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ABSTRACT

Due to the real-world noise and human-added perturbations, attaining the trust-
worthiness of deep neural networks (DNNs) is a challenging task. Therefore,
it becomes essential to offer explanations for the decisions made by these non-
linear and complex parameterized models. Attribution methods are promising
for this goal, yet its performance can be further improved. In this paper, for
the first time, we present that the decision boundary exploration approaches of
attribution are consistent with the process for transferable adversarial attacks.
Specifically, the transferable adversarial attacks craft general adversarial sam-
ples from the source model, which is consistent with the generation of adver-
sarial samples that can cross multiple decision boundaries in attribution. Uti-
lizing this consistency, we introduce a novel attribution method via model pa-
rameter exploration. Furthermore, inspired by the capability of frequency ex-
ploration to investigate the model parameters, we provide enhanced explainabil-
ity for DNNs by manipulating the input features based on frequency information
to explore the decision boundaries of different models. Large-scale experiments
demonstrate that our Attribution method for Explanation with model parameter
eXploration (AttEXplore) outperforms other state-of-the-art interpretability meth-
ods. Moreover, by employing other transferable attack techniques, AttEXplore
can explore potential variations in attribution outcomes. Our code is available at:
https://github.com/LMBTough/ATTEXPLORE.

1 INTRODUCTION

Nowadays, DNNs have achieved state-of-the-art performance in various application scenarios such
as medical diagnostics (Ribeiro et al., 2020), autonomous driving (Chen et al., 2021), and senti-
ment analysis (Tan et al., 2022). Given the usage in safety critical areas, the trustworthiness of such
models plays a key role which may be affected by real-world noise and the human-added pertur-
bations (Toreini et al., 2020; Jin et al., 2024; Zhu et al., 2024). Considering the intrinsic nonlinear
and complex parameters nature, a trustworthy DNN model necessitates both high performance and
interpretable decision making process (Adadi & Berrada, 2018; Maze et al., 2018; Small et al., 2023;
Zhu et al., 2023a;b). Understanding the data propagation from model input to output is essential for
Explainable Artificial Intelligence (XAI) (Sokol et al., 2023).

There are two different interpretation methods (Pan et al., 2021). Local approximation methods
provide an explanation by approximating the local neighborhood behaviors of the target model at
a particular point in the input space (Ribeiro et al., 2016; Shrikumar et al., 2017). Alternatively,
gradient-based methods explain the target model via the gradients associated with the model inputs
and provide the importance of the input features (Pan et al., 2021; Sundararajan et al., 2017). In this
work, we focus on gradient-based methods, specifically attribution methods, which is to obtain pixel-
level explanations determining the importance of each input feature for model decisions. Assuming
that a small change to input features may alter the output, these features are considered an important
factor aiding the sample in crossing the model’s decision boundary, i.e., important features. Some
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Figure 1: Decision boundary editing. Points 1⃝ to 2⃝ represent the traditional adversarial attack
which may lead to overfitting. The region within the green dashed circle denotes the local instability
of the decision boundary (where samples are relatively concentrated and cannot be reliably distin-
guished by the decision boundary). In order to obtain samples that cross the decision boundary more
stably, points 1⃝ to 5⃝ adjust the decision boundary to surmount the Shifted Boundary. Points 3⃝&
4⃝ to 5⃝ simulate the effect of crossing the Shifted Boundary by generating modified samples.

recent methods are Integrated Gradients (IG) (Sundararajan et al., 2017), Boundary-based Integrated
Gradient (BIG) (Wang et al., 2021b), Adversarial Gradient Integration (AGI) (Pan et al., 2021).

However, we need to consider the impact of inaccurate decision boundaries during model training
since the training data is generally far from the decision boundaries. For the samples close to the de-
cision boundary, they are likely to be OOD samples and are more sensitive. Avoiding such sensitive
phenomena is crucial during the process of obtaining interpretive results. Besides, current gradient-
based attribution methods may require either a baseline for integration (IG), or a specific linear
integration path to quantify feature contributions (BIG). Even for AGI, the implemented adversarial
attack is targeted, which may result in crossing multiple decision boundaries before reaching the
target decision boundary, thus thwarting the interpretation particularly when there are similarities
or overlaps between the decision boundaries of the target category and other categories. Therefore,
we propose the first research question: (i) How to construct a more general decision boundary
exploration approach to ensure that features can explore the current decision boundary?

As shown in Fig. 1, by modifying a portion of the features (yellow dots) so that they may cross
the decision boundary, the most important features are found with minimal changes. We find that
transferable attacks, which aim to obtain more transferable samples to perform black-box attacks,
essentially consist of exploring model parameters to generate generic adversarial examples that can
cross multiple decision boundaries. The decision boundaries obtained by transferable attacks are
likely to be less overfitting, in other words, more accurate. This fits our idea of feature alterations
to explore the current decision boundary in Fig. 1. Therefore, we propose to combine the decision
boundary exploration method of transferable attacks with the attribution process, namely a novel
model parameter exploration (MPE) based method, to obtain the needed feature changes.

To verify the integration of important features by the attribution algorithm, one way is to check
whether the model makes correct decisions when only essential features are retained. However, this
poses a challenge wherein a significant number of model parameters that should originally be acti-
vated remain inactive. It is worth noting that the inactive model parameters are primarily responsible
for unimportant features, i.e., the decision boundary is shifted, but not too far. This necessitates that
the attribution algorithm should exhibit strong stability and adaptability to different decision bound-
aries. Therefore, we propose the second research question: (ii) How to construct a more robust
approach for minimal feature alterations via MPE to ensure the attribution performance?

Motivated by recent research demonstrating DNNs exhibit different sensitivities to different fre-
quency domains for the human-added perturbations (Yin et al., 2019; Wang et al., 2020b; Guo et al.,
2018), performing spectral transformations on inputs for frequency exploration provides new in-
sights into model decision boundary exploration (Long et al., 2022). We find that the frequency
information can significantly enhance the exploration of model parameters impacts on the decision
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boundary. Moreover, exploring more model parameters leads to more precise attribution results.
Therefore, we use frequency-based transferable attacks to generate minimally altered adversarial
examples, and the results in the experimental section demonstrate the effectiveness of our approach.
Notably, we are the first to introduce MPE to explore the decision boundaries of different models
in a generalizable manner. Since different transferable attack methods explore the decision bound-
aries to varying degrees, our approach can be combined with other state-of-the-art transferable attack
methods to discover potential variations in attribution performance. (See Appendix A for attribution
results combining different state-of-the-art transferable attacks)

The main contributions of this paper are: (1) We uncover, for the first time, the decision boundary
exploration approaches of attribution and transferable attacks are consistent. (2) We propose a novel
attribution algorithm by performing Attribution for Explanation with Model Parameter Exploration
based on transferable attacks, named AttEXplore. (3) We conduct extensive experiments to verify
the effectiveness of our AttEXplore. (4) We release the code of AttEXplore publicly.

2 RELATED WORK

2.1 METHODS FOR INTERPRETING DNNS

Local approximation methods Local approximation methods typically ascertain an approximately
interpretable surrogate model, thereby allowing the computation of gradient information and the
derivation of attribution outcomes. For example, LIME (Ribeiro et al., 2016) amalgamates approx-
imation techniques with weighted sampling methods to construct a local model for interpretable
predictions. We note that LIME’s interpretable behavior requires cluster segmentation of images,
so it is not point-to-point. Shapley Additive Explanations (SHAP) (Lundberg & Lee, 2017) com-
putes the contribution of each feature to the prediction outcome using Shapley values then ranks
their importance. However, when applied to high-dimensional samples, SHAP typically incurs high
computational complexity. DeepLIFT (Shrikumar et al., 2017) quantifies the significance of each
input feature by elucidating the predictive influence on the deep learning model. However, its inter-
pretation of nonlinear models is not necessarily accurate. In this paper, we prioritize gradient-based
methods, as they are better suited for providing promising explanations on complex models.

Gradient-based methods Gradient information can be leveraged to visually represent the contri-
bution values of image pixels, such as Grad-CAM (Selvaraju et al., 2017) and Score-CAM (Wang
et al., 2020a). Saliency Map (SM) method (Simonyan et al., 2013) can produce interpretable results
in non-CNN environments where CAM-based methods are not applicable, however, it is susceptible
to gradient saturation, potentially yielding attribution results of zero.

To provide fine-grained pixel-level explanations, IG method (Sundararajan et al., 2017) rectifies
the gradient deficiency observed in SM and introduces two axioms: Sensitivity and Implementation
Invariance. By strategically selecting reference points as anchors along a linear integration path, IG
integrates the continuous gradients to derive the attribution results. Following, BIG (Wang et al.,
2021b) introduces a boundary search mechanism, resulting in more precise attribution outcomes.
It resolves the concern of baseline selection process in IG. However, the integration path remains
linear in BIG. AGI (Pan et al., 2021) further improves the performance by identifying the steepest
non-linear ascending trajectory from the adversarial example x′

i to x. Therefore, the attribution
performance and stability hinge upon the quality of the adversarial samples.

Considering the integration path noise in IG, Guided Integrated Gradients (GIG) (Kapishnikov et al.,
2021) obviates extraneous noisy pixel attributions by imposing constraints on the input and back-
propagating gradients of the neurons, thus retaining only the pixel attributes pertinent to the pre-
dicted category. Nonetheless, it is limited to images, where the quality of input features signifi-
cantly impacts the results, and the computational complexity is high. Other methods, such as Fast-
IG (Hesse et al., 2021) and Expected Gradient (EG) (Erion et al., 2021), have similar concerns.

2.2 TRANSFERABLE ADVERSARIAL ATTACKS

The objective of transferable adversarial attacks is to craft general adversarial samples from the
source model, capable of crossing decision boundaries across different models. Many algorithms
have been proven to generate highly transferable adversarial samples. MI-FGSM (Dong et al., 2018)
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and PGD (Madry et al., 2017) utilize advanced gradient calculations to improve the transferability of
adversarial samples. Based on input transformation, SINI-FGSM (Lin et al., 2019), DI-FGSM (Xie
et al., 2019), and TI-FGSM (Dong et al., 2019) adopt the image transformation methods on the
input image to generate more transferable adversarial samples. As one of feature-level transferable
attacks, NAA (Zhang et al., 2022) estimates the importance of intermediate layer neurons through
neuron attribution, thereby solving the problem of inaccurate estimation of neuron importance by
FDA (Ganeshan et al., 2019), FIA (Wang et al., 2021a) and other feature-level methods (Huang
et al., 2019; Naseer et al., 2018).

By exploring potential model parameters with frequency information (Wang et al., 2020b; Guo et al.,
2018; Yin et al., 2019), spectral transformation is implemented in (Long et al., 2022) for the input,
effecting model augmentation to improve sample transferability. Thus, we consider harnessing the
power of the frequency information to further explore different decision boundaries.

3 PRELIMINARIES

3.1 AXIOMS OF SENSITIVITY AND IMPLEMENTATION INVARIANCE

The beauty of attribution methods is from the axioms (Sundararajan et al., 2017). Since our method
maintains a one-to-one correspondence between model inputs and outputs during attribution, it also
satisfies these two axioms. Detailed proofs are provided in the Appendix B.

Sensitivity An attribution method adheres to the axiom of Sensitivity when, for any given input
and baseline instances differing solely in one feature yet yielding distinct predictions, said divergent
feature is allocated a non-zero attribution.

Implementation Invariance An attribution method conforming to the axiom of Implementation
Invariance should guarantee that two neural network attributions, when applied to identical input
and output values, exhibit consistency.

3.2 DEFINITION OF DECISION BOUNDARIES

The decision boundary refers to a hyperplane, curve, or boundary that separates data points of dif-
ferent classes or sets in the input data space (Shalev-Shwartz & Ben-David, 2014). The position,
shape, and characteristics of the decision boundary depend on the model’s structure and its parame-
ters. Constructing a robust method for exploring and visualizing the decision boundaries of different
DNN models is pivotal for understanding the decision-making process.

3.3 IG AND AGI METHODS

Formally, in order to explicate the DNN model denoted as f(·), we define the input feature x ∈ Rn,
where n is the dimension of the input feature, and the model output is represented as Y = f(x).
The primary objective of attribution lies in the determination of A ∈ Rn, which is to elucidate the
corresponding significance of each feature within x. According to Saliency Map (Simonyan et al.,
2013), if a DNN model f exhibits continuous differentiability, the input feature importance measure
A can be derived from the gradient information ∂f

∂x . It is imperative to underscore that this process
engenders a one-to-one correspondence. For example, denote the input feature importance of IG by
IGj(x), then the formula of IG is expressed in Eq.1.

Aj = IGj(x) = (xj − x′
j)×

∫ 1

α=0

∂f(x′ + α× (x− x′))

∂xj
dα (1)

where j = 1, ..., n denotes the j-th input feature, ∂f(x′+α×(x−x′))
∂xj

is the gradient of model f w.r.t
input feature xj . Here x′

j represents the reference input feature. If we denote the input feature
importance of AGI by AGIj(x), then the formula is described in Eq.2.

Aj = AGIj(x) = AGIj−1(x)−▽xjf
i(x) · ϵ · sign(

▽xjf
i(x)

|▽xf i(x)| ) (2)

▽xj
f i(x) means the gradient corresponding to false class label i. Step size is represented by ϵ.

Eq.2 integrates along the path until argmaxlf
l(x) = i. We can see that, the decision boundary
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exploration approach of IG is linear. For AGI, despite the non-linear decision boundary exploration
approach without selecting specific reference points, it still needs to continuously cross the deci-
sion boundaries of other categories until the decision boundary category becomes i, which could
potentially lead to overfitting issues and raise the concern of computation efficiency.

4 METHOD

4.1 EXPLORE DECISION BOUNDARIES VIA MODEL PARAMETER EXPLORATION (MPE)

Feasibility of MPE We discuss the relationship between model parameter exploration and attri-
bution in this section. Since directly exploring the decision boundaries is difficult, we alternatively
consider the model parameters to obtain the changes in model decision corresponding to the changes
of a small number of parameters. This can significantly facilitate the attribution process. Assuming
a model y = L(x;w), where y is the model output for input x with the parameter w. Here we sim-
plify the model to y = wTx. If we consider a two-dimension scenario when w = [1, 2], x = [3, 4],
y = 11. We have two methods to explore cases where the first parameter in wT is not activated. One
method is to leave wT unchanged and the x0 = 0, i.e., x = [0, 4], at which point y = 8. Another
method is to leave x unchanged and wT

0 = 0, i.e., wT = [0, 2], at which point y = 8. We can
see these two methods are equivalent, which means exploring x is to some extent consistent with
exploring wT , i.e., L(x;w) can be viewed as L(w;x). Thus, model parameter exploration can be
performed by modifying the input feature x or adjusting the activation levels of parameters in w.

MPE via transferable adversarial attacks With the discussion of MPE, we understand that it is
still infeasible to make extensive adjustments to the model’s parameters, in particular, attribution al-
gorithms aims to provide a rigorous explanation of the model’s behaviour under current parameters.
Moreover, due to the nature of attribution, in a scenario where a complete dataset is unavailable (Liu
et al., 2014; Wang et al., 2020c; Retsinas et al., 2020), we cannot systematically adjust the parame-
ters to explore the decision boundary in a controlled manner. Therefore, we resort to adjusting input
features to explore the model’s decision boundary, aiming to obtain more precise attribution results.

We firstly confirm that modifying samples to explore different decision boundaries aligns with the
methods of transferable adversarial attacks. As illustrated in Fig. 2, the goal of transferable attacks is
to generate samples with strong transferability on a local surrogate model to launch an attack on the
target black-box model. Since different black-box models have different decision boundaries, de-
veloping a robust adversarial sample generation method to cross the decision boundaries is the core
idea. Currently, input transformation-based transferable attacks represent the state-of-the-art (Lin
et al., 2019; Xie et al., 2019; Dong et al., 2019), in which input samples are modified to generate
general adversarial samples. This aligns with our idea of modifying features for model parameter
exploration. Therefore, we propose to incorporate the transferable attack method in the attribution
algorithm to enhance decision boundary exploration, as a solution to the first research question.

4.2 ATTRIBUTION FOR EXPLANATION WITH MODEL PARAMETER EXPLORATION
(ATTEXPLORE)

Novel nonlinear integration path In AGI (Pan et al., 2021), the nonlinear integration path has been
proven to be beneficial for attribution results. Specifically, nonlinear integration paths allow for
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more accurate assignment of weights to features as well as capturing the nonlinear behaviour of the
model in a more comprehensive way. In order to utilize model parameter exploration for attribution,
we design a novel nonlinear integration path as in Fig. 3. We use Eq. 3 to mathematically explain
our integration path, with detailed proofs in the Appendix B.

A =

∫
△xt ⊙ g(xt)dt (3)

where △xt represents the difference in the sample as it varies along the boundary in the decision
direction. g(xt) denotes the gradient information that needs to be accumulated during the integra-
tion process. y represents the original label. ⊙ denotes hadamard product. There are two options
for g(xt) in the integration process. One is the actual updated gradient obtained after MPE, cor-
responding to the black arrow in Fig. 3. The other is the gradient obtained by recomputing the
current sample xf , which corresponds to the blue arrow in Fig. 3. In BIG and AGI, it is expressed
as ∂L(xfi

,y)

∂xfi
. Taking AGI as an example, since it is a targeted attack, the model may cross multiple

decision boundaries of other categories before reaching the decision boundary of a specific category.
This results in slight biases in AGI’s nonlinear integration path before the integration is completed,
leading to unnecessary attacks and attributions (i.e., the angle of bias in Fig. 3). Therefore, in order
to integrate the attribution results more smooth and robust in our nonlinear integration path, we use
MPE from Eq. 3 to explore the decision boundary and update the gradient information of the model.

Frequency-based input feature alterations method Frequency domain information can effectively
explore model parameters and generate highly transferable adversarial samples (Wang et al., 2020b;
Guo et al., 2018; Yin et al., 2019), which can assist the attribution process. Inspired by SSA (Long
et al., 2022), we propose a frequency-based input feature alterations method to generate input fea-
tures that can effectively cross different decision boundaries, as detailed in Eq. 4- 6.

xt
fi = IDCT (DCT (xt +N(0, 1) · ϵ

255
) ∗N(1, σ)) (4)

△xt = η · sign( 1
N

N∑
i=1

∂L(xt
fi
, y)

∂xt
fi

) (5)

g(xt) =
1

N

N∑
i=1

∂L(xt
fi
, y)

∂xt
fi

(6)

From Eq. 4, to explore different frequency domains of the input feature x, we first use Discrete
Cosine Transform (DCT) (Ahmed et al., 1974) to map the features into the frequency space. Then,
we generate N approximate features xt

fi
of xt by adding noise to the original features and applying

random transformations in the frequency space. Here ϵ is the perturbation rate, and i represents the
number of frequency domain explorations. The inverse discrete cosine transformation (IDCT) serves
as the reverse operation of DCT, allowing the image to be transformed back to the spatial domain. It
is important to note that both DCT and IDCT operations are lossless, and they facilitate the ease of
gradient calculations (Ahmed et al., 1974). From Eq.5, we randomly select N approximate features
and average the results to represent the difference in samples. L represents the target model, sign(·)
determines the direction of integration, and η is the learning rate. Eq. 6 is the specific mathematical
formula for gradient information calculation. We address the second research question by utilizing
our novel nonlinear integration path and frequency-based input feature alterations method.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset and Models In this study, we employ ImageNet dataset (Deng et al., 2009). We conduct
experiments on a selection of 1000 samples from ImageNet, guided by the principles outlined in
NAA (Zhang et al., 2022), SSA (Long et al., 2022), and AGI (Pan et al., 2021). Furthermore,
we employ three commonly utilized CNN models in the field of image classification: Inception-
v3 (Szegedy et al., 2016), ResNet-50 (He et al., 2016), and VGG16 (Simonyan & Zisserman, 2014).
Notably, we also employ the ViT-B/16 (Dosovitskiy et al., 2020) model to investigate the inter-
pretability of our method on transformer-based visual models.
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Figure 4: Visualization Results of our AttEXplore and Other Competitive Methods

Baselines We primarily compare with the state-of-the-art attribution algorithm, AGI (Pan et al.,
2021). We also include eight other classical interpretability algorithms for comparative analysis,
namely BIG (Wang et al., 2021b), DeepLIFT (Shrikumar et al., 2017), GIG (Kapishnikov et al.,
2021), EG (Erion et al., 2021), Fast-IG (Hesse et al., 2021), IG (Sundararajan et al., 2017), SM (Si-
monyan et al., 2013), SG (Smilkov et al., 2017), and Grad-CAM (Selvaraju et al., 2017).

Evaluated Metrics We adhere to the evaluation metrics, specifically the Insertion&Deletion Scores,
commonly employed by interpretability algorithms (Pan et al., 2021). Insertion Score quantifies the
degree of change in model output when pixels are inserted into the input. A higher score signifies su-
perior algorithmic interpretability. Conversely, Deletion Score measures the extent of model output
change when pixels are removed from the input. A lower score indicates enhanced interpretability
of the algorithm. It is noted that, for attribution algorithms, the importance of the Insertion Score
outweighs that of the Deletion Score. This is due to the adversarial nature of neural networks, where
Deletion Score may offer unreliable indications (Petsiuk et al., 2018). Hence, the Insertion Score
serves as a more representative performance metric for attribution algorithms, while the Deletion
Score can serve as an auxiliary metric to analyze attribution algorithms from multiple dimensions.
Additionally, we employ the INFD score (Yeh et al., 2019) to demonstrate the faithfulness of our
method to the underlying model. The lower the INFD score, the higher the faithfulness.

Parameters All experiments are conducted using an AMD Ryzen Threadripper PRO 5955WX 16-
Core CPU, NVIDIA RTX6000 Ada GPU, and Ubuntu 22.04. Additionally, we apply the following
general parameters setting: momentum set to 1.0, mask control parameter ρ set to 0.5, number of ap-
proximate features N set to 20, standard deviation of Gaussian noise (σ) set to 16, perturbation rate
(ϵ) set to 48/255, and total attack iterations (num steps) set to 10. We notice a significant boosting
is achieved without fine-tuning. Further parameter tuning may lead to much better performance.

5.2 EXPERIMENTAL RESULTS

Fig. 4 displays the visual results of our AttEXplore and other methods on Inception-v3 (See Ap-
pendix G for more visualization results). It is clear that the output heatmaps of AttEXplore are
denser and clearer compared to methods like AGI, BIG, etc. This implies that the attribution results
with high attribute values are more concentrated on the target object. Based on the results presented
in Tab. 1, it is evident that our proposed method exhibits significant performance improvement over
other classical interpretability algorithms. Particularly for the Insertion Score, it has surpassed both
similar classical interpretability algorithms and AGI. Meanwhile, the Deletion Score remains con-
sistently at a relatively low level, consistently outperforming AGI in comparative assessments. To
provide specific instances, on the Inception-v3 model, relative to AGI, our method has an increase
of 4.89% in Insertion Score and a decrease of 1.42% in Deletion Score. When compared with other
algorithms on average, our method results in an improvement of 20.59% in the Insertion Score and
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a reduction of 1.86% in the Deletion Score. On the ResNet-50 model, relative to AGI, our method
shows an increase of 4.01% in the Insertion Score and a decrease of 1.72% in the Deletion Score.
When compared with other algorithms on average, our method improves by 24.06% in Insertion
Score and has a reduction of 2.42% in Deletion Score. Finally, on the VGG-16 model, relative to
AGI, our method led to an increase of 6.01% in the Insertion Score and a decrease of 0.93% in
the Deletion Score. When compared with other algorithms on average, our method results in an im-
provement of 19.05% in the Insertion Score and a reduction of 1.81% in the Deletion Score. Notably,
different from traditional CNN models, Vision Transformers (ViTs) process images as sequences of
patches, rendering them challenging to interpret. In the Appendix C, we conducted additional ex-
periments on ViT-B/16 (Dosovitskiy et al., 2020), and the results further substantiate the superior
performance achieved by our method. Also in the Appendix D, the INFD score tests demonstrate
that our method exhibits the highest faithfulness.

Table 1: Insertion&Deletion score comparison of AttEXplore and other competitive baselines

Inception-v3 ResNet-50 VGG-16

Method Insertion
Score

Deletion
Score

Insertion
Score

Deletion
Score

Insertion
Score

Deletion
Score

Grad-CAM 0.4496 0.1084 0.2541 0.0942 0.3169 0.0841
BIG 0.3563 0.0379 0.2272 0.0415 0.1762 0.0303

SaliencyMap 0.3974 0.0422 0.256 0.048 0.2089 0.0323
DeepLift 0.216 0.0314 0.1246 0.0256 0.0827 0.0157

GIG 0.2584 0.0239 0.1308 0.0184 0.0859 0.0142
EG 0.2364 0.1656 0.256 0.2178 0.1959 0.1797

Fast-IG 0.146 0.0338 0.0889 0.0315 0.0623 0.0213
IG 0.2268 0.0284 0.1136 0.0247 0.0701 0.0173
SG 0.301 0.023 0.2357 0.0202 0.1423 0.015
AGI 0.4243 0.0439 0.3796 0.0465 0.2585 0.0319

AttEXplore (ours) 0.4732 0.0297 0.4197 0.0293 0.3186 0.0226

5.3 ANALYSIS OF TIME COMPLEXITY

We use FPS, the number of f rames processed by the algorithms per second (FPS), to evaluate the
algorithm processing speed (See Appendix E for the definition of FPS). All experiments are run
in the same environment discussed in Section 5.1. We select five methods that closely match the
performance of AttEXplore as our baselines. Other methods such as Saliency Map, DeepLIFT, Fast-
IG, EG, and Grad-CAM demonstrate relatively poorer attribution accuracy compared to AttEXplore.
Therefore, they are not considered for efficiency comparison. Table 2 demonstrates the superior
computational efficiency of AttEXplore while also attaining enhanced attribution performance.

Table 2: FPS results for AttEXplore and state-of-the-art methods

Method BIG AGI IG SG GIG AttEXplore

FPS 3.3798 0.8818 19.7461 19.4942 2.2814 47.2805

5.4 ABLATION STUDY

Here we discuss the impact of three parameters, namely the approximate features number (N ), the
total attack iterations (num steps), and the perturbation rate (ϵ), on the performance of AttEXplore.

Number of approximate features (N ) The total attack iterations are firstly fixed at 10, where the
perturbation rate is 16. We change N to values of 10, 20, 30, 40, 50, and 60, to assess the influence of
this parameter on the performance of AttEXplore. In Table 3, with an increase in N , the performance
of AttEXplore exhibits a gradual enhancement. Specifically, across three distinct models, namely
Inception-v3, ResNet-50, and VGG-16, both insertion and deletion scores consistently increase as
N increases. It indicates that increasing the number of approximate features can effectively enhance
the performance of AttEXplore. Appendix F.1 contains results with additional values of N .

Total attack iterations (num steps) We first keep ϵ at 16 and N at 20. We then configure num steps
to be 5, 10, 15, 20, 25, and 30, to evaluate the influence on AttEXplore. Table 4 shows that, across
three models of Inception-v3, ResNet-50, and VGG-16, there is a slight fluctuation in both insertion

8
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Table 3: Insertion&Deletion score of AttEXplore with different values of N

Inception-v3 ResNet-50 VGG-16

N Insertion
Score

Deletion
Score

Insertion
Score

Deletion
Score

Insertion
Score

Deletion
Score

10 0.4603 0.0301 0.4004 0.0291 0.3074 0.0228
20 0.4644 0.0313 0.4022 0.0309 0.3096 0.0237
30 0.4649 0.0325 0.4033 0.0319 0.3090 0.0243
40 0.4659 0.0325 0.4045 0.0330 0.3108 0.0244
50 0.4665 0.0327 0.4032 0.0329 0.3118 0.0247
60 0.4679 0.0335 0.4037 0.0340 0.3107 0.0249

and deletion scores with an increase in num steps. However, there is no evident trend indicating
a significant impact of an augmented num steps on the performance of AttEXplore. This suggests
that, considering a set of ϵ and N , variations in num steps exert a comparatively minor influence on
the performance of AttEXplore. Appendix F.2 contains results for different num steps.

Table 4: Insertion&Deletion score of AttEXplore with different values of num steps

Inception-v3 ResNet-50 VGG-16

num steps Insertion
Score

Deletion
Score

Insertion
Score

Deletion
Score

Insertion
Score

Deletion
Score

5 0.4615 0.0307 0.3986 0.0287 0.3080 0.0224
10 0.4644 0.0313 0.4022 0.0309 0.3096 0.0237
15 0.4651 0.0324 0.4031 0.0322 0.3077 0.0244
20 0.4672 0.0329 0.4024 0.0331 0.3086 0.0244
25 0.4673 0.0332 0.4032 0.0336 0.3081 0.0248
30 0.4663 0.0339 0.4026 0.0339 0.3089 0.0252

Perturbation rate (ϵ) We firstly fix N at 20 and the num steps at 10. We separately configured the
perturbation rate (ϵ) to be 8, 16, 24, 32, 40, and 48, to assess the influence on AttEXplore. Table 5
demonstrates that, across the three distinct models of Inception-v3, ResNet-50, and VGG-16, an
increase in the perturbation rate is accompanied by a noticeable rise in the Insertion Score, while the
Deletion Score exhibits a declining trend. This implies that in scenarios where the num steps and N
remain relatively stable, a higher ϵ may be positively correlated with the performance of AttEXplore.
The results with additional values of ϵ are included in Appendix F.3.

Table 5: Insertion&Deletion score of AttEXplore with different values of ϵ

Inception-v3 ResNet-50 VGG-16

ϵ
Insertion

Score
Deletion

Score
Insertion

Score
Deletion

Score
Insertion

Score
Deletion

Score

8 0.4637 0.0325 0.3962 0.0309 0.3065 0.0234
16 0.4644 0.0313 0.4022 0.0309 0.3096 0.0237
24 0.4659 0.0306 0.4071 0.0305 0.3121 0.0233
32 0.4675 0.0305 0.4109 0.0300 0.3142 0.0232
40 0.4714 0.0291 0.4157 0.0296 0.3161 0.0231
48 0.4732 0.0297 0.4197 0.0293 0.3186 0.0226

6 CONCLUSION

In conclusion, this paper introduces a novel method for Attribution for Explanation with model
parameter eXploration (AttEXplore), which significantly advances the XAI results by providing
enhanced interpretability for Deep Neural Networks (DNNs). Through the combination of model
parameter exploration and frequency-based input feature alterations, AttEXplore outperforms state-
of-the-art methods, demonstrating substantial improvements in both Insertion and Deletion Scores.
By uncovering the relationship between attribution and transferable attack methods, we anticipate
this work can contribute to a new standard for trustworthiness and explainability in deep neural
networks. To achieve this, we also release the replication package of AttEXplore to facilitate im-
provements in future works. We hope this work will provide some insights to enhance the attribution
method research community for a better XAI field.
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A ATTRIBUTION PERFORMANCE WHEN USING OTHER SOTA
TRANSFERABLE ATTACKS FOR MODEL PARAMETER EXPLORATION

Table 6: Attribution performance with difference attack methods

Inception-v3 ResNet-50 VGG-16

Method Insertion Score Deletion Score Insertion Score Deletion Score Insertion Score Deletion Score

AttEXplore-NoAttack 0.3959 0.0422 0.2584 0.0457 0.2121 0.0312
AttEXplore 0.4644 0.0313 0.4021 0.0308 0.3097 0.0237

AttEXplore-PGD 0.402 0.037 0.2901 0.0294 0.2258 0.0199
AttEXplore-DI-FGSM 0.4007 0.0416 0.2908 0.0427 0.2283 0.031
AttEXplore-TI-FGSM 0.3943 0.0344 0.3229 0.0348 0.2511 0.0268
AttEXplore-MI-FGSM 0.398 0.0414 0.2606 0.0447 0.2137 0.0304

AttEXplore-SINI-FGSM 0.4418 0.0314 0.3134 0.0292 0.2564 0.0227
AttEXplore-NAA 0.436 0.034 0.3058 0.0381 0.2559 0.0248

B DETAILED PROOFS OF TWO AXIOMS

Firstly, during the iterative process, the changes in the gradient along the integration path are cap-
tured by the original input information. Furthermore, it is not retroactive since feature values in
previous iterations are unchanged in subsequent iterations. Therefore, the attribution result must be
non-zero, which meets the definition of sensitivity. Here is the mathematical proof.

Poof of Eq.3 :

We use the first-order Taylor approximation to expand the loss function and combine the information
for the path from ∆x0 to ∆xT .

L
(
xt
)
= L

(
xt−1

)
+

∂L
(
xt−1

)
∂xt−1

(
xt − xt−1

)
+ ε

T∑
t=1

L
(
xt
)
=

T−1∑
t=0

L
(
xt
)
+

T−1∑
t=0

∂L (xt)

∂xt

(
xt+1 − xt

)
A = L

(
xT

)
−L

(
x0

)
=

T−1∑
t=0

∂L (xt)

∂xt

(
xt+1 − xt

)
=

T−1∑
t=0

g(xt)⊙△xt =

∫
△xt ⊙ g(xt)dt

(7)

Here ϵ is omitted due to the principle of higher-order Taylor expansions. And △xt = xt+1 − xt,
g(xt) = ∂L(xt)

∂xt .

Secondly, it is clear that the computational processes in AttEXplore follow the chain rule of gradi-
ents, which meets the definition of implementation invariance.

C ADDITIONAL EXPERIMENTS ON VIT-B/16

See Tab. 7.

D INFD SCORE TESTS

See Tab. 8.

E FPS DEFINITION

we use Frames Per Second (FPS) as an evaluation metric for our running efficiency. A higher FPS
indicates a greater number of images generated per second, signifying a higher operational efficiency

14



Published as a conference paper at ICLR 2024

Table 7: Attribution performance of AttEXplore and other competitive baselines on ViT-B/16

Model Method Insertion Score Deletion Score

ViT-B/16 Saliency Map 0.373 0.125
ViT-B/16 BIG 0.422 0.093
ViT-B/16 GIG 0.335 0.046
ViT-B/16 DeepLIFT 0.296 0.063
ViT-B/16 EG 0.361 0.329
ViT-B/16 Fast IG 0.216 0.071
ViT-B/16 SG 0.428 0.035
ViT-B/16 AGI 0.425 0.069
ViT-B/16 IG 0.346 0.051
ViT-B/16 AttEXplore (ours) 0.470 0.062

Table 8: INFD Score

Model AGI BIG DeepLIFT EG Fast IG GIG IG Saliency Map SG AttEXplore

Inception-v3 3.839 3.928 110.158 111.631 111.44 37.67 66.509 4.078 63.659 3.728
ResNet-50 1.003 0.708 18.828 143.593 135.651 39.659 85.834 0.696 42.504 0.671

VGG16 0.88 0.498 9.746 220.376 211.104 47.988 124.474 0.499 72.912 0.6

of the method.
FPS =

Number of samples

Running time of these samples
(8)

F ADDITIONAL ABLATION STUDIES

F.1 ABLATION STUDIES FOR THE NUMBER OF APPROXIMATE FEATURES

Table 9: Result for the number of approximate features (N < 10)

Inception-v3 ResNet-50 VGG-16

N Insertion
Score

Deletion
Score

Insertion
Score

Deletion
Score

Insertion
Score

Deletion
Score

1 0.4536 0.0282 0.3841 0.0262 0.2915 0.0190
2 0.4568 0.0284 0.3931 0.0275 0.2970 0.0196
3 0.4624 0.0298 0.3957 0.0274 0.3020 0.0210
4 0.4606 0.0292 0.3987 0.0286 0.3058 0.0214
5 0.4588 0.0300 0.3995 0.0282 0.3041 0.0223
6 0.4602 0.0288 0.3989 0.0289 0.3059 0.0221
7 0.4597 0.0301 0.3999 0.0288 0.3071 0.0224
8 0.4619 0.0301 0.4005 0.0289 0.3073 0.0229
9 0.4646 0.0299 0.3995 0.0291 0.3064 0.0225

We observe that when the perturbation rate is set to a larger value such as 48, the trend in model
performance across different N does not become more clear. This might be attributed to the fact
that a larger perturbation rate represents a larger search space. Although the number of approximate
samples increases, it doesn’t mean that all these samples are necessarily effective for the attribution
result.
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Table 10: Result for the number of approximate features N when the perturbation rate is 48

Model N 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60

Inception-v3 Insertion score 0.459 0.461 0.465 0.465 0.464 0.467 0.468 0.47 0.472 0.466 0.471 0.473 0.473 0.474 0.474

Deletion score 0.028 0.028 0.028 0.027 0.028 0.028 0.027 0.028 0.029 0.028 0.029 0.029 0.03 0.029 0.03

ResNet-50 Insertion score 0.406 0.414 0.417 0.417 0.419 0.42 0.422 0.422 0.422 0.423 0.425 0.427 0.427 0.428 0.428

Deletion score 0.027 0.028 0.028 0.029 0.03 0.029 0.03 0.03 0.03 0.03 0.031 0.031 0.032 0.032 0.032

VGG16 Insertion score 0.298 0.304 0.306 0.308 0.308 0.308 0.31 0.31 0.311 0.311 0.312 0.313 0.313 0.313 0.315

Deletion score 0.019 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.021 0.021 0.021 0.021 0.022 0.022 0.022

F.2 ABLATION STUDIES FOR THE TOTAL ATTACK ITERATIONS

Table 11: Result for the total attack iterations num steps

Inception-v3 ResNet-50 VGG-16

num steps
Insertion

Score
Deletion

Score
Insertion

Score
Deletion

Score
Insertion

Score
Deletion

Score

1 0.4236 0.0281 0.3469 0.0249 0.2645 0.0195
2 0.4488 0.0291 0.3835 0.0261 0.2929 0.0208
3 0.4557 0.0297 0.3936 0.0273 0.3029 0.0217
4 0.4607 0.0301 0.3966 0.0283 0.3061 0.0218

F.3 ABLATION STUDIES FOR THE PERTURBATION RATE

Table 12: Result for the perturbation rate (ϵ < 8)

Model ϵ 1 2 3 4 5 6 7

Inception-v3 Insertion score 0.459 0.459 0.459 0.461 0.46 0.461 0.46

Deletion score 0.031 0.032 0.032 0.031 0.032 0.031 0.032

ResNet-50 Insertion score 0.397 0.397 0.398 0.401 0.4 0.403 0.403

Deletion score 0.031 0.031 0.031 0.032 0.032 0.032 0.032

VGG16 Insertion score 0.298 0.299 0.3 0.3 0.3 0.302 0.303

Deletion score 0.021 0.022 0.022 0.022 0.022 0.022 0.022
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G ADDITIONAL VISUALIZATION RESULTS OF OUR ATTEXPLORE

Prediction: dung_beetle AttEXplore
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Heatmap Heatmap * Input
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Prediction: buckeye AttEXplore
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Prediction: lionfish AttEXplore
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Prediction: drake AttEXplore
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Prediction: soccer_ball AttEXplore
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Prediction: vulture AttEXplore
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Prediction: grasshopper AttEXplore
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Prediction: bulbul AttEXplore
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Prediction: mountain_tent AttEXplore
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Prediction: schooner AttEXplore
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Prediction: peacock AttEXplore
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