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Abstract

Neural network-based approaches for learning differential equations (DEs) have
demonstrated generalization capabilities within a DE solution or operator instance.
However, because standard techniques can only represent the solution function or
operator for a single system at a time, the broader notion of generalization across
classes of DEs has so far gone unexplored. In this work, we investigate whether
commonalities across DE classes can be leveraged to transfer knowledge about
solving one DE towards solving another DE—without updating any model parame-
ters. To this end, we leverage the recently-proposed in-context operator learning
(ICOL) framework, which trains a model to identify in-distribution operators, given
a small number of input-output pairs as examples. Our implementation is motivated
by pseudospectral methods, a class of numerical solvers that can be systematically
applied to a range of DEs. For a natural distribution of 1D linear ordinary differ-
ential equations (ODEs), we identify a connection between operator learning and
in-context linear regression. Applying recent results demonstrating the capabilities
of Transformers to in-context learn linear functions, our reduction to least squares
helps to explain why Transformers can be expected to solve ODEs in-context.
Empirically, we demonstrate that ICOL is robust to a range of distribution shifts,
including observational noise, domain-shifted inputs, varying boundary conditions,
and surprisingly, even operators from functional forms unseen during training.

1 Introduction

Neural network-based techniques, including physics-informed neural networks [4, 8, 14, 15, 16]
and neural operators [2, 7, 10, 11, 12, 17], provide a flexible framework for solving a variety of
differential equation (DE) problems [3]. However, one property we might want from machine learning
approaches for DEs is an ability to generalize to wider settings at inference time (without costly
parameter updates). Specifically, there are three broad notions of generalization that are desirable:

• within a DE solution instance: given a fixed set of DE parameters and inputs, can a learned
method generalize to points in the domain previously unseen during training?

• within a DE operator instance: given a fixed set of DE parameters, can a learned method
generalize to a new distribution of inputs?

• within and/or across classes of DE operators: can a learned method generalize to a new
distribution of DE parameters, or even to DEs with unseen functional forms?
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Most of the existing neural network-based approaches are able to handle generalization within DE
solution and operator instances. However, since these methods can only represent the solution or
solution operator for a single system at a time, none of them address the broadest and most challenging
sense of generalization: across classes of DE operators.

In this work, we are interested in understanding (i) whether it is possible to exploit commonalities
between different classes of DEs to transfer knowledge about solving one DE toward solving another
DE; and (ii) what kinds of generalization can be expected within/across DE classes. To this end,
we leverage the in-context operator learning framework [20], which trains a model to identify in-
distribution operators, given a small number of input-output pairs as examples. Our implementation is
motivated by spectral collocation (pseudospectral) methods [13], a class of numerical solvers that can
be systematically applied to a range of DEs, often to high accuracy [6, 19]. From the machine learning
literature, we exploit recent work [1, 5, 21] that shows Transformers are able to solve in-context least
squares problems. That is, they are able to identify instances of least squares problems at inference
time given input-output pairs, and produce corresponding outputs given new inputs.

As a proof-of-concept, we focus on a simple distribution of 1D linear ODEs, for which results from
approximation theory create a natural connection between pseudospectral methods and in-context
linear regression. Empirically, we investigate the generalization capacity of our in-context operator
learner both within a distribution of DEs, with out-of-distribution (OOD) queries and examples, and
across classes of ODEs. We find that our method can generalize to a variety of in-class domain-shifts,
including OOD boundary conditions, noisy in-context examples, and OOD operator parameters.
Interestingly, we show that our model, trained on 1st-order linear ODEs, also generalizes to a
distribution of 1st-order ODEs with non-linear solution-forcing interaction and to 2nd-order linear
ODEs, demonstrating that generalization across DEs of different functional forms is indeed possible.
Our results are a first step towards a better understanding of the limits of generalization for DEs.

2 Hierarchy of Generalization for Differential Equations

Here, we describe the levels of generalization we would ideally want from our neural network-based
approaches to DE problems to satisfy at inference time. For the sake of concreteness, we describe
them for a simple distribution of parameterized ODEs:

Lα(c, u0) = u |

{
u′(t) = αc(t)

u(0) = u0
on Ω = [−1, 1], (1)

with parameter α, forcing function c, initial condition u0, and solution u.

• Generalization within a DE solution instance. We define a DE solution instance, u, by fixing
the parameter α and inputs (c, u0). In this setting, we ask whether a method trained on a subset of
the domain Ωtrain, say u(t ∈ [0, 1]), can generalize to an unseen subset Ωtest, say u(t ∈ [−1, 0]).

• Generalization within a DE operator instance. We define a DE operator instance, Lα, by fixing
the parameter α but allowing the inputs (c, u0) to be drawn from a distribution. In this setting,
we ask whether a method trained on inputs from Dtrain

inputs, say c = exp(−βt), {β, u0} ∈ [−1, 1]

can generalize to a new query distribution (c, u0)
q ∼ Dtest

inputs, say {β, u0} ∈ [−2, 2].

• Generalization within a class of DE operators. We define a class of DE operators by allowing
the parameter α to also be drawn from a distribution. In this setting, we ask whether a method
trained on an operator distribution Dtrain

op , say α ∈ [0, 1], can generalize to a new test operator
distribution Dtest

op , say α ∈ [2, 4].

• Generalization across classes of DE operators. Now we consider two different classes of DE
operators with two different functional forms, e.g., Lα (above) and

L2
β(c, u0) = u |

{
u′(t) = βc(t)u(t)

u(0) = u0
on Ω = [−1, 1]. (2)

We ask whether a method trained on {Lα} can generalize to {L2
β}.

The different types of generalization depend on the the particular model and training setup. Table 1
provides a summary. Standard neural network-based approaches represent a single system with a
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Table 1: Hierarchical notions of generalization. In-context operator learning, where a single model is
trained on multiple distributions of operators, allows transfer to occur within/across classes of DEs.

One network trained
to represent:

Unseen points
in domain

OOD
inputs

OOD
examples

OOD
operators

One solution instance [4, 14, 15, 16] ✓ ✗ ✗ ✗
One operator instance [2, 7, 10, 11, 12] ✓ ✓ ✗ ✗
Multiple distributions (ours, [20]) ✓ ✓ ✓ ✓

single network, and thus they have limited generalization capabilities. In particular, generalization
within/across a class of DE operators at inference time (without any parameter updates) requires a
network that solves the meta-level problem of representing a distribution of operators at once.

3 Connecting Pseudospectral Methods and In-Context Least Squares

Here, we describe the in-context operator learning (ICOL) method we use to meta-learn a distribution
of DEs. Using pseudospectral methods, a general class of numerical solvers with excellent theoretical
guarantees, we reduce solving a class of 1D linear ODEs to solving linear systems. Motivated by this
result and by recent works showing the capacity for Transformers to learn linear functions in-context
(i.e., during inference time), we use a similar argument from approximation theory to reduce ICOL to
in-context least squares.

Reducing linear ODEs to linear systems We focus on an idealized class of operators, namely 1D
ODEs which are simultaneously linear in the forcing term and the solution:

Llinear :=

{
Lϕ :=

m∑
k=0

αk(t)
∂(k)

∂t(k)
u(t) + βk(t)

∂(k)

∂t(k)
c(t) = b(t), t ∈ [−1, 1]

}
ϕ

, (3)

with parameters ϕ = {α0, . . . , αm, β0, . . . , βm, b}, forcing function c, and solution u.

By a standard result from approximation theory, if we sample a smooth-enough function f on
[−1, 1] on the Chebyshev-Gauss-Lobatto nodes, the derivatives of the polynomial interpolant well-
approximate the derivatives f (k) evaluated on the Chebyshev nodes, and they can be written as a
linear combination of the values of f . (See Appendix A for details.) This argument reduces our linear
ODEs to (N + 1)-dimensional linear systems, where functions are sampled on the Chebyshev nodes
and the design matrix is specified by the ODE and its parameters. (See Appendix B.1 for details.)

In-context learning for operators. The connection to linear systems motivates us to meta-learn
distributions of ODEs using the recently-proposed ICOL paradigm [20]. Using ICOL, the challenge
of meta-learning can be reduced to supervised learning on sequences.

Specifically, during training, we sample linear ODE operators from a distribution Dtrain
op ⊂ Llinear,

where Lϕ ∈ Dtrain
op maps forcing functions and boundary/initial conditions (BICs) (c, u0) to the

solution sampled on a Chebyshev node, u(tj) ∈ R. For each operator Lϕ, we sample K forcing
functions and BICs from a training distribution Dtrain

inputs. As in the reduction, we represent functions
c : [−1, 1] → R as (N + 1)-dimensional vectors c⃗ = {c(tj)}Nj=0, sampled on Chebyshev nodes. We
construct a training prompt P as follows:

P =
(
(c⃗, u0, 1)

(1), u(1)(tj), (c⃗, u0, 1)
(2), u(2)(tj), . . . , (c⃗, u0, 1)

(K), u(K)(tj)
)
.

We supervise a large sequence model Tθ to predict the output uq(tj) = u(k+1)(tj), given the first
k in-context examples from our prompt and the query (c, u0)

(k+1). The training objective is to
minimize the expected mean squared error over our prompt distribution:

min EP

[
1

K

K−1∑
k=0

||Tθ(P
k)− u(k+1)(tj)||

]
, (4)

with P k =
(
(c⃗, u0, 1)

(1), u(1)(tj), . . . , (c⃗, u0, 1)
(k), u(k)(tj), (c⃗, u0, 1)

(k+1)
)
.
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Reducing ICOL to in-context linear regression By the same approximation theory argument as
the linear ODEs reduction, the ICOL task from Equation 4 can be reduced (to high precision) to an
in-context linear regression problem. (See Appendix B.2 for details.)

This equivalence between ICOL and in-context linear regression helps explain Transformers’ general-
ization capabilities for operator learning from the lens of recent theoretical results [1, 21].

Figure 1: Generalization within (a-d) and across (e-f) operator classes.

4 Experimental Results

Here, we train an in-context operator learner using a Transformer backbone on a distribution of
1st-order, 1D linear ODEs, a subset of the simple class of operators (Equation 3). (See Appendix C.1
for details.)
Generalization. We focus on evaluating the two broadest and most challenging forms of out-of-
distribution (OOD) generalization: within an operator class and across operator classes.

• Within operator class. We evaluate various forms of domain shifts affecting the input-output
distributions of the in-context examples and queries, including observational noise in examples,
OOD forcing functions, and OOD boundary conditions. (See Appendix C.1 for details.) On the
operator level, we evaluate in-class OOD operator parameters.

• Across operator classes. We investigate two instances: (i) interpolation, where the operators
evaluated at inference are of the form Lϕ ∈ Dtrain

op mapping (c, u0) → u(t) for general
t ∈ [−1, 1] (recall the network is only trained on operators mapping to Chebyshev nodes); and (ii)
unseen functional forms, where we evaluate on distributions of 1st-order ODEs with non-linear
solution-forcing interaction terms and on 2nd-order linear ODEs.

Results and discussion. Figure 1 shows that our method is able to handle the broadest senses of
generalization. Within our DE class, we find the model is robust to various domain shifts on the
in-context examples, queries, and operator parameters. Further, performance decays smoothly as
extent of domain shift increases. We find that generalization to unseen boundary/initial condition
distributions is the most challenging task for the within-class setting.

Most interestingly, we demonstrate positive results for generalization across classes of DEs. For the
interpolation task, we surprisingly observe almost no generalization gap. This can be explained by
a connection to approximation theory. (See Appendix B.3 for details.) We also observe surprising
generalization across qualitatively different DE operators, i.e., from 1st- to 2nd-order and from
linear (simultaneously in forcing and solution terms) to non-linear (solution-forcing interactions).
Finally, we compare the Transformer model’s performance to least squares. (See Appendix C.2 for
details.) Interestingly, we observe that the model’s accuracy saturates orders of magnitude above the
performance of the least squares solver.
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A Approximation, interpolation, and the pseudospectral method

Here, we provide results about the accuracy of polynomial interpolation in approximating a smooth
function and its derivatives, when samples are taken on a specific distribution of nodes.

Definition 1. The Chebyshev-Gauss-Lobatto points are defined as {cos
(
πj
N

)
}Nj=0.

Definition 2. Given N + 1 distinct interpolation nodes xj , j ∈ {0, . . . , N}, together with corre-
sponding values fj , the Lagrange interpolating polynomial is the unique degree ≤ n polynomial p
that passes through the points {(xj , fj)}Nj=0:

p(x) =

N∑
j=0

fjℓj(x), ℓj(x) =

∏n
k=0,k ̸=j(x− xk)∏N
k=0,k ̸=j(xj − xk)

.

Note that for any x ∈ [−1, 1], p(x) is a linear combination of the fj’s. Similarly, we can evaluate the
derivative of the Lagrange interpolating polynomial, p′(x), at any x ∈ [−1, 1] as a linear combination
of the fj’s. In particular, there exists a matrix that calculates {p′(xj)}Nj=0 when the xj’s are the
Chebyshev-Gauss-Lobatto points.

Definition 3. The (N + 1)× (N + 1) Chebyshev spectral differentiation matrix DN is the unique
matrix such that

DN

 f0...
fN

 =

 p
′(x0)

...
p′(xN )


DN has entries

(DN )00 =
2N2 + 1

6
, (DN )NN = −2N2 + 1

6

(DN )jj = − xj

2(1− x2
j )
, j ∈ {1, . . . , N − 1}

(DN )ij =
ci
cj

(−1)i+j

(xi − xj)
, i ̸= j, i, j ∈ {1, . . . , N − 1}

where

ci =

{
2 i = 0 or N
1 else

.

For smooth-enough functions sampled on the Chebyshev-Gauss-Lobatto points, the derivatives of the
Lagrange interpolant well-approximate the function’s derivatives.

Theorem 1 (Accuracy of Chebyshev spectral differentiation, [18]). Suppose u is analytic on and
inside the ellipse with foci ±1 on which the Chebyshev potential takes the value ϕf , that is, the
ellipse whose semi-major and semi-minor axis lengths sum to K = exp(ϕf + log 2). Let w be the
νth Chebyshev spectral derivative of u. Then

|wj − u(v)(xj)| = O(exp(−N(ϕf + log 2))) = O(K−N ).
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B Pseudospectral reductions

B.1 Reducing ODEs to linear systems

Let’s consider the class of 1D ODEs of order at most m which are linear in solution u and forcing
term c simultaneously, defined on the domain t ∈ [−1, 1]:

m∑
k=0

αk(t)
d(k)

dt(k)
u(t) + βk(t)

d(k)

dt(k)
c(t) = b(t), t ∈ [−1, 1]

u(0) = u0.

(5)

Sampling and interpolating on N Chebyshev nodes, this ODE reduces (to high precision) to an
N ×N linear system: 

m∑
k=0

α⃗k ⊙Dku⃗+ β⃗k ⊙Dk c⃗ = b⃗

u(t = 0) = u0.

(6)

Solving for u⃗ in the homogeneous case first:(
m∑

k=0

diag(α⃗k)D
k

)
u⃗ =

(
m∑

k=0

−diag(β⃗k)D
k

)
c⃗+ b⃗,

and thus

u⃗ =

(
m∑

k=0

diag(α⃗k)D
k

)−1( m∑
k=0

−diag(β⃗k)D
k

)
c⃗+

(
m∑

k=0

diag(α⃗k)D
k

)−1

b⃗

:= W c⃗+ b⃗∗.

In particular, we can approximate the operator that takes c and outputs u(tj), where tj is the jth
Chebyshev node, by the linear function

u(tj) = w⃗j
T c⃗+ b⃗∗[j], (7)

where w⃗j is the jth row of W and b⃗∗[j] is the jth entry of b⃗∗.

The initial condition u(0) = u0 is enforced by adding an extra term to the linear system in Equation 6.
For example, for odd N , t = 0 is the ⌊N

2 ⌋th Chebyshev node, so the initial condition can be enforced
exactly and the remaining N−1 entries of u⃗ can be obtained by solving the resulting (N−1)×(N−1)
linear system.

B.2 Reducing in-context operator learning to least squares

For the in-context learning problem, we are given pairs of input-output examples for an unknown
operator:

{(c⃗1, u1(tj)), . . . , (c⃗n, un(tj))},
for some Chebyshev node tj . Assuming the underlying differential operator comes from the linear
class (Equation 3), we can apply the pseudospectral reduction from Appendix B.1 to reduce each
ODE solve to a shared linear function. Then the ICL problem reduces to solving the linear system(c⃗

(1), u
(1)
0 )T

...
(c⃗(k), u

(k)
0 )T

 w⃗j + b⃗∗[j ]⃗1 =

u
(1)(tj)

...
u(k)(tj)

 .

B.3 Generalization to interpolated operators

For arbitrary t ∈ [−1, 1] that are not Chebyshev nodes, note that we can still write u(t) (to high
precision) as a linear combination of the u(tj)’s by Lagrange interpolation (Appendix A). Since each
u(tj) is obtainable as the solution to an approximate in-context least squares problem, we expect to
represent the map (c, u0) → u(t) as an approximate least squares problem for any t.
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C Experiments

C.1 Experimental details

Setup. Following recent work [5], we use a decoder-only GPT2 Transformer as our sequence
model with 12 layers, 8 heads, and 256-dimensional embeddings (10M parameters). Inputs and
outputs are represented as 40-dimensional vectors (padded with zeros as necessary). Linear layers
are used to map between the input/output dimension and the Transformer embedding space. We train
the Transformer according to the objective (4). We use a batch size of 64 and train for 500k steps.
The Adam optimizer is used with a learning rate of 10−4.

Data. Our data is a distribution of 1D linear ODEs, a subset of Llinear (3):

u′(t) = α1c(t) + α2u(t) + α3, t ∈ [−1, 1], (8)

with parameters α1 ∼ Unif [0.5, 1.5], α2 ∼ Unif [−1, 1], α3 ∼ Unif [−1, 1]. The initial conditions
are sampled as u(0) = u0 ∼ Unif [−1, 1]; and c is drawn from a Gaussian process with RBF kernel,
K(x, x′) = exp

(
− (x−x′)2

2ℓ2

)
, with length-scale parameter ℓ = 1.

ODEs are solved using the pseudospectral method on N = 41 Chebyshev nodes over [−1, 1]. To
obtain solution values at other points in the domain, the Lagrange interpolating polynomial is used.
Empirically, we find for smooth functions that this approach typically achieves an error of less
than 10−10.

Generalization settings.

• Additive noise in inputs/outputs. We evaluate the model’s performance when the in-context
example inputs and outputs are perturbed by Gaussian noise with different variances.

• Out-of-distribution forcing functions. We evaluate how well our model generalizes to different
forcing function distributions. Specifically, we vary the length-scale parameter, ℓ, of our Gaus-
sian process kernel, K(x, x′) = exp

(
− (x−x′)2

2ℓ2

)
, making the forcing functions “bumpier” or

“smoother” as ℓ decreases and increases, respectively.

• Out-of-distribution boundary/initial conditions. We evaluate the model’s robustness to a
widened distribution of initial conditions u(0) = u0. We parameterize the distribution width with
a scalar σIC , where u0 ∼ Unif [−σIC , σIC ].

• Out-of-distribution operator parameters. We evaluate the model’s robustness to inputs from
OOD operators, of the same functional form as the training operators, but whose parameter
distribution is widened. Specifically, we parameterize the width of the ODE operator distribution
with a scalar σop, where α1 ∼ Unif [1− 0.5σop, 1 + 0.5σop], and α2, α3 ∼ Unif [−σop, σop].

• Interpolation. On our original task, we train the model to predict the solution at a discrete
number of domain points u(ti). Here, we sample the desired t uniformly on the domain [−1, 1],
and we observe that the model is able to generalize to continuously-sampled t (a problem similar
to one considered previously [9]).

• Unseen forms of operators. We evaluate on two other simple 1D ODE distributions with
qualitatively different characteristics: a 1st-order ODE nonlinear in forcing and solution terms

u′ = α1cu+ α2u+ α3

and a 2nd-order ODE linear in forcing and solution terms simultaneously:

u′′ = αc.

C.2 Additional experiments

ICOL Transformer vs. least squares Here, we compare the performance of our Transformer-
based in-context operator learner against a standard OLS solver for the 1st-order linear ODE class
(Equation 8). See Figure 2. Surprisingly, we observe a huge performance gap between the Transformer
and OLS as the number of in-context examples increases.
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Figure 2: Transformer vs. OLS generalization given in-context example solutions with additive
Gaussian noise of varying magnitudes, standard (left) vs. log (right) scaled.

Figure 3: Generalization within (a-d) and across (e-f) operator classes for 1st-order ODE with
nonlinear solution-forcing interaction term.

Generalization for other 1D ODEs Here, we evaluate the same within-class and across-class
generalization tests for a 1st-order ODE nonlinear in forcing and solution terms

u′ = α1cu+ α2u+ α3

and a 2nd-order ODE linear in forcing and solution terms simultaneously:

u′′ = αc.

Interestingly, although both 1st- and 2nd-order linear ODEs show similar precision, down to 10−5

for in-distribution evaluation, the 1st-order non-linear ODEs saturate at a much higher error, around
10−2. See Figure 3 and Figure 4 for a comparison of results.
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Figure 4: Generalization within (a-d) and across (e-f) operator classes for 2nd-order linear ODE.

11


	Introduction
	Hierarchy of Generalization for Differential Equations
	Connecting Pseudospectral Methods and In-Context Least Squares
	Experimental Results
	Approximation, interpolation, and the pseudospectral method
	Pseudospectral reductions
	Reducing ODEs to linear systems
	Reducing in-context operator learning to least squares
	Generalization to interpolated operators

	Experiments
	Experimental details
	Additional experiments


