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Abstract

Transformer models trained on genomic sequence data achieve strong predictive
performance, but interpreting their learned representations remains difficult. We analyze
DNABERT using Layer-wise Relevance Propagation (LRP), attention-based scores,
and gradient-based methods on enhancer detection and non-TATA promoter
classification tasks. Attribution quality is assessed via mutagenesis experiments that
perturb positions ranked as important by each method. We find that the impact of
targeted mutations varies substantially across tasks. In enhancer detection, mutating
high-scoring positions leads to marked performance degradation, indicating reliance on
localized sequence features. In contrast, for promoter classification against structured
genomic background regions, model performance degrades more slowly, consistent
with more distributed representations. These findings suggest that attribution-based
evaluations are sensitive to dataset construction and task semantics, and that
conclusions about interpretability methods should be conditioned on the structure of the
underlying prediction problem.

1. Introduction

The multi-modal and complex nature of functional genomic datasets, as well as their
expanding scale, are well suited for the application of deep learning tools (Zou et al.,
2019). Deep neural networks, specifically convolutional neural networks (CNNs) (Zhou
& Troyanskaya, 2015; Alipanahi et al., 2015; Kelley et al., 2015; Kelley et al., 2018;
Quang & Xie, 2015; Wang et al., 2018; Zhou et al., 2018; Jia et al., 2021) and
transformers (Ji et al., 2021; Benegas et al., 2022; Avsec et al., 2021), have been
effective in predicting regulatory genomic annotations from biological sequences.
Recently, transformer models like DNABERT have demonstrated superior prediction
accuracy compared to their CNN counterparts (Ji et al., 2021; Avsec et al., 2021).



Despite their predictive power, the interpretability of these models is equally crucial,
especially in clinical settings where understanding model failure points is essential
(Eraslan et al., 2019; Novakovsky et al., 2022; Molnar et al., 2020). Although attention
scores of transformers have been proposed as an interpretability solution (Clauwaert et
al., 2021), limitations exist due to the reduction of model information captured and the
varied relevance of different attention heads in each layer (Serrano & Smith, 2019;
Chefer et al., 2020).

This paper addresses this interpretability challenge by applying Layer-wise Relevance
Propagation (LRP) (Chefer et al., 2020), a technique based on the Deep Taylor
Decomposition principle (Montavon et al., 2017), to DNABERT (Ji et al., 2021). To our
knowledge, this is the first application of an interpretability mechanism beyond simple
attention maps to transformers for biological sequences. We fine-tune DNABERT for
two classification tasks (non-TATA promoters and identifying human enhancers), apply
several LRP-based methods for transformer interpretability, and compare these
methods to the attention-score-based method proposed by the DNABERT authors
along with other interpretability approaches such as GradCAM and rollout.

2. Related Works

In recent years, deep learning methods proposed for predicting regulatory annotations
in genomics from sequence have shifted from primarily CNN-based to
transformer-based models (Benegas et al., 2022; Ji et al., 2021; Avsec et al., 2021).
While previous papers have explored the role of transformers' interpretability in
genomics (Clauwaert et al., 2021), they have not compared methods beyond attention
scores or acknowledged the limitations of this method (Serrano & Smith, 2019).

2.1 Layer-Wise Relevance

Layer-wise Relevance Propagation (LRP) is a method which has been utilized to
understand and interpret the decisions made by deep learning models. LRP works by
attributing the contribution of each input feature to the final decision of the network. This
is achieved by propagating the output prediction back to the input layer, thereby
providing an indication of feature importance.

LRP is calculated as (Letzgus et al., 2021):
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Where $p_i$ and $q_j$ are the neurons of consecutive layers, $a$ is the activation of
the respective neuron, and $w$ is the weight between two neurons. $R_{p_0}$ is then
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the ‘relevance’ received by neuron $p 0%, which is interpreted as the contribution of that
neuron in its layer to the output prediction $f(x)$.

LRP has been widely used in interpreting CNN-based models, providing valuable
insights into their decision-making process (Bach et al., 2015). LRP has also been
applied to transformers, particularly to demonstrate multi-headed attention results in
"redundant" heads (Voita et al., 2019). A recent paper has further adapted the LRP
method for explaining transformer classification decisions (Chefer et al., 2020).

2.2 Layer-Wise Relevance for Transformers

LRP has two important features. Firstly, LRP satisfies the conservation rule (Montavon
et al., 2017), meaning relevancies are preserved as they move through each layer of
the model such that the total relevance at the output layer is equal to the total relevance
of the input layer. Secondly, LRP assumes RelLU activations, i.e., that there are only
non-negative feature maps (Bach et al., 2015). However, in transformers the
conservation rule is challenged by skip connections and matrix multiplications (Chefer et
al., 2020), and transformers use the GELU non-linearity (Hendrycks & Gimpel, 2016),
which outputs both positive and negative values.

Throughout this paper we apply versions of the modified LRP method proposed by
Chefer et al. (2020) which accounts for the conservation rule in skip connections and
matrix multiplications as well as GELU non-linearities.

3. Datasets

The datasets for both tasks, identifying non-TATA promoters as well as identifying
human enhancers were taken from a recent paper (Martinek et al., 2022), with code
available here: https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks. The test
datasets for each task consist of roughly 30% of all data points and are relatively
balanced. We collected the data from HuggingFace (Wolf et al., 2019)
(https://huggingface.co/katarinagresova) and formatted the sequences including
kmer-izing for DNABERT.

3.1 Human Non-TATA Promoters

Promoters are a region of sequence of DNA that binds a protein initiating the gene
transcription. They are usually located close (from -200 to 50bp) to the transcription
splice site (TSS). The dataset taken from HuggingFace was adapted from this paper
(Umarov & Solovyeyv, 2017).

3.2 Human Enhancers
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This dataset originates from the Ensembl database (Howe et al., 2021), release 100,
itself taken from the VISTA Enhancer Browser project (Visel et al., 2007). As this
dataset had variable length sequences, and 'N' encoded nucleotides, part of the
processing for using this dataset was removing all sequences less than 200bp in length,
and removing sequences with 'N' nucleotide codes, before kmer-izing.

4. Methods

4.1 Fine-tuning DNABERT

We employed the pretrained DNABERT model for k-mer (k = 6) linked on the DNABERT
Github. We fine-tuned the pretrained model for both tasks, identifying non-TATA
promoters and identifying human enhancers, by using a maximum sequence length of
200. The hidden dropout probability was set to 0.1 to prevent overfitting, and the
learning rate was set to $2e”{-4}$. Weight decay was set to 0.01. The models were
fine-tuned for a total of 5 epochs. We employed a batch size of 48 for fine-tuning,
leveraging the per-GPU setting to optimize memory usage and computational efficiency.

The warmup phase of the training, the period during which the learning rate gradually
increases to its maximum value, constituted 10% of the total training duration. We
employed four NVIDIA Tesla T4 GPUs for this task, and used an Intel(R) Xeon(R) Silver
4110 CPU operating at a base frequency of 2.10GHz for efficient handling of the
non-GPU computations involved in the fine-tuning process.

4.2 Scoring Position Contributions

We computed interpretability scores of each k-mer (k=6) for 500 samples of each class
from the test dataset for both tasks. These scores were calculated using several
methods, including LRP, Gradient-based methods, and attention scores from the
Transformer model. Each score represents the importance of each k-mer (and is then
converted to positions in the original sequence for downstream analysis) according to
the specific interpretability method.

The attention score is computed as $softmax(QKAT/ \sqrt{d_k})$ where $Q$, $K$ are
the query and key matrices, respectively, and $d_k$ is the dimension of the query and
key vectors. The attention score reported for each sequence is calculated as the sum of
attention scores from the start to end tokens.

The LRP score computes the LRP equation for each layer in the model following
Equation 1. The LRP score function computes LRP for each layer, and returns a 'rollout'
of these relevance scores. The LRP_last score computes LRP only for the last layer,
while the full_LRP score computes the full LRP for the model, where relevance scores
are then summed, providing a single relevance score for each token in the input.



The rollout score computes the average of attention matrices from the start of the model
to the end.

The GradCAM score computes the gradient of the output with respect to feature maps
and then performs a weighted combination of these maps. If $y\_c$ denotes the output
for class c, $A*k$ denotes the $k$-th feature map (or attention map in this case), and
$dy\ c/dA”k$ denotes the gradient of $y\ c$ with respect to $A”k$, the operation can
be denoted as: $GradCAM = ReLU(sum((dy_c/dA%k) * A*k))$.

4.3 Mutagenesis Experiments

We ran mutagenesis experiments to determine how well the interpretability scores
explained the predictions of the fine-tuned DNABERT models. The mutagenesis
experiment targeted the most relevant base pairs identified by each score and
mutagenized them. In this case, a steep decrease in the model's accuracy indicates the
mutagenized positions are important to the classification task.

To run the mutagenesis experiments, we took the positions identified by each
interpretability score and mutated them in the original sequence, taking a single
nucleotide at a time (either 'A’, 'T', 'G', or 'C') and returning a different nucleotide chosen
randomly from the remaining three. We then kmer-ized the mutated sequence again,
and sent it to the model for classification to evaluate its performance after mutagenesis.
Note that a single base pair mutation in the original sequence can affect up to 6 k-mers
in the k-merized sequence sent to the model.

5. Results

5.1 Model Performance

On the full test dataset, the model achieved 86% accuracy on the human enhancer task
and 93% accuracy on the non-TATA promoter task after fine-tuning.

For each task, we sample 500 sequences per class and measure the drop in
classification accuracy when mutating either the top 10% most important nucleotides
($n = 209%) or all nucleotides ($n = 200%), as identified by attribution methods.

Results in Table 1 show that the fine-tuned DNABERT model exhibits different learning
behaviors across tasks. For the non-TATA promoter task, the model more strongly
learned to identify negative sequences, random fragments of human genes located
downstream of first exons, than non-TATA promoters themselves. This is evidenced by
a large drop in accuracy for non-promoter classification when all nucleotides are
mutated ($n = 200$), compared to minimal degradation at $n = 0$. In contrast, the
accuracy drop for non-TATA promoter identification is more moderate, indicating weaker
reliance on promoter-specific signals.



For the human enhancer task, the model learned features associated with the enhancer
class. The accuracy drops substantially for enhancer classification as more nucleotides
are mutated, while non-enhancer classification degrades less sharply. Negative
examples in this task consist of randomly sampled, length-matched genomic regions
from GRCh38 that do not overlap annotated enhancers.

Together, these results suggest two distinct learning strategies. When separating
enhancers from random genomic backgrounds, the model primarily learns features of
the positive class. When separating non-TATA promoters from structured gene-sampled
regions, which may present a more structured negative pattern, the model instead
relies more heavily on identifying negative-class structure.

Table 1: Accuracy on DNABERT fine-tuned models in classifying specific classes
with 500 samples.

(Note: LRP* indicates the results reported are the best of either LRP or LRP_last.)

Task n=0 [n=20(LRP*) | n=20 (Attention) [ n =200
Non-TATA 0.878 | 0.784 0.788 0.678
Non-promoter | 0.968 | 0.814 0.854 0.306
Enhancer 0.876 | 0.49 0.512 0.386
Non-enhancer | 0.87 | 0.838 0.852 0.62

5.2 Mutagenesis Experiments

Across both tasks, mutagenesis experiments reveal that the impact of perturbing
attribution-ranked positions depends strongly on the structure of the classification
problem rather than on any single attribution method. For the enhancer task, mutating
high-scoring positions identified by multiple methods leads to a noticeable reduction in
model accuracy at n=20n = 20n=20, indicating that several attribution approaches
capture enhancer-associated signal that is relevant to the model’s predictions. However,



no method produces a sharp or exclusive degradation in performance under sparse
mutation.

Figure 1 shows mutagenesis results for n=1,5,10,15,20n = 1, 5, 10, 15,
20n=1,5,10,15,20 across both tasks. In the non-TATA promoter task, where negative
examples consist of structured gene-adjacent regions, model accuracy decreases
gradually as more positions are mutated. For most attribution methods, performance
remains within the 95% confidence interval of random mutagenesis over a wide range
of nnn, suggesting that the learned representation is distributed across many input
positions. Under these conditions, sparse mutagenesis provides limited separation
between attribution methods.

Taken together, these results indicate that mutagenesis-based faithfulness tests are
sensitive to task semantics and dataset construction. When predictive signal is
localized, as in enhancer detection against random genomic background, targeted
mutation can expose influential positions. In contrast, when models rely on distributed
sequence features, attribution-guided sparse perturbations—regardless of the scoring
method—produce only modest changes in performance. These findings motivate a
more detailed analysis of how different interpretability signals, including attention, reflect
learned representations under varying task conditions.
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[Figure 1: Top graph shows the drop in accuracy of the non-TATA-DNABERT
model pictured after mutating the k most important positions identified by each
interpretability score. Bottom graph depicts the drop in accuracy of
enhancer-DNABERT model pictured after mutating the k most important
positions.]

6. Conclusion

To the best of our knowledge, this work represents an early comparison of
interpretability methods for transformer models beyond simple attention mechanisms in
the context of genomics. Through mutagenesis-based evaluation, we show that
attribution faithfulness depends strongly on task design and dataset structure. In
particular, sparse mutagenesis does not consistently recover random-performance
baselines at small mutation budgets, suggesting that predictive information in genomic
sequences may be distributed across many positions rather than concentrated in a
small set of motifs.

These findings indicate that conclusions drawn from attribution-based evaluations
should be conditioned on the underlying prediction task and the nature of the negative



class, rather than interpreted as evidence for or against a specific interpretability
method. Further work on more diverse tasks, larger datasets, longer sequence contexts,
and broader mutational regimes will be necessary to better understand when and how
different interpretability signals reflect learned genomic representations.

We leave as future work a more systematic analysis of the biological relevance of motifs
recovered by different attribution methods, as well as the extension of relevance
propagation techniques to regression-based genomic models such as Enformer(Avsec
et al., 2021). Recent work has proposed adaptations of LRP for regression settings,
suggesting a path toward applying similar interpretability analyses to continuous
genomic prediction tasks (Letzgus et al., 2021).
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In practice, these results suggest that attribution faithfulness tests based on sparse mutagenesis
can be strongly confounded by dataset construction, especially by the structure of the negative
class, and may fail to distinguish interpretability signals even when models perform well. This
motivates analyses that tie model internals to explicit biological annotations. In the next chapter,
we develop a framework that relates attention patterns to curated genomic features across
architectures and training stages, enabling more direct diagnosis of which biological structures
are represented and used.
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