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ABSTRACT

Existing Graph Transformers often overlook the limitations of self-attention
mechanism without inductive bias. The pure self-attention tends to aggregate fea-
tures from unrelated nodes and misalign attention with graph structures, leading
to suboptimal modeling of relational dependencies. Moreover, operating solely
in the spatial domain, self-attention underutilizes graph spectral components that
correspond to more detailed and comprehensive relational patterns. To address
the above issues, we propose the Spectral-Guided Attention Graph Transformer
(SGA-Former), which introduces rich structural priors from the graph spectral do-
main to guide attention learning. Specifically, we design two Spectral Relation
Metrics as attention bias, which capture complementary low and high-frequency
structural patterns. To leverage these priors, we develop the Spectral-Guided At-
tention Enhancer (SGA-Enhancer), which filters redundant attention scores and
emphasizes important node relationships based on the spectral metrics. Incorpo-
rating SGA-Enhancer, SGA-Former builds dual-branch Spectral Attention Lay-
ers that jointly utilize both spectral views, enabling more balanced and structure-
aware attention learning. Extensive experiments show that SGA-Former consis-
tently achieves superior performance across a wide range of graph learning tasks.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have achieved significant success in modalities like natural lan-
guage (Vaswani et al., 2017) and vision (Neil and Dirk, 2020), inspiring growing interest in adapting
them for graph data to address limitations of Graph Neural Networks (Khemani et al., 2024), such as
over-smoothing (Li et al., 2018), over-squashing (Oono and Suzuki, 2019), and limited expressive
power (Morris et al., 2019). Graph Transformers (Min et al., 2022) aim to overcome the above issues
by leveraging learned attention mechanisms instead of strictly following the input graph topology.
However, the pure Transformer architecture inherently lacks strong inductive biases (Neil and Dirk,
2020). Therefore, incorporating graph inductive biases becomes central to adapting Transformers to
graph data, enabling perception and utilization of the underlying graph structure.

There are two mainstream approaches to introducing graph inductive biases into Transformer-based
architectures. The first approach embeds GNN modules in series or parallel with attention layers, to
assist in modeling the graph structure (Rampášek et al., 2022; Chen et al., 2022; Zhang et al., 2024).
The second injects positional or structural encodings into node or edge features, enabling implicit
modeling of graph topology (Ma et al., 2023; Dwivedi et al., 2021; Ying et al., 2021). Although
structural cues are introduced in above Transformer-based studies, the self-attention mechanism still
suffers from inherent limitations due to the absence of inductive bias. Specifically, global attention
tends to aggregate features from unrelated nodes, leading to noisy attention distributions (Xing et al.,
2024), while the absence of explicit grounding in actual connection strengths reduces the model
sensitivity to graph-dependent relational structures (Liu et al., 2024; Zhuang et al., 2025; Zhao et al.,
2023).

Some studies begin to explore reducing redundant attention and guiding attention to focus on mean-
ingful node relationships. Exphormer (Shirzad et al., 2023) is the first to sparsify attention in Graph
Transformers by approximating the full graph structure, demonstrating that modeling all pairwise
node relationships is unnecessary. Gradformer (Liu et al., 2024) and MSA-GT (Zhuang et al., 2025)
introduce distance-based attention bias (Shehzad et al., 2024) to explicitly guide attention across
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multiple levels of structural information. However, by relying on coarse approximations or local
spatial metrics, existing approaches fail to capture critical global structural patterns and struggle to
model complex relational dependencies. To address the above limitations, we turn to the spectral
domain, where different frequency bands exhibit distinctive advantages in encoding diverse global
structural patterns (Sandryhaila and Moura, 2014; Ortega et al., 2018). We design complemen-
tary low-pass and high-pass spectral filters to generate attention biases and visualize their effects
in comparison with existing methods on molecular and community graphs. As illustrated in Fig.1
and Fig.2, our approach extracts more informed relational patterns via frequency-specific filtering,
thereby better guiding attention with enhanced global structural awareness. To this end, we propose
the first approach that leverages spectral-domain priors as inductive bias to explicitly guide selective
attention learning in Graph Transformers.

In this work, we propose the Spectral-Guided Attention Graph Transformer (SGA-Former), a novel
architecture that explicitly integrates spectral guidance into graph attention. Specifically, we in-
troduce two Spectral Relation Metrics, Mlow and Mhigh, derived from graph signal filtering the-
ory. These metrics capture complementary structural patterns: Mlow encodes global smoothness
and structural coherence (low-frequency components), while Mhigh emphasizes local variations and
sharpness (high-frequency components). We further provide spatial-domain interpretations, offer-
ing an alternative message-passing perspective for understanding these metrics. Building upon these
spectral priors, we design the Spectral-Guided Attention Enhancer (SGA-Enhancer), which refines
attention learning by filtering redundant attention scores and highlighting structurally important
node relationships. Incorporating SGA-Enhancer, SGA-Former employs a dual-branch Spectral-
Guided Attention Layer (SGA-Layer) that simultaneously leverages low- and high-frequency struc-
tural priors. This design promotes more balanced, structure-aware attention learning, leading to
improved performance and generalization across diverse graph tasks. From a theoretical perspec-
tive, we further show that SGA-Former with Spectral Relation Metrics achieve stronger expressive
power compared to the commonly used SPD (shortest path distance) metric. The contributions of
this paper are:

• We propose SGA-Former, a novel graph Transformer that first leverages spectral priors to
explicitly facilitate selective attention learning. Guided by spectral structural cues, SGA-
Former achieves structure-aware and spectrally-informed representation learning.

• We design two Spectral Relation Metrics, Mlow and Mhigh to effectively capture comple-
mentary structural patterns across different frequency bands, with both both spectral and
spatial interpretations.

• We propose SGA-Enhancer, which selectively filters and reweights attention scores based
on spectral priors. By integrating SGA-Enhancer into a dual-branch layer architecture,
SGA-Former achieves improved structural modeling and superior performance across di-
verse graph learning tasks. Theoretical analysis is also provided to demenstrate the strong
expressiveness of SGA-Former.

2 PRELIMINARIES

Graph Transformer: The computation of a Graph Transformer (GT) layer, similar to that of the
standard Transformer, can be decomposed into two fundamental components: the multi-head self-
attention (MHA) mechanism and the feed-forward network (FFN). Given the input node features
H and the edge feature E, each attention head computes representations by attending to all node
features. A single attention head is formulated as

Attn(H,E) = Softmax(Score(H,E)) · V(H), (1)

where Score(·) denotes a function that computes the raw attention scores, and V(·) is a linear pro-
jection of node features. To better perceive graph structure, we adopt the attention mechanism and
feature encoding strategy from GRIT (Ma et al., 2023). GRIT updates edge features during attention
computation, allowing structural information to be implicitly integrated. The specific calculation
process of the GRIT attention head is provided in the Appendix B.2. The multi-head self-attention
(MHA) then aggregates the outputs from multiple attention heads by

MHA(H,E) = Concat (Attn1(H,E), . . . ,AttnK(H,E))WO, (2)
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Figure 1: Visualization comparison of different attention biases in a stochastic block model with
2 communities. Thicker and darker edges indicate higher edge weight. The Without Attention
Bias refers to most approaches without explicitly injected selective attention mechanisms. The
Distance-based Attention Biased using 1/dist(i, j) as edge weight between node i and j. In the
proposed Spectral-Guided Attention Bias, Mlow reflects connectivity patterns within communities,
while Mhigh emphasizes cross-community links that highlight structural boundaries.

Figure 2: Visualization comparison of different attention biases in the 2-Phenylpyridine module.
In the proposed Spectral-Guided Attention Bias, Mlow captures more global atomic relationships
within functional groups, while Mhigh reveals higher-order interactions (eg. as star-like patterns).

where K is the number of heads and WO is an output projection matrix. The output is then passed
through a feed-forward network, followed by a normalization function to compute the updated node
features Ĥ by

Ĥ = Norm(FFN(MHA(H,E))). (3)
Graph Fourier Transform: Spectral variation of graphs is grounded in the frequency-domain de-
composition of the graph Laplacian matrix, which reflects the spatial-domain graph topology. In
this work, we adopt the symmetrically normalized Laplacian (Boukrab and Pagès-Zamora, 2021),
defined as Lsym = I −D−1/2AD−1/2, where A is the adjacency matrix and D is the degree ma-
trix. Since Lsym is a positive semi-definite matrix, it can be decomposed via eigendecomposition
as Lsym = UΛU⊤, where U contains the eigenvectors (graph Fourier bases), and Λ is a diagonal
matrix of eigenvalues (corresponding frequencies).

Spectral Prior as Inductive Bias: Different frequency components in the graph spectral domain
naturally encode distinct structural properties (Bo et al., 2021; Sandryhaila and Moura, 2014)).
Specifically, the low-frequency components correspond to smaller eigenvalues and capture smooth
variations over the graph. These components encode global structures, such as clusters or communi-
ties. In contrast, high-frequency components are associated with larger eigenvalues and reflect rapid
changes in signal values across adjacent nodes. These components highlight local differences, such
as structural boundaries and irregular connections. Motivated by the above perspective, we design
two Spectral Relation Metrics as attention bias, which act as a bridge between the rich structural
patterns encoded in the spectral domain and the guidance of graph attention learning.

3 METHODOLOGY

3.1 SPECTRAL RELATION METRICS CONSTRUCTION

Spectral Relation Metrics: Exploiting the complementarity and representativeness of spectral com-
ponents, we design two filters to amplify low and high-frequency signals in the graph Laplacian for
deriving Spectral Relation Metrics. For enhancing the low and high value frequencies respectively,
the two filter functions are constructed by

filterlow(Λ) =
1

k

k∑
i=1

(I−Λ)i (4)
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Figure 3: The architecture of the SGA-Former layer.

and

filterhigh(Λ) =
1

k

k∑
i=1

(Λ− I)i, (5)

where k is a hyperparameter. As shown in the Fig. 5, given that the eigenvalues in Λ are within
the range [0, 2], filterlow(·) emphasizes smaller eigenvalues while attenuating larger ones, whereas
filterhigh(·) does the opposite by reserving larger eigenvalues and suppressing the lower ones.

Subsequently, by applying filtering functions to the Laplacian matrix, we obtain modified graph
structures that reflect the strength of node connections associated with specific frequency bands.
Therefore, we call the obtained matrices as Spectral Relation Metrics, and denote them as Mhigh and
Mlow. Mhigh and Mlow can be calculated as

Mlow = Ufilterlow(Λ)U⊤ =
1

k

k∑
i=1

U(I−Λ)iU⊤

=
1

k

k∑
i=1

(I− Lsym)
i =

1

k

k∑
i=1

(D−1/2AD−1/2)i

(6)

and

Mhigh = Ufilterhigh(Λ)U⊤ =
1

k

k∑
i=1

U(Λ− I)iU⊤

=
1

k

k∑
i=1

(Lsym − I)i =
1

k

k∑
i=1

(−D−1/2AD−1/2)i

(7)

Notably, although computing the frequency components of Lsym requires costly eigendecomposi-
tion, our specifically designed filtering functions enable efficient computation using simple matrix
operations on the existing adjacency matrix A and degree matrix D. The two Spectral Relation
Metrics offer complementary insights into the structural properties of the graph. Specifically, Mlow
captures smooth and globally consistent relationships by emphasizing low-frequency components,
which tend to reflect shared cluster or community structures. In contrast, Mhigh emphasizes sharp
local variations and highlights structural boundaries or anomalies through high-frequency enhance-
ment. Together, they provide a spectral-aware perspective for node relations from comprehensive
viewpoints, enabling more informative modeling of relational dependencies.

Graph Spatial Domain Analysis: In the graph spatial domain, D−1/2AD−1/2 can be viewed as
a message propagation matrix (Kipf, 2016; Wu et al., 2019), where D−1/2AD−1/2AH represents
a single round of message passing across neighboring nodes. Consequently, (D−1/2AD−1/2)k

corresponds to the effect of k-step message propagation. From this perspective, each entry Mlow,ij

in Mlow can be interpreted as the average message propagation strength from node i to node j

4
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(a) Low-pass (b) High-pass

Figure 5: (a) Effect of filterlow(·), (b) Effect of
filterhigh(·).

Figure 6: Effect of the scaling operators.

aggregated over propagation steps from 1 to k, capturing the smooth multi-hop diffusion process in
the graph (Gasteiger et al., 2019). In contrast, Mhigh introduces alternating signs through the term
(−D−1/2AD−1/2)k, which leads to the suppression of contributions from odd-order propagation
paths. These paths are closely related to the message propagation in dense structures such as clusters
or communities, and thus, the non-smooth, abrupt structural patterns in the graph are accentuated.
As shown in Fig. 1 and Fig. 2 , we visualize the edge weight of the two metrics (k = 8) in the
stochastic block model with 2 communities and 2-Phenylpyridine module. Across different graph
structures, both Mlow and Mhigh consistently provide complementary spatial connectivity views and
capture more informative relational patterns. These spatial effects demonstrate that the two Spectral
Attention Metrics can serve as strong inductive biases for guiding graph attention learning.

Expressness of Spectral Relation Metrics: Recent works (Liu et al., 2024; Zhuang et al., 2025)
introduce distance-based attention biases to explicitly guide the attention mechanism. Motivated
by this, we evaluate the superior expressiveness of Spectral Relation Metrics over SPD (shortest
path distance) using recently proposed graph isomorphism tests inspired by the Weisfeiler-Leman
algorithm (Wang et al., 2020). Specifically, Zhang et al. (2023) introduced the Generalized Distance
Weisfeiler-Leman (GD-WL) test and applied it to analyze a graph transformer architecture that uses
SPD(i, j) as relative positional encodings. They theoretically established that the maximal expressive
power of such a graph transformer is upper-bounded by the GD-WL test with SPD. Here, we also
use the GD-WL test to showcase the expressiveness of the Spectral Relation Metrics.
Proposition 1. GD-WL with M is strictly more expressive than GD-WL with the shortest path
distance SPD, provided all individual terms in the sums defining M are accessible and k > diam(G)
(diameter of Graph G).

The proof is provided in Appendix A.1. Firstly, we show that the GD-WL test using Spectral Rela-
tion Metric M can differentiate between any two graphs that can be distinguished by the GD-WL
test with SPD. Next, we show that the GD-WL test with M is capable of the Dodecahedron and
Desargues graphs while the one with SPD cannot.

3.2 SPECTRAL-GUIDED ATTENTION ENHANCER

Based on the designed Spectral relation Metrics, we propose a Spectral-Guided Attention Enhancer
(SGA-Enhancer), which aims to prune and scale the attention matrix according to the spectral pri-
ors. To this end, SGA-Enhancer is composed of two components in series: Spectral-Aware Attention
Pruner (SA-Pruner) and Spectral-Aware Attention Scaler (SA-Scaler). Overall, the operation per-
formed by the SGA-Enhancer can be formally defined as

Aenhanced = SGA-Enhancer(Ascore,M, α) = SA-Scaler
(

SA-Pruner(M,Ascore, α),M
)
. (8)

In this formulation, M denotes a generic spectral relation metric matrix derived from any frequency
domain (e.g., Mlow or Mhigh); Ascore and Aenhanced denotes the raw attention score matrix output
by the Score(·) function and the enhanced attention scores refined by SGA-Enhancer; α is a hyper-
parameter. In the following, we provide a detailed description of the two constituent modules of
SGA-Enhancer.
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Spectral-Aware Attention Pruner: Based on the node relation metrics constructed in the two spec-
tral domains, more important attention components can be easily identified, allowing the removal
of redundant relational learning. Therefore, for each metric, we can construct a Spectral-Aware
Attention Pruner as

SA-Pruner(M,Ascore, α) = Ascore + MaskM,

where MaskM,ij =


0, if Mij is among the top

α-fraction entries of M,

−∞, otherwise.

(9)

In this formulation, MaskM ∈ RN×N is an attention mask of the same dimension as Ascore. The
hyperparameter α ∈ [0, 1] specifies the proportion of node pairs with the highest values in M to
be retained. α can be independently configured for each spectral metric to selectively preserve
the attention corresponding to the most informative relational signals in the respective frequency
domain. The resulting masked attention score matrix is denoted as Amask.

Spectral-Aware Attention Scaler: To further enhance the guidance provided by spectral informa-
tion, we aim to adaptively modulate the strength of attention scores based on the Spectral Relation
Metrics. To achieve this, we design a Spectral-Aware Attention Scaler as

SA-Scaler(Amask,M) = Amask ⊙ f(M), (10)

where ⊙ denotes element-wise multiplication, and f(·) is a learnable, parameterized function.
Specifically, we implement f(M) as:

f(M) = exp (−ReLU(aM+ b)) . (11)

where exp(−ReLU(·) acts as a scaling operator, mapping input values to the range [0, 1]. It preserves
values near 1 while progressively attenuating others toward 0. In Fig. 6, we illustrate how inputs are
mapped to this range. The learnable scalars a and b control the rate and threshold of this attenuation,
enabling the model to adaptively modulate the attention intensity.

3.3 SPECTRAL-GUIDED ATTENTION GRAPH TRANSFORMER

Multi-head Spectral Attention: The SGA-Enhancer can be seamlessly integrated into attention
head to improve the modeling of attention over graph structures. The integration only requires re-
placing the raw attention scores with the ones refined by SGA-Enhancer before applying the softmax
operation, and can be formulated by

AM = Softmax
(

SGA-Enhancer(Score(H,E),M, α)
)
, (12)

where AM denotes the final attention scores enhanced by a specific Spectral Relation Metric M.
By denoting the attention head function introduce SGA-Enhancer as AttnM, the refined multi-head
self-attention module can be defined as

MHAM(H,E) = Concat
(

AttnM,1(H,E), . . . ,AttnM,K(H,E)
)
WO. (13)

For each Spectral Relation Metric, we construct a dedicated multi-head self-attention module to cap-
ture graph structural information from different spectral components. The two modules are denoted
as MHAMlow(H,E) and MHAMhigh(H,E).

Spectral-Guided Graph Attention Layer: With the integration of multi-head spectral attention,
the complete Spectral-Guided Graph Attention Layer (SGA-Layer) is defined as

Ĥ = Norm
(
FFN

(
(1− β) · MHAMlow(H,E) + β · MHAMhigh(H,E)

))
, (14)

where β is a learnable parameter restricted in [0, 1] that dynamically balances the contributions from
low-frequency and high-frequency attention modules. The overall architecture, SGA-Former, is
built by stacking multiple SGA-Layers as shown in Fig. 3. Notably, considering a single spectral
branch of the SGA-Former, which is also included in the ablation study, we obtain the following
results regarding its expressiveness.
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Proposition 2. The power of a graph transformer with M to distinguish non-isomorphic graphs
is at most equivalent to that of the GD-WL test with M, assuming that additional edge features
are ignored. With appropriately chosen parameters, and a sufficient number of attention heads and
layers, a graph transformer with M can match the expressiveness of the GD-WL test with M.

The proof of this proposition can be found in Appendix A.2. This result provides a precise charac-
terization of the expressiveness and limitations of graph transformers utilizing M. By combining
Proposition 1, Proposition 2, and the proofs in Ying et al. (2021) (Appendix A.1), we immediately
obtain the following corollary:

Corollary 1. (Expressiveness of Graph Transformers with M). There exists a graph transformer
T , using M with fixed parameters, that is more expressive than graph transformers of the same
architecture that use SPD or do not incorporate any relative positional encoding, regardless of their
parameters.

This result provides a fine-grained analysis of the expressiveness of graph transformers with M,
demonstrating SGA-Former with M outperforms using SPD in terms of expressiveness.

4 EXPERIMENTS

4.1 BENCHMARKING SGA-FORMER

Datasets: We evaluate the effectiveness of our method across five benchmarks from the Benchmark-
ing GNNs work (Dwivedi et al., 2023) and two from the Long-Range Graph Benchmark (Dwivedi
et al., 2022). These datasets span a wide range of graph learning tasks—including node and graph
classification, as well as graph regression. Additionally, we also evaluate our method on a large-scale
dataset ZINC-full ( 250K graphs) (Irwin et al., 2012).

Baselines: We compare our method with a range of state-of-the-art graph learning models. These
methods include classical Graph Neural Networks such as GCN (Kipf, 2016), GIN (Xu et al., 2018),
GAT (Veličković et al., 2017), GatedGCN (Bresson and Laurent, 2017), GatedGCN-LSPE (Dwivedi
et al., 2021), and PNA (Corso et al., 2020); Graph Transformers including GRIT (Ma et al., 2023),
GraphGPS (Rampášek et al., 2022), Graphormer (Ying et al., 2021), K-Subgraph SAT (Chen et al.,
2022), EGT (Hussain et al., 2022), SAN (Kreuzer et al., 2021), Graphormer-UPRE (Luo et al.,
2022), Graphormer-GD (Zhang et al., 2023); and recent GNN variants with strong performance
such as DGN (Beaini et al., 2021), GSN (Bouritsas et al., 2022), CRaW1 (Toenshoff et al., 2021),
and GIN-AK+ (Zhao et al., 2021). Additionally, we consider recent attention-guiding optimization
approaches, including Exphormer (Shirzad et al., 2023), GradFormer (Liu et al., 2024) and MSA-
GT (Zhuang et al., 2025).

Benchmarks from Benchmarking GNNs: We comprehensively evaluate the proposed SGA-
Former on five benchmark datasets from Benchmarking GNNs (Dwivedi, Joshi, et al. 2023), in-
cluding ZINC, MNIST, CIFAR10, PATTERN, and CLUSTER. As reported in Table 1, SGA-Former
achieves the highest average performance on all datasets except ZINC, outperforming both MPNN-
based models and Graph Transformer baselines, including several state-of-the-art attention enhance-
ment approaches. These results demonstrate the effectiveness and strong generalization ability of
SGA-Former across diverse graph learning tasks, largely attributed to its spectral-guided attention
mechanism.

Long Range Graph Benchmarks: Next, we evaluate our method on the Long-Range Graph Bench-
mark (LRGB) (Dwivedi et al., 2022), which is designed to assess the ability of graph models to cap-
ture long-range dependencies. Specifically, we conduct experiments on two peptide-related datasets
from LRGB: Peptides-func (a 10-task multilabel classification task) and Peptides-struct (an 11-task
regression task). As summarized in Table 2, our model consistently achieves the highest average per-
formance on both benchmarks, surpassing leading MPNN-based methods and Graph Transformer
variants. These results demonstrate the effectiveness of our approach in modeling long-range inter-
actions within complex molecular graphs.

ZINC-full Dataset: We further evaluate our model on the large-scale ZINC-full dataset (Irwin et al.,
2012), which contains 250,000 molecular graphs and serves as a challenging benchmark for assess-
ing the scalability of graph neural networks. In addition to MPNN-based and Transformer-based

7
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Table 1: Performance comparison of different models across various benchmarks. In the experiment
of each dataset, the best result is bolded and the second best result is underlined.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Acc↑ Acc↑ Acc↑ Acc↑
GCN 0.367± 0.011 90.705± 0.218 55.710± 0.381 71.892± 0.334 68.498± 0.976
GIN 0.526± 0.051 96.485± 0.252 55.255± 1.527 85.387± 0.136 64.716± 1.553
GAT 0.384± 0.007 95.535± 0.205 64.223± 0.455 78.271± 0.186 70.587± 0.447
GatedGCN 0.282± 0.015 97.340± 0.143 67.312± 0.311 85.568± 0.088 73.840± 0.326
GatedGCN-LSPE 0.090± 0.001 – – – –
PNA 0.188± 0.004 97.94± 0.12 70.35± 0.63 – –
DGN 0.168± 0.003 – 72.838± 0.417 86.680± 0.034 –
GSN 0.101± 0.010 – – – –

CRaW1 0.085± 0.004 97.944± 0.050 69.013± 0.259 – –
GIN-AK+ 0.080± 0.001 – 72.19± 0.13 86.850± 0.057 –

SAN 0.139± 0.006 – – 86.581± 0.037 76.691± 0.650
Graphormer 0.122± 0.006 – – – –
K-Subgraph SAT 0.094± 0.008 – – 86.848± 0.037 77.856± 0.104
EGT 0.108± 0.009 98.173± 0.087 68.702± 0.409 86.821± 0.020 79.232± 0.348
Graphormer-URPE 0.086± 0.007 – – – –
Graphormer-GD 0.081± 0.009 – – – –
GPS 0.070± 0.004 98.051± 0.126 72.298± 0.356 86.685± 0.059 78.016± 0.180
GRIT 0.059± 0.002 98.108± 0.111 76.468± 0.881 87.196± 0.076 80.026± 0.277

Exphormer – 98.550± 0.039 74.690± 0.125 86.740± 0.015 78.070± 0.037
GradFormer 0.069± 0.002 – – 86.892± 0.070 78.550± 0.016
MSA-GT 0.122± 0.001 98.405± 0.128 72.971± 0.331 86.732± 0.044 78.578± 0.041

SGA-Former (ours) 0.059± 0.002 98.580± 0.130 77.43± 0.301 87.252± 0.066 80.102± 0.242

Table 2: Test performance on two benchmarks
from Long-range Graph Benchmarks (LRGB).
Best results are bold, second best underlined
(mean ± s.d. of 4 runs).

Model Peptides-func (AP↑) Peptides-struct (MAE↓)
GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GINE 0.5498 ± 0.0079 0.3547 ± 0.0045
GatedGCN+RWSE 0.6069 ± 0.0035 0.3357 ± 0.0006
CKGCN 0.6952 ± 0.0068 0.2477 ± 0.0018

Transformer+LapPE 0.6326 ± 0.0126 0.2529 ± 0.0016
SAN+LapPE 0.6384 ± 0.0121 0.2683 ± 0.0043
SAN+RWSE 0.6439 ± 0.0075 0.2545 ± 0.0012

GPS 0.6535 ± 0.0041 0.2500 ± 0.0012
Exphormer 0.6527 ± 0.0034 0.2481 ± 0.0007
GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012
MSA-GT 0.6605 ± 0.0180 0.2470 ± 0.0015

SGA-Former (ours) 0.7070 ± 0.0262 0.2430 ± 0.0011

Table 3: Test performance on ZINC-full. Best
results are bold, second best underlined (mean
± s.d. over 4 runs.)

Method Model ZINC-full (MAE ↓)

GNN

GIN 0.088 ± 0.002
GraphSAGE 0.126 ± 0.003
GAT 0.111 ± 0.002
GCN 0.113 ± 0.002
MoNet 0.090 ± 0.002
SignNet 0.024 ± 0.003

Graph Transformers

Graphormer 0.052 ± 0.005
Graphormer-URPE 0.028 ± 0.002
Graphormer-GD 0.025 ± 0.004
GRIT 0.023 ± 0.001
MSA-GT 0.025 ± 0.002

SGA-Former (ours) 0.020 ± 0.002

GNNs, the comparison also includes position-enhanced models such as SignNet (Lim et al., 2022).
As shown in Table 3, SGA-Former achieves the best mean performance, consistently outperforming
all baseline models across different architectural paradigms.

4.2 ABLATION AND SENSITIVITY ANALYSIS

Ablation Study: Table 4 reports ablation results on MNIST and CIFAR10, highlighting the effec-
tiveness of each component in SGA-Former. Removing the SGA-Enhancer significantly reduces
performance, confirming its core role. Both SA-Pruner and SA-Scaler contribute to performance
improvement. Additionally, removing either the low-pass or high-pass branch leads to performance
drops, indicating that both frequency-guided branches are beneficial and complementary.

Attention Keeping Rate α: We conduct a sensitivity analysis on the attention keeping rate
α in SA-Pruner, where the model operates with only a single branch (either low-pass or
high-pass) active, as shown in Table 5. The results demonstrate that the model consis-
tently achieves strong performance across a broad range of α values on both MNIST and CI-
FAR, despite being restricted to a single branch. For the low-pass branch, accuracy gener-
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ally increases with higher α, peaking around 0.80–0.90. In contrast, the high-pass branch re-
mains relatively stable, with only minor fluctuations across different α values. Notably, ex-
tremely low α values (e.g., 0.05) result in slight performance drops, indicating that retain-
ing too few attention scores may hinder the model’s ability to capture meaningful features.

Table 4: Ablations on MNIST and CIFAR10,
showing Acc and change relative to SGA-Former.
(mean ± s.d. of 4 runs)

MNIST (Acc↑) CIFAR10 (Acc↑)
SGA-Former (ours) 98.58 ± 0.130 77.43 ± 0.301

- Remove SGA-Enhancer 98.11 ± 0.111 76.47 ± 0.281
- Remove SA-Pruner 98.23 ± 0.121 77.01 ± 0.321
- Remove SA-Scaler 98.38 ± 0.091 76.88 ± 0.295
- Remove low pass branch 98.13 ± 0.132 76.51 ± 0.326
- Remove high pass branch 98.34 ± 0.109 77.01 ± 0.321

Table 5: Performance across different attention
keeping rate for single-branch configurations.

α 0.05 0.20 0.40 0.60 0.80 0.90 1.0

(low) MNIST 97.76 98.25 98.24 98.33 98.27 98.30 98.10
CIFAR 76.12 76.36 76.37 76.33 76.71 76.96 76.66

(high) MNIST 97.96 98.05 98.04 98.13 98.10 98.14 98.01
CIFAR 75.88 76.37 76.15 76.47 75.95 76.02 75.80

Table 6: Performance comparison under different
spectral filter hyperparameter k.
k 2 4 6 8 16 24 32

MNIST 98.10 98.37 98.54 98.49 98.49 98.55 98.54
CIFAR 76.20 76.85 77.42 77.44 77.62 77.35 77.37

Spectral Filter Hyperparameter k: We inves-
tigate the sensitivity of the spectral filter hyper-
parameter k. As shown in Table 6, the per-
formance remains consistently strong across a
broad range of k values on both MNIST and CI-
FAR. Extremely small values of k (e.g., k = 2)
lead to noticeable performance degradation, in-
dicating that insufficient frequency components
may hinder expressive capacity. As shown in
Figure 5, increasing k sharpens both low-pass
and high-pass filters, enhancing their frequency
selectivity. This improved filtering effect helps
stabilize model performance at larger k values.

5 CONCLUSION

In this work, we propose SGA-Former, a novel
Graph Transformer architecture that first intro-
duces spectral inductive biases to guide atten-
tion learning in graphs. Grounded in spectral
graph theory, we design two complementary re-
lation metrics, enabling the model to effectively
perceive both low and high-frequency topolog-
ical patterns. To leverage these spectral priors,
we propose the Spectral-Guided Attention Enhancer (SGA-Enhancer) as a core component, which
combines a pruning module and an adaptive scaling module to refine attention weights based on
structural relevance. Beyond its theoretically stronger expressive power, extensive experiments on
multiple graph benchmarks show that SGA-Former consistently outperforms existing baselines. In
the future, further work can focus on designing more diverse or learnable spectral filters for richer
structural modeling and developing adaptive pruning strategies to dynamically control attention spar-
sity and improve efficiency.
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Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., and Beaini, D. (2022). Recipe
for a general, powerful, scalable graph transformer. Advances in Neural Information Processing
Systems, 35:14501–14515.

Sandryhaila, A. and Moura, J. M. (2014). Discrete signal processing on graphs: Frequency analysis.
IEEE Transactions on signal processing, 62(12):3042–3054.

Shehzad, A., Xia, F., Abid, S., Peng, C., Yu, S., Zhang, D., and Verspoor, K. (2024). Graph trans-
formers: A survey. arXiv preprint arXiv:2407.09777.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland, D. J., and Sinop, A. K. (2023). Ex-
phormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pages 31613–31632. PMLR.

Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. (2021). Graph learning with 1d convolutions on
random walks. arXiv preprint arXiv:2102.08786.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing systems,
30.
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APPENDIX

A METHOD DETAILS

A.1 PROOF OF PROPOSITION 1

Restatement of Proposition 1: GD-WL with M is strictly more expressive than GD-WL with the
shortest path distance SPD, provided all individual terms in the sums defining M are accessible.
Proof. First, we show that GD-WL with M is at least as expressive as GD-WL with shortest path
distances (SPD). Then, we provide a specific example of two graphs that cannot be distinguished by
GD-WL with SPD, but can be distinguished by GD-WL with M.

Let
M(t) = (±D−1/2AD−1/2)t

denote the individual terms in the sum

M =

k∑
t=1

M(t), t ≤ k.

Since k ≥ diam(G), for any pair of nodes i, j, we have

SPD(i, j) =

{
0, if i = j,

min{t : M(t)
i,j > 0}, if i ̸= j.

Consequently, M can be reduced to SPD via the mapping

SPD(i, j) = f(M)i,j ,

ensuring that GD–WL with M is at least as expressive as GD–WL with SPD.

To demonstrate the strict expressivity advantage of GD-WL with M, we consider two non-
isomorphic graphs—the Desargues graph and the Dodecahedral graph. As shown in Figure 6
of Zhang et al. (2023), GD-WL using SPD fails to distinguish these graphs. In contrast, as visu-
alized in Figure 7, the heatmaps of Mlow and Mhigh reveal clearly distinct value distributions across
the two graphs (k is set to 6). This indicates that in the first round of color refinement in GD-WL
test, defined as

χ1
G(v) := hash

{(
Mv,u, χ

0
G(u)

)
: u ∈ V

}
,

the two graphs produce different multi-sets of node colors. Consequently, GD-WL with M suc-
cessfully differentiates them, demonstrating its superior structural discriminative power compared
to SPD-based GD-WL.

A.2 PROOF OF PROPOSITION 2

Restatement of Proposition 2: The power of a graph transformer with M to distinguish non-
isomorphic graphs is at most equivalent to that of the GD-WL test with M, ignoring any additional
edge features. With appropriately chosen parameters, and a sufficient number of attention heads and
layers, a graph transformer with T can match the expressiveness of the GD-WL test with M.

Proof. The theorem is divided into two parts: the first and second halves. We begin by considering
the first half: The power of a graph transformer with M to distinguish non-isomorphic graphs is at
most equivalent to that of the GD-WL test with M, ignoring any additional edge features.

Recall that the GD-WL with M is straightforward and can be expressed as:

χt
G(v) := hash

{(
Mv,u, χ

t−1
G (u)

)
: u ∈ V

}
where χt

G(v) represents a color mapping function.

Suppose after t iterations, a graph transformer S with M satisfies S(G1) ̸= S(G2), yet GD-WL
with M fails to distinguish G1 and G2 as non-isomorphic. This implies that from iteration 0 to t in

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 7: The heatmaps of M in the Desargues graph and the Dodecahedral graph.

the GD-WL test, G1 and G2 always have the same collection of node labels. Specifically, since G1

and G2 have the same GD-WL node labels at each iteration i + 1 for i = 0, . . . , t − 1, they share
the same collection of GD-WL node labels:{(

Mv,u, χ
i
G(u)

)
: u ∈ V

}
.

Otherwise, the GD-WL test would have produced different node labels at iteration i+ 1 for G1 and
G2.

Now, we show that for the same graph (say, G = G1), if χi
G(v) = χi

G(w), then the graph trans-
former node features hi

v = hi
w for any iteration i. This is true for i = 0 because both the GD-WL

and the graph transformer start with identical node features. Assuming this holds for iteration j, if
χj+1
G (v) = χj+1

G (w), we deduce:{(
Mv,u, χ

j
G(u)

)
: u ∈ V

}
=
{(

Mw,u, χ
j
G(u)

)
: u ∈ V

}
.

For simplicity, we set the parameter α of the SA-Pruner to 1 and ignore edge feature injection. We
then deduce:

hj+1
v =

∑
u∈V

Softmax
(
Score(Hj)u,v ⊙ f(M)u,v

)
·V(hj

u) = φ
({(

Mv,u, χ
j
G(u)

)
: u ∈ V

})
.

Hence,

hj+1
v = φ

({(
Mv,u, χ

j
G(u)

)
: u ∈ V

})
= φ

({(
Mw,u, χ

j
G(u)

)
: u ∈ V

})
= hj+1

w .

By induction, if χi
G(v) = χi

G(w), then hi
v = hi

w for any iteration i. Therefore, from G1 and G2

having identical GD-WL node labels, it follows that they must also have the same graph trans-
former node features. Consequently, hi+1

v = hi+1
w . Given that the graph-level readout func-

tion is permutation-invariant with respect to the collection of node features, we conclude that
S(G1) = S(G2), which leads to a contradiction.

This completes the proof of the first half of the theorem. For the second half of the theorem, we can
entirely rely on the proof of Theorem E.3 in Zhang et al. (2023) (provided in Appendix E.3), which
presents a similar situation.

A.3 VISUALIZATION OF SPECTRAL FILTERING EFFECTS

Although we have already visualized the spectral responses of the low-pass and high-pass filters in
the main text, demonstrating that larger values of k lead to stronger filtering effects on low- and
high-frequency components, we additionally visualize the corresponding Spectral Relation Metrics
in the spatial domain in Fig. 8 and Fig. 9. As k increases, the learned structural patterns are shown
to converge to stable configurations that consistently reflect the respective frequency characteristics.
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(a) Low-pass

(b) High-pass

Figure 8: Spatial visualization of (a) Mlow and (b) Mhigh on a stochastic block model with two
communities, under different k settings.

(a) Low-pass

(b) High-pass

Figure 9: Spatial visualization of (a) Mlow and (b) Mhigh in the 2-Phenylpyridine module, under
different k settings.

A.4 PERPETIDES OF NORMALIZED LAPLACIAN MATRIX LSYM

1. DEFINITIONS AND PROPERTIES

The normalized graph Laplacian matrix Lsym is defined as:

Lsym = D−1/2(D −A)D−1/2 = I −D−1/2AD−1/2

where D is the degree matrix (a diagonal matrix where each entry Dii = deg(i)), A is the adjacency
matrix, where Aij = 1 if there is an edge between nodes i and j, and 0 otherwise.

The matrix Lsym is symmetric and positive semi-definite, with real eigenvalues satisfying:

0 = λ0 < λ1 ≤ · · · ≤ λmax ≤ 2.

2. PROOF OF ORTHOGONALITY OF EIGENVECTORS

Since Lsym is real and symmetric, its eigenvectors corresponding to distinct eigenvalues are orthog-
onal. Let λi ̸= λj be two distinct eigenvalues, with corresponding eigenvectors ui and uj . Then:

Lsymui = λiui, Lsymuj = λjuj

14
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Taking the inner product of the first equation:

uT
j Lsymui = λiu

T
j ui

Taking the inner product of the second equation:

uT
i Lsymuj = λju

T
i uj

Since Lsym is symmetric, the left-hand sides of these equations are equal, so we obtain:

(λi − λj)u
T
i uj = 0

For λi ̸= λj , this implies:

uT
i uj = 0

Thus, the eigenvectors corresponding to distinct eigenvalues of Lsym are orthogonal.

3. PROOF OF EIGENVALUE RANGE [0, 2]

We now prove that the eigenvalues of the normalized Laplacian matrix Lsym lie in the range [0, 2].

LOWER BOUND: λ0 = 0

We first show that all eigenvalues are non-negative, with the smallest eigenvalue λ0 = 0. Using the
Rayleigh quotient:

R(f) =
fTLsymf

fT f
≥ 0

where f is any vector. For Lsym, the Rayleigh quotient is always non-negative. Additionally, we
have the expression for the Rayleigh quotient as:

R(f) =
∑

(i,j)∈E

Wij

(√
fi√
di

−
√
fj√
dj

)2

Since the sum is always non-negative, we conclude that the smallest eigenvalue λ0 = 0, which
corresponds to the constant eigenvector (where all components of f are equal).

UPPER BOUND: λmax ≤ 2

Next, we show that the largest eigenvalue λmax is bounded above by 2. Using the spectral properties
of Lsym, we can write:

Lsym + L2
sym = 2I

This implies:

L2
sym = 2I − Lsym

Thus, we deduce that the largest eigenvalue is:

λmax ≤ 2

For bipartite graphs, λmax = 2, while for non-bipartite graphs, we have λmax < 2.
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CONCLUSION

We have proven the following:

• Orthogonality: The eigenvectors corresponding to distinct eigenvalues of the normalized
Laplacian matrix Lsym are orthogonal.

• Eigenvalue Range: The eigenvalues of Lsym lie in the range [0, 2], with the smallest eigen-
value being λ0 = 0 (corresponding to the constant eigenvector) and the largest eigenvalue
λmax = 2 for bipartite graphs, and strictly less than 2 for non-bipartite graphs.

Thus, the eigenvalues of Lsym lie within the interval [0, 2], completing the proof.

A.5 COMPARISON WITH CURRENT SPECTRAL GRAPH TRANSFORMER APPROACHES

It is important to note that while a few existing works have explored the combination of spectral
domain and graph transformers, the motivations and objectives of these works significantly differ
from our study. The core of our approach lies in incorporating structural knowledge from the spectral
domain to explicitly constrain the learning process of attention (such as pruning and scaling). In
contrast, Kreuzer et al. (2021) aims to introduce spectral domain knowledge for position encoding,
implicitly guiding the learning of attention, but does not directly constrain attention pruning or align
it with spectral domain signals. Notably, such position encoding could also be incorporated into our
framework. On the other hand, Bo et al. (2023) focuses on using the transformer framework to learn
graph spectral filters, but strictly speaking, this is not a standard Graph Transformer, as it does not
directly learn the attention between nodes.

B IMPLEMENTATION DETAILS

B.1 NODE AND EDGE POSITIONAL ENCODING

In this work, we incorporate edge and node positional encoding from GRIT (Ma et al., 2023) as
auxiliary structural features to enhance the model’s input representations. Specifically, the input
positional encoding Fedge,ij are constructed as

Fedge,ij = [I,T,T2, . . . ,TK−1]i,j ∈ RK , (15)

where T = D−1A. The node positional encodings Fnode,i = Fedge,ii.

B.2 GRIT ATTENTION COMPUTATION

In this work, we adopt the GRIT attention calculation module to better encode graph structures.
GRIT updates edge features during attention computation, allowing structural information to be
implicitly integrated. Specifically, the attention score between node i and j is defined as

Score(H,E)i,j = WA · Update(Ei,j ,Hi,Hj), (16)

where Update(·) denotes a function that computes the updated edge representation Êi,j as

Êi,j = Update(Ei,j ,Hi,Hj)

= σ
(
ρ
(
(WQHi +WKHj)⊙WEwEi,j

)
+WEbEi,j

)
,

(17)

where σ(·) and ρ(·) denote non-linear activation functions, ⊙ represents element-wise mul-
tiplication, and WA, WQ, WK, WEw, WEb are learnable weight matrices. Given A =
Softmax(Score(H,E)), the updated edge features are further incorporated into the aggregation step
as an edge enhancement term by

Attn(H,E) = A ·V(H) + EdgeEnh(A, Ê). (18)

The edge enhancement term EdgeEnh(·) is defined as

EdgeEnh(A, Ê)i =
∑
j∈V

Aij ·WEvÊi,j , (19)

where V denotes the node set of the input graph and WEv is a weight matrix.
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B.3 NOTES ON REPRODUCIBILITY

Our implementation is based on PyTorch and PyTorch Geometric. Some graph operations in PyTorch
Geometric are non-deterministic when executed on GPUs, which may lead to slight variations in
results across different runs, even under the same random seed. This behavior is common across
many existing GNN implementations.

C EXPERIMENTAL DETAILS

C.1 DESCRIPTION OF DATASETS

A summary of the dataset statistics and characteristics is provided in Table 7. The first five datasets
are adopted from (Dwivedi et al., 2023), while the middle two are sourced from (Dwivedi et al.,
2022). Readers are referred to (Rampášek et al., 2022) for more details of the datasets.

Table 7: Statistics of datasets used in our experiments.

Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction level Prediction task Metric
ZINC(-full) 12,000 (250,000) 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Weighted Accuracy

Peptides-func 15,535 150.9 307.3 No graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

C.2 DATASET SPLITS AND RANDOM SEED

We conduct the experiments on the standard train/validation/test splits of the evaluated benchmarks,
following previous works (Rampášek et al., 2022). For each dataset, we execute 4 trials with differ-
ent random seeds (0, 1, 2, 3) and report the mean performance and standard deviation.

C.3 HYPERPARAMETERS

Due to constraints in time and computational resources, we refrain from conducting an exhaustive
hyperparameter search. Instead, we initialize from the hyperparameter configuration of GRIT (Ma
et al., 2023) and apply limited tuning to strike a balance between model complexity and performance.
The final configurations are summarized in Table 8 and Table 9.

C.4 EXPERIMENT DEVICE

For all datasets, we conducted the experiments with NVIDIA A100.

D USE OF LLMS STATEMENT

In preparing this manuscript, we used Chatgpt to assist in language polishing and improving read-
ability of the text. The Chatgpt was used solely for drafting and refining phrasing; all scientific
content, ideas, derivations, and experimental results were developed and verified by the authors.
We take full responsibility for the accuracy, validity, and integrity of all content in this manuscript,
including any portions generated with the assistance of LLMs.
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Table 8: Hyperparameters for five datasets from BenchmarkingGNNs.

Hyperparameter ZINC MNIST CIFAR10 PATTERN CLUSTER
# Transformer Layers 11 5 8 7 18
Hidden dim 64 64 52 64 96
# Heads 8 4 4 8 8
Dropout 0 0 0 0 0.01
Attention dropout 0.2 0.2 0.5 0.1 0.15
Graph pooling sum mean mean mean –

α (low-pass branch) 0.7 0.3 0.3 0.9 0.9
α (high-pass branch) 0.7 0.3 0.3 0.9 0.9
k (filter setting) 20 18 18 20 16

PE dim (RW-steps) 21 18 18 21 32
PE encoder linear linear linear linear linear

Batch size 256 64 64 32 16
Learning Rate 0.001 0.001 0.001 0.001 0.0005
# Epochs 2000 200 200 100 100
# Warmup epochs 50 5 5 5 5
Weight decay 1e−5 4e−5 1e−5 1e−4 1e−5

# Parameters 473,473 377,738 394,246 508,641 2,912,166

Table 9: Hyperparameters for ZINC-full and the Long-Range Graph Benchmark.

Hyperparameter ZINC-full Peptides-func Peptides-struct
# Transformer Layers 10 5 7
Hidden dim 64 96 96
# Heads 8 4 8
Dropout 0 0 0.05
Attention dropout 0.2 0.5 0.2
Graph pooling sum mean mean

α (low-pass branch) 0.3 0.3 0.9
α (high-pass branch) 0.3 0.3 0.9
k (filter setting) 20 16 16

PE dim (RW-steps) 21 17 18
PE encoder linear linear linear

Batch size 512 32 32
Learning Rate 0.001 0.003 0.0003
# Epochs 2000 200 200
# Warmup epochs 50 5 5
Weight decay 1e−7 1e−5 0.0

# Parameters 729,601 840,186 1,160,747
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