
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING GRAPH TRANSFORMERS WITH SPEC-
TRAL GUIDANCE IN ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing Graph Transformers often overlook the limitations of self-attention
mechanism without inductive bias. The pure self-attention tends to aggregate fea-
tures from unrelated nodes and misalign attention with graph structures, leading
to suboptimal modeling of relational dependencies. Moreover, operating solely
in the spatial domain, self-attention underutilizes graph spectral components that
correspond to more detailed and comprehensive relational patterns. To address
the above issues, we propose the Spectral-Guided Attention Graph Transformer
(SGA-Former), which introduces rich structural priors from the graph spectral do-
main to guide attention learning. Specifically, we design two Spectral Relation
Metrics as attention bias, which capture complementary low and high-frequency
structural patterns. To leverage these priors, we develop the Spectral-Guided At-
tention Enhancer (SGA-Enhancer), which filters redundant attention scores and
emphasizes important node relationships based on the spectral metrics. Incorpo-
rating SGA-Enhancer, SGA-Former builds dual-branch Spectral Attention Lay-
ers that jointly utilize both spectral views, enabling more balanced and structure-
aware attention learning. Extensive experiments show that SGA-Former consis-
tently achieves superior performance across a wide range of graph learning tasks.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have achieved significant success in modalities like natural lan-
guage (Vaswani et al., 2017) and vision (Neil and Dirk, 2020), inspiring growing interest in adapting
them for graph data to address limitations of Graph Neural Networks (Khemani et al., 2024), such as
over-smoothing (Li et al., 2018), over-squashing (Oono and Suzuki, 2019), and limited expressive
power (Morris et al., 2019). Graph Transformers (Min et al., 2022) aim to overcome the above issues
by leveraging learned attention mechanisms instead of strictly following the input graph topology.
However, the pure Transformer architecture inherently lacks strong inductive biases (Neil and Dirk,
2020). Therefore, incorporating graph inductive biases becomes central to adapting Transformers to
graph data, enabling perception and utilization of the underlying graph structure.

There are two mainstream approaches to introducing graph inductive biases into Transformer-based
architectures. The first approach embeds GNN modules in series or parallel with attention layers, to
assist in modeling the graph structure (Rampášek et al., 2022; Chen et al., 2022; Zhang et al., 2024).
The second injects positional or structural encodings into node or edge features, enabling implicit
modeling of graph topology (Ma et al., 2023; Dwivedi et al., 2021; Ying et al., 2021). Although
structural cues are introduced in above Transformer-based studies, the self-attention mechanism still
suffers from inherent limitations due to the absence of inductive bias. Specifically, global attention
tends to aggregate features from unrelated nodes, leading to noisy attention distributions (Xing et al.,
2024), while the absence of explicit grounding in actual connection strengths reduces the model
sensitivity to graph-dependent relational structures (Liu et al., 2024; Zhuang et al., 2025; Zhao et al.,
2023).

Some studies begin to explore reducing redundant attention and guiding attention to focus on mean-
ingful node relationships. Exphormer (Shirzad et al., 2023) is the first to sparsify attention in Graph
Transformers by approximating the full graph structure, demonstrating that modeling all pairwise
node relationships is unnecessary. Gradformer (Liu et al., 2024) and MSA-GT (Zhuang et al., 2025)
introduce distance-based attention bias (Shehzad et al., 2024) to explicitly guide attention across

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

multiple levels of structural information. However, by relying on coarse approximations or local
spatial metrics, existing approaches fail to capture critical global structural patterns and struggle to
model complex relational dependencies. To address the above limitations, we turn to the spectral
domain, where different frequency bands exhibit distinctive advantages in encoding diverse global
structural patterns (Sandryhaila and Moura, 2014; Ortega et al., 2018). We design complemen-
tary low-pass and high-pass spectral filters to generate attention biases and visualize their effects
in comparison with existing methods on molecular and community graphs. As illustrated in Fig.1
and Fig.2, our approach extracts more informed relational patterns via frequency-specific filtering,
thereby better guiding attention with enhanced global structural awareness. To this end, we propose
the first approach that leverages spectral-domain priors as inductive bias to explicitly guide selective
attention learning in Graph Transformers.

In this work, we propose the Spectral-Guided Attention Graph Transformer (SGA-Former), a novel
architecture that explicitly integrates spectral guidance into graph attention. Specifically, we in-
troduce two Spectral Relation Metrics, Mlow and Mhigh, derived from graph signal filtering the-
ory. These metrics capture complementary structural patterns: Mlow encodes global smoothness
and structural coherence (low-frequency components), while Mhigh emphasizes local variations and
sharpness (high-frequency components). We further provide spatial-domain interpretations, offer-
ing an alternative message-passing perspective for understanding these metrics. Building upon these
spectral priors, we design the Spectral-Guided Attention Enhancer (SGA-Enhancer), which refines
attention learning by filtering redundant attention scores and highlighting structurally important
node relationships. Incorporating SGA-Enhancer, SGA-Former employs a dual-branch Spectral-
Guided Attention Layer (SGA-Layer) that simultaneously leverages low- and high-frequency struc-
tural priors. This design promotes more balanced, structure-aware attention learning, leading to
improved performance and generalization across diverse graph tasks. From a theoretical perspec-
tive, we further show that SGA-Former with Spectral Relation Metrics achieve stronger expressive
power compared to the commonly used SPD (shortest path distance) metric. The contributions of
this paper are:

• We propose SGA-Former, a novel graph Transformer that first leverages spectral priors to
explicitly facilitate selective attention learning. Guided by spectral structural cues, SGA-
Former achieves structure-aware and spectrally-informed representation learning.

• We design two Spectral Relation Metrics, Mlow and Mhigh to effectively capture comple-
mentary structural patterns across different frequency bands, with both both spectral and
spatial interpretations.

• We propose SGA-Enhancer, which selectively filters and reweights attention scores based
on spectral priors. By integrating SGA-Enhancer into a dual-branch layer architecture,
SGA-Former achieves improved structural modeling and superior performance across di-
verse graph learning tasks. Theoretical analysis is also provided to demenstrate the strong
expressiveness of SGA-Former.

2 PRELIMINARIES

Graph Transformer: The computation of a Graph Transformer (GT) layer, similar to that of the
standard Transformer, can be decomposed into two fundamental components: the multi-head self-
attention (MHA) mechanism and the feed-forward network (FFN). Given the input node features
H and the edge feature E, each attention head computes representations by attending to all node
features. A single attention head is formulated as

Attn(H,E) = Softmax(Score(H,E)) · V(H), (1)

where Score(·) denotes a function that computes the raw attention scores, and V(·) is a linear pro-
jection of node features. To better perceive graph structure, we adopt the attention mechanism and
feature encoding strategy from GRIT (Ma et al., 2023). GRIT updates edge features during attention
computation, allowing structural information to be implicitly integrated. The specific calculation
process of the GRIT attention head is provided in the Appendix B.2. The multi-head self-attention
(MHA) then aggregates the outputs from multiple attention heads by

MHA(H,E) = Concat (Attn1(H,E), . . . ,AttnK(H,E))WO, (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Visualization comparison of different attention biases in a stochastic block model with
2 communities. Thicker and darker edges indicate higher edge weight. The Without Attention
Bias refers to most approaches without explicitly injected selective attention mechanisms. The
Distance-based Attention Biased using 1/dist(i, j) as edge weight between node i and j. In the
proposed Spectral-Guided Attention Bias, Mlow reflects connectivity patterns within communities,
while Mhigh emphasizes cross-community links that highlight structural boundaries.

Figure 2: Visualization comparison of different attention biases in the 2-Phenylpyridine module.
In the proposed Spectral-Guided Attention Bias, Mlow captures more global atomic relationships
within functional groups, while Mhigh reveals higher-order interactions (eg. as star-like patterns).

where K is the number of heads and WO is an output projection matrix. The output is then passed
through a feed-forward network, followed by a normalization function to compute the updated node
features Ĥ by

Ĥ = Norm(FFN(MHA(H,E))). (3)
Graph Fourier Transform: Spectral variation of graphs is grounded in the frequency-domain de-
composition of the graph Laplacian matrix, which reflects the spatial-domain graph topology. In
this work, we adopt the symmetrically normalized Laplacian (Boukrab and Pagès-Zamora, 2021),
defined as Lsym = I −D−1/2AD−1/2, where A is the adjacency matrix and D is the degree ma-
trix. Since Lsym is a positive semi-definite matrix, it can be decomposed via eigendecomposition
as Lsym = UΛU⊤, where U contains the eigenvectors (graph Fourier bases), and Λ is a diagonal
matrix of eigenvalues (corresponding frequencies).

Spectral Prior as Inductive Bias: Different frequency components in the graph spectral domain
naturally encode distinct structural properties (Bo et al., 2021; Sandryhaila and Moura, 2014)).
Specifically, the low-frequency components correspond to smaller eigenvalues and capture smooth
variations over the graph. These components encode global structures, such as clusters or communi-
ties. In contrast, high-frequency components are associated with larger eigenvalues and reflect rapid
changes in signal values across adjacent nodes. These components highlight local differences, such
as structural boundaries and irregular connections. Motivated by the above perspective, we design
two Spectral Relation Metrics as attention bias, which act as a bridge between the rich structural
patterns encoded in the spectral domain and the guidance of graph attention learning.

3 METHODOLOGY

3.1 SPECTRAL RELATION METRICS CONSTRUCTION

Spectral Relation Metrics: Exploiting the complementarity and representativeness of spectral com-
ponents, we design two filters to amplify low and high-frequency signals in the graph Laplacian for
deriving Spectral Relation Metrics. For enhancing the low and high value frequencies respectively,
the two filter functions are constructed by

filterlow(Λ) =
1

k

k∑
i=1

(I−Λ)i (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: The architecture of the SGA-Former layer.

and

filterhigh(Λ) =
1

k

k∑
i=1

(Λ− I)i, (5)

where k is a hyperparameter. As shown in the Fig. 5, given that the eigenvalues in Λ are within
the range [0, 2], filterlow(·) emphasizes smaller eigenvalues while attenuating larger ones, whereas
filterhigh(·) does the opposite by reserving larger eigenvalues and suppressing the lower ones.

Subsequently, by applying filtering functions to the Laplacian matrix, we obtain modified graph
structures that reflect the strength of node connections associated with specific frequency bands.
Therefore, we call the obtained matrices as Spectral Relation Metrics, and denote them as Mhigh and
Mlow. Mhigh and Mlow can be calculated as

Mlow = Ufilterlow(Λ)U⊤ =
1

k

k∑
i=1

U(I−Λ)iU⊤

=
1

k

k∑
i=1

(I− Lsym)
i =

1

k

k∑
i=1

(D−1/2AD−1/2)i

(6)

and

Mhigh = Ufilterhigh(Λ)U⊤ =
1

k

k∑
i=1

U(Λ− I)iU⊤

=
1

k

k∑
i=1

(Lsym − I)i =
1

k

k∑
i=1

(−D−1/2AD−1/2)i

(7)

Notably, although computing the frequency components of Lsym requires costly eigendecomposi-
tion, our specifically designed filtering functions enable efficient computation using simple matrix
operations on the existing adjacency matrix A and degree matrix D. The two Spectral Relation
Metrics offer complementary insights into the structural properties of the graph. Specifically, Mlow
captures smooth and globally consistent relationships by emphasizing low-frequency components,
which tend to reflect shared cluster or community structures. In contrast, Mhigh emphasizes sharp
local variations and highlights structural boundaries or anomalies through high-frequency enhance-
ment. Together, they provide a spectral-aware perspective for node relations from comprehensive
viewpoints, enabling more informative modeling of relational dependencies.

Graph Spatial Domain Analysis: In the graph spatial domain, D−1/2AD−1/2 can be viewed as
a message propagation matrix (Kipf, 2016; Wu et al., 2019), where D−1/2AD−1/2AH represents
a single round of message passing across neighboring nodes. Consequently, (D−1/2AD−1/2)k

corresponds to the effect of k-step message propagation. From this perspective, each entry Mlow,ij

in Mlow can be interpreted as the average message propagation strength from node i to node j

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Low-pass (b) High-pass

Figure 5: (a) Effect of filterlow(·), (b) Effect of
filterhigh(·).

Figure 6: Effect of the scaling operators.

aggregated over propagation steps from 1 to k, capturing the smooth multi-hop diffusion process in
the graph (Gasteiger et al., 2019). In contrast, Mhigh introduces alternating signs through the term
(−D−1/2AD−1/2)k, which leads to the suppression of contributions from odd-order propagation
paths. These paths are closely related to the message propagation in dense structures such as clusters
or communities, and thus, the non-smooth, abrupt structural patterns in the graph are accentuated.
As shown in Fig. 1 and Fig. 2 , we visualize the edge weight of the two metrics (k = 8) in the
stochastic block model with 2 communities and 2-Phenylpyridine module. Across different graph
structures, both Mlow and Mhigh consistently provide complementary spatial connectivity views and
capture more informative relational patterns. These spatial effects demonstrate that the two Spectral
Attention Metrics can serve as strong inductive biases for guiding graph attention learning.

Expressness of Spectral Relation Metrics: Recent works (Liu et al., 2024; Zhuang et al., 2025)
introduce distance-based attention biases to explicitly guide the attention mechanism. Motivated
by this, we evaluate the superior expressiveness of Spectral Relation Metrics over SPD (shortest
path distance) using recently proposed graph isomorphism tests inspired by the Weisfeiler-Leman
algorithm (Wang et al., 2020). Specifically, Zhang et al. (2023) introduced the Generalized Distance
Weisfeiler-Leman (GD-WL) test and applied it to analyze a graph transformer architecture that uses
SPD(i, j) as relative positional encodings. They theoretically established that the maximal expressive
power of such a graph transformer is upper-bounded by the GD-WL test with SPD. Here, we also
use the GD-WL test to showcase the expressiveness of the Spectral Relation Metrics.
Proposition 1. GD-WL with M is strictly more expressive than GD-WL with the shortest path
distance SPD, provided all individual terms in the sums defining M are accessible and k > diam(G)
(diameter of Graph G).

The proof is provided in Appendix A.1. Firstly, we show that the GD-WL test using Spectral Rela-
tion Metric M can differentiate between any two graphs that can be distinguished by the GD-WL
test with SPD. Next, we show that the GD-WL test with M is capable of the Dodecahedron and
Desargues graphs while the one with SPD cannot.

3.2 SPECTRAL-GUIDED ATTENTION ENHANCER

Based on the designed Spectral relation Metrics, we propose a Spectral-Guided Attention Enhancer
(SGA-Enhancer), which aims to prune and scale the attention matrix according to the spectral pri-
ors. To this end, SGA-Enhancer is composed of two components in series: Spectral-Aware Attention
Pruner (SA-Pruner) and Spectral-Aware Attention Scaler (SA-Scaler). Overall, the operation per-
formed by the SGA-Enhancer can be formally defined as

Aenhanced = SGA-Enhancer(Ascore,M, α) = SA-Scaler
(

SA-Pruner(M,Ascore, α),M
)
. (8)

In this formulation, M denotes a generic spectral relation metric matrix derived from any frequency
domain (e.g., Mlow or Mhigh); Ascore and Aenhanced denotes the raw attention score matrix output
by the Score(·) function and the enhanced attention scores refined by SGA-Enhancer; α is a hyper-
parameter. In the following, we provide a detailed description of the two constituent modules of
SGA-Enhancer.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Spectral-Aware Attention Pruner: Based on the node relation metrics constructed in the two spec-
tral domains, more important attention components can be easily identified, allowing the removal
of redundant relational learning. Therefore, for each metric, we can construct a Spectral-Aware
Attention Pruner as

SA-Pruner(M,Ascore, α) = Ascore + MaskM,

where MaskM,ij =


0, if Mij is among the top

α-fraction entries of M,

−∞, otherwise.

(9)

In this formulation, MaskM ∈ RN×N is an attention mask of the same dimension as Ascore. The
hyperparameter α ∈ [0, 1] specifies the proportion of node pairs with the highest values in M to
be retained. α can be independently configured for each spectral metric to selectively preserve
the attention corresponding to the most informative relational signals in the respective frequency
domain. The resulting masked attention score matrix is denoted as Amask.

Spectral-Aware Attention Scaler: To further enhance the guidance provided by spectral informa-
tion, we aim to adaptively modulate the strength of attention scores based on the Spectral Relation
Metrics. To achieve this, we design a Spectral-Aware Attention Scaler as

SA-Scaler(Amask,M) = Amask ⊙ f(M), (10)

where ⊙ denotes element-wise multiplication, and f(·) is a learnable, parameterized function.
Specifically, we implement f(M) as:

f(M) = exp (−ReLU(aM+ b)) . (11)

where exp(−ReLU(·) acts as a scaling operator, mapping input values to the range [0, 1]. It preserves
values near 1 while progressively attenuating others toward 0. In Fig. 6, we illustrate how inputs are
mapped to this range. The learnable scalars a and b control the rate and threshold of this attenuation,
enabling the model to adaptively modulate the attention intensity.

3.3 SPECTRAL-GUIDED ATTENTION GRAPH TRANSFORMER

Multi-head Spectral Attention: The SGA-Enhancer can be seamlessly integrated into attention
head to improve the modeling of attention over graph structures. The integration only requires re-
placing the raw attention scores with the ones refined by SGA-Enhancer before applying the softmax
operation, and can be formulated by

AM = Softmax
(

SGA-Enhancer(Score(H,E),M, α)
)
, (12)

where AM denotes the final attention scores enhanced by a specific Spectral Relation Metric M.
By denoting the attention head function introduce SGA-Enhancer as AttnM, the refined multi-head
self-attention module can be defined as

MHAM(H,E) = Concat
(

AttnM,1(H,E), . . . ,AttnM,K(H,E)
)
WO. (13)

For each Spectral Relation Metric, we construct a dedicated multi-head self-attention module to cap-
ture graph structural information from different spectral components. The two modules are denoted
as MHAMlow(H,E) and MHAMhigh(H,E).

Spectral-Guided Graph Attention Layer: With the integration of multi-head spectral attention,
the complete Spectral-Guided Graph Attention Layer (SGA-Layer) is defined as

Ĥ = Norm
(
FFN

(
(1− β) · MHAMlow(H,E) + β · MHAMhigh(H,E)

))
, (14)

where β is a learnable parameter restricted in [0, 1] that dynamically balances the contributions from
low-frequency and high-frequency attention modules. The overall architecture, SGA-Former, is
built by stacking multiple SGA-Layers as shown in Fig. 3. Notably, considering a single spectral
branch of the SGA-Former, which is also included in the ablation study, we obtain the following
results regarding its expressiveness.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Proposition 2. The power of a graph transformer with M to distinguish non-isomorphic graphs
is at most equivalent to that of the GD-WL test with M, assuming that additional edge features
are ignored. With appropriately chosen parameters, and a sufficient number of attention heads and
layers, a graph transformer with M can match the expressiveness of the GD-WL test with M.

The proof of this proposition can be found in Appendix A.2. This result provides a precise charac-
terization of the expressiveness and limitations of graph transformers utilizing M. By combining
Proposition 1, Proposition 2, and the proofs in Ying et al. (2021) (Appendix A.1), we immediately
obtain the following corollary:

Corollary 1. (Expressiveness of Graph Transformers with M). There exists a graph transformer
T , using M with fixed parameters, that is more expressive than graph transformers of the same
architecture that use SPD or do not incorporate any relative positional encoding, regardless of their
parameters.

This result provides a fine-grained analysis of the expressiveness of graph transformers with M,
demonstrating SGA-Former with M outperforms using SPD in terms of expressiveness.

4 EXPERIMENTS

4.1 BENCHMARKING SGA-FORMER

Datasets: We evaluate the effectiveness of our method across five benchmarks from the Benchmark-
ing GNNs work (Dwivedi et al., 2023) and two from the Long-Range Graph Benchmark (Dwivedi
et al., 2022). These datasets span a wide range of graph learning tasks—including node and graph
classification, as well as graph regression. Additionally, we also evaluate our method on a large-scale
dataset ZINC-full (250K graphs) (Irwin et al., 2012).

Baselines: We compare our method with a range of state-of-the-art graph learning models. These
methods include classical Graph Neural Networks such as GCN (Kipf, 2016), GIN (Xu et al., 2018),
GAT (Veličković et al., 2017), GatedGCN (Bresson and Laurent, 2017), GatedGCN-LSPE (Dwivedi
et al., 2021), and PNA (Corso et al., 2020); Graph Transformers including GRIT (Ma et al., 2023),
GraphGPS (Rampášek et al., 2022), Graphormer (Ying et al., 2021), K-Subgraph SAT (Chen et al.,
2022), EGT (Hussain et al., 2022), SAN (Kreuzer et al., 2021), Graphormer-UPRE (Luo et al.,
2022), Graphormer-GD (Zhang et al., 2023); and recent GNN variants with strong performance
such as DGN (Beaini et al., 2021), GSN (Bouritsas et al., 2022), CRaW1 (Toenshoff et al., 2021),
and GIN-AK+ (Zhao et al., 2021). Additionally, we consider recent attention-guiding optimization
approaches, including Exphormer (Shirzad et al., 2023), GradFormer (Liu et al., 2024) and MSA-
GT (Zhuang et al., 2025).

Benchmarks from Benchmarking GNNs: We comprehensively evaluate the proposed SGA-
Former on five benchmark datasets from Benchmarking GNNs (Dwivedi, Joshi, et al. 2023), in-
cluding ZINC, MNIST, CIFAR10, PATTERN, and CLUSTER. As reported in Table 1, SGA-Former
achieves the highest average performance on all datasets except ZINC, outperforming both MPNN-
based models and Graph Transformer baselines, including several state-of-the-art attention enhance-
ment approaches. These results demonstrate the effectiveness and strong generalization ability of
SGA-Former across diverse graph learning tasks, largely attributed to its spectral-guided attention
mechanism.

Long Range Graph Benchmarks: Next, we evaluate our method on the Long-Range Graph Bench-
mark (LRGB) (Dwivedi et al., 2022), which is designed to assess the ability of graph models to cap-
ture long-range dependencies. Specifically, we conduct experiments on two peptide-related datasets
from LRGB: Peptides-func (a 10-task multilabel classification task) and Peptides-struct (an 11-task
regression task). As summarized in Table 2, our model consistently achieves the highest average per-
formance on both benchmarks, surpassing leading MPNN-based methods and Graph Transformer
variants. These results demonstrate the effectiveness of our approach in modeling long-range inter-
actions within complex molecular graphs.

ZINC-full Dataset: We further evaluate our model on the large-scale ZINC-full dataset (Irwin et al.,
2012), which contains 250,000 molecular graphs and serves as a challenging benchmark for assess-
ing the scalability of graph neural networks. In addition to MPNN-based and Transformer-based

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of different models across various benchmarks. In the experiment
of each dataset, the best result is bolded and the second best result is underlined.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Acc↑ Acc↑ Acc↑ Acc↑
GCN 0.367± 0.011 90.705± 0.218 55.710± 0.381 71.892± 0.334 68.498± 0.976
GIN 0.526± 0.051 96.485± 0.252 55.255± 1.527 85.387± 0.136 64.716± 1.553
GAT 0.384± 0.007 95.535± 0.205 64.223± 0.455 78.271± 0.186 70.587± 0.447
GatedGCN 0.282± 0.015 97.340± 0.143 67.312± 0.311 85.568± 0.088 73.840± 0.326
GatedGCN-LSPE 0.090± 0.001 – – – –
PNA 0.188± 0.004 97.94± 0.12 70.35± 0.63 – –
DGN 0.168± 0.003 – 72.838± 0.417 86.680± 0.034 –
GSN 0.101± 0.010 – – – –

CRaW1 0.085± 0.004 97.944± 0.050 69.013± 0.259 – –
GIN-AK+ 0.080± 0.001 – 72.19± 0.13 86.850± 0.057 –

SAN 0.139± 0.006 – – 86.581± 0.037 76.691± 0.650
Graphormer 0.122± 0.006 – – – –
K-Subgraph SAT 0.094± 0.008 – – 86.848± 0.037 77.856± 0.104
EGT 0.108± 0.009 98.173± 0.087 68.702± 0.409 86.821± 0.020 79.232± 0.348
Graphormer-URPE 0.086± 0.007 – – – –
Graphormer-GD 0.081± 0.009 – – – –
GPS 0.070± 0.004 98.051± 0.126 72.298± 0.356 86.685± 0.059 78.016± 0.180
GRIT 0.059± 0.002 98.108± 0.111 76.468± 0.881 87.196± 0.076 80.026± 0.277

Exphormer – 98.550± 0.039 74.690± 0.125 86.740± 0.015 78.070± 0.037
GradFormer 0.069± 0.002 – – 86.892± 0.070 78.550± 0.016
MSA-GT 0.122± 0.001 98.405± 0.128 72.971± 0.331 86.732± 0.044 78.578± 0.041

SGA-Former (ours) 0.059± 0.002 98.580± 0.130 77.43± 0.301 87.252± 0.066 80.102± 0.242

Table 2: Test performance on two benchmarks
from Long-range Graph Benchmarks (LRGB).
Best results are bold, second best underlined
(mean ± s.d. of 4 runs).

Model Peptides-func (AP↑) Peptides-struct (MAE↓)
GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GINE 0.5498 ± 0.0079 0.3547 ± 0.0045
GatedGCN+RWSE 0.6069 ± 0.0035 0.3357 ± 0.0006
CKGCN 0.6952 ± 0.0068 0.2477 ± 0.0018

Transformer+LapPE 0.6326 ± 0.0126 0.2529 ± 0.0016
SAN+LapPE 0.6384 ± 0.0121 0.2683 ± 0.0043
SAN+RWSE 0.6439 ± 0.0075 0.2545 ± 0.0012

GPS 0.6535 ± 0.0041 0.2500 ± 0.0012
Exphormer 0.6527 ± 0.0034 0.2481 ± 0.0007
GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012
MSA-GT 0.6605 ± 0.0180 0.2470 ± 0.0015

SGA-Former (ours) 0.7070 ± 0.0262 0.2430 ± 0.0011

Table 3: Test performance on ZINC-full. Best
results are bold, second best underlined (mean
± s.d. over 4 runs.)

Method Model ZINC-full (MAE ↓)

GNN

GIN 0.088 ± 0.002
GraphSAGE 0.126 ± 0.003
GAT 0.111 ± 0.002
GCN 0.113 ± 0.002
MoNet 0.090 ± 0.002
SignNet 0.024 ± 0.003

Graph Transformers

Graphormer 0.052 ± 0.005
Graphormer-URPE 0.028 ± 0.002
Graphormer-GD 0.025 ± 0.004
GRIT 0.023 ± 0.001
MSA-GT 0.025 ± 0.002

SGA-Former (ours) 0.020 ± 0.002

GNNs, the comparison also includes position-enhanced models such as SignNet (Lim et al., 2022).
As shown in Table 3, SGA-Former achieves the best mean performance, consistently outperforming
all baseline models across different architectural paradigms.

4.2 ABLATION AND SENSITIVITY ANALYSIS

Ablation Study: Table 4 reports ablation results on MNIST and CIFAR10, highlighting the effec-
tiveness of each component in SGA-Former. Removing the SGA-Enhancer significantly reduces
performance, confirming its core role. Both SA-Pruner and SA-Scaler contribute to performance
improvement. Additionally, removing either the low-pass or high-pass branch leads to performance
drops, indicating that both frequency-guided branches are beneficial and complementary.

Attention Keeping Rate α: We conduct a sensitivity analysis on the attention keeping rate
α in SA-Pruner, where the model operates with only a single branch (either low-pass or
high-pass) active, as shown in Table 5. The results demonstrate that the model consis-
tently achieves strong performance across a broad range of α values on both MNIST and CI-
FAR, despite being restricted to a single branch. For the low-pass branch, accuracy gener-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ally increases with higher α, peaking around 0.80–0.90. In contrast, the high-pass branch re-
mains relatively stable, with only minor fluctuations across different α values. Notably, ex-
tremely low α values (e.g., 0.05) result in slight performance drops, indicating that retain-
ing too few attention scores may hinder the model’s ability to capture meaningful features.

Table 4: Ablations on MNIST and CIFAR10,
showing Acc and change relative to SGA-Former.
(mean ± s.d. of 4 runs)

MNIST (Acc↑) CIFAR10 (Acc↑)
SGA-Former (ours) 98.58 ± 0.130 77.43 ± 0.301

- Remove SGA-Enhancer 98.11 ± 0.111 76.47 ± 0.281
- Remove SA-Pruner 98.23 ± 0.121 77.01 ± 0.321
- Remove SA-Scaler 98.38 ± 0.091 76.88 ± 0.295
- Remove low pass branch 98.13 ± 0.132 76.51 ± 0.326
- Remove high pass branch 98.34 ± 0.109 77.01 ± 0.321

Table 5: Performance across different attention
keeping rate for single-branch configurations.

α 0.05 0.20 0.40 0.60 0.80 0.90 1.0

(low) MNIST 97.76 98.25 98.24 98.33 98.27 98.30 98.10
CIFAR 76.12 76.36 76.37 76.33 76.71 76.96 76.66

(high) MNIST 97.96 98.05 98.04 98.13 98.10 98.14 98.01
CIFAR 75.88 76.37 76.15 76.47 75.95 76.02 75.80

Table 6: Performance comparison under different
spectral filter hyperparameter k.
k 2 4 6 8 16 24 32

MNIST 98.10 98.37 98.54 98.49 98.49 98.55 98.54
CIFAR 76.20 76.85 77.42 77.44 77.62 77.35 77.37

Spectral Filter Hyperparameter k: We inves-
tigate the sensitivity of the spectral filter hyper-
parameter k. As shown in Table 6, the per-
formance remains consistently strong across a
broad range of k values on both MNIST and CI-
FAR. Extremely small values of k (e.g., k = 2)
lead to noticeable performance degradation, in-
dicating that insufficient frequency components
may hinder expressive capacity. As shown in
Figure 5, increasing k sharpens both low-pass
and high-pass filters, enhancing their frequency
selectivity. This improved filtering effect helps
stabilize model performance at larger k values.

5 CONCLUSION

In this work, we propose SGA-Former, a novel
Graph Transformer architecture that first intro-
duces spectral inductive biases to guide atten-
tion learning in graphs. Grounded in spectral
graph theory, we design two complementary re-
lation metrics, enabling the model to effectively
perceive both low and high-frequency topolog-
ical patterns. To leverage these spectral priors,
we propose the Spectral-Guided Attention Enhancer (SGA-Enhancer) as a core component, which
combines a pruning module and an adaptive scaling module to refine attention weights based on
structural relevance. Beyond its theoretically stronger expressive power, extensive experiments on
multiple graph benchmarks show that SGA-Former consistently outperforms existing baselines. In
the future, further work can focus on designing more diverse or learnable spectral filters for richer
structural modeling and developing adaptive pruning strategies to dynamically control attention spar-
sity and improve efficiency.

REFERENCES

Beaini, D., Passaro, S., Létourneau, V., Hamilton, W., Corso, G., and Liò, P. (2021). Directional
graph networks. In International Conference on Machine Learning, pages 748–758. PMLR.

Bo, D., Shi, C., Wang, L., and Liao, R. (2023). Specformer: Spectral graph neural networks meet
transformers. arXiv preprint arXiv:2303.01028.

Bo, D., Wang, X., Shi, C., and Shen, H. (2021). Beyond low-frequency information in graph con-
volutional networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 3950–3957.

Boukrab, R. and Pagès-Zamora, A. (2021). Random-walk laplacian for frequency analysis in peri-
odic graphs. Sensors, 21(4):1275.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M. (2022). Improving graph neural
network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(1):657–668.

Bresson, X. and Laurent, T. (2017). Residual gated graph convnets. arXiv preprint
arXiv:1711.07553.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Chen, D., O’Bray, L., and Borgwardt, K. (2022). Structure-aware transformer for graph representa-
tion learning. In International conference on machine learning, pages 3469–3489. PMLR.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković, P. (2020). Principal neighbourhood
aggregation for graph nets. Advances in neural information processing systems, 33:13260–13271.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X. (2023). Bench-
marking graph neural networks. Journal of Machine Learning Research, 24(43):1–48.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X. (2021). Graph neural networks
with learnable structural and positional representations. arXiv preprint arXiv:2110.07875.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf, G., Luu, A. T., and Beaini, D. (2022).
Long range graph benchmark. Advances in Neural Information Processing Systems, 35:22326–
22340.

Gasteiger, J., Weißenberger, S., and Günnemann, S. (2019). Diffusion improves graph learning.
Advances in neural information processing systems, 32.

Hussain, M. S., Zaki, M. J., and Subramanian, D. (2022). Global self-attention as a replacement
for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 655–665.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and Coleman, R. G. (2012). Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling,
52(7):1757–1768.

Khemani, B., Patil, S., Kotecha, K., and Tanwar, S. (2024). A review of graph neural networks: con-
cepts, architectures, techniques, challenges, datasets, applications, and future directions. Journal
of Big Data, 11(1):18.

Kipf, T. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and Tossou, P. (2021). Rethinking graph
transformers with spectral attention. Advances in Neural Information Processing Systems,
34:21618–21629.

Li, Q., Han, Z., and Wu, X.-M. (2018). Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the AAAI conference on artificial intelligence, volume 32.

Lim, D., Robinson, J., Zhao, L., Smidt, T., Sra, S., Maron, H., and Jegelka, S. (2022). Sign and basis
invariant networks for spectral graph representation learning. arXiv preprint arXiv:2202.13013.

Liu, C., Yao, Z., Zhan, Y., Ma, X., Pan, S., and Hu, W. (2024). Gradformer: Graph transformer with
exponential decay. arXiv preprint arXiv:2404.15729.

Luo, S., Li, S., Zheng, S., Liu, T.-Y., Wang, L., and He, D. (2022). Your transformer may not be as
powerful as you expect. Advances in Neural Information Processing Systems, 35:4301–4315.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania, P. K., Coates, M., Torr, P., and Lim, S.-
N. (2023). Graph inductive biases in transformers without message passing. In International
Conference on Machine Learning, pages 23321–23337. PMLR.

Min, E., Chen, R., Bian, Y., Xu, T., Zhao, K., Huang, W., Zhao, P., Huang, J., Ananiadou, S., and
Rong, Y. (2022). Transformer for graphs: An overview from architecture perspective. arXiv
preprint arXiv:2202.08455.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. (2019).
Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pages 4602–4609.

Neil, H. and Dirk, W. (2020). Transformers for image recognition at scale. Online: https://ai.
googleblog. com/2020/12/transformers-forimage-recognitionat. html.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Oono, K. and Suzuki, T. (2019). Graph neural networks exponentially lose expressive power for
node classification. arXiv preprint arXiv:1905.10947.

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., and Vandergheynst, P. (2018). Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808–828.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., and Beaini, D. (2022). Recipe
for a general, powerful, scalable graph transformer. Advances in Neural Information Processing
Systems, 35:14501–14515.

Sandryhaila, A. and Moura, J. M. (2014). Discrete signal processing on graphs: Frequency analysis.
IEEE Transactions on signal processing, 62(12):3042–3054.

Shehzad, A., Xia, F., Abid, S., Peng, C., Yu, S., Zhang, D., and Verspoor, K. (2024). Graph trans-
formers: A survey. arXiv preprint arXiv:2407.09777.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland, D. J., and Sinop, A. K. (2023). Ex-
phormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pages 31613–31632. PMLR.

Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. (2021). Graph learning with 1d convolutions on
random walks. arXiv preprint arXiv:2102.08786.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing systems,
30.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2017). Graph
attention networks. arXiv preprint arXiv:1710.10903.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. (2020). Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019). Simplifying graph
convolutional networks. In International conference on machine learning, pages 6861–6871.
Pmlr.

Xing, Y., Wang, X., Li, Y., Huang, H., and Shi, C. (2024). Less is more: on the over-globalizing
problem in graph transformers. arXiv preprint arXiv:2405.01102.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., and Liu, T.-Y. (2021). Do transform-
ers really perform badly for graph representation? Advances in neural information processing
systems, 34:28877–28888.

Zhang, B., Luo, S., Wang, L., and He, D. (2023). Rethinking the expressive power of gnns via graph
biconnectivity. arXiv preprint arXiv:2301.09505.

Zhang, P., Yan, Y., Zhang, X., Li, C., Wang, S., Huang, F., and Kim, S. (2024). Transgnn: Harnessing
the collaborative power of transformers and graph neural networks for recommender systems. In
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1285–1295.

Zhao, H., Ma, S., Zhang, D., Deng, Z.-H., and Wei, F. (2023). Are more layers beneficial to graph
transformers? arXiv preprint arXiv:2303.00579.

Zhao, L., Jin, W., Akoglu, L., and Shah, N. (2021). From stars to subgraphs: Uplifting any gnn with
local structure awareness. arXiv preprint arXiv:2110.03753.

Zhuang, J., Li, J., Shi, C., Lin, X., and Fu, Y.-G. (2025). Enhanced graph transformer: Multi-scale
attention with heterophilous curriculum augmentation. Knowledge-Based Systems, 309:112874.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A METHOD DETAILS

A.1 PROOF OF PROPOSITION 1

Restatement of Proposition 1: GD-WL with M is strictly more expressive than GD-WL with the
shortest path distance SPD, provided all individual terms in the sums defining M are accessible.
Proof. First, we show that GD-WL with M is at least as expressive as GD-WL with shortest path
distances (SPD). Then, we provide a specific example of two graphs that cannot be distinguished by
GD-WL with SPD, but can be distinguished by GD-WL with M.

Let
M(t) = (±D−1/2AD−1/2)t

denote the individual terms in the sum

M =

k∑
t=1

M(t), t ≤ k.

Since k ≥ diam(G), for any pair of nodes i, j, we have

SPD(i, j) =

{
0, if i = j,

min{t : M(t)
i,j > 0}, if i ̸= j.

Consequently, M can be reduced to SPD via the mapping

SPD(i, j) = f(M)i,j ,

ensuring that GD–WL with M is at least as expressive as GD–WL with SPD.

To demonstrate the strict expressivity advantage of GD-WL with M, we consider two non-
isomorphic graphs—the Desargues graph and the Dodecahedral graph. As shown in Figure 6
of Zhang et al. (2023), GD-WL using SPD fails to distinguish these graphs. In contrast, as visu-
alized in Figure 7, the heatmaps of Mlow and Mhigh reveal clearly distinct value distributions across
the two graphs (k is set to 6). This indicates that in the first round of color refinement in GD-WL
test, defined as

χ1
G(v) := hash

{(
Mv,u, χ

0
G(u)

)
: u ∈ V

}
,

the two graphs produce different multi-sets of node colors. Consequently, GD-WL with M suc-
cessfully differentiates them, demonstrating its superior structural discriminative power compared
to SPD-based GD-WL.

A.2 PROOF OF PROPOSITION 2

Restatement of Proposition 2: The power of a graph transformer with M to distinguish non-
isomorphic graphs is at most equivalent to that of the GD-WL test with M, ignoring any additional
edge features. With appropriately chosen parameters, and a sufficient number of attention heads and
layers, a graph transformer with T can match the expressiveness of the GD-WL test with M.

Proof. The theorem is divided into two parts: the first and second halves. We begin by considering
the first half: The power of a graph transformer with M to distinguish non-isomorphic graphs is at
most equivalent to that of the GD-WL test with M, ignoring any additional edge features.

Recall that the GD-WL with M is straightforward and can be expressed as:

χt
G(v) := hash

{(
Mv,u, χ

t−1
G (u)

)
: u ∈ V

}
where χt

G(v) represents a color mapping function.

Suppose after t iterations, a graph transformer S with M satisfies S(G1) ̸= S(G2), yet GD-WL
with M fails to distinguish G1 and G2 as non-isomorphic. This implies that from iteration 0 to t in

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 7: The heatmaps of M in the Desargues graph and the Dodecahedral graph.

the GD-WL test, G1 and G2 always have the same collection of node labels. Specifically, since G1

and G2 have the same GD-WL node labels at each iteration i + 1 for i = 0, . . . , t − 1, they share
the same collection of GD-WL node labels:{(

Mv,u, χ
i
G(u)

)
: u ∈ V

}
.

Otherwise, the GD-WL test would have produced different node labels at iteration i+ 1 for G1 and
G2.

Now, we show that for the same graph (say, G = G1), if χi
G(v) = χi

G(w), then the graph trans-
former node features hi

v = hi
w for any iteration i. This is true for i = 0 because both the GD-WL

and the graph transformer start with identical node features. Assuming this holds for iteration j, if
χj+1
G (v) = χj+1

G (w), we deduce:{(
Mv,u, χ

j
G(u)

)
: u ∈ V

}
=
{(

Mw,u, χ
j
G(u)

)
: u ∈ V

}
.

For simplicity, we set the parameter α of the SA-Pruner to 1 and ignore edge feature injection. We
then deduce:

hj+1
v =

∑
u∈V

Softmax
(
Score(Hj)u,v ⊙ f(M)u,v

)
·V(hj

u) = φ
({(

Mv,u, χ
j
G(u)

)
: u ∈ V

})
.

Hence,

hj+1
v = φ

({(
Mv,u, χ

j
G(u)

)
: u ∈ V

})
= φ

({(
Mw,u, χ

j
G(u)

)
: u ∈ V

})
= hj+1

w .

By induction, if χi
G(v) = χi

G(w), then hi
v = hi

w for any iteration i. Therefore, from G1 and G2

having identical GD-WL node labels, it follows that they must also have the same graph trans-
former node features. Consequently, hi+1

v = hi+1
w . Given that the graph-level readout func-

tion is permutation-invariant with respect to the collection of node features, we conclude that
S(G1) = S(G2), which leads to a contradiction.

This completes the proof of the first half of the theorem. For the second half of the theorem, we can
entirely rely on the proof of Theorem E.3 in Zhang et al. (2023) (provided in Appendix E.3), which
presents a similar situation.

A.3 VISUALIZATION OF SPECTRAL FILTERING EFFECTS

Although we have already visualized the spectral responses of the low-pass and high-pass filters in
the main text, demonstrating that larger values of k lead to stronger filtering effects on low- and
high-frequency components, we additionally visualize the corresponding Spectral Relation Metrics
in the spatial domain in Fig. 8 and Fig. 9. As k increases, the learned structural patterns are shown
to converge to stable configurations that consistently reflect the respective frequency characteristics.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) Low-pass

(b) High-pass

Figure 8: Spatial visualization of (a) Mlow and (b) Mhigh on a stochastic block model with two
communities, under different k settings.

(a) Low-pass

(b) High-pass

Figure 9: Spatial visualization of (a) Mlow and (b) Mhigh in the 2-Phenylpyridine module, under
different k settings.

A.4 PERPETIDES OF NORMALIZED LAPLACIAN MATRIX LSYM

1. DEFINITIONS AND PROPERTIES

The normalized graph Laplacian matrix Lsym is defined as:

Lsym = D−1/2(D −A)D−1/2 = I −D−1/2AD−1/2

where D is the degree matrix (a diagonal matrix where each entry Dii = deg(i)), A is the adjacency
matrix, where Aij = 1 if there is an edge between nodes i and j, and 0 otherwise.

The matrix Lsym is symmetric and positive semi-definite, with real eigenvalues satisfying:

0 = λ0 < λ1 ≤ · · · ≤ λmax ≤ 2.

2. PROOF OF ORTHOGONALITY OF EIGENVECTORS

Since Lsym is real and symmetric, its eigenvectors corresponding to distinct eigenvalues are orthog-
onal. Let λi ̸= λj be two distinct eigenvalues, with corresponding eigenvectors ui and uj . Then:

Lsymui = λiui, Lsymuj = λjuj

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Taking the inner product of the first equation:

uT
j Lsymui = λiu

T
j ui

Taking the inner product of the second equation:

uT
i Lsymuj = λju

T
i uj

Since Lsym is symmetric, the left-hand sides of these equations are equal, so we obtain:

(λi − λj)u
T
i uj = 0

For λi ̸= λj , this implies:

uT
i uj = 0

Thus, the eigenvectors corresponding to distinct eigenvalues of Lsym are orthogonal.

3. PROOF OF EIGENVALUE RANGE [0, 2]

We now prove that the eigenvalues of the normalized Laplacian matrix Lsym lie in the range [0, 2].

LOWER BOUND: λ0 = 0

We first show that all eigenvalues are non-negative, with the smallest eigenvalue λ0 = 0. Using the
Rayleigh quotient:

R(f) =
fTLsymf

fT f
≥ 0

where f is any vector. For Lsym, the Rayleigh quotient is always non-negative. Additionally, we
have the expression for the Rayleigh quotient as:

R(f) =
∑

(i,j)∈E

Wij

(√
fi√
di

−
√
fj√
dj

)2

Since the sum is always non-negative, we conclude that the smallest eigenvalue λ0 = 0, which
corresponds to the constant eigenvector (where all components of f are equal).

UPPER BOUND: λmax ≤ 2

Next, we show that the largest eigenvalue λmax is bounded above by 2. Using the spectral properties
of Lsym, we can write:

Lsym + L2
sym = 2I

This implies:

L2
sym = 2I − Lsym

Thus, we deduce that the largest eigenvalue is:

λmax ≤ 2

For bipartite graphs, λmax = 2, while for non-bipartite graphs, we have λmax < 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

CONCLUSION

We have proven the following:

• Orthogonality: The eigenvectors corresponding to distinct eigenvalues of the normalized
Laplacian matrix Lsym are orthogonal.

• Eigenvalue Range: The eigenvalues of Lsym lie in the range [0, 2], with the smallest eigen-
value being λ0 = 0 (corresponding to the constant eigenvector) and the largest eigenvalue
λmax = 2 for bipartite graphs, and strictly less than 2 for non-bipartite graphs.

Thus, the eigenvalues of Lsym lie within the interval [0, 2], completing the proof.

A.5 COMPARISON WITH CURRENT SPECTRAL GRAPH TRANSFORMER APPROACHES

It is important to note that while a few existing works have explored the combination of spectral
domain and graph transformers, the motivations and objectives of these works significantly differ
from our study. The core of our approach lies in incorporating structural knowledge from the spectral
domain to explicitly constrain the learning process of attention (such as pruning and scaling). In
contrast, Kreuzer et al. (2021) aims to introduce spectral domain knowledge for position encoding,
implicitly guiding the learning of attention, but does not directly constrain attention pruning or align
it with spectral domain signals. Notably, such position encoding could also be incorporated into our
framework. On the other hand, Bo et al. (2023) focuses on using the transformer framework to learn
graph spectral filters, but strictly speaking, this is not a standard Graph Transformer, as it does not
directly learn the attention between nodes.

B IMPLEMENTATION DETAILS

B.1 NODE AND EDGE POSITIONAL ENCODING

In this work, we incorporate edge and node positional encoding from GRIT (Ma et al., 2023) as
auxiliary structural features to enhance the model’s input representations. Specifically, the input
positional encoding Fedge,ij are constructed as

Fedge,ij = [I,T,T2, . . . ,TK−1]i,j ∈ RK , (15)

where T = D−1A. The node positional encodings Fnode,i = Fedge,ii.

B.2 GRIT ATTENTION COMPUTATION

In this work, we adopt the GRIT attention calculation module to better encode graph structures.
GRIT updates edge features during attention computation, allowing structural information to be
implicitly integrated. Specifically, the attention score between node i and j is defined as

Score(H,E)i,j = WA · Update(Ei,j ,Hi,Hj), (16)

where Update(·) denotes a function that computes the updated edge representation Êi,j as

Êi,j = Update(Ei,j ,Hi,Hj)

= σ
(
ρ
(
(WQHi +WKHj)⊙WEwEi,j

)
+WEbEi,j

)
,

(17)

where σ(·) and ρ(·) denote non-linear activation functions, ⊙ represents element-wise mul-
tiplication, and WA, WQ, WK, WEw, WEb are learnable weight matrices. Given A =
Softmax(Score(H,E)), the updated edge features are further incorporated into the aggregation step
as an edge enhancement term by

Attn(H,E) = A ·V(H) + EdgeEnh(A, Ê). (18)

The edge enhancement term EdgeEnh(·) is defined as

EdgeEnh(A, Ê)i =
∑
j∈V

Aij ·WEvÊi,j , (19)

where V denotes the node set of the input graph and WEv is a weight matrix.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 NOTES ON REPRODUCIBILITY

Our implementation is based on PyTorch and PyTorch Geometric. Some graph operations in PyTorch
Geometric are non-deterministic when executed on GPUs, which may lead to slight variations in
results across different runs, even under the same random seed. This behavior is common across
many existing GNN implementations.

C EXPERIMENTAL DETAILS

C.1 DESCRIPTION OF DATASETS

A summary of the dataset statistics and characteristics is provided in Table 7. The first five datasets
are adopted from (Dwivedi et al., 2023), while the middle two are sourced from (Dwivedi et al.,
2022). Readers are referred to (Rampášek et al., 2022) for more details of the datasets.

Table 7: Statistics of datasets used in our experiments.

Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction level Prediction task Metric
ZINC(-full) 12,000 (250,000) 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Weighted Accuracy

Peptides-func 15,535 150.9 307.3 No graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

C.2 DATASET SPLITS AND RANDOM SEED

We conduct the experiments on the standard train/validation/test splits of the evaluated benchmarks,
following previous works (Rampášek et al., 2022). For each dataset, we execute 4 trials with differ-
ent random seeds (0, 1, 2, 3) and report the mean performance and standard deviation.

C.3 HYPERPARAMETERS

Due to constraints in time and computational resources, we refrain from conducting an exhaustive
hyperparameter search. Instead, we initialize from the hyperparameter configuration of GRIT (Ma
et al., 2023) and apply limited tuning to strike a balance between model complexity and performance.
The final configurations are summarized in Table 8 and Table 9.

C.4 EXPERIMENT DEVICE

For all datasets, we conducted the experiments with NVIDIA A100.

D USE OF LLMS STATEMENT

In preparing this manuscript, we used Chatgpt to assist in language polishing and improving read-
ability of the text. The Chatgpt was used solely for drafting and refining phrasing; all scientific
content, ideas, derivations, and experimental results were developed and verified by the authors.
We take full responsibility for the accuracy, validity, and integrity of all content in this manuscript,
including any portions generated with the assistance of LLMs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Hyperparameters for five datasets from BenchmarkingGNNs.

Hyperparameter ZINC MNIST CIFAR10 PATTERN CLUSTER
Transformer Layers 11 5 8 7 18
Hidden dim 64 64 52 64 96
Heads 8 4 4 8 8
Dropout 0 0 0 0 0.01
Attention dropout 0.2 0.2 0.5 0.1 0.15
Graph pooling sum mean mean mean –

α (low-pass branch) 0.7 0.3 0.3 0.9 0.9
α (high-pass branch) 0.7 0.3 0.3 0.9 0.9
k (filter setting) 20 18 18 20 16

PE dim (RW-steps) 21 18 18 21 32
PE encoder linear linear linear linear linear

Batch size 256 64 64 32 16
Learning Rate 0.001 0.001 0.001 0.001 0.0005
Epochs 2000 200 200 100 100
Warmup epochs 50 5 5 5 5
Weight decay 1e−5 4e−5 1e−5 1e−4 1e−5

Parameters 473,473 377,738 394,246 508,641 2,912,166

Table 9: Hyperparameters for ZINC-full and the Long-Range Graph Benchmark.

Hyperparameter ZINC-full Peptides-func Peptides-struct
Transformer Layers 10 5 7
Hidden dim 64 96 96
Heads 8 4 8
Dropout 0 0 0.05
Attention dropout 0.2 0.5 0.2
Graph pooling sum mean mean

α (low-pass branch) 0.3 0.3 0.9
α (high-pass branch) 0.3 0.3 0.9
k (filter setting) 20 16 16

PE dim (RW-steps) 21 17 18
PE encoder linear linear linear

Batch size 512 32 32
Learning Rate 0.001 0.003 0.0003
Epochs 2000 200 200
Warmup epochs 50 5 5
Weight decay 1e−7 1e−5 0.0

Parameters 729,601 840,186 1,160,747

18

	Introduction
	Preliminaries
	Methodology
	Spectral Relation Metrics Construction
	Spectral-Guided Attention Enhancer
	Spectral-Guided Attention Graph Transformer

	Experiments
	Benchmarking SGA-Former
	Ablation and Sensitivity Analysis

	Conclusion
	APPENDIX
	Method Details
	Proof of Proposition 1
	Proof of Proposition 2
	Visualization of Spectral Filtering Effects
	Perpetides of Normalized Laplacian Matrix Lsym
	Comparison with Current Spectral Graph Transformer Approaches

	Implementation Details
	Node and Edge Positional Encoding
	GRIT Attention Computation
	Notes on Reproducibility

	Experimental Details
	Description of Datasets
	Dataset splits and Random Seed
	Hyperparameters
	Experiment Device

	Use of LLMs Statement

