
Under review as a conference paper at ICLR 2021

LEARNING CURVES FOR ANALYSIS OF DEEP NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

A learning curve models a classifier’s test error as a function of the number of
training samples. Prior works show that learning curves can be used to select
model parameters and extrapolate performance. We investigate how to use learn-
ing curves to analyze the impact of design choices, such as pretraining, architec-
ture, and data augmentation. We propose a method to robustly estimate learning
curves, abstract their parameters into error and data-reliance, and evaluate the
effectiveness of different parameterizations. We also provide several interesting
observations based on learning curves for a variety of image classification models.

1 INTRODUCTION

What gets measured gets optimized. We need better measures of learning ability to design better
classifiers and predict the payoff of collecting more data. Currently, classifiers are evaluated and
compared by measuring performance on one or more datasets according to a fixed train/test split.
Ablation studies help evaluate the impact of design decisions. However, one of the most important
characteristics of a classifier, how it performs with varying numbers of training samples, is rarely
measured or modeled.

In this paper, we refine the idea of learning curves that model error as a function of training set size.
Learning curves were introduced nearly thirty years (e.g. by Cortes et al. (1993)) to accelerate model
selection of deep networks. Recent works have demonstrated the predictability of performance
improvements with more data (Hestness et al., 2017; Johnson & Nguyen, 2017; Kaplan et al., 2020;
Rosenfeld et al., 2020) or more network parameters (Kaplan et al., 2020; Rosenfeld et al., 2020).
But such studies have typically required large-scale experiments that are outside the computational
budgets of many research groups, and their purpose is extrapolation rather than validating design
choices. We find that a generalized power law function provides the best learning curve fit, while
a model linear in n−0.5, where n is the number of training samples (or “training size”), provides a
good local approximation. We abstract the curve into two key parameters: eN and βN . eN is error
at n = N , and βN is a measure of data-reliance, revealing how much a classifier’s error will change
if the training set size changes. Learning curves provide valuable insights that cannot be obtained
by single-point comparisons of performance. Our aim is to promote the use of learning curves as
part of a standard learning system evaluation.

Our key contributions:

• Investigate how to best model, estimate, characterize, and display learning curves for use
in classifier analysis

• Use learning curves to analyze impact on error and data-reliance due to network architec-
ture, depth, width, fine-tuning, data augmentation, and pretraining

Table 1 shows validated and rejected popular beliefs that single-point comparisons often overlook.
In the following sections, we investigate how to model learning curves (Sec. 2), how to estimate them
(Sec. 3), and what they can tell us about the impact of design decisions (Sec. 4), with discussion of
limitations and future work in Sec. 5.

1



Under review as a conference paper at ICLR 2021

Popular beliefs Your
guess

Our
guess

Our
result

Result
figures

Pre-training on similar domains nearly always helps compared to training from scratch. T T 9a, 9b, 3
Pre-training, even on similar domains, introduces bias that would harm performance with a large enough training set. T ? 3
Self-/un-supervised training performs better than supervised pre-training for small datasets. F F 3
Fine-tuning the entire network (vs. just the classification layer) is only helpful if the training set is large. T F 9a, 9b
Increasing network depth, when fine-tuning, harms performance for small training sets, due to an overly complex model. T F 4a, 4b
Increasing network depth, when fine-tuning, is more helpful for larger training sets than smaller ones. T F 4a, 4b
Increasing network depth, if the backbone is frozen, is more helpful for smaller training sets than larger ones. T F 4a, 4b
Increasing depth or width improves more than ensembles of smaller networks with the same number of parameters. T T 4e, 4a
Data augmentation is roughly equivalent to using a m-times larger training set for some m. T T 5

Table 1: Deep learning quiz! We encourage our readers to judge each claim as T (true) or F (false),
and then compare to our guesses and results. In the results column, “T” means the experiments are
consistent with the belief, “F” for inconsistent, and “?” for hard to say.

2 MODELING LEARNING CURVES

The learning curve measures test error etest as a function of the number of training samples n
for a given classification model and learning method. Previous empirical observations suggest a
functional form etest(n) = α + ηnγ , with bias-variance trade-off and generalization theories typi-
cally indicating γ = −0.5. We summarize what bias-variance trade-off and generalization theories
(Sec. 2.1) and empirical studies (Sec. 2.2) can tell us about learning curves, and describe our pro-
posed abstraction in Sec. 2.3.

2.1 BIAS-VARIANCE TRADE-OFF AND GENERALIZATION THEORY

The bias-variance trade-off is an intuitive and theoretical way to think about generalization. The
“bias” is error due to inability of the classifier to encode the optimal decision function, and the
“variance” is error due to variations in predictions due to limited availability of training samples for
parameter estimation. This is called a trade-off because a classifier with more parameters tends to
have less bias but higher variance. Geman et al. (1992) decompose mean squared regression error
into bias and variance and explore the implications for neural networks, leading to the conclusion
that “identifying the right preconditions is the substantial problem in neural modeling”. This con-
clusion foreshadows the importance of pretraining, though Geman et al. thought the preconditions
must be built in rather than learned. Domingos (2000) extends the analysis to classification. Theo-
retically, the mean squared error (MSE) can be modeled as e2test(n) = bias2 + noise2 + var(n),
where “noise” is irreducible error due to non-unique mapping from inputs to labels, and variance
can be modeled as var(n) = σ2/n for n training samples.

The ηn−0.5 term appears throughout machine learning generalization theory. For example, the
bounds based on hypothesis VC-dimension (Vapnik & Chervonenkis, 1971) and Rademacher Com-
plexity (Gnecco & Sanguineti, 2008) are both O(cn−0.5) where c depends on the complexity of the
classification model. More recent work also follows this form. We give some examples of bounds in
Table 2 without describing all of the parameters because the point is that the test error bounds vary
with training size n as a function of n−0.5, for all approaches.

Table 2: Generalization bound examples: The bounds each predict generalization error increasing
as a function of n−0.5. Note: variable notation is consistent only within each line, except n.

Work Key Variables Bound

Neyshabur et al. (2018) network depth d O
(
n−0.5Bd

√
h ln(dh)πdi=1||Wi||22

∑d
i=1

||Wi||2F
||Wi||22

/γ
)

Bartlett et al. (2017) spectral complexity Rw O
(
||X||2Rw
γ·n log(maxi hi) + n−0.5

)
Arora et al. (2018) compressibility to q parameters

with r discrete values O
(
n−0.5

√
q log r

)
Bousquet & Elisseeff (2002) based on analysis of stability with margin γ O

(
n−0.5/γ

)

2



Under review as a conference paper at ICLR 2021

2.2 EMPIRICAL STUDIES

Some recent empirical studies (e.g. Sun et al. (2017)) claim a log-linear relationship between error
and training size, but this holds only when asymptotic error is zero. Hestness et al. (2017) model
error as etest(n) = α + ηnγ but often find γ much smaller in magnitude than −0.5 and suggest
that poor fits indicate need for better hyperparameter tuning. This raises an interesting point that
sample efficiency depends both on the classification model and on the efficacy of the optimization
algorithm and parameters. Johnson & Nguyen (2017) also find a better fit with this extended power
law model than by restricting γ = −0.5 or α = 0. We find that, by selecting the learning rate
through validation on one training size and using the Ranger optimizer (Wright, 2019), we can
achieve a good approximate fit with γ = −0.5 and best fit with −0.3 < γ < −0.7.

In the language domain, learning curves are used in a fascinating study by Kaplan et al. (2020). For
natural language transformers, they show that a power law relationship between logistic loss, model
size, compute time, and dataset size is maintained if (and only if) each is increased in tandem. We
draw some similar conclusions to their study, such as that increasing model size tends to improve
performance especially for small training sets (which surprised us). However, the studies are largely
complementary, as we study convolutional nets in computer vision, classification error (instead of
logistic loss), and a broader range of design choices such as effects across depth, width, data aug-
mentation, pretraining source, architecture, and dataset. Also related, Rosenfeld et al. (2020) model
error as a function of both training size and number of model parameters with a five-parameter
function that accounts for training size, model parameter size, and chance performance.

A key difference in our work is that we focus on how to best draw insights about design choices from
learning curves, rather than on extrapolation. As such, we propose methods to estimate learning
curves and their variance from a relatively small number of trained models.

2.3 PROPOSED CHARACTERIZATION OF LEARNING CURVES FOR EVALUATION

A classifier’s performance can be characterized in terms of its error and data-reliance, or how quickly
the error changes with training size n. With e(n) = α + ηnγ , we find that γ = −0.5 provides a
good local approximation but that fitting γ significantly improves leave-one-size-out RMS error
and extrapolation accuracy, as we detail in Sec. 4. However, α, η, and γ cannot be meaningfully
compared across curves because the parameters have high covariance with small data perturbations,
and comparing η values is not meaningful unless γ is fixed and vice-versa.

We propose to report error and sensitivity to training size in a way that can be derived from various
learning curve models and is insensitive to data perturbations. The curve is characterized by error
eN = α + ηNγ and data-reliance βN at N , and we typically choose N as the full dataset size.
Noting that most learning curves are locally well approximated by a model linear in n−0.5, we
compute data-reliance as βN = N−0.5 ∂e

∂n−0.5

∣∣
n=N

= −2ηγNγ . When the error is plotted against
n−0.5, βN is the slope at N scaled by N−0.5, where the scaling was chosen to make the practical
implications of βN more intuitive. This yields a simple predictor for error when changing training
size by a factor of d:

e(d ·N) = eN +

(
1√
d
− 1

)
βN . (1)

Thus, by this linearized estimate, asymptotic error is eN −βN , a 4-fold increase in data (e.g. 400→
1600) reduces error by 0.5βN , and using only one quarter of the dataset (e.g. 400→ 100) increases
the error by βN . For two models with similar eN , the one with a larger βN would outperform with
more data but underperform with less. Note that (eN , βN , γ) is a complete re-parameterization of
the extended power law, with γ + 0.5 indicating the curvature in n−0.5 scale.

3 ESTIMATING LEARNING CURVES

We now describe the method for estimating the learning curve from error measurements with confi-
dence bounds on the estimate. Let eij denote the random variable corresponding to test error when
the model is trained on the jth fold of ni samples (either per class or in total). We assume {eij}Fij=1

are i.i.d according to N (µi, σ
2
i ). We want to estimate learning curve parameters α (asymptotic er-

ror), η, and γ, such that eij = α + ηnγi + εij where εij ∼ N (0, σ2
i ) and µij = E[eij ] = µi.

3



Under review as a conference paper at ICLR 2021

Sections 3.1 and 3.2 describe how to estimate mean and variance of α and η for a given γ, and
Sec. 3.3 describes our approach for estimating γ.

3.1 WEIGHTED LEAST SQUARES FORMULATION

We estimate learning curve parameters {α, η} by optimizing a weighted least squares objective:

G(γ) = min
α,η

S∑
i=1

Fi∑
j=1

wij (eij − α− ηnγ)
2 (2)

wherewij = 1/(Fiσ
2
i ). Fi is the number of models trained with data size ni and is used to normalize

the weight so that the total weight for observations from each training size does not depend on Fi.
The factor of σ2

i accounts for the variance of εij . Assuming constant σ2
i and removing the Fi factor

would yield unweighted least squares.

The variance of the estimate of σ2
i from Fi samples is 2σ4

i /Fi, which can lead to over- or under-
weighting data for particular i if Fi is small. Recall that each sample eij requires training an entire
model, so Fi is always small in our experiments. We would expect the variance to have the form
σ2
i = σ2

0 + σ̂2/ni, where σ2
0 is the variance due to random initialization and optimization and σ̂2/ni

is the variance due to randomness in selecting ni samples. Indeed, by averaging over the variance
estimates for many different network models on the CIFAR-100 (Krizhevsky, 2012) dataset, we find
a good fit with σ2

0 = 0.2. This enables us to estimate a single σ̂2 parameter from all samples e in
a given learning curve as a least squares fit and also upper-bounds wij <= 5 even if two models
happen to have the same error. This attention to wij may seem fussy, but without such care we find
that the learning curve often fails to account sufficiently for all the data in some cases.

3.2 SOLVING FOR LEARNING CURVE MEAN AND VARIANCE

Concatenating errors across dataset sizes (indexed by i) and folds results in an error vector e of
dimension D =

∑S
i=1 Fi. For each d ∈ {1, · · · , D}, e[d] is an observation of error at dataset size

nid that follows N (µid , σ
2
id

) with id mapping d to the corresponding i.

The weighted least squares problem can be formulated as solving a system of linear equations de-
noted by W 1/2e = W 1/2Aθ, where W ∈ RD×D is a diagonal matrix of weights Wdd = wd,
A ∈ RD×2 is a matrix with A[d, :] = [1 nγd ], and θ = [α η]

T are the parameters of the learn-
ing curve, treating γ as fixed for now. The estimator for the learning curve is then given by
θ̂ = (W 1/2A)+W 1/2e = Me, where M ∈ R2×D and + is pseudo-inverse operator.

We compute a mean curve using

θ = E[θ̂] = ME[e] = Mµ (3)

where µ ∈ RD with µ[d] = µ̂id computed by empirical estimate as
∑Fi
j=1 eij/Fi.

The covariance of the estimator is given by

Σθ̂ = MΣeM
T (4)

where Σθ̂ ∈ R2×2 and Σe ∈ RD×D is the covariance of e, where Σe[d1, d2] = σ2
id1

if id1 = id2
and 0 otherwise. We compute our empirical estimate of σ2

i as described in Sec. 3.1.

Since the curve is given by e(n) = [1 nγ ]θ, the mean curve can be computed as

e(n) = [1 nγ ]θ = α+ ηnγ . (5)

The 95% bounds at any n can be computed as e(n)± 1.96× σ̂(n) with

σ̂2(n) = [1 nγ ] Σθ̂

[
1
nγ

]
(6)

where α̂ and η̂ are the empirical estimates of α and η. These confidence bounds reflect the variance
in error measurements, assuming the parameterization is capable of fitting the true mean.

4



Under review as a conference paper at ICLR 2021

3.3 ESTIMATING γ

We search for γ that minimizes the weighted least squares objective with an L1-prior that slightly
encourages values close to 0.5. Specifically, we solve

min
γ∈(−1,0)

G(γ) + λ|γ + 0.5| (7)

by searching over γ ∈ {−0.99, ...,−0.01} with λ = 5 for our experiments.

4 EXPERIMENTS

We describe our implementation details in Sec. 4.1, apply learning curves to gain insights about
error and data-reliance in Sec. 4.2, and validate our choice of learning curve parameterization and
fitting weights used in the least squares objective in Sec. 4.3.

4.1 IMPLEMENTATION DETAILS

We use Pytorch-Lightning (Falcon, 2019) for our implementation with various architectures, weight
initializations, data augmentation, and linear or fine-tuning optimization.

Training: We train models with images of size 32×32 for CIFAR (Krizhevsky, 2012) and 224×224
for Places365 (Zhou et al., 2017) with a batch size of 64 (except for Wide-ResNet101 and Wide-
ResNeXt101, where we use a batch size of 32 and performed one optimizer step every two batches).
For each experiment setting, we conduct a learning rate search on a subset of the training data
and choose the learning rate with the highest validation accuracy, and use it for all other subsets.
We determine each fold’s training schedule on a mini-train/mini-val split of 2:1 on the train set.
Each time the mini-val error stops decreasing for some epochs (“patience”), we revert to the best
epoch and decrease the learning rate to 10%, and we perform this twice. Then we use this optimal
mini-train learning rate schedule and ending epoch to train on the whole fold. The patience is
∝ 1/

√
n, and is 5 at the n = 400 samples/class for CIFAR100/Places365 and 15 at the largest

training size for other smaller datasets. We use a weight decay value of 0.0001. We use the Ranger
optimizer (Wright, 2019), which combines Rectified Adam (Liu et al., 2019), Look Ahead (Zhang
et al., 2019), and Gradient Centralization (Yong et al., 2020). In early experiments, we found Ranger
to lead to lower error and to reduce sensitivity of hyperparameters, compared to vanilla SGD or
Adam (Kingma & Ba, 2015).

Backbone Architecture: We use the default Pytorch implementations of all of the following
architectures: AlexNet (Krizhevsky et al., 2012), ResNet-18, ResNet-50, ResNet-101 (He et al.,
2015b), ResNeXt-50, ResNeXt-100 (Xie et al., 2016), VGG16 BN (Simonyan & Zisserman, 2014),
Wide-ResNet-50, and Wide-ResNet-101 (Zagoruyko & Komodakis, 2016). For each architecture,
we modify the last layer to match the same number of classes as the test dataset with Kaiming
initialization (He et al., 2015a).

Number of Training Examples: To compute learning curves for CIFAR and Places365, we vary
the number of training examples per class, partition the train set, and train one model per partition.
For CIFAR100 (Krizhevsky, 2012), we use {25, 50, 100, 200, 400} training examples per class, and
the number of models trained for each respectively is {16, 8, 4, 2, 1}. Similar to Hestness et al.
(2017), we find training sizes smaller than 25 samples per class are strongly influenced by bounded
error and deviate from our model. For Places365 dataset, we use {25, 50, 100, 200, 400, 1600}
training examples per class and {16, 8, 4, 3, 3, 1} models each. For other datasets (Fig. 6), we use
{20%, 40%, 80%} of the full data and train {4, 2, 1}models each. We hold out 20% of data from the
original training set for testing (a validation set could also be used if available) to discourage meta-
fitting on the test set. For example, we hold out 100 samples per class from the original CIFAR100
training set and perform hyperparameter selection and training on the remaining 400 samples.

Pretraining: When pretraining is used, we initialize models with pretrained weights learned
through supervised training on ImageNet or Places365, or MOCO self-supervised training on Ima-
geNet (He et al., 2020). Otherwise, weights are randomly initialized with Kaiming initialization.

Data Augmentation: For CIFAR, we pad by 4 pixels and use a random 32× 32 crop (test without
augmentation), and for Places365 we use random-sized crop (Szegedy et al., 2015) to 224×224

5



Under review as a conference paper at ICLR 2021

and random flipping (center crop 224×224 test time). For remaining datasets, we follow the pre-
processing in Zhai et al. (2020) that produced the best results when training from scratch.

Linear vs. Fine-tuning: For “linear”, we only train the final classification layer, with the other
weights frozen to initialized values. All weights are trained when “fine-tuning”.

4.2 LEARNING CURVE COMPARISONS

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

AlexNet (e400 = 26.89; β400 = 12.4; γ = −0.32)

VGG-16(bn) (e400 = 19.1; β400 = 9.79; γ = −0.38)

ResNet-50 (e400 = 18.33; β400 = 4.32; γ = −0.67)

ResNeXt-50(32x4d) (e400 = 16.45; β400 = 4.91; γ = −0.65)

ResNet-101 (e400 = 14.97; β400 = 5.03; γ = −0.62)

Figure 1: Architecture (w/ finetuning)

We plot the fitted learning curves and confidence bounds,
with observed test errors as black points. The legend dis-
plays γ, error eN , and data reliance βN with N = 400.
The x-axis is in scale n−0.5 (n in parentheses), but best-
fitting γ is used in all cases.In all plots, n denotes number
of samples per class except Fig. 6 where n is the total
number of samples. A vertical bar indicates n = 1600,
which we consider the limit of accurate extrapolation
from curves fit to n ≤ 400 samples. All points are used
for fitting, except in Fig. 9b n = 1600 is held out to test
extrapolation.

Network architecture: Advances in CNN architectures
have reduced number of parameters while also reducing
error over the range of training sizes. On CIFAR100,
AlexNet has 61M parameters; VGG-16, 138M; ResNet-50, 26M; ResNeXt-50, 25M; and ResNet-
101, 45M. Fig. 1 shows that each major advance through ResNet reduces both data-reliance and
e400, while ResNeXt appears to slightly reduce e400 without change to data-reliance.

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

No Pretr; Linear (e400 = 79.29; β400 = 1.32; γ = −0.84)

No Pretr; Finetune (e400 = 27.91; β400 = 18.23; γ = −0.41)

Pretr; Linear (e400 = 32.42; β400 = 5.61; γ = −0.35)

Pretr; Finetune (e400 = 18.86; β400 = 7.28; γ = −0.57)

(a) Transfer: Imagenet to Cifar100

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

No Pretr; Linear (e400 = 92.79; β400 = 0.96; γ = −0.5)

No Pretr; Finetune (e400 = 57.89; β400 = 12.86; γ = −0.26)

Pretr; Linear (e400 = 59.91; β400 = 4.16; γ = −0.38)

Pretr; Finetune (e400 = 54.0; β400 = 7.33; γ = −0.28)

(b) Transfer: Imagenet to Places365

Figure 2: Pretraining and fine-tuning with ResNet-18.

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

R50; No Pretr (eN = 27.66; βN = 20.93; γ = −0.35)

R50; Imagenet Pretr (eN = 18.33; βN = 4.32; γ = −0.67)

R50; Imagenet MOCO Pretr (eN = 18.74; βN = 11.21; γ = −0.3)

R50; Places Pretr (eN = 20.49; βN = 12.53; γ = −0.24)

Figure 3: Pretraining sources (test on
Cifar100).

Pretraining and fine-tuning: In Fig. 2 we see that, for
linear classifiers, pretraining leads to a huge improvement
in e400 though with a moderate increase in data-reliance.
When fine-tuning, the pretraining greatly reduces data-
reliance β400 and also reduces e400. Pretraining clearly
improves performance with smaller training sizes. How-
ever, we cannot draw conclusions about bias because ex-
trapolated asymptotic error is not reliable, and the full
story is complicated. On an object detection task, He
et al. (2019) find that, with long learning schedules, ran-
domly initialized networks approach the performance of
pretrained networks (for the CNN backbone), even with
finite data. Experiments by Zoph et al. (2020), also on ob-
ject detection, show that pretraining can sometimes harm
performance when strong data augmentation is used. Ko-

6



Under review as a conference paper at ICLR 2021

rnblith et al. (2019) show that fine-tuned pretrained models outperform randomly initialized models
on many datasets, but the gap is often small and narrows as data size grows. All agree that pretraining
is at least important for providing a warm start that greatly reduces the training time, but whether
it introduces bias (i.e. asymptotic error) likely depends on the tasks, domains, and optimization
settings.

Pretraining data sources: In Fig. 3, we compare pretraining strategies: random, supervised on
ImageNet or Places365, and self-supervised on ImageNet (MOCO by He et al. (2020)). All initial-
izations have similar extrapolated error at n = 1600, but different data-reliance. Self-supervised
MOCO leads to lower e400 and β400 compared to Places365 pretraining. Supervised pretraining on
ImageNet has the lowest e400 and β400. We suspect that the γ = −0.67 and higher extrapolated
asymptotic error may be due to measurement noise and suboptimal hyperparameter selection.

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

Resnet-18 (e400 = 18.86; β400 = 7.28; γ = −0.57)

Resnet-34 (e400 = 18.75; β400 = 4.36; γ = −0.73)

Resnet-50 (e400 = 18.33; β400 = 4.32; γ = −0.67)

Resnet-101 (e400 = 14.97; β400 = 5.03; γ = −0.62)

(a) Depth: finetune

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

Resnet-18 (e400 = 32.42; β400 = 5.61; γ = −0.35)

Resnet-34 (e400 = 30.02; β400 = 5.44; γ = −0.33)

Resnet-50 (e400 = 28.63; β400 = 6.66; γ = −0.22)

Resnet-101 (e400 = 25.86; β400 = 6.17; γ = −0.21)

(b) Depth: linear

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

Resnet-50 (e400 = 18.33; β400 = 4.32; γ = −0.67)

2xWide-Resnet-50 (e400 = 14.04; β400 = 6.0; γ = −0.57)

Resnet-101 (e400 = 14.97; β400 = 5.03; γ = −0.62)

2xWide-Resnet-101 (e400 = 13.37; β400 = 5.81; γ = −0.5)

(c) Width: finetune

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

Resnet-50 (e400 = 28.63; β400 = 6.66; γ = −0.22)

2xWide-Resnet-50 (e400 = 28.77; β400 = 4.89; γ = −0.35)

Resnet-101 (e400 = 25.86; β400 = 6.17; γ = −0.21)

2xWide-Resnet-101 (e400 = 27.76; β400 = 5.41; γ = −0.25)

(d) Width: linear

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

6xResnet-18 (e400 = 15.96; β400 = 7.09; γ = −0.49)

1xResnet-18 (e400 = 18.86; β400 = 7.28; γ = −0.57)

3xResnet-50 (e400 = 15.96; β400 = 4.15; γ = −0.64)

1xResnet-50 (e400 = 18.33; β400 = 4.32; γ = −0.67)

(e) Ensemble: finetune

Figure 4: Depth, width, and ensembles on Cifar100.

Network depth, width, and ensembles: The classical view is that smaller datasets need simpler
models to avoid overfitting. In Figs. 4a, 4b, we show that, not only do deeper networks have better
potential at higher data sizes, their data reliance does not increase (nearly parallel and drops a little
for fine-tuning), making deeper networks perfectly suitable for smaller datasets. For linear classifiers
(Fig. 4b), the deeper networks provide better features, leading to consistent drop in e400. The small
jump in data reliance between Resnet-34 and Resnet-50 may be due to the increased last layer input
size from 512 to 2048 nodes. When increasing width, the fine-tuned networks (Fig. 4c) have reduced
e400 without much change to data-reliance. With linear classifiers (Fig. 4d), increasing the width
leads to little change or even increase in e400 with slight decrease in data-reliance. Rosenfeld et al.
(2020) show that error can be modeled as a function of either training size, model size, or both.
Modeling both jointly can provide additional capabilities such as selecting model size based on data
size, but requires many more experiments to fit the curve.

An alternative to using a deeper or wider network is forming ensembles. In Figure 4e, we find that
while an ensemble of six ResNet-18’s (each 11.7M parameters) improves over a single model, it
has higher e400 and data-reliance than ResNet-101 (44.5M), Wide-ResNet-50 (68.9M), and Wide-
ResNet-101 (126.9M). Three ResNet-50’s (each 25.6M) underperforms Wide-ResNet-50 on e400
but outperforms for small amounts of data due to lower data reliance.

7



Under review as a conference paper at ICLR 2021

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

R18 w/ Aug on Places365 (e400 = 58.01; β400 = 12.44; γ = −0.28)

R18 w/o Aug on Places365 (e400 = 63.73; β400 = 13.01; γ = −0.24)

(a) w/o Pretrain; Finetune

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

R18 w/ Aug on Places365 (e400 = 53.88; β400 = 7.99; γ = −0.22)

R18 w/o Aug on Places365 (e400 = 56.68; β400 = 7.94; γ = −0.23)

(b) Pretrain; Finetune

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

R18 w/ Aug on Places365 (e400 = 60.01; β400 = 3.83; γ = −0.43)

R18 w/o Aug on Places365 (e400 = 60.48; β400 = 4.52; γ = −0.36)

(c) Pretrain; Linear

Figure 5: Data augmentation on Places365.

Data Augmentation: One may expect that data augmentation acts as a regularizer with reduced
effect for large training sizes, or even possibly negative effect due to introducing bias. However,
Fig. 5 shows that data augmentation on Places365 reduces error for all training sizes with little or no
change to data-reliance when fine-tuning. e(n) with augmentation roughly equals e(1.8n) without
it, supporting the view that augmentation acts as a multiplier on the value of an example. For the
linear classifier, data augmentation has little apparent effect due to low data-reliance, but the results
are still consistent with this multiplier.

0
(∞)

0.005
(40000)

0.01
(10000)

0.015
(4445)

0.02
(2500)

0.025
(1600)

0.03
(1112)

0.035
(817)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

Caltech101 Pretr; Lin (e10k = 11.18; β10k = 5.45; γ = −0.5)

Caltech101 Pretr; Ft (e10k = 7.74; β10k = 5.77; γ = −0.5)

Pets Pretr; Lin (e10k = 8.01; β10k = 2.97; γ = −0.5)

Pets Pretr; Ft (e10k = 5.34; β10k = 3.96; γ = −0.5)

Sun397 Pretr; Lin (e10k = 71.22; β10k = 4.84; γ = −0.5)

Sun397 Pretr; Ft (e10k = 52.4; β10k = 19.82; γ = −0.5)

Figure 6: Additional datasets

Additional datasets: In Fig. 6, we verify that our learning
curve model fits to multiple other datasets (chosen from natural
tasks in Zhai et al. (2020)), comparing fine-tuned vs. linear
with Resnet-18. For these plots only, n is the total number of
samples. The γ values are estimated from data, but the prior
has more effect here due to fewer error measurements.

We see fine-tuning consistently outperforms linear, though the
difference is most dramatic for Sun397. Pretraining provides
large benefits across datasets.

4.3 EVALUATION OF LEARNING CURVES MODEL AND FITTING

We validate our learning curve model using leave-one-size-out prediction error, for example, pre-
dicting empirical mean performance with 400 samples per class based on observing error from
models trained on 25, 50, 100, and 200 samples. We consider various choices of weighting schemes
(w’s in Eq. 2) and estimating different parameters in a general form of the learning curve given by
e(n) = α+ηnγ +δn2γ . Note that setting δ = 0 yields the learning curve model described in Sec. 3.

Weighting Schemes. In the Fig. 7 table, we compare three weighting schemes across 16 classifiers:
wij = 1 is unweighted; wij = 1/σ2

i is weighted by estimated size-dependent standard deviation;
wij = 1/(Fiσ

2
i ) makes the total weight for a given dataset size invariant to the number of folds. On

average our proposed weighting performs best with high significance compared to unweighted. The
p-value is paired t-test of difference of means calculated across all dataset sizes.

Model Choice. We consider other parameterizations that are special cases of e(n) = α+ηnγ+δn2γ .
The table in Fig. 7 shows that the parameterization used for our experiments outperforms the others,
in most cases with high significance, and achieves a very good fit with R2 of 0.998.

Model Stability. We test stability and sample requirements by repeatedly fitting curves to four
resampled data points for a model (Resnet-18, no pretraining, fine-tuned, tested on Places365).
Based on estimates of mean and standard deviation, one point each at n = {50, 100, 200, 400} is
sampled and used to fit a curve, repeated 100 times. Parentheses in legend show standard deviation
of estimates of eN , βN , and γ. Our preferred model extrapolates best to n = 1600 and n = 25
while retaining stable estimates of of eN and βN , but predicted asymptotic error α varies widely.

8



Under review as a conference paper at ICLR 2021

Appendix C shows similar estimates of eN and βN by fixing γ = −0.5 and fitting only α and η
on the three largest sizes (typically n = {100, 200, 400}), indicating that a lightweight approach of
training a few models can yield similar conclusions.

RMSE

Params Weights R2 25 50 100 200 400 avg p-value

α, η, γ

1
σ2
iFi

0.998 2.40 0.86 0.54 0.57 0.85 1.04 -
1
σ2
i

0.999 2.38 0.83 0.69 0.54 1.08 1.10 0.06
1 0.998 2.66 0.86 0.79 0.50 1.26 1.21 0.008

α, η 1
σ2
iFi

0.988 3.41 1.09 0.69 0.72 1.21 1.42 <0.001

α, η, δ 1
σ2
iFi

0.999 2.89 0.74 0.68 0.56 0.94 1.16 0.05

α, η, δ, γ 1
σ2
iFi

0.999 3.46 0.74 0.70 0.59 1.00 1.30 0.02 0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

α, η, γ, δ (0.16, 0.9, 0.21)

α, η, δ (0.16, 0.54, 0.0)

α, η, γ (0.16, 0.72, 0.05)

α, η (0.15, 0.2, 0.0)

Figure 7: Learning curve model and weights validation. See text for explanation.

5 LIMITATIONS AND FUTURE WORK

Limitations: Our work in this paper is limited to classification loss, and our model does not account
for small sample effects where chance performance is a major factor. Although our proposed eN
and βN are stable under perturbations and different learning curve parameterizations, the asymptotic
error α and exponent γ parameters of the learning curve are unstable, and our confidence interval
does not account for γ variance. Unstable α means that little can be concluded about asymptotic
performance, though eN −βN can stand in as a measure of large-data performance. Unstable γ may
mean that conclusions are subject to the hyperparameter selection and optimization method.

Future work: Do the hyperparameters such as learning rate, schedule, and weight decay determine
γ, or something else? It appears that γ < −0.5 is accompanied by high α and/or η. Should
γ = −0.5 for a well-trained system? Answering these questions could lead to improved training
and evaluation methodologies. It would also be interesting to investigate learning curve models for
small training size, other losses and prediction types, more design parameters and interactions, and
impact of imbalance in class distribution.

Appendix A offers extended discussion. Appendix B provides a guide to fitting, displaying, and
using learning curves. Appendix C contains a table of learning curves for all of our experiments and
compares eN and βN produced by two learning curve models.

6 CONCLUSION

We investigate learning curve models for analyzing classifier design decisions. We find an extended
power law provides the best fit across many different architectures, datasets, and other design param-
eters. We propose to characterize error and data-reliance with eN and βN , which are stable under
data perturbations and can be derived from different learning curve models. Our experiments lead to
several interesting observations about impacts of pretraining, fine-tuning, data augmentation, depth,
width, and ensembles. We anticipate learning curves can further inform training methodology, con-
tinual learning, and representation learning, among other problems, and hope to see learning curves
become part of a standard classification evaluation.

REFERENCES

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. CoRR, abs/1802.05296, 2018. URL http://arxiv.
org/abs/1802.05296.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks. CoRR, abs/1706.08498, 2017. URL http://arxiv.org/abs/1706.
08498.

9

http://arxiv.org/abs/1802.05296
http://arxiv.org/abs/1802.05296
http://arxiv.org/abs/1706.08498
http://arxiv.org/abs/1706.08498


Under review as a conference paper at ICLR 2021

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Research,
2:499–526, 2002.

Corinna Cortes, L. D. Jackel, Sara A. Solla, Vladimir Vapnik, and John S. Denker. Learning curves:
Asymptotic values and rate of convergence. In NIPS, 1993.

Pedro Domingos. A unified bias-variance decomposition. In ICML, 2000.

WA Falcon. Pytorch lightning. GitHub. Note: https://github.com/PyTorchLightning/pytorch-
lightning, 3, 2019.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
Neural Computation, 4:1–58, 01 1992. doi: 10.1162/neco.1992.4.1.1.

Giorgio Gnecco and Marcello Sanguineti. Approximation error bounds via rademacher’s complex-
ity. 2(4), 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015b. URL http://arxiv.org/abs/1512.03385.

Kaiming He, Ross Girshick, and Piotr Dollar. Rethinking imagenet pre-training. pp. 4917–4926, 10
2019. doi: 10.1109/ICCV.2019.00502.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory F. Diamos, Heewoo Jun, Hassan Kianine-
jad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. CoRR, 2017.

Mark Johnson and Dat Quoc Nguyen. How much data is enough? Predicting how accuracy varies
with training data size. Technical report, 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet models transfer better? In CVPR, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05
2012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems 25, pp. 1097–
1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=Skz_WfbCZ.

10

http://arxiv.org/abs/1512.03385
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://openreview.net/forum?id=Skz_WfbCZ


Under review as a conference paper at ICLR 2021

Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/forum?id=ryenvpEKDr.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable ef-
fectiveness of data in deep learning era. In IEEE International Conference on Computer Vision,
pp. 843–852, 2017.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Mingxing Tan and Quoc V Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer Publishing Company,
Incorporated, 1st edition, 2008. ISBN 0387790519.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.
doi: 10.1137/1116025. URL http://link.aip.org/link/?TPR/16/264/1.

Less Wright. New deep learning optimizer, ranger: Synergistic combination of radam + lookahead
for the best of both. Github https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer, 08
2019.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated resid-
ual transformations for deep neural networks. CoRR, abs/1611.05431, 2016. URL http:
//arxiv.org/abs/1611.05431.

Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei Zhang. Gradient centralization: A new
optimization technique for deep neural networks. ArXiv, abs/2004.01461, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer,
Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, and
Neil Houlsby. A large-scale study of representation learning with the visual task adaptation
benchmark. arXiv preprint arXiv:1910.04867, 2020.

Michael Ruogu Zhang, James Lucas, Geoffrey E. Hinton, and Jimmy Ba. Lookahead optimizer: k
steps forward, 1 step back. In NeurIPS, 2019.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 mil-
lion image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin D. Cubuk, and Quoc V. Le.
Rethinking pre-training and self-training, 2020.

A EXTENDED DISCUSSION

Evaluation methodology is the foundation of research, impacting how we choose problems and rank
solutions. Large train and test sets now serve as the fuel and crucible to refine machine learning
methods. The current evaluation standard of using fixed i.i.d. train/test sets has supported many
classification model improvements, but as machine learning broadens to continual learning, repre-
sentation learning, long-tail learning, and so on, we need evaluation methods that better reflect the
uncontrollable, unpredictable, and ever-changing world. By characterizing performance in terms

11

https://openreview.net/forum?id=ryenvpEKDr
http://arxiv.org/abs/1409.1556
http://link.aip.org/link/?TPR/16/264/1
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1605.07146


Under review as a conference paper at ICLR 2021

of error and data-reliance, we can provide a more complete understanding of model design and
training size impact than single-point error. With that perspective, we discuss the limitations of our
experiments and directions for future work.

• Cause and impact of γ: We speculate that γ is largely determined by hyperparameters
and optimization rather than model design, so conclusions are conditioned on particular
training parameters. This presents an opportunity to identify poor training regimes and
improve them. Intuitively, one would expect that more negative γ values are better (i.e.
γ = −1 preferable to γ = −0.5), since the curve is curve O(nγ), but we find the high-
magnitude γ tends to come with high asymptotic error, indicating that the efficiency comes
at cost of over-commitment to initial conditions. We speculate (but with some disagreement
among authors) that γ = −0.5 is an indication of a well-trained curve and will generally
outperform curves with higher or lower γ, given the same classification model. It would be
interesting to examine the impact of hyperparameter selection and optimization method on
γ.

• Small training sets: Error is bounded and, with small training sets, classifier performance
may be modeled as transitioning from random guess to informed prediction, as shown by
Rosenfeld et al. (2020). We do not model performance with very small training size, partly
to keep our model simple, partly because small training performance can be easily mea-
sured empirically, and partly because performance with small training size is highly vari-
able depending on the sample. However, studying performance with small training sizes
could be interesting, particularly to determine whether design decisions have an impact at
the small size that is not apparent at larger sizes.

• Losses and Prediction types: We analyze multiclass classification error, but the same
analysis could likely be extended to other losses and prediction types. For example, Ka-
plan et al. (2020) analyze learning manifolds of cross-entropy loss, which is unbounded,
of language model transformers. Problems like object detection or grounding sometimes
have relatively complex evaluation measures, such as average precision after accounting
for localization and label accuracy, but test evaluation of the same losses used for training
should still apply. Sun et al. (2017) show an approximately log-linear behavior between
mean intersection of union semantic segmentation error as a function of number of training
samples.

• More design parameters and interactions: The interaction between data scale, model
scale, and performance is well-explored by Kaplan et al. (2020) and Rosenfeld et al. (2020),
but it could also be interesting to explore interactions, e.g. between class of architecture
(e.g. VGG, ResNet, EfficientNet (Tan & Le, 2019)) and some design parameters, to see
how ideas such as skip-connections, residual layers and creating bottlenecks influence per-
formance. More extensive evaluation of data augmentation, representation learning, opti-
mization and regularization methods would also be interesting.

• Unbalanced class distributions: In most of our experiments, we use equal number of sam-
ples per class. Further experimentation is required to determine whether class imbalance
impacts the form of the learning curve.

B USER’S GUIDE TO LEARNING CURVES

B.1 USES FOR LEARNING CURVES

• Comparison: When comparing two learners, measuring the error and data-reliance pro-
vides a better understanding of the differences than evaluating single-point error. We com-
pare curves with eN and βN , rather than directly using the curve parameters, because they
are more stable under data perturbations and do not depend on the parameterization, instead
corresponding to error and rate of change about n = N . eN −βN can be used as a measure
of large-sample performance.

• Performance extrapolation: A 10x increase in training data can require a large invest-
ment, sometimes millions of dollars. Learning curves can predict how much performance
will improve with the additional data to judge whether the investment is worthwhile.

12



Under review as a conference paper at ICLR 2021

• Model selection: When much training data is available, architecture, hyperparameters, and
losses can be designed and selected using a small subset of the data to minimize the extrap-
olated error of the full training set size. Higher-parameter models such as in Kaplan et al.
(2020) and Rosenfeld et al. (2020) may be more useful as a mechanism to simultaneously
select scale parameters and extrapolate performance, though fitting those models is much
more computationally expensive due to the requirement of sampling error/loss at multiple
scales and data sizes.
• Hyperparameter validation: A poor fitting learning curve (or one with γ far from −0.5)

is an indication of poor choice of hyperparameters, as pointed out by Hestness et al. (2017).

B.2 ESTIMATING AND DISPLAYING LEARNING CURVES

Use validation set: We recommend computing learning curves on a validation set, rather than a test
set, according to best practice of performing a single evaluation on the test set for the final version
of the algorithm. All of our experiments are on a validation set, which is carved from the official
training set if necessary.

Generate at least four data points: In most of our experiments on CIFAR100, we train a 31
models: 1 on 400 images, 2 on 200 images, 4 on 100 images, 8 on 50 images, and 16 on 25
images. Each trained model provides one data point, the average validation error. In each case, the
training data is partitioned so that the image sets within the same size are non-overlapping. Training
multiple models at each size enables estimating the standard deviation for performing weighted least
squares and producing confidence bounds. However, our experiments indicate that learning curves
are highly stable, so a minimal experiment of training four models on the full, half, quarter, and
eighth-size training set may be sufficient as part of a standard evaluation. See Fig. 8 It may be
necessary to train more models if attempting to distinguish fine differences.

0
(∞)

0.05
(400)

0.1
(100)

0.15
(45)

0.2
(25)

0.25
(16)

n−0.5

0

20

40

60

80

100

E
rr

or

α, η, γ, δ (0.16, 0.9, 0.21)

α, η, δ (0.16, 0.54, 0.0)

α, η, γ (0.16, 0.72, 0.05)

α, η (0.15, 0.2, 0.0)

Figure 8: Stability under sparse measurements: Sampled learning curves for Places365 fine-tuned
without pretraining are shown for four different learning curve parameterizations. In each case,
means and standard deviations (shown by error bars) are estimated for n = 50, n = 100, n = 200,
n = 400, using all the data points shown as white circles. Then, 100 times, we sample one point
each from a Guassian distribution and fit a learning curve to the four points. In parantheses, the
legend shows the standard deviation of eN , βN , and γ. Note that the parameterization of {α, η, γ}
extrapolates best to lower and higher data sizes while still producing stable estimates of eN and βN .
Asymptotic error, however, varies widely.

Set hyperparameters: The learning rate and learning schedule are key parameters to be set. We
have not experimented with changes to weight decay, momentum, or other hyperparameters.

Fit learning curves: If more than one data point is available for the same training size, the standard
deviation can be estimated. As described in Sec. 3, we recommend fitting a model of σ2

i = σ2
0 +

σ̂2/n, where σ2
0 . σ2

0 is the variance due to randomness in initialization and optimization. The
fitting is not highly sensitive to this parameter, so we recommend setting σ2

0 = 0.01 and fitting σ̂ to
observations, since estimating both from experiments to generate a single learning curve introduces
high variance and instability.

13



Under review as a conference paper at ICLR 2021

Display learning curves or parameters: As in this paper, learning curves can be plotted linearly
with the x-axis as n−0.5 and the y-axis as error. We choose this rather than log-linear because it
reveals prediction of asymptotic error and yields a linear plot when γ = −0.5. Since space is often
a premium, the learning curve parameters can be displayed instead, as illustrated in Table 3.

Table 3: Results: model1 and model2 have similar percent test error when training on the full set.
Fitting a learning curve on the validation set, we see that model2 has higher data-reliance, so may
outperform for larger training sets. This is a hypothetical example to illustrate use of learning curves
in a table.

eN βN γ

model1 25.3 % 4.6 -0.36
model2 25.2 % 8.4 -0.47

C TABLE OF LEARNING CURVES

Table 4 shows experimental settings and fit parameters for learning curves under two parameteriza-
tions. We can see that similar e400 and β400 values are obtained when fixing γ = −0.5 and fitting
to errors with only three training sizes (RMS difference in e400 and γ400 are 0.42 and 0.95, respec-
tively). This means that learning curves can be fit and compared without training a large number of
additional models.

Table 4: Experiment settings and parameters: We show the datasets, architectures, settings, and
learning rate (set by mini-train/val) used to train and test our classifiers. Next, we show the param-
eters fit using the extended power law model e(n) = α + ηn−γ . Next to that, we show the model
resulting from setting γ = −0.5 and fitting to only the three training sizes with highest n.

extended power law n−0.5 linear fit to last 3 points
dataset arch # param pretrain/init fine-tune? data aug? lrnRate α η γ e400 β400 α η e400 β400

PRETRAIN IN2CIFAR
No Pretr; Linear CIFAR Resnet-18 51K Random No Yes 0.01 78.51 120.13 -0.84 79.29 1.32 78.06 26.12 79.36 1.31
No Pretr; Finetune CIFAR Resnet-18 11.7M Random Yes Yes 0.01 5.68 259.29 -0.41 27.91 18.23 11.21 336.13 28.02 16.81
Pretr; Linear CIFAR Resnet-18 51K ImageNet No Yes 0.0003 24.4 65.28 -0.35 32.42 5.61 27.33 102.16 32.44 5.11
Pretr; Finetune CIFAR Resnet-18 11.7M ImageNet Yes Yes 0.001 12.48 194.19 -0.57 18.86 7.28 11.37 150.73 18.91 7.54

PRETRAIN IN2PLACES
No Pretr; Linear Places Resnet-18 187K Random No Yes 0.03 91.84 19.13 -0.5 92.79 0.96 91.09 29.31 92.55 1.47
No Pretr; Finetune Places Resnet-18 11.7M Random Yes Yes 0.001 33.16 117.45 -0.26 57.89 12.86 44.39 263.63 57.57 13.18
Pretr; Linear Places Resnet-18 187K ImageNet No Yes 0.0003 54.43 53.39 -0.38 59.91 4.16 56.11 76.95 59.95 3.85
Pretr; Finetune Places Resnet-18 11.7M ImageNet Yes Yes 0.0003 40.92 70.04 -0.28 54 7.33 44.82 174.69 53.55 8.73

PRETRAIN IN PLACES MOCO2CIFAR
No Pretr CIFAR Resnet-50 25.6M Random Yes Yes 0.01 -2.23 243.44 -0.35 27.66 20.93 9.18 372.11 27.79 18.61
Pretr on Imagenet CIFAR Resnet-50 25.6M ImageNet Yes Yes 0.001 15.11 178.61 -0.67 18.33 4.32 13.3 99.88 18.29 4.99
Pretr on Places CIFAR Resnet-50 25.6M Places Yes Yes 0.001 -5.61 109.92 -0.24 20.49 12.53 9.05 195.43 18.82 9.77
Pretr on Imagenet with MOCO CIFAR Resnet-50 25.6M ImageNet (MOCO) Yes Yes 0.0003 0.07 112.69 -0.3 18.74 11.21 10.07 210.67 20.61 10.53

DEPTH FT
Resnet-18 CIFAR Resnet-18 11.7M ImageNet Yes Yes 0.001 12.48 194.19 -0.57 18.86 7.28 11.37 150.73 18.91 7.54
Resnet-34 CIFAR Resnet-34 21.8M ImageNet Yes Yes 0.001 15.76 237.19 -0.73 18.75 4.36 13.51 104.15 18.72 5.21
Resnet-50 CIFAR Resnet-50 25.6M ImageNet Yes Yes 0.001 15.11 178.61 -0.67 18.33 4.32 13.3 99.88 18.29 4.99
Resnet-101 CIFAR Resnet-101 44.5M ImageNet Yes Yes 0.0003 10.91 166.44 -0.62 14.97 5.03 8.95 117.22 14.81 5.86

DEPTH LINEAR
Resnet-18 CIFAR Resnet-18 51K ImageNet No Yes 0.001 24.4 65.28 -0.35 32.42 5.61 27.33 102.16 32.44 5.11
Resnet-34 CIFAR Resnet-34 51K ImageNet No Yes 0.001 21.77 59.56 -0.33 30.02 5.44 25.11 98.33 30.03 4.92
Resnet-50 CIFAR Resnet-50 205K ImageNet No Yes 0.0003 13.5 56.54 -0.22 28.63 6.66 23.05 112.08 28.65 5.6
Resnet-101 CIFAR Resnet-101 205K ImageNet No Yes 0.0003 11.17 51.7 -0.21 25.86 6.17 20.98 99.32 25.95 4.97

WIDTH FT
Resnet-50 CIFAR Resnet-50 25.6M ImageNet Yes Yes 0.001 15.11 178.61 -0.67 18.33 4.32 13.3 99.88 18.29 4.99
2xWide-Resnet-50 CIFAR Wide Resnet-50 2 68.9M ImageNet Yes Yes 0.0003 8.78 160.14 -0.57 14.04 6 7.83 124.55 14.06 6.23
Resnet-101 CIFAR Resnet-101 44.5M ImageNet Yes Yes 0.0003 10.91 166.44 -0.62 14.97 5.03 8.95 117.22 14.81 5.86
2xWide-Resnet-101 CIFAR Wide Resnet-101 2 126.9M ImageNet Yes Yes 0.0003 7.56 116.21 -0.5 13.37 5.81 7.55 116.26 13.36 5.81

WIDTH LINEAR
Resnet-50 CIFAR Resnet-50 205K ImageNet No Yes 0.0003 13.5 56.54 -0.22 28.63 6.66 23.05 112.08 28.65 5.6
2xWide-Resnet-50 CIFAR Wide Resnet-50 2 205K ImageNet No Yes 0.0001 21.78 56.88 -0.35 28.77 4.89 24.45 87.19 28.81 4.36
Resnet-101 CIFAR Resnet-101 205K ImageNet No Yes 0.0003 11.17 51.7 -0.21 25.86 6.17 20.98 99.32 25.95 4.97
2xWide-Resnet-101 CIFAR Wide Resnet-101 2 205K ImageNet No Yes 0.0003 16.95 48.35 -0.25 27.76 5.41 23.27 90.85 27.81 4.54

AUG NO PRETR FT
Resnet-18 w/ Data-Aug Places Resnet-18 11.7M Random Yes Yes 0.001 35.79 118.94 -0.28 58.01 12.44 44.39 263.63 57.57 13.18
Resnet-18 w/o Data-Aug Places Resnet-18 11.7M Random Yes No 0.003 36.62 114.2 -0.24 63.73 13.01 48.84 288.46 63.26 14.42

AUG PRETR FT
Resnet-18 w/ Data-Aug Places Resnet-18 11.7M ImageNet Yes Yes 0.0003 35.72 67.85 -0.22 53.88 7.99 44.82 174.69 53.55 8.73
Resnet-18 w/o Data-Aug Places Resnet-18 11.7M ImageNet Yes No 0.001 39.43 68.44 -0.23 56.68 7.94 47.34 183.99 56.53 9.2

AUG PRETR LINEAR
Resnet-18 w/ Data-Aug Places Resnet-18 187K ImageNet No Yes 0.0003 55.55 58.56 -0.43 60.01 3.83 56.11 76.95 59.95 3.85
Resnet-18 w/o Data-Aug Places Resnet-18 187K ImageNet No No 0.001 54.2 54.27 -0.36 60.48 4.52 55.62 96.08 60.42 4.8

ARCHITECTURES IN2CIFAR
AlexNet CIFAR AlexNet 61.1M ImageNet Yes Yes 0.001 7.52 131.77 -0.32 26.89 12.4 15.97 219.36 26.94 10.97
VGG-16(bn) CIFAR VGG-16BN 138.4M ImageNet Yes Yes 0.0003 6.21 125.57 -0.38 19.1 9.79 10.07 181.1 19.13 9.06
ResNet-50 CIFAR Resnet-50 25.6M ImageNet Yes Yes 0.001 15.11 178.61 -0.67 18.33 4.32 13.3 99.88 18.29 4.99
ResNeXt-50(32x4d) CIFAR ResNeXt-50(32x4d) 25.0M ImageNet Yes Yes 0.001 12.67 185.51 -0.65 16.45 4.91 11.37 102.91 16.52 5.15
ResNet-101 CIFAR Resnet-101 44.5M ImageNet Yes Yes 0.0003 10.91 166.44 -0.62 14.97 5.03 8.95 117.22 14.81 5.86

ENSEMBLE
1xResnet-18 CIFAR Resnet-18 11.7M ImageNet Yes Yes 0.001 12.48 194.19 -0.57 18.86 7.28 11.37 150.73 18.91 7.54
6xResnet-18 CIFAR Resnet-18 70.1M ImageNet Yes Yes 0.001 8.73 136.26 -0.49 15.96 7.09 8.55 147.16 15.91 7.36
1xResnet-50 CIFAR Resnet-50 25.6M ImageNet Yes Yes 0.001 15.11 178.61 -0.67 18.33 4.32 13.3 99.88 18.29 4.99
3xResnet-50 CIFAR Resnet-50 76.7M ImageNet Yes Yes 0.001 12.72 150.13 -0.64 15.96 4.15 11.43 90.59 15.96 4.53

14



Under review as a conference paper at ICLR 2021

D DRAFT ADDITIONAL CHANGES TO INCLUDE IN FINAL VERSION

This section contains preliminary results and text requested by reviewers that will be carefully inte-
grated into the main document in final revision.

D.1 OPTIMIZATION EXPERIMENTS

0
(∞)

0.02
(2500)

0.04
(625)

0.06
(278)

0.08
(157)

0.1
(100)

0.12
(70)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

Adam (e4000 = 5.51; β4000 = 9.89; γ = −0.43)

Ranger (e4000 = 5.08; β4000 = 7.73; γ = −0.5)

SGD (e4000 = 6.03; β4000 = 8.5; γ = −0.5)

SGD w/o momentum (e4000 = 7.3; β4000 = 12.66; γ = −0.32)

(a) without Pretrain

0
(∞)

0.02
(2500)

0.04
(625)

0.06
(278)

0.08
(157)

0.1
(100)

0.12
(70)

n−0.5

0

20

40

60

80

100

E
rr

or

e(n) = α + η · nγ

Adam (e4000 = 2.86; β4000 = 2.82; γ = −0.47)

Ranger (e4000 = 2.98; β4000 = 2.97; γ = −0.4)

SGD (e4000 = 2.76; β4000 = 2.85; γ = −0.38)

SGD w/o momentum (e4000 = 2.64; β4000 = 3.08; γ = −0.36)

(b) with ImageNet Pretrain

Figure 9: Optimization on Cifar10 with ResNet-18.

In Fig. 9, we show results on Cifar10 when training ResNet-18 using four different optimization
methods: Ranger (Wright, 2019), Adam (Kingma & Ba, 2015), stochastic gradient descent (SGD)
w/ momentum, and SGD w/o momentum. Similarly to our experiments with Cifar100, we use 80%
of the standard training set for training and validation (4000 examples per class) and the remaining
20% for testing. With pretraining, all methods perform similarly, but when training from scratch (no
pretraining), Ranger outperforms with lower e4000 and β4000. SGD without momentum performs
the worst and is least consistent across folds.

D.2 TEXT FOR SECTION 2.2

However, if the classifier parameters are functions of n, then γ may deviate from−0.5. For example,
Tsybakov (2008) shows that a kernel density estimator (KDE) with fixed bandwidth h has MSE
bounded by O( 1

nh ), but when the bandwidth is set as a function of n to minimize MSE, the bound

becomes O(n−
2β

2β+1 ) where β is the kernel order. In our experiments, all aspects of our model
are fixed across training size when estimating one learning curve, except learning schedule, but
it should be noted that error bounds and likely the learning curve parameters depend on both the
classifier form and which parameters vary with n.

D.3 OTHER PLANNED IMPROVEMENTS

• Experiments to include WRN-28-10 (or similarly effective Wide ResNet model) on Cifar-
100 to show that learning curve methodology applies and experimental findings hold for
high-performing models

• Discussion to clarify that experiments serve to exemplify use of learning curves and make
interesting observations, but more extensive study of each design parameter is warranted.
Also discuss any other concerns/limitations raised by reviewers.

15


	Introduction
	Modeling Learning Curves
	Bias-variance Trade-off and Generalization Theory
	Empirical Studies
	Proposed Characterization of Learning Curves for Evaluation

	Estimating Learning Curves
	Weighted Least Squares Formulation
	Solving for Learning Curve Mean and Variance
	Estimating 

	Experiments
	Implementation Details
	Learning Curve Comparisons
	Evaluation of Learning Curves Model and Fitting

	Limitations and Future Work
	Conclusion
	Extended Discussion
	User's Guide to Learning Curves
	Uses for Learning Curves
	Estimating and Displaying Learning Curves

	Table of Learning Curves
	Draft Additional Changes to Include in Final Version
	Optimization Experiments
	Text for Section 2.2
	Other Planned Improvements


