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Abstract001

Social determinants of health (SDOH) extrac-002
tion from clinical text is critical for down-003
stream healthcare analytics. Although large004
language models (LLMs) have shown promise,005
they may rely on superficial cues leading to spu-006
rious predictions. Using the MIMIC portion of007
the SHAC (Social History Annotation Corpus)008
dataset and focusing on drug status extraction009
as a case study, we demonstrate that mentions010
of alcohol or smoking can falsely induce mod-011
els to predict current/past drug use where none012
is present, while also uncovering concerning013
gender disparities in model performance. We014
further evaluate mitigation strategies—such as015
prompt engineering and chain-of-thought rea-016
soning—to reduce these false positives, provid-017
ing insights into enhancing LLM reliability in018
health domains.019

1 Introduction020

SDOH—including substance use, employment,021

and living conditions—strongly influence patient022

outcomes and clinical decision-making (Daniel023

et al., 2018; Himmelstein and Woolhandler, 2018;024

Armour et al., 2005). Extracting SDOH infor-025

mation from unstructured clinical text is increas-026

ingly important for enabling downstream health-027

care applications and analysis (Jensen et al., 2012;028

Demner-Fushman et al., 2009). Although LLMs029

have shown promise in clinical natural language030

processing (NLP) tasks (Hu et al., 2024; Liu et al.,031

2023; Singhal et al., 2023), they often rely on su-032

perficial cues (Tang et al., 2023; Zhao et al., 2017),033

potentially leading to incorrect predictions under-034

mining trust and utility in clinical settings.035

Recent work has highlighted how LLMs can ex-036

hibit "shortcut learning" behaviors (Tu et al., 2020;037

Ribeiro et al., 2020; Zhao et al., 2018), where they038

exploit spurious patterns in training data rather039

than learning causal, generalizable features. This040

phenomenon spans various NLP tasks, from nat-041

ural language inference (McCoy et al., 2019) to 042

question-answering (Jia and Liang, 2017), and in 043

clinical domains can lead to incorrect assumptions 044

about patient conditions (Brown et al., 2023; Jab- 045

bour et al., 2020), threatening the utility of auto- 046

mated systems. 047

We investigate how LLMs produce spurious 048

correlations in SDOH extraction through using 049

drug status time classification (current, past, or 050

none/unknown) as a case study. Using the MIMIC 051

(Johnson et al., 2016) portion of the SHAC (Ly- 052

barger et al., 2021) dataset, we examine zero- 053

shot and in-context learning scenarios across mul- 054

tiple LLMs (Llama (AI, 2024), Qwen (Yang 055

et al., 2024), Llama3-Med42-70B (Christophe 056

et al., 2024)).We explore multiple mitigation strate- 057

gies to address these spurious correlations: ex- 058

amining the causal role of triggers through con- 059

trolled removal experiments, implementing tar- 060

geted prompt engineering approaches like chain- 061

of-thought (CoT) reasoning (Wei et al., 2022), in- 062

corporating warning-based prompts, and augment- 063

ing with additional examples. While these inter- 064

ventions show promise—significant false positive 065

rates persist, highlighting the deep-rooted nature 066

of these biases and the need for more sophisticated 067

solutions. 068

Contributions: 069

1. We present the first comprehensive analysis 070

of spurious correlations in SDOH extraction 071

across multiple LLM architectures, including 072

domain-specialized models. Through exten- 073

sive experiments in zero-shot and ICL settings, 074

we demonstrate how models rely on super- 075

ficial cues and verify their causal influence 076

through controlled ablation studies. 077

2. We uncover systematic gender disparities in 078

model performance, demonstrating another 079

form of spurious correlation where models in- 080

appropriately leverage patient gender for drug 081
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status time classification predictions.082

3. We evaluate multiple prompt-based mitigation083

strategies (CoT, warnings, more examples)084

and analyze their limitations, demonstrating085

that while they reduce incorrect drug status086

time predictions, more robust solutions are087

needed for reliable clinical NLP deployments.088

2 Methodology089

2.1 Dataset and Task090

We use the MIMIC-III portion of the SHAC091

dataset (Lybarger et al., 2021), which comprises092

4405 deidentified social history note sections de-093

rived from MIMIC-III (Johnson et al., 2016) and094

the University of Washington clinical notes. SHAC095

is annotated using the BRAT tool (Stenetorp et al.,096

2012), capturing a variety of SDOH event types097

(e.g., Alcohol, Drug, Tobacco) as triggers along098

with associated arguments, including temporal sta-099

tus. To enable demographic analysis, we aug-100

mented the SHAC data by linking it with patient101

demographic information available in the original102

MIMIC-III dataset.103

In this work, we examine spurious correlations104

in SDOH extraction through temporal drug status105

classification (current, past, or none/unknown). We106

adopt a two-step pipeline (Ma et al., 2022, 2023):107

1. Trigger Identification: Given a social history108

note, the model identifies spans corresponding109

to the target event type (e.g., drug use).110

2. Argument Resolution: For each identified111

trigger, the model applies a multiple-choice112

QA prompt to determine the temporal status113

(current/past/none). See Appendix C for de-114

tailed examples of the task and annotation115

schema.116

2.2 Experimental Setup117

Model Configurations We evaluate multiple118

model configurations:119

• Zero-Shot: Models receive only the task in-120

structions and input text, with no examples.121

• In-Context Learning (ICL): Models are pro-122

vided three example demonstrations before123

making predictions on a new instance. Ex-124

amples are selected to maintain balanced125

representation across substance use patterns126

(none/single/multiple) and drug use outcomes127

(positive/negative).128

• Fine-Tuning (SFT): We also fine-tune a 129

Llama-3.1-8B model on the MIMIC portion 130

of the SHAC dataset to assess whether domain 131

adaptation reduces spurious correlations. 132

See Appendix B for more details on prompting 133

strategies. 134

We consider Llama-3.1-70B (zero-shot, ICL), 135

Llama-3.1-8B (fine-tuned on MIMIC), Qwen-72B 136

(ICL), and Llama3-Med42-70B (ICL). These mod- 137

els span various parameter sizes and domain spe- 138

cializations. The fine-tuned Llama-8B model pro- 139

vides insights into whether in-domain adaptation 140

mitigates the observed shortcut learning. 141

Evaluation Framework Our primary evalua- 142

tion metric is the false positive rate (FPR), de- 143

fined as: FPR = FP/(FP + TN) where FP 144

represents false positives (predicted current/past 145

use when ground truth was none/unknown) and 146

TN represents true negatives (correctly predicted 147

none/unknown). We prioritize FPR given the clini- 148

cal risks of incorrect positive drug use predictions. 149

A higher FPR indicates more frequent erroneous 150

predictions that could lead to patient stigmatization. 151

See appendix D for detailed discussion. 152

To analyze potential spurious correlations, we 153

categorize notes based on their ground truth sub- 154

stance use status: 155

• Substance-positive: Notes documenting cur- 156

rent/past use of the respective substance (alco- 157

hol or smoking) 158

• Substance-negative: Notes where the ground 159

truth indicates no use or unknown status 160

Experimental Settings 161

• Original: Evaluate models on the original 162

notes. 163

• Without Alcohol/Smoking Triggers: Re- 164

move mentions of alcohol/smoking to test 165

their causal role in inducing false positives. 166

3 Results 167

3.1 RQ1: Do Large Language Models Exhibit 168

Spurious Correlations in SDOH 169

Extraction? 170

As shown in Table 1, our analysis in a zero-shot 171

setting with Llama-70B reveals high false positive 172

rates for drug status time classification in alcohol- 173

positive (66.21%) and smoking-positive (61.11%) 174
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Table 1: False Positive Rates (%) Across Different Models and Approaches. *Smoking+Alcohol* refers to cases
where both *Smoking-positive* and *Alcohol-positive* are true.

Cases Llama-70B Llama-8B Llama3-Med42-70B Qwen-72B

Zero-shot ICL CoT Warning Increased-Examples Vanilla Fine-tuned ICL ICL

Alcohol-positive 66.21 48.28 33.79 40.69 45.52 73.10 32.41 66.90 62.76
Smoking-positive 61.11 36.42 25.93 29.63 30.25 74.07 36.42 57.41 53.09
Alcohol-negative 28.83 11.71 6.76 5.41 10.81 37.39 12.16 16.22 46.85
Smoking-negative 29.76 18.05 10.73 11.22 20.00 33.66 7.32 19.51 53.17
Smoking+Alcohol 73.26 51.16 34.88 45.35 39.53 81.40 40.70 76.74 56.98

notes. In contrast, alcohol-negative and smoking-175

negative notes show substantially lower false posi-176

tive rates (28.83% and 29.76%, respectively). This177

stark contrast suggests that the mere presence of178

alcohol or smoking triggers biases the model to-179

wards inferring nonexistent drug use. These biases180

likely stem from the pre-training phase, potentially181

reinforcing societal assumptions about correlations182

between different types of substance use.183

3.2 RQ2: Do In-Context Learning and184

Fine-Tuning Reduce These Spurious185

Correlations?186

Providing three in-context examples reduces false187

positives significantly. For Llama-70B, ICL low-188

ers alcohol-positive mismatches from 66.21% to189

48.28%, though a gap remains relative to alcohol-190

negative notes (11.71%). Similarly, smoking-191

positive mismatches decrease from 61.11% to192

36.42% versus 18.05% for smoking-negative. The193

effectiveness of ICL suggests that explicit examples194

help the model focus on relevant features, though195

the persistence of some bias indicates deep-rooted196

associations from pre-training. Fine-tuning Llama-197

8B on the MIMIC subset (SFT) yields further im-198

provements: alcohol-positive mismatches drop to199

32.41% and smoking-positive to 36.42%, with cor-200

responding negatives at 12% and 7% respectively,201

indicating that domain adaptation helps override202

some pre-trained biases.203

3.3 RQ3: Are These Superficial Mentions204

Causally Driving the Model’s Predictions?205

To confirm the causal role of alcohol and smok-206

ing mentions, we remove these triggers from the207

notes. Across models, this consistently lowers208

false positives. For instance, Llama-70B zero-shot209

sees alcohol-positive mismatches fall from 66.21%210

to 55.17% after removing alcohol triggers. Simi-211

larly, Llama-8B-SFT reduces alcohol-positive er-212

rors from 32.41% to 26.9%. Similar trends are ob-213

served across other architectures including domain- 214

specific models (see appendix G), confirming that 215

alcohol and smoking cues spuriously bias the mod- 216

els’ drug-use predictions. 217

3.4 RQ4: Are there systematic demographic 218

variations in these spurious correlations? 219

Beyond substance-related triggers, our analysis (Ta- 220

ble 2) uncovers another concerning form of spu- 221

rious correlation: systematic performance differ- 222

ences based on patient gender. Just as models 223

incorrectly rely on mere mentions of alcohol or 224

smoking to infer substance use, they appear to 225

leverage patient gender as an inappropriate pre- 226

dictive signal. For the base Llama-70B model in 227

zero-shot settings, false positive rates show stark 228

gender disparities - male patients consistently face 229

higher misclassification rates compared to female 230

patients (71.15% vs 53.66% for alcohol-positive 231

cases, and 66.67% vs 50.88% for smoking-positive 232

cases). This pattern persists with in-context learn- 233

ing, with the gender gap remaining substantial 234

(alcohol-positive: 52.88% male vs 36.59% female). 235

Fine-tuned models showed similar disparities, with 236

Llama-8B-SFT maintaining a performance gap of 237

approximately 15 percentage points between gen- 238

ders for alcohol-positive cases. 239

Notably, these gender-based differences exhibit 240

complex interactions with substance-related trig- 241

gers. Cases involving positive substances mentions 242

show the most pronounced disparities, with male 243

patients seeing up to 20 percentage point higher 244

false positive rates. This suggests that the model’s 245

shortcut learning compounds across different di- 246

mensions - gender biases amplify substance-related 247

biases and vice versa. The persistence of these in- 248

teracting biases across model architectures, sizes, 249

and prompting strategies suggests they arise from 250

deeply embedded patterns in both pre-training data 251

and medical documentation practices. 252
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Table 2: Gender-Based Analysis of False Positive Rates (%) Across Models

Llama-70B Zero-shot Llama-70B ICL Llama-8B SFT Qwen-72B

Cases Female Male Female Male Female Male Female Male

Alcohol-positive 53.66 71.15 36.59 52.88 21.95 36.54 68.29 60.58
Smoking-positive 50.88 66.67 28.07 40.95 24.56 42.86 49.12 55.24
Alcohol-negative 29.13 28.42 9.45 14.74 9.45 15.79 47.24 46.32
Smoking-negative 27.03 32.98 9.91 27.66 6.31 8.51 54.05 52.13
Smoking+Alcohol 81.82 84.62 54.55 58.97 27.27 53.85 27.27 30.77

4 Mitigation Strategies and Results253

We explore several mitigation techniques to address254

the spurious correlations identified in our analysis:255

Chain-of-Thought (CoT) As shown in Table 1,256

instructing the model to reason step-by-step before257

producing an answer leads to substantial reductions258

across all architectures. For Llama-70B, CoT re-259

duces alcohol-positive mismatches from 66.21%260

(zero-shot) to 33.79%, with smoking-positive cases261

decreasing from 61.11% to 25.93%. Similar im-262

provements are observed in other models (see ap-263

pendix H), with Qwen-72B showing particularly264

strong response to CoT. This suggests CoT helps265

models avoid superficial cues and focus on explicit266

information.267

Warning-Based Instructions We prepend ex-268

plicit instructions cautioning the model not to269

assume drug use without evidence and to treat270

each factor independently. With Llama-70B, these271

warnings lower alcohol-positive mismatches from272

66.21% to approximately 40.69%, and also benefit273

smoking-positive scenarios. While not as strong274

as CoT, these warnings yield meaningful improve-275

ments across different architectures.276

Increased Number of Examples Providing277

more than three examples—up to eight—further278

stabilizes predictions. For Llama-70B, increas-279

ing the number of examples reduces false posi-280

tive rates considerably, with alcohol-positive mis-281

matches falling to 45.52% (compared to 66.21%282

zero-shot). Similar trends are observed in other283

models, though the magnitude of improvement284

varies (see appendix H). While not as dramatic as285

CoT, additional examples help guide models away286

from faulty heuristics.287

5 Discussion288

Our findings highlight a key challenge in apply-289

ing large language models to clinical information290

extraction: even when models achieve strong per- 291

formance on average, they rely on superficial cues 292

rather than genuine understanding of the underly- 293

ing concepts. The presence of alcohol- or smoking- 294

related mentions biases models to infer drug use in- 295

correctly, and these shortcuts persist across Llama 296

variants, Qwen, and Llama3-Med42-70B. The ef- 297

fectiveness of mitigation strategies like chain-of- 298

thought reasoning, warning-based instructions, and 299

additional examples underscores the importance of 300

careful prompt design. While these interventions 301

help guide models to focus on explicit evidence, 302

their partial success suggests the need for more 303

robust approaches - integrating domain-specific 304

knowledge, implementing adversarial training, or 305

curating more balanced datasets. Our demographic 306

analysis reveals that these spurious correlations 307

are not uniformly distributed across patient groups, 308

raising fairness concerns for clinical deployment. 309

Addressing such disparities requires both algorith- 310

mic improvements and careful consideration of de- 311

ployment strategies. Clinicians and stakeholders 312

must be aware of these limitations before deploying 313

LLMs in clinical decision-support systems. Under- 314

standing these systematic biases in automated anal- 315

ysis can inform improvements not only in model 316

development but also in clinical documentation 317

practices and standards (see appendix F). 318

6 Conclusion 319

This work presents the first systematic exploration 320

of spurious correlations in SDOH extraction, re- 321

vealing how contextual cues can lead to incorrect 322

and potentially harmful predictions in clinical set- 323

tings. Beyond demonstrating the problem, we’ve 324

evaluated several mitigation approaches that, while 325

promising, indicate the need for more sophisticated 326

solutions. Future work should focus on developing 327

robust debiasing techniques, leveraging domain ex- 328

pertise, and establishing comprehensive evaluation 329

frameworks to ensure reliable deployment across 330

diverse populations. 331
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7 Limitations332

Dataset limitations Our analysis relied exclu-333

sively on the MIMIC portion of the SHAC dataset,334

which constrains the generalizability of our find-335

ings. While we observe consistent gender-based336

performance disparities, a more diverse dataset337

could help establish the breadth of these biases.338

Model coverage We focused solely on open-339

source large language models (e.g., Llama, Qwen).340

Extending the evaluation to additional data sources,341

closed-source models, and other domain-specific342

architectures would help verify the robustness of343

our conclusions.344

Causal understanding While we established the345

causality of triggers through removal experiments,346

understanding why specific triggers affect certain347

models or scenarios would require deeper analysis348

using model interpretability techniques.349

Methodology scope Our study focused exclu-350

sively on generative methods; results may not gen-351

eralize to traditional pipeline-based approaches that352

combine sequence labeling and relation classifica-353

tion.354

Mitigation effectiveness While we identified var-355

ious spurious correlations, our mitigation strategies356

could not completely address the problem, leaving357

room for future work on addressing these issues.358

8 Ethics Statement359

All experiments used de-identified social history360

data from the SHAC corpus, with LLMs deployed361
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data use agreements and institutional IRB proto-363
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biases within the models could raise ethical con-365

cerns in real-world applications. Further validation366

and safeguards are recommended before clinical367

deployment.368
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A Related Work 610

Previous work on extracting SDOH from clinical 611

text spans a progression from rule-based methods 612

to fine-tuned neural models, leveraging annotated 613

corpora for tasks like substance use and employ- 614

ment status extraction (Hatef et al., 2019; Patra 615

et al., 2021; Yu et al., 2022; Han et al., 2022; 616

Uzuner et al., 2008; Stemerman et al., 2021; Ly- 617

barger et al., 2023). More recent efforts have ex- 618

plored prompt-based approaches with LLMs, in- 619

cluding GPT-4, to reduce reliance on extensive an- 620

notations (Ramachandran et al., 2023). While these 621

approaches achieve competitive performance, stud- 622

ies across NLP tasks have shown that both fine- 623

tuned and prompting-based methods often exploit 624

spurious correlations or superficial cues (Ribeiro 625

et al., 2020; Geirhos et al., 2020; Tu et al., 2020). 626

Prior investigations have focused largely on spuri- 627

ous correlations in standard NLP tasks and super- 628

vised scenarios (McCoy et al., 2019; Zhao et al., 629

2018). In contrast, our work examines how these 630

issues manifest in zero-shot and in-context SDOH 631

extraction settings, and we propose prompt-level 632

strategies to mitigate these correlations. 633

B Prompting Strategies 634

All prompting approaches share a base system mes- 635

sage identifying the model’s role as "an AI assistant 636

specialized in extracting and analyzing social his- 637

tory information from medical notes." Each strat- 638

egy then builds upon this foundation with specific 639

modifications: 640

Zero-Shot 641

The baseline approach uses a minimal prompt struc- 642

ture: System: AI assistant specialized in social 643

history extraction User: For the following social 644
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history note: [Clinical note text] [Task instruction]645

[Options if applicable] This setup evaluates the646

model’s ability to perform extraction tasks using647

only its pre-trained knowledge, without additional648

guidance or examples.649

In-Context Learning (ICL)650

This approach augments the base prompt with three651

carefully selected demonstration examples. Each652

example follows a structured JSON format: json653

"id": "example-id", "instruction": "Extract all Drug654

text spans...", "input": "Social History: Patient655

denies drug use...", "options": "[Multiple choice656

options if applicable]", "output": "Expected extrac-657

tion or classification"658

Chain-of-Thought (CoT)659

Building upon ICL, this method explicitly guides660

the model through a structured reasoning process:661

Please approach this task step-by-step: 1. Carefully662

read the social history note 2. Identify all relevant663

information related to the question 3. Consider the664

examples provided 4. Explain your reasoning pro-665

cess 5. Provide your final answer This approach666

aims to reduce spurious correlations and shortcut667

learning by encouraging explicit articulation of the668

reasoning process before arriving at the final ex-669

traction or classification.670

Warning-Based671

This specialized approach incorporates explicit672

rules and warnings in the system message: Im-673

portant Guidelines: 1. Evaluate each factor in-674

dependently - never assume one behavior implies675

another 2. Extract only explicitly stated informa-676

tion - don’t make assumptions based on demo-677

graphics or other factors 3. If information isn’t678

mentioned, use [none] or select "not mentioned"679

option These guidelines specifically address the680

challenge of false positives in substance use detec-681

tion by discouraging inference-based conclusions682

without explicit textual evidence. The warnings683

are designed to counteract the model’s tendency684

to make assumptions based on superficial cues or685

demographic factors.686

C Dataset Details687

C.1 Data Format and Annotation Process688

The SHAC dataset originally consists of paired text689

files (.txt) containing social history notes and an-690

notation files (.ann) capturing SDOH information.691

We convert these into a question-answering for- 692

mat to evaluate LLMs. Below we demonstrate this 693

process with a synthetic example: 694

Raw Note (.txt) 695

SOCIAL HISTORY: 696

Patient occasionally uses alcohol. 697

Denies any illicit drug use. 698

BRAT Annotations (.ann) 699

T1 Alcohol 24 31 alcohol 700

T2 Drug 47 50 drug 701

T3 StatusTime 8 19 occasionally 702

T4 StatusTime 32 37 denies 703

704

E1 Alcohol:T1 Status:T3 705

E2 Drug:T2 Status:T4 706

707

A1 StatusTimeVal T3 current 708

A2 StatusTimeVal T4 none 709

Here, T1 and T2 are triggers - spans of text that 710

indicate the presence of SDOH events (e.g., "alco- 711

hol" for substance use). The annotations also cap- 712

ture arguments - additional information about these 713

events, such as their temporal status represented 714

by T3 and T4. For example, T3 ("occasionally") 715

indicates a temporal status of current for alcohol 716

use. 717

We transform these structured annotations into 718

two types of questions: 719

Trigger Identification Questions about identi- 720

fying relevant event spans: 721

{"id": "0001-Alcohol", 722

"instruction": "Extract all Alcohol 723

text spans as it is from the note. 724

If multiple spans present, separate 725

them by [SEP]. If none, output 726

[none].", 727

"input": "SOCIAL HISTORY: Patient 728

occasionally uses alcohol. Denies 729

any illicit drug use.", 730

"output": "alcohol"} 731

Argument-Resolution Questions about deter- 732

mining event properties: 733

{"id": "0001-Alcohol_StatusTime", 734

"instruction": "Choose the best 735

StatusTime value for the <alcohol> 736

(Alcohol) from the note:", 737

"input": "SOCIAL HISTORY: Patient 738

occasionally uses alcohol. Denies 739
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any illicit drug use.",740

"options": "Options: (a) none.741

(b) current. (c) past.742

(d) Not Applicable.",743

"output": "(b) current."}744

D Metric Selection and Justification745

Our focus on False Positive Rate (FPR) is moti-746

vated by the unique risks associated with incor-747

rect substance use predictions in clinical settings748

(Van Boekel et al., 2013; Dahl et al., 2022). While749

traditional metrics like accuracy or F1-score treat750

all errors equally, FPR specifically captures the751

rate of unwarranted "positive" classifications—a752

critical concern when dealing with sensitive patient753

information. High FPR values indicate that models754

frequently make unjustified drug use predictions,755

which could lead to:756

• Patient stigmatization and potential discrimi-757

nation758

• Reduced quality of care due to biased provider759

perceptions760

• Diminished trust in automated clinical deci-761

sion support systems762

Conversely, lower FPR values suggest better model763

reliability in avoiding these harmful misclassifi-764

cations. While comprehensive evaluation would765

benefit from additional metrics, FPR serves as a766

particularly relevant indicator for assessing model767

safety and reliability in clinical applications.768

E Model Fine-tuning and Computational769

Resources770

We fine-tuned Llama-8B using LoRA with rank771

64 and dropout 0.1. Key training parameters in-772

clude a learning rate of 2e-4, batch size of 4, and773

5 training epochs. Training was conducted on 2774

NVIDIA A100 GPUs for approximately 3 hours775

using mixed precision (FP16). For our main ex-776

periments, we used several large language models:777

Llama-70B (70B parameters), Qwen-72B (72B pa-778

rameters), Llama3-Med42-70B (70B parameters),779

and our fine-tuned Llama-8B (8B parameters). The780

inference experiments across all models required781

approximately 100 GPU hours on 2 NVIDIA A100782

GPUs. This computational budget covered all ex-783

perimental settings including zero-shot, in-context784

learning, and the evaluation of various mitigation785

strategies.786

F Implications Beyond NLP: Clinical 787

Documentation and Practice 788

The implications of this study extend beyond NLP 789

methodologies. Our analysis reveals that these 790

models not only learn but potentially amplify ex- 791

isting biases in clinical practice. The identified 792

error patterns—particularly the tendency to infer 793

substance use from smoking/alcohol mentions and 794

gender-based performance disparities—mirror doc- 795

umented provider biases in clinical settings (Sa- 796

loner et al., 2023; Meyers et al., 2021). Notably, 797

these biases appear to originate partly from medi- 798

cal documentation practices themselves (Ivy et al., 799

2024; Kim et al., 2021; Markowitz, 2022). Our find- 800

ing that explicit evidence-based reasoning (through 801

CoT) reduces these biases aligns with established 802

strategies for mitigating provider bias (Mateo and 803

Williams). This parallel between computational 804

and human biases suggests that systematic analysis 805

of LLM behavior could inform broader efforts to 806

identify and address biases in medical documen- 807

tation and practice, potentially contributing to im- 808

proved provider education and documentation stan- 809

dards. 810
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G Trigger Removal Experiments811

Table 3: Impact of Trigger Removal on Llama 3.1 Mod-
els False Positive Rates (%)

Llama 3.1 70b Zero-shot Llama 3.1 8b SFT

Cases Full Without Alcohol Without Smoking Full Without Alcohol Without Smoking

Alcohol-positive 66.21 55.17 64.14 32.41 26.90 33.10
Smoking-positive 61.11 54.94 56.79 36.42 32.10 31.48
Alcohol-negative 28.83 25.23 23.87 12.16 12.16 8.11
Smoking-negative 29.76 22.93 26.34 7.32 6.83 7.32
Smoking+Alcohol 73.26 65.12 72.09 40.70 32.56 41.86

Table 4: Impact of Trigger Removal on Additional Mod-
els’ False Positive Rates (%)

Llama 3.1 70B ICL Llama3-Med42-70B Qwen-72B

Cases Full Without Without Full Without Without Full Without Without
Alcohol Smoking Alcohol Smoking Alcohol Smoking

Alcohol-positive 48.28 38.62 47.59 66.90 53.10 64.83 62.76 51.72 54.48
Smoking-positive 36.42 32.72 32.09 57.41 51.85 52.47 53.09 45.68 51.23
Alcohol-negative 11.71 16.22 10.81 16.22 16.22 13.96 46.85 45.05 47.75
Smoking-negative 18.05 14.15 15.12 19.51 14.15 19.51 53.17 49.27 49.76
Smoking+Alcohol 51.16 44.19 46.51 76.74 66.28 73.26 56.98 43.02 50.00

H Mitigation Experiments812

Table 5: Impact of Mitigation Strategies on Additional
Models’ False Positive Rates (%)

Llama3-Med42-70B Qwen-72B

Cases ICL CoT Warning Increased ICL CoT Warning Increased
Examples Examples

Alcohol-positive 66.90 48.28 62.76 63.45 62.76 28.97 34.38 36.55
Smoking-positive 57.41 35.19 53.09 50.62 53.09 23.46 32.09 33.33
Alcohol-negative 16.22 6.76 16.67 15.76 46.85 19.82 22.07 26.12
Smoking-negative 19.51 13.66 18.54 18.05 53.17 17.07 25.85 29.27
Smoking+Alcohol 76.74 53.49 72.09 68.60 56.98 32.56 37.21 41.86
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