swimmer. On the right,
MSE for fitting the 3 transitions. Average over 5 independent runs and 95% bootstrapped confidence
interval.

Learning Hopper with 5 states We repeat the same experiment of cloning near-optimal behaviour
from a few states in the Hopper environment. Using the action of a good policy (whose return is 2450)
in 5 probing states, we are able to fit a new policy and obtain a final return of 2200. We use a batch
size of 5 and a learning rate of 1e− 4 for the randomly initialized policy. All other hyperparameters
are like in the Swimmer experiment with 3 transitions. Figure 14 shows the learning curve, while
Figure 16 relates the behavior of the policy learned using the 5 transitions to the distance of the
current agent’s state to the probing states. The 5 probing actions {ãk}5k=1 are:

ã1 = [0.4859, 0.6492,−0.7818],

ã2 = [0.9251, 0.9100, 0.2322],

ã3 = [0.0405, 0.0475, 0.9091],

ã4 = [0.2925,−0.4677,−0.1329],

ã5 = [0.7578, 0.4327,−0.1521].

We observe a similar behavior of the Swimmer experiments (Figure 15), where the action chosen
by the agent is similar to the probing action of a probing state whenever the agent’s state is close to
the probing state. Although the dynamics in Hopper are more complex than in Swimmer, 5 probing
states are enough to make the agent perform non-trivial actions in the environment.
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Figure 14: On the left: return of the policy learned using 5 transitions in Hopper. On the right,
MSE for fitting the 5 transitions. Average over 5 independent runs and 95% bootstrapped confidence
interval.
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Figure 15: Behavior of the policy learned from 3 probing state-probing action pairs in Swimmer. From
top to bottom: each component of the state vector across time steps in an environment simulation;
each component of the action vector; L2 distance of the current state to each of the 3 probing states
used for learning.

Figure 16: Behavior of the policy learned from 5 probing state-probing action pairs in Hopper. From
top to bottom: each component of the state vector across time steps in an environmental simulation;
each component of the action vector; L2 distance of the current state to each of the 5 probing states
used for learning.
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Visualization of probing states in RL In Figure 15 we show the three probing states of the
last experiment on Swimmer. In environments like Hopper and Walker, probing states might not
correspond to a real state in the environment (e.g. some components of the probing state are outside
a specific range). We notice that this is usually not the case and that the learned probing states
generally correspond to valid environmental states. Moreover, we observe that probing states tend
to get closer to certain critical situations over learning. These are states where certain actions have
a significant effect on the future. In the Ant environment, we notice that all components of the
probing state vector from index 28 to 111 learn a value of around 1e− 8. Interestingly, the process of
fingerprinting discovers this ‘bug’ in MuJoCo 2.0.2.2 that sets all contact forces in Ant to zero. Since
these components of the state vector remain constant during the environmental interactions, and are
therefore not relevant for learning, the PSSVF learns to set them to zero as well.

Figure 17 shows the evolution of the Swimmer environment from the selected probing states when no
action is taken. The 3 probing states reported are those used for the experiment of Figures 13 and 15.

Figure 17: From top to bottom: the three learned probing states in Swimmer. From left to right:
Evolution of the environment over time steps. The agent is initialized in the probing state and
performs no action.

Figure 18: From top to bottom: the 5 learned probing states on Hopper. From left to right: various
time steps in the environment. The agent is initialized in the probing state and performs no action.

Figure 18 shows 3 out of the 5 learned probing states on Hopper in the experiment of Figures 14
and 16. The other 2 probing states do not correspond to valid states in Hopper and are therefore
not visualized. No action is taken from the probing state and the environment is allowed to evolve
naturally from the probing state. The duration of interaction differs in each row of the figure as
termination occurs at different points from the probing states.
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Figure 19: Evolution of the environment from a probing state when (Top) no actions taken, (Bottom)
the first action in the probing state is taken using a good policy. Then no action is performed.

Figure 19 supports our hypothesis that some probing states might capture critical scenarios. In the
considered probing state from Hopper we see that taking no action results in immediate failure as
indicated by the shorter span of interaction in the top panel of Figure 19. In contrast, acting for a
single time-step with a successful policy in that situation helps the agent survive and prolongs the
interaction (bottom panel of Figure 19).

Additional probing states for all environments can be seen in animated form on the website https:
//anonymous260522.github.io/.

C SOCIETAL IMPACT

Our work makes algorithmic contributions to actor-critic approaches for reinforcement learning and
does not focus on specific real-world applications. Using our PSSVF for offline improvement of
policies (as shown in our MNIST experiment) could help mitigate risks from directly applying deep
neural network policies to online situations in the real world.

D ENVIRONMENT DETAILS

Mujoco is made available with Apache License 2.0. The MNIST dataset is available through the
creative commons license CC BY-SA 3.0.
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