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ABSTRACT

Effectively balancing switching costs and regret remains a fundamental challenge in bandit
learning, especially when the arms exhibit similar expected rewards. Traditional upper
confidence bound (UCB) -based algorithms struggle with this trade-off by frequently
switching during exploration, incurring high cumulative switching costs. Recent approaches
attempt to reduce switching by introducing structured exploration or phase-based selection,
yet they often do so at the expense of increased regret due to excessive exploitation of
suboptimal arms. In this paper, we propose a new unified framework for bandit problems
with switching costs, containing several classical algorithms, applicable to both Multi-
Armed Bandits (MAB) and Combinatorial Multi-Armed Bandits (CMAB). Our approach is
built on three key components: initial concentrated exploration, near-optimal exploitation,
and predictive selection, which together achieve a principled balance between switching
cost and regret. Based on this framework, we introduce the Minimal Switching Cost and
Minimal Marginal Regret (MSMR) family of algorithms. Theoretically, we show that
MSMR algorithms achieve a regret upper bound of O(log n) over horizon n, incur only
O((log n)1−ε) switching cost, and its marginal loss has an upper bound of O(λ

√
log n)

by setting ε = 1/2, where λ and ε ∈ (0, 1) are hyper-parameters. Experiments show that
MSMR algorithms reduce switching costs to 1.0% (MAB) and 1.3% (CMAB) of those
incurred by standard baselines, while maintaining comparable regret, demonstrating their
practical effectiveness.

1 INTRODUCTION

The stochastic multi-armed bandit (MAB) problem is a classical framework for sequential decision-making,
where a learning agent repeatedly chooses from a set of arms with unknown reward distributions to minimize
cumulative regret (16). Over the years, this framework has been extended to accommodate more complex
scenarios. A notable generalization is the combinatorial multi-armed bandit (CMAB) problem, where the
agent selects a subset of base arms—known as a super arm—in each round, and receives feedback from all
the selected base arms. This formulation captures a wide range of real-world applications, including online
advertising, network optimization, and healthcare systems (6; 25; 21; 19; 9).

To minimize regret, traditional bandit algorithms aim to balance exploration and exploitation. Since Thomp-
son’s early work on bandits for clinical trials (24), a rich body of theoretical and algorithmic developments
has followed. Lai and Robbins (15) established the first lower bounds for regret, showing that it must grow
at least logarithmically in the number of rounds. Auer et al. (3) proposed the UCB algorithm, achieving
logarithmic regret. In the combinatorial setting, Chen et al. (6) introduced the CUCB algorithm, which was
later extended to probabilistically triggered arms (8), both achieving O(log n) regret bounds.

However, in many practical applications, regret is not the only performance measure, as switching between
arms across rounds may incur explicit or implicit costs. For example, in co-branding recommendation systems,

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Table 1: Comparison of Regret, Switching Cost, and Marginal Loss Upper Bound.
Setting MAB Algorithm Regret Switching Cost Marginal Loss

UCB(3) O(logn) O(logn) O(λ log(n))
Phased-UCB(16) O(logn) O(log logn)* O(logn+ λ log log n)

MAB Batched Tsallis-INF(1) O(logn) ———— O(λ1/3n2/3)

Batched Arm Elimination (13) O(n1/B logn)** O(B) O(n1/B logn+ λB)
MSMR-UCB O((logn)ε) O((logn)1−ε) O(λ

√
logn)

CUCB(6) O(logn) O(logn) O(λ logn)
CMAB Phased-CUCB(16) O(logn) O(log logn) O(logn+ λ log log n)

B-FTRL (11) O(n2/3) O(n2/3) O(λn2/3)
MSMR-CUCB O((logn)ε) O((logn)1−ε) O(λ

√
logn)

* Appendix J theoretically analyzes why MSMR performs better than Phased methods.
** B is the number of batches and small B will cause large regret.

repeatedly switching recommended items adds fixed overhead beyond suboptimal choices. Similarly, in
session-based recommendation scenarios (26), frequent product changes can fragment user attention and
reduce click-through rates (CTR), creating additional operational costs. These overheads are commonly
termed switching costs. To address this, several recent works propose switching-aware bandit algorithms.
A common approach uses phased strategies that repeatedly select the same (super) arm within each phase,
limiting the number of switches. This framework has been applied in both MAB settings, such as Batched
Tsallis-INF (16; 14; 22; 1), and CMAB settings, such as B-FTRL (11), to reduce switching frequency.

Despite these advances, existing methods still suffer from two fundamental dilemmas: (1) The dilemma
between regret and switching cost: To reduce switching, current algorithms often tolerate increased regret,
both Batched Tsallis-INF and B-FTRL have polynomial-level regret, which may be unacceptable in regret-
sensitive applications. (2) The dilemma among arms with similar rewards: When many (super) arms
have similar expected rewards, existing methods like B-FTRL tend to oscillate between them, resulting in
excessive switching while elimination-based methods (14) risk converging to suboptimal policy.

Regarding these challenges, we propose a novel framework called Bandit with Minimal Switching Cost and
Minimal Marginal Regret (MSMR), which incorporates three key technical modules: initial concentrated
exploration, near-optimal exploitation, and predictive selection. The initial concentrated exploration phase
occurs at the beginning of the learning process and uses a single phase to gathering sufficient information for
each arm. The near-optimal exploitation technique determines whether the currently selected arm should
be pulled additional times within the current phase. The predictive selection technique anticipates whether
the currently selected arm will need to be explored in the near future, allowing the algorithm to explore
it proactively in advance. We prove the effectiveness of these techniques and theoretically demonstrate
that MSMR achieves a switching cost of only O((log n)ε), while maintaining asymptotically the same
regret as standard bandit algorithms, which is O(log n), where n is the time horizon and 0 < ε < 1 is a
hyper-parameter we can choose flexibly. The main contributions of this paper are as follows:

• We propose a novel unified framework to address the two dilemmas in bandit problems: the trade-off
between regret and switching cost, and the instability caused by arms with similar expected rewards. This
framework, which encompasses a range of classical algorithms, incorporates three core techniques and is
highly flexible, allowing it to adapt to a wide range of bandit settings, including both MAB and CMAB.

• We provide rigorous theoretical guarantees for each core technique in the framework and prove that MSMR
algorithms achieve a significantly improved trade-off between regret and switching cost. Unlike existing
methods that typically reduce switching cost at the expense of marginal regret, through the carefully
designed exploitation function in the near-optimal exploitation module, MSMR asymptotically achieves
the same regret as standard algorithms, while incurring only minimal switching cost.
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• We conduct extensive experiments and ablation studies on MSMR algorithms. The results show that MSMR
achieves only 1.0% and 1.3% of the switching cost incurred by standard methods in MAB and CMAB
settings respectively, while maintaining nearly the same level of regret. These results highlight the superior
performance of our framework and the effectiveness of the key techniques.

2 RELATED WORKS

The Multi-Armed Bandit (MAB) problem serves as a foundational model in sequential decision-making,
balancing exploration and exploitation to minimize regret (16). While MAB focuses on selecting a single
arm, real-world applications like online advertising often require choosing combinations of arms, leading
to the Combinatorial Multi-Armed Bandit (CMAB) framework, which generalizes MAB by allowing the
selection of super arms, i.e., combinations of base arms, at each round (8; 25; 20).

Phased Bandits: Phased bandit algorithms partition the learning process into discrete phases, maintaining a
fixed action within each phase to reduce computational overhead and accelerate exploration. This approach
mitigates the frequent updates required in traditional bandit algorithms, offering efficiency gains. (16) provide
a comprehensive overview of bandit algorithms, including phased strategies. In the batched setting, Perchet et
al. (2016) analyze the trade-offs between batch size and regret, demonstrating that appropriately chosen batch
sizes can yield near-optimal performance. In adversarial contexts, (11) introduce algorithms that adaptively
determine phase lengths to balance exploration and exploitation effectively. Moreover, (4) discusses the
benefits of structured exploration in adversarial environments. These phased approaches are particularly
beneficial in scenarios where switching costs or computational constraints are significant concerns.

Switching Cost:Incorporating switching costs into bandit problems introduces additional complexity, as
learners must balance the trade-off between exploration benefits and the incurred costs of changing actions.
(11) analyze this scenario, establishing a regret lower bound of Θ̃(n) for adversarial bandits with unit
switching costs. (23) further explored the stochastic setting, revealing phase transitions in optimal regret
rates as a function of the switching budget. Then (14; 1) gave the Batched Tsallis methods in MAB
setting and (11) B-FTRL in CMAB settings. Phased strategies naturally align with the goal of minimizing
switching costs by limiting action changes to phase boundaries. (2) extended this concept to settings with
feedback graphs, proposing algorithms that consider both the structure of feedback and switching costs.
These approaches demonstrate that structured exploration can effectively manage switching costs without
significantly compromising regret.

While existing algorithms address either regret minimization or switching cost reduction, achieving an optimal
balance between the two remains challenging. (11) highlights that minimizing switching costs often leads to
increased regret, as infrequent action changes can hinder exploration. (23) demonstrates that strict switching
constraints can cause abrupt changes in optimal strategies, complicating the learning process. Moreover, in
environments with numerous similar arms, algorithms may oscillate between near-optimal actions, incurring
unnecessary switching costs without substantial gains in reward. (2) addresses this by incorporating feedback
graphs, yet challenges persist in balancing exploration and exploitation under switching constraints. The
newest methods given by (14; 1; 11) still cause a large number of regret though reducing switching costs.
These limitations highlight the need for a novel framework that significantly reduces switching costs while
incurring only minimal marginal regret compared to standard methods.

3 PROBLEM SETUP

Regret. We denote [[K]] as the set {1, 2, . . . ,K} for any K ∈ N+, and ζ(·) as the Riemann Zeta Function,
which is ζ(s) =

∑∞
n=1 n

−s. Let [[K]] denotes the set of arms. For each arm i ∈ [[K]], pulling it at round t
yields a reward feedback Xi,t ∈ [0, 1]. The unknown reward vector is represented by µ = (µ1, . . . , µK),
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where µi = E[Xi,t] denotes the expected reward for any arm i. The optimal arm is denoted as the arm i∗
which maximizes the expected reward, i.e., µ∗ = maxj∈[[K]]µj . At each round t, the agent selects an arm it.
The objective of the MAB problem is to identify this optimal arm while minimizing regret in time horizon n,
which is defined as:

Reg(n) = nµ∗ − E[
n∑

t=1

Xit,t]. (1)

Based on the definition above, in the CMAB scenario, the learning agent selects a combination of multiple
base arms from [[K]] at each round, referred to this combination as a super arm S, which has m base arm in it.
Let S as the set of all feasible super arms. At each round t, the agent selects a super arm St ∈ S , and the
outcomes Xi,t for all base arms i in St are revealed. The reward for a selected super arm St at round t, denoted
as R(St), is a non-negative random variable that depends on the specific problem instance, the selected super
arm St, and the rewards of the revealed base arms. In some scenarios, the reward can be simply as the sum
of the rewards of the base arms in St: R(St) =

∑
i∈S Xi,t (18), while in more general cases, the reward

function can be more complex, such as nonlinear functions, non-symmetric functions of rewards from these
base arms, etc. The expected reward of selecting a super arm is defined as rµ(S) = E[R(St)]. The optimal
super arm is denoted as the super arm S∗ that maximizes the expected reward, i.e., rµ(S∗) = maxS∈Srµ(S).
The goal of CMAB is to identify the optimal super arm while minimizing regret. For many reward functions,
computing the exact S∗ is NP-hard, even when µ is known. To address this, CMAB literature (25; 27; 20; 9)
often assumes access to an offline (α, β) -approximation oracle. This oracle, for given parameters α, β ≤ 1,
takes an expectation vector µ as input, and outputs a super arm S ∈ S , such that P [rµ(S) ≥ α · optµ] ≥ β,
where β is the success probability of the oracle, and optµ = rµ(S∗) is the mean reward of the optimal super
arm. The (α, β)-approximation regret of a CMAB algorithm after n rounds of play using such an oracle
under the expectation vector µ is formally defined as:

Regµ,α,β(n) = n · α · β · optµ − E

[
n∑

t=1

rµ(St)

]
. (2)

Following (6; 8; 20), we make two mild assumptions about the expected reward rµ(S):

• Monotonicity. The expected reward of playing any super arm S ∈ S is monotonically non-decreasing with
respect to the expectation vector. Specifically, if for all i ∈ [[K]], µi ≤ µ′

i, then rµ(S) ≤ rµ′(S) for all
S ∈ S.

• Bounded smoothness. There exists a strictly increasing (and thus invertible) function f(·), called the
bounded smoothness function, such that : (1) for any two super arm S and S′, we have 0 ≤ rµ(S) −
rµ(S

′) ≤ f(Γ1) if mini∈S maxj∈S′ |µi − µj | ≤ Γ1 . (2) for any two expectation vectors µ and µ′, we
have |rµ(S)− rµ′(S)| ≤ f(Γ2) if maxi∈S |µi − µ′

i| ≤ Γ2.

Switching Cost. We define the switching cost as the total number of times the agent changes its selected
(super) arm between consecutive rounds. Formally, the switching cost C(n) in MAB and CMAB settings are
given by:

C(n) = E[
n−1∑
t=1

I(it ̸= it+1)], and C(n) = E[
n−1∑
t=1

I(St ̸= St+1)], (3)

where I(·) is the indicating function. This metric quantifies switching costs between selecting different (super)
arms and is critical in applications where frequent changes incur penalties (11; 22).

Marginal Loss. When evaluating the trade-off between regret and switching cost, some studies(1; 22) have
adopted a linear combination of the two as an integrated performance metric. Following a similar approach,
this paper defines the marginal loss as the difference between such a combination and its theoretically optimal
counterpart, formally given as:

RA(λ, n) = (RegA(n)−Regopt(n)) + λ(CA(n)− Copt(n)), (4)
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where Regopt(n) is the lowest regret that can be achieved up to now, Copt(n) is the lowest switching cost that
can be achieved up to now. We choose standard UCB(CUCB) algorithm as Regopt(n) and greedy algorithm
as Copt(n)(see Appendix G for details). In this setting, the metric reflects the capability of balancing regret
and switching cost by comparing the existing measure with its theoretical optimum.

Upper Confidence Bound. In bandit problems, Upper Confidence Bound (UCB)-based approaches are
widely used to balance exploration and exploitation. These methods aim to exploit the best-known (super)
arms while still exploring less-visited ones to avoid convergence to suboptimal solutions (16). Specifically,
they maintain an upper confidence estimate for each (super) arm that combines its empirical mean with an
exploration bonus, and select the (super) arm with the highest estimate at each round. The width of the
confidence interval controls the level of exploration (19). Below, we outline the design of UCB in both the
MAB and CMAB settings.

In the MAB setting, let Ti(t) denote the number of times arm i has been pulled up to round t. The empirical
mean reward of arm i is given by: µ̂i,t = (1/Ti(t))

∑t
s=1 Xi,s · I(js = i). The corresponding upper

confidence estimate is: µ̄i,t = µ̂i,t+ci,Ti(t), where the confidence bonus is defined as ci,Ti(t) =
√
2 ln t/Ti(t).

In the CMAB setting, Ti(t) and µ̂i,t are computed in the same way as in the MAB case. The upper
confidence estimate is also defined as µ̄i,t = µ̂i,t + ci,Ti(t), but with a slightly different confidence interval:
ci,Ti(t) =

√
3 ln t/2Ti(t), since the super arm involves the combination of multiple base arms. For specific

derivations, please refer to (6).

4 ALGORITHMS

Determining “when to switch without sacrificing performance” is a central challenge in bandit learning with
switching costs. To address the trade-off between regret and switching cost, we propose the Bandit with
Minimal Switching Cost and Minimal Marginal Regret (MSMR) framework for various bandit settings.
MSMR begins with an “Initial Concentrated Exploration” phase, where all arms are explored in a single batch
to collect sufficient statistics while avoiding repeated switches. In the subsequent “Near-optimal Exploitation”
phase, switching costs are reduced by favoring arms with higher empirical rewards. Together, these phases
substantially lower switching costs while incurring only minimal marginal regret. To further improve
performance when (super) arms have similar rewards, we introduce a “Predictive Selection” technique that
anticipates near-future selections to prevent unnecessary switches. Due to space constraints, we only present
MSMR-CUCB in the main text and other variant is provided in Appendix C.

Phase 1: We adopt an initial concentrated exploration strategy. In the MAB setting, we continue exploring
an arm i as long as µ̂i,t +

√
2 lnn/Ti(t) ≥ 1. In the CMAB setting, a super arm S is explored while

minj∈S µ̂j,t +
√
3 lnn/2Tj(t) ≥ 1, enabling efficient, compact exploration. Due to feature of UCB-based

algorithms, where the frequency of exploring a suboptimal (super) arm depends on its reward gap from the
optimal, even the worst-performing (super) arm is pulled at least O(log n) times (15). Building on this, we
concentrate these inevitable explorations into a single initial phase. Allocating sufficient exploration at the
start naturally reduces switching costs and gathers information crucial for effective learning in subsequent
phases.

Phase 2: If the selected (super) arm i or S has a relatively large empirical estimate, the agent pulls it
γi(t) or γS(t) = γargminj∈STj(t)(t) times (we express it generally as γ(t) for simplicity; see Section 5 for
detailed expressions), where γ(·) is the exploitation function. For example, γ(t) = 1 in CUCB (6), while
γ(t) = O(t1/2) in B-FTRL. A “relatively large empirical estimate” means it = î∗,t in the MAB setting
and rµ̂(St) ≥ α · rµ̂(Ŝ∗,t) in the CMAB setting, where it = argmaxj∈[[K]]µ̄j,t, î∗,t = argmaxj∈[[K]]µ̂j,t,
St = argmaxS∈Srµ̄(S), and Ŝ∗,t = argmaxS∈Srµ̂(S) in round t. Here, α is the approximation parameter
in the (α, β)-approximation oracle.
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Near-optimal exploitation is a strategy where the agent repeatedly exploits a selected (super) arm with a
relatively large empirical estimate, assuming it is near-optimal. We argue that when the UCB-selected arm
also attains the highest empirical mean, it becomes a more reliable candidate for “near-optimal exploitation,”
justifying more aggressive exploration. If the selected (super) arm is optimal, the agent exploits it without
incurring any regret. If it is suboptimal, its empirical estimate is typically close to the optimal arm’s. As
noted in (15; 16), when expected rewards are similar, the theoretical lower bound on required explorations
increases substantially. To reduce switching costs, these repeated explorations are grouped into a single phase.
Importantly, exploring such arms in advance does not significantly affect overall regret, since these steps are
inevitable under UCB-based algorithms and mainly occur during the under-sampled stage (see Appendix E
for details).

Predictive Selection: In bandit problems, switching costs arise from two sources: (1) switching between
suboptimal (super) arms and the optimal one, and (2) switching among suboptimal (super) arms. Once the
agent selects a suboptimal (super) arm, at least one switching cost with the optimal arm is incurred, which is
inevitable under UCB-based algorithms. Consider the MAB setting: if the optimal arm has the lowest upper
confidence bound, the agent may keep exploring suboptimal arms until the optimal arm attains the highest
bound, resulting in many switches among suboptimal arms. However, if we can predict that the selected
arm it will be explored in the future before the optimal arm reaches the highest bound, we may explore it in
advance even if its current estimate is not the highest. This strategy reduces switching among suboptimal
arms and applies similarly to the CMAB setting, hence the term predictive selection.

In MAB setting, for any arm i, once the agent chooses an arm it1 ̸= î∗,t1 to explore at round t1, the algorithm
will repeatedly select it1 in the subsequent phase regardless of the upper confidence estimation if the following
inequality holds: √

2 ln(t2)/Tit1
(t2) + µ̂it1 ,t2

≥
√

2 ln(t3)/Tî∗,t2
(t2) + µ̂î∗,t2 ,t2

, (5)

where t2 = t1 + γit1 (t1) and t3 = t2 +
∑

j ̸=it1 ,̂i∗,t2
γj(t2).

In CMAB setting , once the agent chooses a super arm St1 ̸= Ŝ∗,t1 to explore at round t1, the algorithm will
repeatedly select St1 in the subsequent phase regardless of the upper confidence estimation if the following
inequality holds:

r(µ̂t2 , ct2 , St1) ≥ r(µ̂t2 , ct3 , Ŝ∗,t2), (6)

where ct = (ci,t)i∈[[K]] , r(µ̂t, ct, ·) ≜ rµ̂t+ct
(·) = rµ̄t

(·), t2 = t1 + γSt1
(t1) and t3 = t2 +∑

j∈{[[K]]\(St1

⋃
Ŝ∗,t2 )}

γj(t2). We use MSMR-P to represents the MSMR Algorithm with Predictive Selec-
tion 4 (See Appendix C for MSMR Algorithm with Predictive Selection).

5 THEORETICAL ANALYSIS

In this section, we present some theoretical analyses of our proposed methods, including the regret bounds
and switching cost of the MSMR algorithms. A comparison between the MSMR algorithms and other existing
methods is shown in Table 1.

Lemma 5.1 Initial concentrated exploration doesn’t increase marginal regret with a probability larger than
1−Kn−4 in MAB and 1−Kn−3 in CMAB.

Lemma 5.1 shows that the MSMR algorithm, when equipped with the initial concentrated exploration
technique, incurs no higher regret than the standard MSMR algorithm without this technique. As demonstrated
in Appendix D, the regret incurred during the initial phase is captured by the under-sampled stage of UCB-
based algorithms. Therefore, the initial concentrated exploration technique effectively reduces switching
costs without introducing marginal regret with a large probability.
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Algorithm 1 MSMR-CUCB Algorithm

Input: Time horizon n, constant M , α, function γ(·)
1: t← 1, µ̂i ← 1 for all i
2: while Exists i makes Ti(t) = 0 do
3: {µ̂j1 , µ̂j2 , . . . , µ̂jK} ← Sort base arm by µ̂i in a decreasing way
4: S ← {j1, j2, . . . , jm}
5: Play S and observe Xi,t, for any i ∈ S, update Ti(t) ← Ti(t) + 1, µ̂i,t ← Ti(t−1)·µ̂i,t−1+Xi,t

Ti(t)
,

µ̄i,t ← µ̂i,t +
√
3 ln t/2Ti(t) , µ̄′

i,t ← µ̂i,t +
√
3 lnn/2Ti(t) until minj∈S µ̄′

j,t ≤ 1 and update t
6: end while
7: while t ≤ n do
8: St ← argmaxS∈Srµ̄(S), Z ← γSt(t)

9: Ŝ∗,t ← argmaxS∈Srµ̂(S),
10: Z ←M · γSt

(t) when rµ̂(St) ≥ α · rµ̂(Ŝ∗,t)
11: Play super arm St min{Z, n− t}times
12: Update t and Ti(t), µ̂i,t, µ̄i,t for all base arms
13: end while

Theorem 5.2 By setting γi(t) = N(Tit(t))
ε, 0 < ε < 1 and N is a constant, with probability lager than

1−Kn−4, the regret upper bound of MSMR-UCB is∑
i ̸=i∗

(
8 lnn

∆i
+MN(8 ln(n))ε∆1−2ε

i + 2MN · ζ(2− ε)∆i

)
, (7)

where ∆i = µ∗ − µi for each arm i.

Before presenting the regret upper bound of MSMR-CUCB, we first define the gap between super arms
in the CMAB setting. Under the (α, β)-approximation oracle, a super arm S is considered sub-optimal if
rµ(S) < α · optµ. Let Si,B denote the set of all sub-optimal super arms that include base arm i. We sort the
elements in Si,B as S1

i,B, S
2
i,B, . . . , S

Ki

i,B in increasing order of their expected rewards, where Ki is the number
of such super arms. The regret gap for the j-th sub-optimal super arm is defined as ∆i,j = α ·optµ−rµ(S

j
i,B).

Theorem 5.3 By setting iS,t = argminj∈STj(t) and γS(t) = N(TiSt,t
(t))ε, with probability lager than

1−Kn−3, the regret upper bound of MSMR-CUCB is∑
i∈[[K]],∆i

min≥0

(
ℓn(∆

i,Ki)∆i,Ki +

∫ ∆i,1

∆i,Ki

ℓn(x) dx

)
+ 2KMNζ(2− ε)∆max

+KMN max
k∈[[Ki]],i∈[[K]]

{(ℓn(∆i,k))ε∆i,k}.
(8)

where ℓn(∆
i,l) = (6 lnn)/(f−1(∆i,l))2, ∆i

min = ∆i,Ki and ∆max = maxi∈[[K]] ∆
i,1,

Theorems 5.2 and 5.3 provide the regret bounds of MSMR algorithms, which dynamically depend on
the hyperparameter ε. This parameter controls the trade-off between switching cost and marginal regret,
affecting the length of the near-optimal exploitation phase. Its value can be chosen initially based on
application requirements and known problem parameters, offering flexibility to adapt the algorithm to
different scenarios. Let Reg1(n) and Reg2(n) denote the regret upper bounds of MSMR in MAB and CMAB
settings, respectively, and Regopt1 (n) and Regopt2 (n) the bounds of classical algorithms established in prior
work (3; 6). Then, the following relationship holds:
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lim
n→∞

Reg1(n)

Regopt1 (n)
= lim

n→∞

Reg2(n)

Regopt2 (n)
= 1. (9)

This indicates that our algorithm is asymptotically consistent with the classical counterparts, incurring only
minimal marginal regret regardless of the value of ε.

Theorem 5.4 Setting γi(t) = N(Tit(t))
ε. If

(
2

ε
1−ε /(N(1− ε))

)
≤ ln(n), the switching cost upper bound

of MSMR-UCB is

4KMN · ζ(2− ε) + 2
∑
i ̸=i∗

(
8 ln(n)

∆2
i

)1−ε
2

ε
1−ε

N(1− ε)
+ 2K.

Theorem 5.5 Setting γS(t) = N(TiSt,t
(t))ε. If

(
2

ε
1−ε /(N(1− ε))

)
≤ ln(n), the switching cost upper

bound of MSMR-CUCB is

4KMN · ζ(2− ε) + 2

K∑
i=1

(
6 ln(n)

(f−1(∆i,Ki))2

)1−ε
2

ε
1−ε

N(1− ε)
+ 2

K∑
i=1

Ki.

Theorems 5.4 and 5.5 present the switching cost of the MSMR algorithms, which depend dynamically on the
choice of the parameter ε, which plays a leading role. The value of ε can be still determined at the beginning
based on specific application requirements and known problem parameters.

Lemma 5.6 If it1 ̸= î∗,t1 is selected at round t1 and Eq.5 is hold at round t2 = t1 + γit1 (t1), at least one
arm i ̸= î∗,t2 will be pulled more than 1 phases before the round t′ where î∗,t2 = it′ .

Lemma 5.7 If St1 ̸= Ŝ∗,t1 is selected at round t1 and Eq.6 is hold at round t2 = t1 + γSt1
(t1), at least one

base arm i /∈ Ŝ∗,t2 will be pulled more than 1 phases before the round t′ where Ŝ∗,t2 = St′ .

Lemma 5.6 and 5.7 shows that the predictive selection technique predicts whether there exists any arm or
base arm will be pulled more than one phases before we exploit the empirical optimal (super) arm. Taking
this into consideration, We can directly explore the current selected (super) arm to reduce potential switching
cost, which also have a large empirical estimation that creates less regret.

Theorem 5.8 With the probability larger than 1−Kn−4 in MAB and 1−Kn−3 in CMAB, the marginal
loss upper bound of MSMR algorithms is O((log n)ε + λ(log n)1−ε).

In most cases, λ is constant, and setting ε = 0.5 yields the theoretical minimum marginal loss O(λ
√
log n).

When λ depends on n, the optimal ε can be derived, e.g., for λ =
√
log n, the optimal choice is ε = 2/3.

From a broader perspective, if the parameter ε ∈ [0, 1], our proposed MSMR framework encompasses two
representative baseline algorithms as special cases. Taking the CMAB setting (Algorithm 1) as an example
(ignoring the initial concentrated exploration phase, i.e., lines 2–4), we observe the following limiting cases:
When ε = 0, M = 1, and N = 1, the algorithm degenerates into standard CUCB, which incurs high
switching cost. When ε = 1, M = 1, N = κ, and γSt

(t) = κt, it reduces to Phased-CUCB, which typically
suffers from higher regret. The MSMR framework achieves a better balance between regret and switching
cost, lying between these extremes.

6 NUMERICAL SIMULATIONS

In this section, we present experiments to assess the performance of our algorithms on both synthetic and
real-world datasets. Each experiment was conducted over 20 independent trials to ensure reliability, with

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

n = 100000, N = 1, M = 5 for all bandit settings and α = 0.95 , β = 1 for CMAB. The tests were
performed on a macOS system equipped with an Apple M3 Pro processor and 18 GB of RAM. Here, we
present only the experiments for the CMAB setting. For results on MAB settings, ablation studies, and
real-world datasets, please refer to Appendix I.

6.1 EXPERIMENT SETUP

Data Generation. We conduct experiments on cascading bandits, a specific instance of CMAB, comparing
against algorithms CUCB (6), phased-CUCB(16), B-FTRL(11). The objective is to select m = 5items from a
set of K = 20 to maximize the reward. We give a very similar reward distribution where µi = 0.3+0.002× i.
In each round t, a list St = (at,1, . . . , at,m) ⊆ [[K]] is randomly selected. The outcome Xt,i for each i ∈ St

is generated from a Bernoulli distribution with mean µi. Given the ranked list St, if stopping at the jt-th
item, the observed outcomes are: (Xt,a1

, . . . , Xt,ak
) = (0, . . . , 0, 1, x, . . . , x), where the first jt − 1 items

are 0, the jt-th item is 1, and the rest are unobserved (x). If the list is exhausted, the observed outcomes are:
(Xt,a1 , . . . , Xt,ak

) = (0, 0, . . . , 0). The reward is 1 for stopping and 0 for exhausting the list. The reward
function can be written as r(St;µ) = 1−

∏
i∈St

(1− µi).

6.2 EXPERIMENTAL RESULTS

Regret, Switching Cost and Marginal Loss. In Figure 1(a), we observe that the regret of MSMR and
MSMR-P closely matches that of the standard baseline methods. In contrast, B-FTRL exhibits noticeably
higher regret. Figure 1(b) further shows that standard and phased methods suffer from a substantial number
of switches, often exceeding several thousand. B-FTRL also incurs a significant number of switches. In
comparison, MSMR results in only 432 in the CMAB setting, amounting to merely 2.4% of the switches
incurred by CUCB. Moreover, MSMR-P achieves even greater savings, reducing switching to just 1.3% of
CUCB—representing a nearly 50% reduction in switching cost compared to MSMR. These results highlight
the effectiveness of the predictive selection technique. In terms of marginal loss, figure 1(c) further shows that
the MSMR framework achieves remarkably low loss compared to the best existing algorithm, significantly
outperforming all other methods.

(a) Regret (b) Switching Cost (c) Marginal Loss
Figure 1: Synthetic Experiments on CMAB

7 CONCLUSION

This paper introduces a novel bandit framework that achieves minimal switching cost and minimal marginal
regret, effectively addressing the trade-off between switching costs and regret in bandit algorithms. We
develop general techniques—initial concentrated exploration, near-optimal exploitation, and predictive
selection, which are broadly applicable to MAB and CMAB settings. Through rigorous theoretical analysis,
we establish that these techniques guarantee only O((log n)1−ε) switching cost while incurring negligible
marginal regret, thereby achieving only O(λ(

√
log n) marginal loss. Empirical results further demonstrate

that MSMR algorithms perform only a few hundred switches, merely 1.3% of those made by standard
methods, highlighting the significant advantage of MSMR over existing algorithms. Besides, this paper only
provides some theories for part of the bandit scenarios. We hope to extend this framework to more scenarios
such as linear or constrained bandit in the future.
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