
Sum-Product-Attention Networks: Leveraging Self-Attention
in Energy-Based Probabilistic Circuits

Zhongjie Yu1 Devendra Singh Dhami1,2 Kristian Kersting1,2,3

1Department of Computer Science, TU Darmstadt,
2Hessian Center for AI (hessian.AI),

3Centre for Cognitive Science, TU Darmstadt

Abstract

Energy-based models (EBMs) have been hugely
successful both as generative models and likeli-
hood estimators. However, the standard way of
sampling for EBMs is inefficient and highly depen-
dent on the initialization procedure. We introduce
Sum-Product-Attention Networks (SPAN), a novel
energy-based generative model that integrates prob-
abilistic circuits with the self-attention mechanism
of Transformers. SPAN uses self-attention to se-
lect the most relevant parts of Probabilistic circuits
(PCs), here sum-product networks (SPNs), to im-
prove the modeling capability of EBMs. We show
that while modeling, SPAN focuses on a specific
set of independent assumptions in every product
layer of the SPN. Our empirical evaluations show
that SPAN outperforms energy-based and classi-
cal generative models, as well as state-of-the-art
probabilistic circuit models in out-of-distribution
detection. Further evaluations show that SPAN also
generates better quality images when compared to
EBMs and PCs.

1 INTRODUCTION

Energy-based models (EBMs) have recently been very suc-
cessful in various tasks ranging from image generation [Du
and Mordatch, 2019, Gao et al., 2021, Song et al., 2021a],
likelihood estimation [LeCun et al., 2006, Du and Mordatch,
2019] and out-of-distribution detection [Zhai et al., 2016].
Although quite successful in sampling from probability dis-
tributions, EBMs fall short when faced with the task of
reasoning about these distributions. Deep probabilistic mod-
els take advantage of the deep learning model efficiency
and also abstract the underlying model representation while
enabling reasoning over uncertainty in the domain. This has
resulted in several probabilistic models such as arithmetic

circuits [Darwiche, 2003], sum-product networks [Poon and
Domingos, 2011] and more recently, probabilistic gener-
ating circuits [Zhang et al., 2021] to name a few. These
probabilistic models learn the underlying joint distribution
using a network polynomial over evidence variables and
network parameters.

Although probabilistic models are touted to be scalable,
there are limitations when they are used for learning with
real-world data. To alleviate these limitations, Einsum net-
works (EiNet) [Peharz et al., 2020], which are essentially a
form of sum-product networks (SPN), have been proposed.
They combine several arithmetic operations in a single ein-
sum operation and thus lead to learning speedups. Typical
PCs, like EiNet, model the mixture of probability distribu-
tions at the sum node, shown in Figure 1 (Left). In the realm
of deep learning, there has recently been work on Trans-
formers which are models that leverage self-attention for
capturing long-term dependencies for sequence-to-sequence
modeling of text [Vaswani et al., 2017].

In this work, we introduce Sum-Product-Attention Networks
(SPAN) that incorporate the concept of self-attention in
SPNs to select the most relevant sub-SPN while modeling a
given data sample and also take advantage of the tractable
power of probabilistic circuits. We assume that activating
the most relevant child(ren) at the sum node of SPNs should
be sufficient to represent the mixture, and show that while
modeling, SPAN focuses on a specific set of independent
assumptions via self-attention, in every product layer of
the sum-product network. We specifically make use of the
Transformer encoder in every product layer of SPAN. Dur-
ing the training phase of SPAN, the inputs are fed to both the
Transformer encoders and the SPN. The encoder outputs the
attention weights for the product nodes in the corresponding
product layer. The outputs at the root of the SPN given the
inputs are then dominated by the product nodes which have
relatively higher attention weights, see Figure 1 (Right).

We make the following key contributions: (1) We introduce
a new energy-based model class that leverages the power
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Figure 1: SPAN pays attention to only one or a few product nodes at each sum node, while EiNet treats all the product nodes
from one sum node almost equally in the upper layers. The 5× 5 matrices stand for the last 2 dimensions of the updated
weights at a sum node. The 1× 20 vector visualizes the weights of the 20 replicas of the EiNet, where no self-attention is
employed. Weights from one sum node are all normalized.

of self-attention in order to identify and select the most
relevant sub-SPN structure while learning. (2) Our model
class is agnostic to the type of Transformer encoder as well
as the SPNs being used and thus can model various data
types. (3) Our model offers a principled way to connect
self-attention to sum-product networks, without breaking
tractability in likelihood estimation. (4) We show that SPAN
acts as a generative model outperforming state-of-the-art
EBM and PCs.

2 RELATED WORK

Recently, energy-based models became popular because of
their generality and simplicity in likelihood modeling [Du
and Mordatch, 2019, LeCun et al., 2006]. EBMs, which are
also probabilistic models, are widely used in e.g. image gen-
eration [Du and Mordatch, 2019, Gao et al., 2021] and out-
of-distribution (OOD) detection [Zhai et al., 2016]. More
recently, based on EBM, score-based models [Song et al.,
2021a,b] were proposed, which diffuse the data distribution
towards a noise distribution using a stochastic differential
equation (SDE), and the time reversal of this SDE is learned
for sample generation.

Transformers were initially proposed for natural language
processing (NLP) [Vaswani et al., 2017], but have been
widely adopted in various fields, such as computer vi-
sion [Dosovitskiy et al., 2021], speech processing [Dong
et al., 2018], databases [Thorne et al., 2021] and ge-
nomics [Ji et al., 2021].

Probabilistic circuits are popular probabilistic models which

allow a wide range of exact and efficient inference routines.
PCs were firstly developed from arithmetic circuits [Dar-
wiche, 2003], and later on into SPNs [Poon and Domingos,
2011] and some other members such as cutset networks
(CNets) [Rahman et al., 2014] and probabilistic sentential
decision diagrams (PSDD) [Kisa et al., 2014]. SPNs are a
family of tractable deep density estimators first presented
in Poon and Domingos [2011]. SPNs can represent high-
treewidth models [Zhao et al., 2015] and facilitate exact
inference for a range of queries in time polynomial in the
network size [Bekker et al., 2015].

3 SPAN

The Sum-Product-Attention Network leverages the attention
mechanism for highlighting the most relevant sub-SPNs
thus improving its modeling ability. SPAN consists of an
SPN and Transformer encoders for each SPN product layer.
We can now define the Sum-Product Attention Networks
formally followed by introducing the architecture and the
training and inference mechanisms.

Definition 1. Sum-Product-Attention Networks. A sum-
product-attention network CA = (G, θG , T , θT ) over RVs
X = {Xi}N1 is an energy-based SPN C = (G, θG), con-
nected to a set of Transformer encoders T , which are pa-
rameterized by a set of graph parameters θG and Trans-
former encoder parameters θT . Given datum x, the nor-
malized weights wS,P ∈ θG of a sum node S in C are re-
parameterized by the attention weights wA

S,P(x) which are
outputs of T . The output of CA is the output computed at
the root of C and represents the negative energy: −Eθ(X),
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where θ = {θG , θT }. The negative energy can also be seen
as the likelihood score from SPAN.

Given datum x, SPAN uses Transformer encoder to pro-
duce the attention weight wA

S,P(x) for the product node P
where P ∈ ch(S). The Transformer encoder consists of an
embedding layer, followed by several stacks of multi-head
attention sub-layers and feed-forward sub-layers. Similar to
Transformer decoder, a feed-forward layer and a softmax
layer are employed to connect the Transformer encoder out-
put to the product nodes P. To this end, each product node in
one product layer will be provided with an attention weight
from the Transformer corresponding to this product layer.

3.1 TRANSFORMER EMBEDDING

In order to model various types of random variables, differ-
ent embeddings can be used in the Transformer encoder.

Bernoulli distribution To model Bernoulli random vari-
ables rather than tokens as in sequence transduction models,
we propose the following embedding strategy for the Trans-
former encoder. For a binary random variable Xi, value
True is embedded as 01 and value False as 10:

Embedding(Xi) =

{
10 if Xi = True

01 if Xi = False
. (1)

Therefore, the dimension of embedding dmodel for a binary
random variable is 2.

Modeling images On the other hand, when modeling im-
ages, Vision Transformer (ViT) [Dosovitskiy et al., 2021]
can be employed and thus the “Patch + Position” embed-
ding can be used to embed the image. That is, the image
X ∈ RH×W×C is reshaped into a sequence of flattened
patches Xp ∈ Rp×p×C , where (H,W ) is the resolution of
the image, C is the number of (color) channels, and p is the
patch size. Here, each patch works as token and the flattened
patch naturally becomes the embedding of the token.

3.2 ATTENTION IN SPAN

Existing PCs use a sum node S to model the mixture
of its children N, i.e., S =

∑
N∈ch(S) wS,NN, where∑

N∈ch(S) wS,N = 1. In SPAN, we follow the same mecha-
nism but pay more attention to the product nodes P that
fit more the distribution of the subset of corresponding
data instances. To achieve this, each product node P is as-
signed with an extra attention weight wA

S,P(x) provided by
the Transformer encoder given x, working as a gate. To be
more specific, a sum node S in SPAN computes the convex
combination of its re-weighted children:

S(x) =
∑

P∈ch(S)

wS,Pw
A
S,P(x)P∑

P∈ch(S) wS,PwA
S,P(x)

, (2)

where
∑

P∈ch(S) wS,P = 1 and
∑

P∈ch(S) w
A
S,P(x) = 1.

Here, although both weights wS,P and wA
S,P(x) are normal-

ized, the weights at a sum node S depend on the input x.
Hence, the output at the root of SPAN is no more normalized
and is defined as the negative energy −Eθ(X). Note that
this operation is different from the neural CSPN [Shao et al.,
2020], where the weights of a sum node are directly deter-
mined by the output of the feed-forward neural network.

SPAN can work with various types of sum-product networks.
We illustrate here SPAN with EiNet, a novel implementation
design for PCs [Peharz et al., 2020], as an example. In EiNet,
assume a sum node S has one child that is a product node P,
and P has two children N′ and N′′. Therefore, the output at
S is given in Einstein notation as:

Sk = WkijN
′
iN

′′
j , (3)

where W is a K×K×K tensor, and N′
i,N

′′
j are outputs of

the children. W is normalized over its last two dimensions,
i.e., Wkij ≥ 0,

∑
i,j Wkij = 1. In order to provide the

attention weights for the product node (here in the eimsum
layer), the attention weight tensor WA(x) from the Trans-
former encoder should have size b × K × K × K, given
input data with batch size b. The softmax is then applied
over the last two dimensions, to ensure

∑
i,j W

A
bkij(x) = 1.

Following Equation (2), the updated weights WS(x) are:

WS
bkij(x) =

Wkij ×WA
bkij(x)∑

i,j Wkij ×WA
bkij(x)

. (4)

3.3 TRAINING AND INFERENCE

SPAN is trained by minimizing its energy Eθ(X), which
can also be seen as maximizing the likelihood score from
the root. The training procedure of SPAN mainly consists
of 3 phases. In the first phase which we call SPN warm-up,
the trainable parameters of the SPN are updated with ep1
epochs while the Transformer parameters remain fixed. In
the second phase, the SPN parameters and the Transformer
parameters are updated iteratively, in a coordinate descent
fashion for ep2 epochs. In the last phase, the Transformer
trainable parameters are again fixed and the SPN parameters
are fine-tuned by maximizing the root output for ep3 epochs.

Inference of SPAN is similar to SPNs for taking advantage
of SPNs’ tractable inference property. More details are in
the appendix.

4 EXPERIMENTAL EVALUATION

In order to investigate the benefits of SPAN compared to
EBMs and other probabilistic models, we aim to answer the
following research questions: (Q1) Can SPAN capture out-
of-distribution data better than energy-based and classical
generative models, as well as state-of-the-art probabilistic
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Figure 2: Sample-wise SPAN log-likelihood scores of SVHN
test set are much higher than the test sets of MNIST, Se-
meion and CIFAR10. Bins of Semeion data set are re-scaled
for better visualization.

circuit models? (Q2) Does SPAN work well as a generative
model for images?

To answer these questions, we evaluate the performance of
SPAN on the image data set SVHN [Netzer et al., 2011]
which is a real-world image data set with house numbers in
Google Street View images, incorporates over 600,000 digit
images and comes from a significantly harder, unsolved,
real-world problem [Netzer et al., 2011]. SVHN contains
32× 32 RGB images of digits.

(Q1) Better OOD detector. We train SPAN on the full
SVHN data set to evaluate its modeling ability for images.
SPAN employs an EiNet with number of entries K = 5,
split-depth D = 4, number of replica R = 100, with a ran-
dom binary tree structure. SPAN also uses a Vision Trans-
former to encode the image inputs, which has patch size 8,
depth 2, and 16 heads and the embedding has dimension
1024 with feed-forward layers of dimension 512. SPAN
training follows the 3-phased training with ep1 = 5 for
warm-up training of SPN, ep2 = 10 for coordinate de-
scent and ep3 = 15 for fine-tuning the SPN weights with
fixed Transformer weights. As for comparisons, we em-
ployed 1) the unconditional EBM from Du and Mordatch
[2019] and used its default hyper-parameters, 2) the vanilla
EiNet with the same structure as the SPAN components,
trained with EM for 30 epochs, 3) MAF [Papamakarios
et al., 2017] and 4) VAE [Choi et al., 2021] with their de-
fault hyper-parameters. To estimate the running time, we ran
both SPAN and EiNet for 5 times, and the average running
time for SPAN is 11341.9s and for EiNet is 5547.5s.

SPAN can detect the OOD test samples better than EBM,
which is a property of PCs. As shown in Figure 2, the neg-
ative energy of MNIST [LeCun et al., 1998] test set has
almost no overlap with the SVHN, mainly because MNIST
has grayscale images. CIFAR10 [Krizhevsky et al., 2009]
has color images thus distributing closer to SVHN, while
the overlap happens at the lower negative energy values of

Table 1: SPAN outperforms EBM and deep generative mod-
els measured with AUC scores of out-of-distribution clas-
sification on different data sets, and is on a par with EiNet.
All models trained on SVHN training set.

Data set SPAN EBM EiNet MAF VAE
CIFAR10 0.9270 0.8425 0.9273 0.9517 0.9889
MNIST 0.9992 0.5416 0.9989 0.9921 0.9296
Semeion 1.0000 0.8734 1.0000 0.9965 0.9994

Table 2: SPAN reconstructs images better than baselines by
providing the best reconstruction error.

Filling top half Filling left half
mean std. mean std.

SPAN 8.76× 10−3 6.84× 10−3 6.73× 10−3 5.29× 10−3

EiNet 9.28× 10−3 7.90× 10−3 7.08× 10−3 6.13× 10−3

EBM 1.35× 10−2 7.29× 10−3 1.40× 10−2 6.90× 10−3

SVHN. The Semeion [Buscema, 1998] data set contains
binary images and thus has extremely low negative en-
ergy. Hence, SPAN trained on SVHN can successfully dis-
tinguish the outliers from MNIST and Semeion data sets,
and also provide much lower negative energy given im-
ages from CIFAR10. We employed the area under the curve
(AUC) to quantitatively measure the OOD classification
quality [Hendrycks and Gimpel, 2017]. In Table 1, SPAN
performs significantly better OOD detection than uncon-
ditional EBM, and overall better than the other baselines.
Therefore, we can answer Q1 affirmatively: SPAN captures
out-of-distribution data better than energy-based (EBM) and
classical generative models (VAE), as well as state-of-the-art
probabilistic circuit models (EiNet).

(Q2) Generative model for images. Table 2 presents the
mean squared error (MSE) of the reconstruction by the 3
methods on SVHN test set. SPAN produces the best recon-
structions with the smallest reconstruction error, both in
filling the top half and the left half of the image. The recon-
structed images and more details are in the appendix. Thus,
Q2 can be answered affirmatively: SPAN can model the
image distribution, providing samples as good as baselines,
and producing better-visualized reconstructions.

5 CONCLUSION

We presented SPAN, a new model that incorporates atten-
tion in the SPN architecture. This results in selection of
the most relevant sub-SPN structures during learning while
taking advantage of the tractable power of PCs. We show
that SPAN is a better generative model in OOD detection
and image generation. Future works include reducing the
number of embeddings while modeling Bernoulli random
variables. Extending our model to handle missing data and
marginalization with the Transformer is a natural next step.
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A SPAN ARCHITECTURE

Figure 3 (Left) shows the overall SPAN architecture, where
each product layer is equipped with one Transformer en-
coder. The structure of Transformer encoder in SPAN is
depicted in Figure 3 (Right).

B SPAN IMAGE RECONSTRUCTION

To qualitatively evaluate SPAN as a generative model, we
visualize the samples and reconstructions from SPAN in Fig-
ure 4. The reconstructions are from the approximated most
probable explanation (approximated MPE) query. That is,
argmax is employed in the top-down pass at each sum node
of the PC component. Similar to the experimental settings
in (Q1), SPAN, EBM and EiNet are trained on one cluster
from 100 k-means clusters from SVHN data set. Figure 4 (b),
(c) and (d) show samples from SPAN, EBM and EiNet, re-
spectively. SPAN produces image samples as good as EiNet,
while EBM samples are smoother and have twisted shapes
of digits. There are no “stripy” artifacts as both SPAN and
EiNet employed a binary tree structure, instead of the PD
architecture [Poon and Domingos, 2011, Peharz et al., 2020].
On the other hand, the sampled images contain more noise
due to the blurry images in the data set (see Figure 4 (a)).

In most cases, SPAN, EBM and EiNet all successfully re-
constructed the digit given half of the image, as shown
in Figure 4 (e), (f) and (g). Overall, the SPAN reconstruc-
tions show less noise than EiNet, e.g., digit “7” in the 2nd

column, digit “9” in the 3rd column, and digit “2” in 4th

and 5th columns. Furthermore, SPAN better reconstructs
digit “2” in the 7th column, especially in the case of left-
half-missing. The reconstruction from SPAN is left half of
digit “2”, while the EiNet reconstruction is not recognisable.
The reconstruction of this image is challenging as there is
also another digit “3” in the image, which inputs additional
noise to the models. The EBM reconstructions are initial-
ized from missing pixels all being 0.5 (gray), in order not
to include the randomness of the initial pixel values. EBM
reconstructions are again smoother but can not reconstruct
the digits as good as SPAN and EiNet.

C SPAN INFERENCE

Inference of SPAN is similar to SPNs for taking advantage
of SPNs’ tractable inference property. When computing
the likelihood score, the Transformer encoder is activated.
In order to obtain a normalized probability from the like-
lihood score, it is in most cases efficient to calculate the
partition function Z(θ). A large number of RVs makes the
exact calculation of Z(θ) infeasible and therefore MCMC
approaches can be applied to approximate Z(θ) [Haddadan
et al., 2021, Acharyya, 2020]. On the other hand, when com-
puting the bottom-up pass from SPAN with RVs marginal-
ized, the Transformer encoder is deactivated, as the Trans-
former encoder is not trained with missing values. Moreover,
for the top-down pass e.g. sampling, the Transformer en-
coder is also deactivated. That is, with marginalization and
data generation, SPAN inference degenerates to SPN infer-
ence.
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Figure 3: Illustration of Transformer encoder in SPAN. Inputs are fed to both the Transformer encoders and the SPN. The
Transformer encoder outputs the attention weights for the product nodes in the corresponding product layer. The outputs at
the root of the SPN given the inputs are then dominated by the product nodes which have relatively higher attention weights.

(a) Real SVHN Images

(b) SPAN Samples

(c) EBM Samples

(d) EiNet Samples

(e) SPAN Reconstructions

(f) EBM Reconstructions

(g) EiNet Reconstructions

Figure 4: SPAN generates samples as good as EiNet, while EBM samples capture better contrast and smoothness of images,
but worse shapes of digits. SPAN also reconstructs better-visualized digits than both EiNet and EBM. For a fair comparison,
EBM samples are generated from pixel values being 0.5, rather than uniformly random initialization.
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