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ABSTRACT

A wide range of graph embedding objectives decompose into two components:
one that attracts the embeddings of nodes that are perceived as similar, and another
that repels embeddings of nodes that are perceived as dissimilar. Without repul-
sion, the embeddings would collapse into trivial solutions. Skip-Gram Negative
Sampling (SGNS) is a popular and efficient repulsion approach that prevents col-
lapse by repelling each node from a sample of dissimilar nodes. In this work, we
show that when repulsion is most needed and the embeddings approach collapse,
SGNS node-wise repulsion is, in the aggregate, an approximate re-centering of the
node embedding dimensions. Such dimension operations are much more scalable
than node operations and yield a simpler geometric interpretation of the repulsion.
Our result extends findings from self-supervised learning to the skip-gram model,
establishing a connection between skip-gram node contrast and dimension regu-
larization. We use this observation to propose a flexible algorithm augmentation
framework that improves the scalability of any existing algorithm using SGNS.
The framework prioritizes node attraction and replaces SGNS with dimension
regularization. We instantiate this generic framework for LINE and node2vec and
show that the augmented algorithms preserve downstream link-prediction perfor-
mance while reducing GPU memory usage by up to 33.3% and training time by
22.1%. Further, for graphs that are globally sparse but locally dense, we show
that removing repulsion altogether can improve performance, but, when repulsion
is otherwise needed, dimension regularization provides an effective and efficient
alternative to SGNS.

1 INTRODUCTION

Graph embedding algorithms use the structure of graphs to learn node-level embeddings. Across
unsupervised and supervised graph embedding algorithms, their loss functions serve the two roles of
preserving similarity and dissimilarity. Nodes that are similar in the input graph should have similar
embeddings, while dissimilar nodes should have dissimilar embeddings (Böhm et al., 2022). The
push and pull of the similarity and dissimilarity objectives are key: in the absence of a dissimilarity
objective, the loss would be minimized by embedding all nodes at a single embedding point, a
degenerate and useless embedding. Often, enforcing dissimilarity is much more expensive than
similarity, owing to the generally sparse nature of graphs and the number of pairs of dissimilar nodes
growing quadratically with the size of the graph. Enforcing dissimilarity is also complex for graphs
because graph data frequently have missing edges or noise (Young et al., 2021; Newman, 2018). In
this paper, we show that while many past works have focused on repelling pairs of dissimilar nodes,
the repulsion can be replaced with a regularization of the embedding dimensions, which is more
scalable.

The skip-gram (SG) model is one of the most popular approaches to graph embeddings (Ahmed
et al., 2013; Yang et al., 2024) and can be decomposed into preserving similarity and dissimilar-
ity. Further, skip-gram negative sampling (SGNS) is a dominant method to efficiently approximate
dissimilarity preservation. Instead of repelling all pairs of dissimilar nodes, SGNS repels only a
sample of dissimilar nodes per pair of similar nodes. SGNS is utilized in LINE Tang et al. (2015)
and node2vec Grover & Leskovec (2016), for instance, and has been shown to yield strong down-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

stream performance. However, several analytical issues with SGNS have also been identified. First,
SGNS introduces a bias by re-scaling the relative importance of preserving similarity and dissimi-
larity (Rudolph et al., 2016). Second, with SGNS, in the limit as the number of nodes in the graph
approaches infinity, the similarities among embeddings diverge from the similarities among nodes
in the graph (Davison & Austern, 2023). Although SGNS has been used to learn both graph and
word embeddings (Mikolov et al., 2013; Mimno & Thompson, 2017), we focus on the graph con-
text because, for graph embeddings in particular, SGNS remains a popular method for preserving
dissimilarity (Chami et al., 2022).

In this paper, we propose a change in perspective and show that node repulsion in the SG model can
be achieved via dimension centering. If X is an embedding matrix where the rows are node embed-
dings, “dimensions” refers to the columns of X . We draw inspiration from recent advances in the
self-supervised learning (SSL) literature, which show an equivalence between sample-contrastive
learning and dimension-contrastive learning (Garrido et al., 2022; Bardes et al., 2022). Sample-
contrastive learning explicitly repels dissimilar pairs while dimension-contrastive learning repels
the dimensions from each other.

The known parallels between sample and dimension contrast, however, do not suggest whether SG
loss functions can be also re-interpreted from the dimension perspective. In this paper, we be-
gin by characterizing the degenerate embedding behavior when the dissimilarity term is removed
altogether. We prove that, under mild initialization conditions, when only positive pairs are con-
sidered, the embeddings collapse into a lower dimensional space, which also commonly occurs in
self-supervised learning (Jing et al., 2022). However, as the dimensions approach collapse, the dis-
similarity term also approaches a dimension-mean regularizer. Our findings show that while the
dissimilarity term in the SG loss is not itself a dimension regularizer when the term is most needed
to counteract the similarity attraction, dissimilarity preservation can be achieved via regularization.

We operationalize the dimension-based approach with an algorithm augmentation. We augment
existing algorithms using SGNS by making two modifications. First, the augmentation prioritizes
similarity preservation over dissimilarity preservation. This is desirable because, in real-world graph
data, the lack of similarity between two nodes does not necessarily suggest the two nodes are dissim-
ilar; it is also possible that data are missing or noisy (Newman, 2018; Young et al., 2021). Second,
when the embeddings begin to collapse after optimizing only for similarity preservation for a fixed
number of epochs, our augmentation repels nodes from each other using a regularizer that induces
embedding dimensions centered on the origin.

In summary, our contributions are as follows:

1. In Section 2, we introduce a framework that maps node repulsion to dimension regulariza-
tion. We show that instead of shortcutting the full skip-gram loss function with SGNS and
repelling a sample of pairs, the repulsion function can be approximated with a dimension-
mean regularization. We prove that as the need for node repulsion grows, optimizing the
regularizer converges to optimizing the skip-gram loss. This framework extends the equiv-
alence between sample-contrastive objectives and dimension regularization established in
self-supervised learning.

2. In Section 3 we introduce a generic algorithm augmentation that prioritizes node attraction
and replaces SGNS with occasional dimension regularization for any existing SG algo-
rithm. We instantiate the augmentation for node2vec and LINE, reducing the repulsion
complexity from O(n) to O(d) per epoch.

3. In Section 4 we show that our augmentation reduces runtime and memory usage while
also preserving link-prediction performance. Moreover, in sparse networks with high local
density, removing repulsion altogether, a special case of our framework, even improves
performance; however, more generally, in networks with low local density, repulsion is
needed and dimension regularization provides an efficient solution.

2 FROM NODE REPULSION TO DIMENSION REGULARIZATION

In this section, we introduce our loss decomposition framework where a function P operationalizes
similarity preservation and a “negative” function N achieves dissimilarity preservation. We then
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Table 1: Notations used in this paper.

Symbol Meaning
G,V,E Graph G with vertices V and edges E
n,m number of nodes and edges respectively
d number of embedding dimensions
N , P negative and positive loss functions
S similarity matrix ∈ Rn×n

X node embedding matrix ∈ Rn×d

Xi ith row of X , as a column vector
X.j jth column of X , as a column vector
Pα Probability distribution with parameter α
k number of negative samples per positive pair
b number of positive pairs per node
η learning rate
Dx diagonal matrix where x is the diagonal
C the constriction of the embeddings (Def. 2.1)
1⃗,1 a vector and matrix of all ones, respectively.

show that instead of optimizing negative functions with costly node repulsions, we can instead reg-
ularize dimensions. Crucially, in Subsection 2.2, we show that when node repulsion is needed, the
negative function in the skip-gram loss can be optimized via dimension regularization.

Using notation introduced in Table 1, the decomposition is as follows: given an embedding matrix
X ∈ Rn×d and a similarity matrix S ∈ {0, 1}n×n, where Sij = 1 if nodes i and j are similar, a
generic graph embedding loss function L(X,S) can be written as:

L(X,S) = P (X,S) +N(X,S). (1)

The decomposition in equation 1 applies to nearly all unsupervised graph embedding objectives
as well as many supervised learning objectives, where supervision is provided in the form of node
labels. In the recent graph embedding survey by Chami et al. (2022), the decomposition applies to all
unsupervised methods except for Graph Factorization (Ahmed et al., 2013), which does not include
a negative function N . Examples of popular decomposable loss functions are matrix reconstruction
error (e.g., spectral embeddings) as well as softmax (e.g. node2vec (Grover & Leskovec, 2016) and
LINE (Tang et al., 2015)). The decomposition also applies to supervised methods that regularize
for graph structure (β > 0 as defined in Chami et al. (2022)), such as Neural Graph Machines (Bui
et al., 2018) and Planetoid (Yang et al., 2016).

Given that graphs are sparse, performing gradient descent on N is costly as∇N repels all dissimilar
pairs, resulting in O

(
n2

)
vector additions per epoch. In this paper, we build on the argument

that the costly node-wise operation can be replaced with a more efficient dimension-wise operation.
Optimizing from the dimension perspective also yields a simpler geometric interpretation. This
interpretation is illustrated in Figure 1.

Below, we will map the two dominant negative functions found in graph embedding algorithms to
dimension regularizations. The two loss functions are spectral loss functions and skip-gram loss
functions. The mapping of spectral loss functions to dimension covariance regularization paral-
lels recent approaches to non-contrastive learning (Bardes et al., 2022; Garrido et al., 2022). Our
novel contribution is a mapping from the skip-gram loss to a regularizer that induces origin-centered
dimensions. Proof for all propositions below are included in Appendix A.

2.1 DIMENSION REGULARIZATION FOR SPECTRAL EMBEDDINGS

In the case of Adjacency Spectral Embeddings (ASE) (Daniel L. Sussman & Priebe, 2012), which
are equivalent to taking the leading eigenvectors of the adjacency matrix, the matrix S is the adja-
cency matrix A ∈ {0, 1}n×n. For convenience, we define P and N for an individual node i, where
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Figure 1: Nearly all unsupervised and many supervised graph embedding loss functions define a
“negative” function that repels embeddings of dissimilar nodes. We show that instead of repelling
pairs of nodes (orange), which is costly, the negative function in the popular skip-gram (SG) loss can
be approximated with a dimension-mean regularizer. The regularizer is efficient given that d ≪ n.
This result complements the duality between squared-loss and dimension covariance utilized in self-
supervised learning. Runtime complexities are expressed in terms of the number of vector additions
per epoch with details in Section 2.2.1.

the full function simply sums over all nodes (e.g., L (X,S) =
∑

i∈V L (X,S, i)):

LASE(X,S, i) = ∥Si −XiX
T ∥22, (2)

PASE(X,S, i) = −2
∑

j∈{j′|Sij′=1}

XT
i Xj + ∥S∥2F , (3)

NASE(X,S, i) = ∥XXi∥22. (4)

On one hand, performing gradient descent on NASE can be interpreted as repelling all pairs of
embeddings where the repulsion magnitude is the dot product between embeddings. If η is a learning
rate and t is the step count, the embedding for node i is updated as:

Xt+1
i = Xt

i − 2η
∑
i′∈V

(
XT

i Xi′
)
Xi′ ∀i ∈ V. (5)

The same negative function can also be written as a dimension covariance regularization:

Proposition 2.1. NASE is equivalent to the regularization function ∥XTX∥2F which penalizes co-
variance among dimensions.

With Proposition 2.1, we can re-interpret the gradient descent updates in equation 5 as collectively
repelling dimensions. The gradient update can now be written in terms of dimensions:

Xt+1
.j = Xt

.j − 2η
∑
j′∈[d]

(
XT

.jX.j′
)
X.j′ ∀j ∈ [d]. (6)

2.2 DIMENSION REGULARIZATION FOR SKIP-GRAM EMBEDDINGS

We now introduce a dimension-based approach for skip-gram embeddings. For skip-gram embed-
dings, the similarity matrix is defined such that Sij = 1 if node j is in the neighborhood of i.
For first-order LINE, the neighborhood for node i is simply all nodes connected to i whereas for
node2vec, the neighborhood is defined as all nodes within the context of i on a random walk. The

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

skip-gram (SG) loss functions can be decomposed as:

LSG(X,S, i) = −
∑
j∈V

Sij log σ
(
XT

i Xj

)
+ (1− Sij) log σ

(
−XT

i Xj

)
, (7)

PSG(X,S, i) = −
∑

j∈{j′|Sij′=1}

log σ
(
XT

i Xj

)
, (8)

NSG(X,S, i) = −
∑

j∈{j′|Sij′=0}

log σ
(
−XT

i Xj

)
. (9)

Our goal is to map NSG to a dimension regularization. Recall that this work is motivated by the fact
that the purpose of NSG is to prevent the similarity σ

(
XT

i Xj

)
from increasing for all i, j; without

NSG, trivial embedding solutions can emerge that maximize similarity for all pairs of nodes, not
just similar pairs.

Guaranteed collapse. To measure the onset of the degenerate condition in which all pairs of nodes
are similar, we define the constriction C of a set of embeddings to be the minimum dot product
between any pair of nodes:
Definition 2.1 (Constriction). The constriction C of an embedding matrix X is defined as:
C = mini,j∈[n]×[n] X

T
i Xj .

Geometrically, the embedding constriction is maximized when embeddings are radially squeezed
and growing in magnitude, that is, collapsed. Proposition 2.2 states that if we remove NSG alto-
gether and the embeddings are initialized with sufficiently small norm and learning rate, the de-
generate collapse will inevitably arise during the course of gradient descent. In the context of
graph neural networks, Proposition 2.2 provides conditions under which embedding oversmooth-
ing is guaranteed. In Appendix A.2.1, we validate Proposition 2.2 by showing that embeddings
inevitably collapse if only attraction updates are applied for various synthetic sparse graphs.
Proposition 2.2. As the Euclidean norm of the initial embeddings and the learning rate approach
zero, then in the process of performing gradient descent on PSG, there exists a step t such that for
all gradient updates after t, the constriction C is positive and monotonically increasing.

The proof sketch for Proposition 2.2 is as follows: as the embeddings are initialized closer to the
origin, gradient descent on PSG approaches gradient descent on the matrix completion loss function:
∥1S>0⊙

(
1− 1

2XXT
)
∥2F , where 1S>0 is the indicator matrix for whether entries of S are positive.

From Gunasekar et al. (2017), gradient descent implicitly regularizes matrix completion to converge
to the minimum nuclear solution; this implicit regularization drives all dot products to be positive,
not just pairs of embeddings corresponding to connected nodes.

Approaching dimension regularization. Now, we show that as constriction increases, perform-
ing gradient descent on NSG approaches optimizing a dimension regularizer. That is, when repulsion
is most needed and the embeddings approach collapse due to similarity preservation, repulsion can
be achieved via regularization.

First, we map NSG to an “all-to-all” node repulsion. While NSG only sums over negative node pairs
(i, j where j is not in the neighborhood of i), for large, sparse graphs we can approximate NSG with
the objective N ′

SG which sums over all pairs of nodes:

N ′
SG = −

∑
i,j

log σ
(
−XT

i Xj

)
. (10)

Proposition 2.3 states that if the embedding norms are bounded and the constriction C > 0, then, in
the limit of n, the difference between the gradient of N ′

SG and NSG approaches zero.
Proposition 2.3. If all embeddings have norms that are neither infinitely large or vanishingly small
and the embedding constriction C > 0, then, as the number of nodes in a sparse graph grows to
infinity, the gradients of∇NSG and∇N ′

SG converge:

lim
n→∞

∥∇N ′
SG −∇NSG∥2F
∥∇NSG∥2F

= 0, (11)

where a graph is sparse if |E| is o(n2).
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For a single node i, performing gradient descent on equation 10 results in the following update:

Xt+1
i =

(
1− ησ

(
∥Xt

i∥2
))

Xt
i − η

∑
i′∈V

σ
((

Xt
i

)T
Xt

i′

)
Xt

i′ . (12)

The right-hand term in the gradient update repels node i from all other nodes where the repulsion
is proportional to the similarity between the node embeddings. In Proposition 2.4, we show a con-
nection between minimizing N ′

SG and centering the dimensions at the origin. For intuition, observe
that if all pairs of nodes are highly similar, the gradient update in equation 12 is approximately equal
to subtracting the column means scaled by a constant (2η

(
XT 1⃗

)
). This is equivalent to performing

gradient descent on a dimension regularizer that penalizes non-zero dimension means,

R(X) = ∥XT 1⃗∥22. (13)

We formalize the connection between the negative function N ′
SG and origin-centering in the follow-

ing proposition:
Proposition 2.4. Let R be the dimension regularizer defined in equation 13 that penalizes embed-
dings centered away from the origin and n ≫ d. Then, as the constriction increases beyond zero,
the difference between performing gradient descent on R versus N ′

SG vanishes.

We note that our result establishing a connection between the skip-gram loss and origin-centered
dimensions is analogous to the finding in Wang & Isola (2022) connecting the InfoNCE loss with
embeddings uniformly distributed on unit hyperspheres.

2.2.1 COMPARISON WITH SKIP-GRAM NEGATIVE SAMPLING

Skip-gram negative sampling (SGNS) offers an efficient stochastic approximation to the gradient
update in equation 12. Furthermore, the SGNS proceedure provides a tunable way to bias the
gradients—via non-uniform sampling—in a manner that has been seen to empirically improve the
utility of the resulting embedding in downstream tasks (Mikolov et al., 2013). Instead of repelling
node i from all other n − 1 nodes, SGNS repels i from a sample of k nodes where the nodes are
sampled according to a distribution Pα over all nodes, optimizing the following objective:

NSGNS(X,S, i) = −kEj′∼Pα

[
log σ

(
−XT

i Xj′
)]

, (14)

where the expectation is estimated based on k samples.

In aggregate, SGNS reduces the repulsion time complexity fromO
(
n2

)
toO (kbn) vector additions

per epoch. b is the average number of positive pairs per node; for LINE, b = m/n, and for node2vec,
b is the product of the context size and random-walk length. With Proposition 2.4, we reduce the
time complexity to O(d) vector additions per epoch.

As mentioned, SGNS embeddings can be tuned by the choice of the non-uniform sampling dis-
tribution, where in graph embedding contexts the distribution Pα is typically sampling nodes pro-
portional to their degreeα, with α = 3/4. An optimization-based intuition for this choice is that a
degree-based non-uniform distribution prioritizes learning the embeddings of high-degree nodes, but
we emphasize that the specific choice of α = 3/4 is typically motivated directly based on improved
empirical performance in downstream tasks.

We briefly note that our dimension regularization framework is immediately amenable to introducing
an analogous tuning opportunity. We can simply replace the regularization in equation 15 with

R(X; p⃗) = ∥XT p⃗∥22, (15)

where p⃗ is a normalized weight vector that biases the negative update in exact correspondence to the
probabilities of each node in Pα. In our later simulations, we focus our efforts on the uniform case
of p⃗ = 1⃗, i.e., the regularizer in equation 15.

3 ALGORITHM AUGMENTATION TO REPLACE SGNS

We now propose a generic algorithm augmentation framework that directly replaces SGNS with
dimension regularization. We instantiate this algorithm augmentation for LINE and node2vec but
note that the framework is applicable to any graph embedding algorithm using SGNS.

6
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Our augmentation modifies existing algorithms using SGNS in two ways. First, the augmentation
prioritizes the positive function P , that is preserving similarity when possible. Not only does priori-
tizing observed edges increase efficiency, but it is also desirable given the fact that real-world graph
data frequently have missing edges (Newman, 2018; Young et al., 2021). We prioritize the observed
edges by defaulting to performing gradient descent on P .

Second, our augmentation achieves repulsion via gradient descent on R, the dimension-mean reg-
ularizer introduced in equation 13. As constriction increases from optimizing only P , dimension-
mean regularization approximates∇N ′

SG as established in Proposition 2.4.

Taken together, the algorithm augmentation framework can be summarized as:

Xt+1 =

{
Xt − η∇PSG (Xt) t % nnegative ̸= 0,

Xt − η [∇PSG (Xt) + λ∇R (Xt)] t % nnegative = 0,
(16)

where λ is the regularization hyperparameter, nnegative controls the frequency of performing gradient
descent on R, and η is the learning rate.

3.1 INSTANTIATION FOR LINE AND NODE2VEC

In Algorithm 1 we include the pseudo-code for the augmented versions of augmented LINE and
node2vec, utilizing the framework in equation 16. The loop labeled “old negative update” shows
where SGNS would have occurred.

Algorithm 1 Augmented LINE and node2vec

Input: G,n, d, p, q, num batches, batch size, λ, η, nnegative

X0 ← random initialization(n, d)
walks← run random walks(G, p, q)
for t ∈ {1, . . . , num batches} do

Xt+1 ← Xt

for {1 · · · batch size} do
i, j ← sample uniform pair(walks)
Xt+1

i += ησ
(
−⟨Xt

i , X
t
j⟩
)
Xt

j ▷ positive update
Xt+1

j += ησ
(
−⟨Xt

i , X
t
j⟩
)
Xt

i

for j′ ∈ sample (Pα, k) do ▷ old negative update (removed)
Xt+1

i −= ησ
(
−⟨Xt

i , X
t
j′⟩

)
Xt

j′

Xt+1
j′ −= ησ

(
−⟨Xt

i , X
t
j′⟩

)
Xt

i

end for
end for
if t % nnegative == 0 then ▷ new negative update

Xt+1 −= λ
n1X

t

end if
end for

LINE and node2vec differ in their implementation of the random-walk generation function. For
LINE, the function simply returns the edge set E. For node2vec, the function returns the set of all
node and neighbor pairs ({i, j|Sij = 1}) where neighbors of i are nodes encountered on a biased
random walk starting at i. The parameters p, q control the bias of the random walk, as specified in
Grover & Leskovec (2016).

4 EXPERIMENTS

To assess the efficacy of our dimension-regularization augmentation for capturing topological struc-
ture, we evaluate the link-prediction performance of the node2vec and LINE instantiations. Our
results show that replacing SGNS with dimension regularization preserves link-prediction perfor-
mance while reducing both training time and GPU memory usage. In particular, for real-world
networks, we show that applying no repulsion at all, a special case of our framework, nearly always

7
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outperforms LINE. We correlate the success of attraction-only models with local density, which is
common in real-world networks. However, more generally, in networks with local sparsity, repul-
sion is needed, and dimension regularization provides an efficient alternative to SGNS. All of the
code for the below experiments can be found in the Supplemental Materials.

4.1 METHODOLOGY

We utilize the popular link-prediction benchmarks of Cora, CiteSeer, and PubMed (Yang et al.,
2016) as well as three OGB datasets: ogbl-collab, ogbl-ppa, and ogbl-citation2 (Hu et al., 2020).
We split each dataset into training, validation, and testing edge sets, where the validation set is used
for hyperparameter optimization. Further details on our data split, hyperparameter optimization, and
compute setup are in Appendix B.

For each of node2vec and LINE, we instantiate three model variants: variant I is vanilla
node2vec/LINE; variant II0 is a special instance of our framework in which no repulsion is ap-
plied at all (nnegative is set to be larger than the number of batches); and variant II is our augmented
model in which dimension regularization is applied at least once per epoch. For completeness, we
also instantiate variants of the vanilla algorithms and our augmentation in which node repulsion is
proportional to degreeα as discussed in Section 2.2.1; these results are comparable to the results for
I and II and included in Appendix C.

We report AUC-ROC, MRR, and Hits@k evaluation metrics, where AUC-ROC captures global
performance while MRR and Hits@k capture node-level link-prediction performance.

4.2 RESULTS

Dimension regularization reduces training time and memory while preserving performance.
Tables 2 and 3 show the training time, GPU memory usage, and AUC-ROC for vanilla and aug-
mented node2vec and LINE. The training time is aggregated over multiple epochs, where the num-
ber of epochs is fixed for each graph and specified in Appendix B. The reported GPU memory is
the maximum GPU memory allocated by PyTorch over the course of training. The ∆(%) column
reports the relative difference between II and I.

For node2vec, training time reduces by 12.2%, on average, and memory by 30.5%, on average.
Meanwhile, AUC-ROC decreased by at most 6.3%. For LINE, training time decreased by 18.9%,
and on average AUC-ROC increased by 4.5%. Our augmentation did not reduce memory usage for
LINE because we obtained the best performance across all models when using small batch sizes;
with small batches, even the vanilla algorithm has low GPU memory usage and negative sampling
contributes minorly to memory usage. The small batch size also explains the increase in training
time from node2vec to LINE.

Table 2: Performance of vanilla and augmented node2vec

Dataset Time (min) Memory (GB) AUC-ROC
I II0 II ∆(%) I II0 II ∆(%) I II0 II ∆(%)

CiteSeer 1.67 1.48 1.48 (-11.4%) 3.12 2.09 2.09 (-33.0%) 0.77 0.73 0.74 (-3.9%)
Cora 1.45 1.28 1.28 (-11.7%) 3.12 2.08 2.08 (-33.3%) 0.81 0.77 0.79 (-2.5%)
PubMed 8.33 6.72 6.73 (-19.2%) 3.16 2.12 2.12 (-32.9%) 0.79 0.74 0.74 (-6.3%)
ogbl-collab 9.67 9.03 8.98 (-7.1%) 13.25 9.00 9.00 (-32.1%) 0.91 0.81 0.86 (-5.5%)
ogbl-ppa 24.03 23.00 23.15 (-3.7%) 14.41 10.16 10.16 (-29.5%) 0.99 0.58 0.93 (-6.1%)
ogbl-citation2 43.27 33.03 34.78 (-19.6%) 19.25 15.00 15.00 (-22.1%) 0.79 0.67 0.82 (3.8%)

In the case of globally sparse but locally dense networks, removing repulsion altogether im-
proves performance. Interestingly, we observe that for LINE, the special case of our algorithm
augmentation that removes repulsion altogether (II0) outperforms vanilla LINE for five of the six
graphs. Figure 2 correlates this gain in performance with local edge density, as measured by the
average clustering coefficient. The trend is most noticeable in the case of ogbl-collab which has the
highest clustering coefficient and reflects increases in MRR and Hits@k when repulsion is removed.

Intuitively, removing repulsion is effective in globally sparse but locally dense graphs, which charac-
terizes many real-world networks (Newman, 2003), because the global sparsity hinders dimensional
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Table 3: Performance of vanilla and augmented LINE

Dataset Time (min) Memory (GB) AUC-ROC
I II0 II ∆(%) I II0 II ∆(%) I II0 II ∆(%)

CiteSeer 14.15 12.00 11.78 (-16.7%) 0.02 0.02 0.02 (0.00%) 0.57 0.63 0.59 (3.5%)
Cora 16.50 13.82 13.58 (-17.7%) 0.02 0.02 0.02 (0.00%) 0.56 0.63 0.53 (-5.4%)
PubMed 5.23 4.48 4.48 (-14.3%) 0.06 0.06 0.06 (0.00%) 0.59 0.65 0.67 (13.6%)
ogbl-collab 43.28 34.17 34.10 (-21.2%) 0.63 0.63 0.63 (0.00%) 0.63 0.69 0.63 (0.00%)
ogbl-ppa 64.57 51.50 51.05 (-20.9%) 1.97 1.97 1.97 (0.00%) 0.88 0.94 0.92 (4.5%)
ogbl-citation2 64.93 50.65 50.55 (-22.1%) 8.02 8.02 8.02 (0.00%) 0.57 0.66 0.63 (10.5%)

collapse while the local density ensures that node attraction brings nodes near hidden neighbors.
While we would theoretically expect the embeddings to collapse even in sparse networks, in our
experiments, we use the Adam optimizer which decays the learning rate. On the other hand, remov-
ing repulsion is less effective for node2vec because the random walks effectively increase global
density, and thus, the likelihood of embedding collapse.

More generally, repulsion is needed and dimension regularization provides a scalable solution.
To generalize beyond the six real-world graphs, we examine the performance of our augmentation
on Stochastic Block Model graphs in which we toggle local density. The right side of Figure 2 shows
that when the within-block edge probability is much greater than the between-block probability, all
variants perform well. However, as local density decreases and the boundary between blocks erodes,
repulsion is needed as indicated by the gap between I and II0; the figure shows that dimension
regularization (II) is an effective bridge.
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Figure 2: In practice, removing repulsion altogether performs well for real-world graphs that are
globally sparse but locally dense (high clustering coefficient). On the left, we show the change in
performance when repulsion is removed relative to vanilla LINE. For almost all graphs, AUC-ROC,
MRR, and Hits@k all increase; the increase is most prominent in the case of ogbl-collab which
has high local density. However, on the right, we show that as we decrease local density in a two-
block Stochastic Block Model (SBM), the need for repulsion increases and dimension regularization
provides an efficient and effective repulsion mechanism.

5 RELATED WORKS

In this section, we review the popular use of SGNS within graph embeddings as well as its limi-
tations. Our approach is also similar in spirit to the growing body of literature on non-contrastive
learning.

5.1 SKIP-GRAM NEGATIVE SAMPLING

SGNS was introduced in word2vec by Mikolov et al. (2013) as an efficient method for learning
word embeddings. While the softmax normalization constant is costly to optimize, Mikolov et al.
(2013) modeled SGNS after Noise Contrastive Estimation (NCE) which learns to separate positive
samples from samples drawn from a noise distribution. SGNS has since been adopted for graph
representation learning where it is utilized in both unsupervised (Grover & Leskovec, 2016; Tang
et al., 2015; Perozzi et al., 2014) and supervised skip-gram models (Yang et al., 2016).
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At the same time, there are many known limitations of SGNS. Rudolph et al. (2016) place SGNS
embeddings within the framework of Exponential Family Embeddings and note that SGNS down-
weights the magnitude of the negative update and leads to biased embeddings, relative the gradients
of the non-sampled objective. Second, Davison & Austern (2023) examine the limiting distribution
of embeddings learned via SGNS and show that the distribution decouples from the true sampling
distribution in the limit. Last, it has also been shown that the optimal noise distribution and the
corresponding parameters can vary by dataset (Yang et al., 2020).

We would also like to note that while the motivations are similar, SGNS differs from the negative
sampling that has arisen in the self-supervised learning literature (Robinson et al., 2021). In self-
supervised learning, the negative samples are generally other nodes in the training batch.

5.2 NON-CONTRASTIVE SELF-SUPERVISED LEARNING

Energy Based Models in self-supervised learning are a unified framework for balancing similarity
and dissimilarity (LeCun et al., 2007). As in our decomposition, energy-based models ensure that
similar pairs have low energy and dissimilar pairs have high energy. Within energy-based models,
there has been more focus across both vision and graph representation learning on contrastive mod-
els, which explicitly repel dissimilar pairs (In et al., 2023; Li et al., 2023; Yang et al., 2023; Zhang
et al., 2023). However, given the computational complexities of pairwise contrast, there is a growing
body of work on non-contrastive representation learning methods, which do not use negative sam-
ples. Embedding collapse is the main challenge facing non-contrastive methods, and several miti-
gation strategies have emerged such as asymmetric encoders in SimSiam (Chen & He, 2021), mo-
mentum encoders in BYOL (Grill et al., 2020), and redundancy reduction in Barlow Twins (Zbontar
et al., 2021). Garrido et al. (2022) establishes a duality between dimension-regularization based non-
contrastive approaches and standard contrastive learning; however, the work specifically analyzes
the squared-loss term and there are no existing works, to our knowledge, establishing a connection
between skip-gram loss and non-contrastive methods.

6 CONCLUSION

In this work, we provide a new perspective on dissimilarity preservation in graph representation
learning and show that dissimilarity preservation can be achieved via dimension regularization.
Our main theoretical finding shows that when node repulsion is most needed and embedding dot
products are all increasing, the difference between the original skip-gram dissimilarity loss and the
dimension-mean regularizer vanishes. Combined with the efficiency of dimension operations over
node repulsions, dimension regularization bypasses the need for SGNS. We then introduce a generic
algorithm augmentation that prioritizes positive updates, given that real-world graph data often con-
tain missing edges Young et al. (2021). When node repulsion is needed and collapse approaches,
the augmentation utilizes dimension regularization instead of SGNS. Our experimental results show
that the augmented versions of LINE and node2vec preserve the link-prediction performance of the
original algorithms while reducing runtime by over 30% for OGB benchmark datasets. In fact, for
several real-world graphs, removing dissimilarity preservation altogether performs well; however,
more generally, for graphs with low local density repulsion is needed, and dimension regularization
is an efficient and effective approach.
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A PROOFS

A.1 PROOF FOR PROPOSITION 2.1

Proof. Recall that the Frobenius norm of a matrix is equivalent to the trace of the corresponding
Gram matrix:

NASE(X,S) = ∥XXT ∥2F (17)

= Tr
(
XXT

(
XXT

)T)
(18)

= Tr
(
XXTXXT

)
(19)

= Tr
(
XTXXTX

)
(20)

= Tr
((

XTX
) (

XTX
)T)

(21)

= ∥XTX∥2F , (22)

where the 4th line follows from the cyclic property of the trace.

A.2 PROPOSITION 2.2

Proof. From gradient descent, we know that XT
i Xj increases toward infinity for all i, j ∈ E; how-

ever, to show that XT
i Xj increases for all i, j, we show that the cosine similarity for all pairs of

embeddings approaches 1. We characterize the embedding dynamics in two phases: in the first
phase (alignment), the embeddings are initialized near the origin and then converge in direction;
then, in the second phase (asymptotic), the embeddings asymptotically move away from the origin
while maintaining alignment.

Phase 1: alignment. The gradient update rule for PSG is:

Xt+1
i = Xt

i + η
∑

j∈N(i)

σ
(
−(Xt

i )
TXt

j

)
Xt

j (23)

Because the embeddings are initialized sufficiently small, the sigmoid function can be approximated
linearly via a first-order Taylor expansion:

σ(z) ≈ 1

2
+

1

4
z (24)

In this case, the update rule becomes:

Xt+1
i ≈ Xt

i +
η

2

∑
j∈N(i)

(
1− 1

2

(
(Xt

i )
TXt

j

))
Xt

j (25)

The above gradient is equivalent to performing gradient descent on:

P ′
SG = ∥1S>0 ⊙

(
1− 1

2
XXT

)
∥2F (26)

From Gunasekar et al. (2017), gradient descent for matrix completion is implicitly regularized to
yield the minimum nuclear norm (lowest rank) stationary point. In the case where G is connected,
minimizing the nuclear norm implies that gradient descent on equation 26 causes XXT to approach
21, and thus the dot products between all pairs of embeddings increases and C → 2.

Phase 2: Asymptotic. To complete the proof we show that once C > 0, the constriction monotoni-
cally increases with each gradient-descent update to PSG. For any pair of embeddings Xt

i and Xt
j ,
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Figure 3: High-level overview of proof for Proposition 2.2, which guarantees embedding collapse
when only attraction updates are applied. In the beginning the embeddings are initialized near the
origin, all with norm at most b. Then, in Phase 1, attraction update rule is approximately gradient
descent for matrix completion; given that the latter is implicitly regularized to yield low-rank so-
lutions the embeddings converge in direction. In the second phase, the embeddings asymptotically
distance away from the origin in the same direction.
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Figure 4: To empirically validate Proposition 2.2, we instantiate Erdös-Rényi networks (n = 100)
and learn embeddings by only applying the attraction update. The figure shows that for various
graph densities, the constriction eventually becomes monotonically increasing.

the dot product after a single gradient descent epoch is:

〈
Xt+1

i , Xt+1
j

〉
=

Xt
i + η

∑
k∈N(i)

σ
(
−(Xt

i )
TXt

k

)
Xt

k

T

Xt
j + η

∑
k∈N(j)

σ
(
−(Xt

j)
TXt

k

)
Xt

k


(27)

If C > 0 at t, then all of the dot-product terms from distributing the right-hand side of equation 27
are positive, and we have

〈
Xt+1

i , Xt+1
j

〉
=

〈
Xt

i , X
t
j

〉
+ δ, where δ > 0. Thus the dot product

between any pair of embeddings strictly increases from step t to t + 1 and hence the constriction
monotonically increases if C > 0 at step t.
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A.2.1 SUPPLEMENTAL FIGURES

Figure 3 provides a high-level summary of the proof for Proposition 2.2. In the beginning, the
embeddings are initialized with norm ≤ b ≤

√
2. Then, the embeddings converge in direction

given that near the origin, the gradient of PSG is approximately the gradient of a matrix completion
problem. Further, gradient descent for matrix completion near the origin is implicitly regularized to
yield the lowest rank solution, hence a convergence in the embedding direction. Thereafter, once
the dot products between all pairs of nodes are positive in the “Asymptotic” phase, C becomes
monotonically increasing.

We also empirically validate Proposition 2.2 in Figure 4. We initialize Erdös-Rényi graphs (n =
100) of various densities, randomly initialize the embeddings around the origin, and then apply the
positive-only update rule in equation 23. Figure 4 shows that even when the edge density is 0.05,
the constriction eventually becomes monotonically increasing.

A.3 PROOF FOR PROPOSITION 2.3

Proof. Let us define the matrix of embedding similarities as K = σ
(
XXT

)
. Then, the gradient of

N ′
SG is:

∇N ′
SG = 2KX (28)

If 1S==0 is the indicator matrix where entry i, j is one if Sij = 0, then the gradient of∇NSG is:

∇NSG = (1S==0 ⊙K)X (29)

The numerator in the proposition can be upper bounded as:

∥∇N ′
SG −∇NSG∥2F =

n∑
i=1

∥∥∥ ∑
j′∈{j|Sij>0}

σ
(
XT

i Xj′
)
Xj′

∥∥∥2
2

(30)

≤
n∑

i=1

|{j|Sij > 0}|βmax (31)

≤ mβmax (32)

Where in the above, βmax is a constant and the upper bound on embedding norm squared and m is
the number of non-zero entries in S.

Now we lower bound the denominator. The gradient can be expanded as:

∥∇NSG∥2F =

n∑
i=1

∥∥∥ n∑
j

1Sij==0KijXj

∥∥∥2
2

(33)

We can lower bound the norm of the sum by replacing Xj with the projection of Xj onto Xi:

∥∇NSG∥2F =

n∑
i=1

∥∥∥ n∑
j

1Sij==0KijXj

∥∥∥2
2

(34)

≥
n∑

i=1

∥∥∥ n∑
j

1Sij==0Kij

(
Kij

∥Xi∥

)(
Xi

∥Xi∥

)∥∥∥2
2

(35)

Because the dot product between all pairs of embeddings is assumed to be positive, the norm of the
sum is at most the sum of the norms:

∥∇NSG∥2F ≥
n∑

i=1

n∑
j

1Sij==0

(
Kij

∥Xi∥

)4

(36)

≥
(
C2

βmax

)2 (
n2 −m

)
(37)

where above m is the number of non-zero entries of S.
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Combining the bounds on the numerator and denominator together, we have:

∥∇N ′
SG −∇NSG∥2F
∥∇NSG∥2F

≤ β3
max

C4
m

n2 −m
(38)

The left term is a constant given the assumption on constriction and non-vanishing or infinite em-
bedding norms. Further, because the graph is sparse (m is o

(
n2

)
), the second term goes to zero as

n→∞.

A.4 PROPOSITION 2.4

A.4.1 LEMMA FOR PROOF OF PROPOSITION 2.4

Lemma A.1. Call f(x) = log(1 + exp(x)). We show that both f(x) − x ≤ exp(−x) and
|∇x(f(x)− x)| ≤ exp(−x), i.e. have vanishing exponential tails.

Proof. First, note that log(x) ≤ x− 1. Since e−x(1 + ex) = 1 + e−x, we have,

log(e−x(1 + ex)) ≤ (1 + e−x)− 1

log(1 + exp(x))− x ≤ exp(−x)
f(x)− x ≤ exp(−x),

where the first line applies the bound on log(x) to the equality, the second line organizes terms, and
the third applies the definition of f(x). Now we have∇x(f(x)− x) = σ(x)− 1. For this,

σ(x)− 1 =
−1

1 + exp(x)
≥ −1

exp(x)
= − exp(−x).

Where the inequality follows reducing the value of the denominator. This concludes the proof.

A.4.2 PROOF FOR PROPOSITION 2.4

Proof. As in the proof for Proposition 2.3, let us define the similarity matrix K = σ
(
XXT

)
.

The gradient for N ′
SG, defined in equation 10, is:

∇XN ′
SG = 2KX (39)

The constriction C is the minimum value of the matrix K. From lemma A.1, we know that as con-
striction increases, the difference between 1 and each of the entries of K vanishes exponentially.
Thus, there is a vanishing difference between 1

2∇XN ′
SG and 1X , where 1 is the n × n all-ones

matrix. Note that 1X is also the gradient of the dimension regularizer R introduced in equation 13.
Putting these together we have:∥∥∥∥12∇XN ′

SG −∇R
∥∥∥∥2
2

=
∥∥(σ (

XXT
)
− 1

)
X
∥∥2
2

(40)

≤
n∑

i=1

∥∥∥∥∥∥
n∑

j=1

(
σ
(
XT

i Xj

)
− 1

)
Xj

∥∥∥∥∥∥
2

(41)

≤
n∑

i=1

 n∑
j=1

(
σ
(
XT

i Xj

)
− 1

)2 ∥Xj∥2
 (42)

≤
( n

eC

)2

βmax (43)

In the above, βmax is a constant and corresponds to the maximum embedding norm among all em-
beddings in X .

Thus, as constriction C increases, the difference between the gradient of 1
2N

′
SG and R vanishes

exponentially. By extension, the difference between gradient descent on N ′
SG with a step-size of η

and gradient descent on R with a step-size of 2η vanishes with increasing C.
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B EXPERIMENTAL METHODOLOGY

Data Splitting. We split each dataset into training/validation/test edge splits. For the OGB
datasets, we utilize the splits provided by the original dataset, and for the Planetoid datasets we
create uniform random 70/10/20 edge splits.

Hyperparameter Optimization. We perform the following hyperparamter optimization routine:

1. Select optimal parameters. For the vanilla algorithms, we optimize over the learning
rate, and for the augmented algorithms we optimize over the learning rate, nnegative, and λ.
In order to search over a larger space of parameters, we only train each configuration for
4 epochs and select the configuration that yields the highest AUC-ROC on the validation
edge set. The optimal hyperparameters are listed in Table 4

2. Select optimal number of epochs. For each optimal hyperparameter configuration, we
then determine the number of training epochs by training for the number of epochs listed in
Table 4. We then select the epoch number at which the validation AUC-ROC is maximized.

3. Evaluate. For each graph and model variant, we train a model using the optimal hyperpa-
rameters and number epochs and evaluate on the test edge set.

Hardware. All of the experiments were executed on a machine with a single NVIDIA V100 GPU.

C SUPPLEMENTAL EVALUATION

For completeness, include the MRR and Hits@k evaluation metrics here to complement the AUC-
ROC results in the main body. Figure 5 includes the metrics for LINE and Figure 6 includes the
metrics for node2vec. In all of the plots, the training time is on the x-axis, and the evaluation metric
is on the y-axis. The figures also include the results in which node repulsion is weighted by node
degree; these are denoted by I(α = 3/4) and II(α = 3/4). Overall, these results complement
the AUC-ROC results showing that dimension regularization preserves performance while reducing
training time. It is worth noting that the hyperparameter optimization selects parameters based on
AUC-ROC so the MRR and Hits@k test-set results are not optimized; also, the MRR calculation
for ogbl-ppa led to an OOM error due to the number of test-set edges.
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Table 4: Optimized hyperparameters

Graph Model Variant η λ nnegative Steps

CiteSeer

LINE
I 0.1 - - 50
II 0.1 0.01 1000 50
II0 0.1 0.01 109 50

node2vec
I 0.1 - - 50
II 0.1 0.1 10 50
II0 0.1 0.1 109 50

Cora

LINE
I 0.1 - - 50
II 0.1 1 1000 50
II0 0.1 1 109 50

node2vec
I 0.1 - - 50
II 0.1 0.1 10 50
II0 0.1 0.1 109 50

ogbl-citation2

LINE
I 0.01 - - 2
II 0.01 10−7 1000 2
II0 0.01 10−7 109 2

node2vec
I 0.01 - - 3
II 0.01 10−6 1000 3
II0 0.01 10−6 109 3

ogbl-collab

LINE
I 0.1 - - 10
II 0.1 10−4 1000 10
II0 0.1 0.01 109 10

node2vec
I 0.1 - - 10
II 0.1 0.01 100 10
II0 0.1 0.01 109 10

ogbl-ppa

LINE
I 0.01 - - 3
II 0.01 10−6 5 3
II0 0.01 10−4 109 3

node2vec
I 0.01 - - 5
II 0.01 0.001 5 5
II0 0.01 0.001 109 5

PubMed

LINE
I 0.1 - - 50
II 0.1 0.01 1000 50
II0 0.1 0.01 109 50

node2vec
I 0.1 - - 50
II 0.1 0.1 1000 50
II0 0.1 0.1 109 50
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Figure 5: Performance of vanilla and augmented LINE by AUC-ROC, MRR, and Hits@k.
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Figure 6: Performance of vanilla and augmented node2vec by AUC-ROC, MRR, and Hits@k.
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