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ABSTRACT

Facial attributes (e.g., gender, age) encompass important social cues and play a
pivotal role in computer vision. While supervised methods have dominated facial
attribute analysis, they often require large annotated datasets, which are costly and
time-consuming to create. In this work, we circumvent this limitation by propos-
ing a novel unsupervised learning framework that leverages StyleGAN to learn
rich and disentangled facial attribute representations. Specifically, unlike prior
methods that rely on labeled datasets or supervised techniques, our approach ex-
ploits the unique inductive bias of StyleGAN, namely Hierarchical Feature Modu-
lation, to automatically discover semantically meaningful representations of facial
attributes. This inductive bias enables StyleGAN to generate disentangled and in-
terpretable facial attribute features at different layers, benefiting a variety of down-
stream tasks. To leverage StyleGAN representations, we employ GAN inversion
methods to represent input images as StyleGAN features and propose a simple yet
effective feature reduction method based on mutual information to improve the
effectiveness and efficiency of the learned representations. Extensive experiments
in few-shot facial attribute analysis tasks, including clustering, classification, and
facial attribute annotation demonstrate the effectiveness of our approach.

1 INTRODUCTION

Facial attributes, such as gender, age, and the presence of accessories like glasses, are crucial social
cues that play a pivotal role in human perception and interaction. In computer vision, the accurate
analysis and representation of these attributes have far-reaching implications for various applica-
tions (Kortli et al., 2020; Zheng et al., 2022; Narayan et al., 2024).

Traditionally, supervised learning methods have dominated the landscape of facial attribute anal-
ysis, achieving remarkable performance in tasks such as attribute classification and detection (Li
et al., 2022; Qin et al., 2023; Kuprashevich & Tolstykh, 2023). Recently, various methods based on
Masked Autoencoders (MAEs) (He et al., 2022) have significantly advanced the field by introducing
(unsupervised) representation learning to facial attribute analysis to improve classification accuracy,
facilitate multi-modal learning, reduce computational costs, etc. Notable examples include ABAW5
(Zhang et al., 2023), MCM (Zhang et al., 2024), MAE-DFER (Sun et al., 2023), and MARLIN (Cai
et al., 2023). However, all these approaches rely on large, meticulously annotated datasets, which
are both costly and time-consuming to create. This dependence on labeled data presents a significant
bottleneck in advancing the field and limits the scalability of facial attribute analysis to new domains
or attributes.

In this paper, we address this challenge by proposing a novel unsupervised learning framework that
leverages the generative power and unique architecture of StyleGAN (Karras et al., 2020b; 2021)
to learn rich and disentangled facial attribute representations. Our approach represents a paradigm
shift in facial attribute analysis, moving away from the reliance on labeled datasets and supervised
techniques towards a more flexible and scalable few-shot methodology. At the core of our framework
is the exploitation of StyleGAN’s distinctive inductive bias, specifically its Hierarchical Feature
Modulation technique. This architectural feature enables StyleGAN to generate highly realistic
facial images while maintaining fine-grained control over various attributes (Viazovetskyi et al.,
2020; Wu et al., 2021). As shown in Fig. 1, our key insight is that this inductive bias also allows
StyleGAN to automatically discover and represent semantically meaningful facial attributes in a
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Figure 1: t-SNE visualization of the representations learned by StyleGAN2 (SG2) (Karras et al.,
2020b) and Masked Autoencoder (MAE) (He et al., 2022) of 10,000 images from the FFHQ
dataset (Karras et al., 2019) for glasses and gender attributes.

disentangled manner across different layers of its generator network. To leverage the representations
learned by StyleGAN, we employ GAN inversion methods (Tov et al., 2021) to map input images
to StyleGAN features. We then propose a simple yet effective feature reduction method based on
mutual information to enhance both the effectiveness and efficiency of the learned representations,
facilitating downstream tasks. Extensive experiments in few-shot downstream tasks, including facial
attributes clustering, classification, and annotation, demonstrate the effectiveness of our approach.
Our main contributions include:

• We propose a novel StyleGAN-based facial attribute representation learning framework,
which learns highly disentangled and distinguishable features in an unsupervised manner.

• To the best of our knowledge, ours is the first approach to enable few-shot downstream tasks
for facial attribute analysis, including clustering, classification, and annotation, achieving
significant improvements over state-of-the-art methods.

• As a valuable by-product, we manually annotated the AFHQ-Wild dataset (Karras et al.,
2020a) and will release the labeled dataset upon acceptance.

2 RELATED WORK

Supervised Facial Attribute Classification. Supervised facial attribute classification has been
widely studied, with deep learning models like CNNs (Kalayeh et al., 2017) traditionally used
to identify attributes such as age, gender, and expressions. Recent advancements, particularly
transformer-based architectures, have further improved performance across multiple facial attribute
analysis tasks. For instance, the Label2Label (Li et al., 2022) framework addresses multi-attribute
learning as a sequence generation task, using a language modeling approach to better capture re-
lationships between attributes, enhancing classification accuracy. Similarly, SwinFace (Qin et al.,
2023), a transformer-based architecture, adopts multi-task learning to handle face recognition, ex-
pression, age, and attribute estimation in one framework, leveraging transformers’ hierarchical struc-
ture to improve overall performance. Meanwhile, Mivolo (Kuprashevich & Tolstykh, 2023) uses
a multi-input transformer to focus on age and gender classification, highlighting the value of in-
tegrating multiple facial cues for more accurate predictions. Nevertheless, these methods have en-
countered a bottleneck of facial image representations, prompting recent approaches to shift towards
representation learning, particularly those based on Masked Autoencoders (MAEs) (He et al., 2022).

MAEs-based Facial Representation Learning. Masked Autoencoders (MAEs) (He et al., 2022)
have introduced promising methods for facial attribute image representation. These techniques
leverage the power of self-supervised learning to extract features from facial images without requir-
ing labeled data. These self-supervised architecture enables a variety of facial analysis tasks without
requiring labelled data. For instance, ABAW5 (Zhang et al., 2023) explores the use of MAEs in
affective analysis, showing that MAEs can efficiently learn representations from masked portions of
facial images. Similarly, MCM (Zhang et al., 2024) proposes a method that combines channel and
spatial masking to enhance facial action unit detection, enabling the network to focus on subtle fa-
cial movements, but often requiring more complex architectures for deeper facial understanding. For

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Feature maps of the StyleGAN2 (SG2) (Karras et al., 2020b) and VQVAE (Rombach
et al., 2021) models, both of them are pretrained on FFHQ. Top row: input images from the FFHQ
dataset (Karras et al., 2019), 4 with glasses and 4 without.

dynamic facial expression recognition, MAE-DFER (Sun et al., 2023) applies MAEs to time-variant
facial data. It demonstrates the ability to learn temporal features for dynamic expressions, yet the ap-
proach struggles with disentangling individual facial attributes effectively. Similarly, MARLIN (Cai
et al., 2023) extends this to video sequences, highlighting MAEs’ capability in temporal learning but
also facing challenges in isolating distinct facial attributes across frames, limiting its effectiveness
in facial image representation. Despite their success, MAE-based methods lack inductive biases
tailored to facial attribute analysis, leading to less disentangled and distinguishable representations.
Thus, they continue to rely on fully-labeled datasets, which are costly and time-consuming to create.

In this work, we address this challenge by introducing a novel unsupervised facial attribute repre-
sentation learning method based on StyleGAN (Karras et al., 2019; 2020b), leveraging its unique
inductive bias (i.e., Hierarchical Feature Modulation). This allows StyleGAN to automatically learn
disentangled and distinguishable representations, facilitating few-shot downstream tasks. To the best
of our knowledge, this is the first method to successfully achieve such results.

3 FACIAL ATTRIBUTE REPRESENTATIONS LEARNED BY STYLEGAN

Our key insight is that the unique inductive bias of StyleGAN (i.e., Hierarchical Feature Modulation)
enables the automatic discovery of semantically meaningful representations of facial attributes.

Facial Features Learned via Hierarchical Feature Modulation. StyleGAN introduced a ground-
breaking approach to image generation through its Hierarchical Feature Modulation. Similar to
previous works, this method employs a pyramid of convolutional blocks that synthesize images in a
coarse-to-fine manner. However, at each layer, the feature maps are modulated via adaptive instance
normalization (AdaIN), which scales and shifts them based on style information derived from a la-
tent vector. The distinct advantage of this approach is that it directly (i.e., no need to propagate the
style vector through layers) modulates each feature map independently (i.e., with unique modulation
parameters) based on the input style, allowing for more disentangled and fine-grained control. In this
work, we observed that this strategy not only improves image generation and editing (Abdal et al.,
2019; 2020; Alaluf et al., 2022), but also automatically learns a semantically meaningful feature
representation of facial attributes.

Qualitative Illustration. As an intuitive illustration, we visualize and compare selected feature
maps from StyleGAN2 (SG2) (Karras et al., 2020b) and VQVAE (Rombach et al., 2021) pretrained
on the FFHQ dataset using 8 input facial images obtained from the FFHQ dataset: 4 with glasses
and 4 without (Fig. 2). These images are fed into SG2 to obtain their representations by GAN in-
version (Tov et al., 2021). It can be observed that SG2 successfully capture the glasses attribute
in each of their extracted feature maps, whereas most feature maps in VQVAE fail to clearly ex-
hibit the texture of glasses. In addition, there are notable differences in their representation quality.
StyleGAN demonstrates superior disentanglement of the glasses feature, isolating it more effectively
from other facial attributes. In contrast, VQVAE’s feature maps exhibit lower disentanglement, mix-
ing substantial irrelevant features such as hair, mouth, and cheeks. This observation demonstrates
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Figure 3: Illustration of the facial attribute representations learned by our method. To obtain these
representations, we input an image into the StyleGAN generator using GAN inversion techniques ,
producing a latent code w that reconstructs the input image. Thanks to StyleGAN’s unique Hierar-
chical Feature Modulation strategy, the learned features are disentangled and distinguishable. While
these representations are already valuable, we further optimize them for specific facial attributes
through our few-shot channel selection and feature reduction method, enhancing both their effec-
tiveness and efficiency.

that StyleGAN’s architecture leads to a more focused and representative encoding of the glasses
attribute.

Quantitative Justification. To quantitatively justify our observation and demonstrate its generality
across facial attributes, models, and layers, we propose to use the difference between i) intra-class
mutual information (IntraMI) and ii) inter-class mutual information (InterMI) as a metric to measure
the disentanglement and distinguishability of the representations learned. Specifically, given two
feature maps X and Y , mutual information(MI) measures how related one feature map is to the
other, indicating their similarity. Its formal definition is as:

MI(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where p(x, y) is the joint probability distribution of X and Y , and p(x) and p(y) are the marginal
probability distributions of X and Y , respectively. IntraMI measures mutual information within the
same class, while InterMI measures it across different classes. In short, high (IntraMI - InterMI)
is desirable, as it indicates high similarity within a facial attribute class and low similarity between
different facial attribute classes (e.g., glasses vs. non-glasses), respectively. Specifically, we calcu-
late the average IntraMI and InterMI for each layer of 4 models (SG2, VGG16, VQVAE (van den
Oord et al., 2017) and Inceptionv3 (Szegedy et al., 2016)) for each of the 4 facial attributes (glasses,
gender, age (man) and age (woman)), respectively. For the 4 facial attributes, we use the labels from
the FFHQ-Features-Dataset (Karras et al., 2019) and specify i) two classes for glasses (glasses vs.
non-glasses); ii) two classes for gender (male vs. female); iii) three classes for age (man) and age
(woman), i.e., child (age<10), adult (10≤age<60), and senior (60≤age), respectively. For each
class, we select 4 corresponding images from the FFHQ dataset. Similarly, the input images are
fed into SG2 by GAN inversion (Tov et al., 2021). Then, for IntraMI, we compute its mean by first
averaging the IntraMI between feature maps of the same channel among all possible pairs of the 4
images in a class, and then averaging across all feature maps in a layer; for InterMI, we compute
its mean by first averaging the InterMI between feature maps of the same channel among all pos-
sible image pairs of different classes for an attribute, and then averaging across all feature maps
in a layer. As Fig. 4 shows, SG2 produces much higher (IntraMI - InterMI) than other models,
especially in low-resolution layers. This supports our observation that SG2’s Hierarchical Feature
Modulation technique effectively promotes the learning of disentangled and distinguishable facial
attribute features, particularly in the low-resolution layers.
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(a) SG2 (b) VGG16 (c) VQVAE (d) Inceptionv3

Figure 4: The difference between intra-class mutual information (IntraMI) and inter-class mutual
information (InterMI) for each layer of the SG2, VGG16, VQVAE and Inceptionv3 models for
4 facial attributes (glasses, gender, age (man), age (woman)). The error bars are generated from
repeated experiments using different selections of input images.

4 EFFECTIVE AND EFFICIENT REPRESENTATIONS VIA FEATURE REDUCTION

As shown in Fig. 4, while StyleGAN’s learned representations are useful, their effectiveness varies
significantly across layers and channels, leaving room for improvement. To this end, we propose a
novel two-step feature reduction strategy to improve the effectiveness and efficiency of StyleGAN-
learned representations as follows.

Step 1. Few-shot Channel Selection. Given that the most effective feature channels vary across
different facial attributes, we use a small set of labeled input images to identify the most relevant
channels. Specifically, as mentioned above, given a facial attribute (e.g., glasses), we select 8 images
from the FFHQ dataset: 4 with glasses and 4 without, and obtain their StyleGAN feature maps via
GAN inversion. Leveraging the effectiveness of mutual information in assessing disentanglement
and distinguishability (Sec. 3), let a be the intra-class mutual information (IntraMI) and r be the
inter-class mutual information (InterMI) of a feature map, respectively, we define the distinguisha-
bility of the corresponding channel c as:

d(c) =
a(c)

r(c)
(2)

Then, we select the most effective channels as the set C:
C = {c1, c2, ..., cn} (3)

where d(ci) (1 < i < n) is among the top 10 of its corresponding layer.

Step 2. Feature Reduction via Max Pooling. To further reduce the dimensionality of the selected
channel features f(c), we apply max pooling and obtain the final representation of an input image I
by concatenating the pooled features f̂ :

R(I) = [f̂1, f̂2, . . . , f̂n], f̂i = MaxPool(f(ci)) (4)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We used the FFHQ-Features (FFHQ-features, 2020) and CelebA (Liu et al., 2015) datasets
in our main experiments. To demonstrate the generalizability of the proposed method, we further
tested it on the AFHQ-Wild dataset (Karras et al., 2020a). Notably, we manually annotated AFHQ-
Wild as it lacks labels.

Pre-trained Models. We use StyleGAN2 pretrained on the FFHQ and AFHQ-Wild datasets; MAE
pretrained on the FFHQ dataset; VGG16 pretrained on the ImageNet dataset Deng et al. (2009);
VQVAE pretrained on the FFHQ and MAE dataset; Inceptionv3 pretrained on the ImageNet dataset;
in our experiments.

Downstream Tasks. To demonstrate the effectiveness of the representations learned by our method,
we conduct experiments on three novel few-shot downstream tasks for facial attribute analysis: clus-
tering, annotation, and classification. For all downstream tasks, we use the representations improved
by the method described in Sec. 4.
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(a) SG2 (FFHQ) (b) SG2 (CelebA)

(c) MAE (FFHQ) (d) MAE (CelebA)

Figure 5: Visualization of representations learned by StyleGAN2 (SG2), VGG16, and Masked Au-
toencoder (MAE) for three facial attributes (gender, age, glasses) using t-SNE. (a), (c), and (e) show
results for SG2 and MAE based on 10,000 images from the FFHQ dataset, while (b), (d), and (f)
show results from the CelebA dataset, also consisting of 10,000 images.

Our experiments were conducted on an NVIDIA RTX 3080 GPU.

5.2 FEW-SHOT CLUSTERING

Leveraging the disentanglement and distinguishability of our StyleGAN-based facial attribute repre-
sentations, we achieve effective clustering by simply applying k-means, where the number of clus-
ters k is determined based on the few-shot input data. As Table 1 shows, our method significantly
outperforms competing methods in few-shot clustering.

Representation Glasses Gender Age

ACC NMI ARI ACC NMI ARI ACC NMI ARI
SG2 (FFHQ) 97.66 80.06 90.94 87.67 52.51 57.75 79.06 35.48 35.62
MAE (FFHQ) 93.67 57.07 73.87 53.98 0 0 66.92 0 0

SG2 (CelebA) 98.07 65.14 80.58 94.33 68.87 78.57 77.47 0 0
MAE (CelebA) 93.67 0 0 58.42 0 0 77.47 0 0

Table 1: Facial attribute clustering results using representations learned by SG2 and MAE across
different attributes (glasses, gender, age) on the FFHQ and CelebA datasets. Metrics include Ac-
curacy (ACC), Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI). Note: the
zero and repeated values indicate a failure mode where all samples are assigned to a single cluster
with the same label.

T-SNE Visualization. To more intuitively understand the superiority of our representations, we
visualize them alongside other competing methods using t-SNE (Van der Maaten & Hinton, 2008).
As shown in Fig. 5, our SG2-based representation exhibits clear class boundaries across all three
attributes (gender, age, glasses), in contrast to VGG16 and MAE. This provides intuitive insights
into how our representations enhance few-shot clustering performance.

5.3 FEW-SHOT ANNOTATION

Our few-shot annotation process begins by converting input images into their StyleGAN representa-
tions using GAN inversion and our method. These representations are then clustered into k clusters
using k-means (Sec. 5.2), where k is a user-specified parameter. For each cluster, a small number of
n images are randomly selected for manual annotation. The most frequently occurring class among
the annotations is assigned as the final label for the entire cluster. Fig. 6 shows how annotation
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(a) (b) (c)

(d) (e) (f)

Figure 6: Few-shot annotation accuracy comparison using StyleGAN2 (SG2) and Masked Autoen-
coder (MAE) representations for three facial attributes: glasses (a)(d), gender (b)(e), and age (c)(f).
Among them, (a)(b)(c) illustrate how accuracy changes with the number of annotated images per
cluster n, while (d)(e)(f) show accuracy variation with the number of clusters k. Accuracy is
computed by comparing annotated labels with ground truth on 10,000 images from the FFHQ and
CelebA datasets, respectively. It can be observed that SG2-based representations consistently out-
perform MAE-based ones across all attributes and datasets, with the most significant improvement
observed in the gender attribute, where SG2 achieves nearly a 40% boost in accuracy. Notably, for
the glasses and gender attributes, annotating just 5 images per cluster results in over 90% accuracy.

accuracy changes against the choices of k and n. It can be observed that the proposed method out-
performs MAE in almost all cases, demonstrating its effectiveness. In addition, in Table 2, we show
how annotation accuracy changes against the total number of annotated images. Similarly, it can be
observed that our SG2-based representations outperform MAE-based ones by a large margin.

5.4 FEW-SHOT CLASSIFICATION

(a) Glasses of FFHQ (b) Glasses of CelebA (c) Gender of FFHQ (d) Gender of CelebA

Figure 7: Few-shot classification comparison of ResNet-18 against our StyleGAN2(SG2) based
few-shot annotation across two datasets FFHQ and CelebA for two attributes: glasses (a)(b) and
gender(c)(d).

Our few-shot classification is implemented by training a simple 3-layer multi-layer perceptron us-
ing the images and labels obtained from our few-shot annotation method (Sec. 5.3). As shown in
Table 2, our SG2-based representations outperform MAE-based ones by a large margin and achieve
satisfactory results with only 5 labeled images.
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Data Requirement for Supervised Facial Attribute Classification. To establish the necessity
of unsupervised methods for few-shot classification, we trained a ResNet-18 model with varying
number of labels to evaluate the amount of data required for an effective facial attribute classifier.
Fig. 7 shows that for attribute ’Glasses’ (a)(b), while using large number of labels(> 100) allow
both of ResNet and SG2 to achieve accuracy comparable to using full set labels, ResNet presents
significantly lower accuracy than SG2 in few-shot setting(fewer than 30 labels). Attribute ’Gender’
results (c)(d) similarly demonstrate that a small number of labels is insufficient to achieve good
performance in facial attribute classification.

Table 2: Few-shot annotation accuracy against the total number of annotated images. For most
cases, 3 images per cluster are randomly selected for annotation. However, for cases with a total of
2, 5, or 10 annotated images, only 1 image per cluster is annotated.

Dataset Annotated Images Count Attributes

Gender(%) Glasses(%) Age(%)

SG2 (FFHQ)

2 86.28(±13.37) 83.65(±7.38) 52.72(±14.49)
5 84.08(±8.48) 97.05(±5.08) 70.87(±8.93)

10 85.02(±5.10) 95.97(±3.88) 69.90(±6.63)
30 87.35(±1.85) 97.39(±2.31) 75.51(±5.83)

SG2 (CelebA)

2 89.76(±11.12) 87.8(±12.97) 66.93(±15.4)
5 89.16(±7.22) 91.51(±3.64) 69.83(±8.98)

10 89.44(±3.95) 96.56(±2.90) 70.85(±6.62)
30 91.01(±2.12) 97.96(±1.39) 74.48(±5.40)

MAE (FFHQ)

2 50.62(±4.30) 77.06(±8.23) 54.46(±14.82)
5 51.08(±4.18) 91.51(±7.44) 64.67(±11.9)

10 51.71(±3.38) 90.73(±5.11) 67.18(±7.37)
30 53.47(±2.83) 93.39(±3.08) 72.21(±5.52)

MAE (CelebA)

2 50.38(±6.37) 89.30(±13.1) 64.98(±17.19)
5 56.36(±6.24) 89.11(±9.59) 68.58(±9.62)

10 56.89(±4.64) 87.84(±6.30) 66.81(±7.78)
30 58.58(±3.24) 92.40(±3.04) 73.15(±4.74)

5.5 JUSTIFICATION OF FEATURE REDUCTION.

Justification of Few-shot Channel Selection. To demonstrate the effectiveness of our proposed
few-shot channel selection module, we simply compare facial attribute clustering performance with
and without this module. The discrepancy column indicates the performance degradation compared
to the setup with the few-shot channel selection, as shown in Table 5. For the FFHQ dataset, attribute
’Glasses’ remains nearly unaffected, suggesting SG2 model possesses strong ’glasses’ extraction
capabilities across its overall feature channels. However, significant performance drops are observed
for Gender (ACC: -28.54, ARI: -53.98) and Age (e.g., ACC: -12.14, ARI: -35.62), emphasizing the
few-shot channel selection’s importance for these attributes. Similar results over CelebA further
validate its effectiveness.

Justification of Choice of 4 Images for Each Attribute Class. As Tab. 4 shows that when the
number of images per class exceeds one, the accuracy of few-shot channel selection shows a gradual
overall increase, with relatively minor differences. To demonstrate the performance of our method
under low human effort, we set 4 images to represent each class.

Justification of Choice of Max Pooling. To justify our choice of max pooling (Sec. 4), we compare
its performance on few-shot image classification (Sec. 5.4) against mean pooling. As shown in
Fig. 8, max pooling consistently outperforms mean pooling, supporting our choice.
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Table 3: Few-shot classification accuracy against the total number of annotated images. The anno-
tated images are the same as those in Table 2. True label: the classification accuracy when the full
ground truth labels are used in training.

Dataset Annotated Images Count Attributes

Gender(%) Glasses(%) Age(%)

SG2 (FFHQ)

2 85.88(±11.77) 92.71(±8.54) 53.86(±13.93)
5 85.44(±9.15) 97.54(±3.99) 73.77(±8.93)

10 88.25(±2.74) 97.40(±3.06) 77.09(±4.00)
30 89.36(±1.12) 98.06(±1.69) 78.03(±4.36)

True label 96.47 99.04 84.58

SG2 (CelebA)

2 90.59(±11.41) 90.05(±8.30) 68.05(±16.55)
5 89.23(±9.13) 95.28(±2.10) 74.66(±9.44)

10 92.34(±4.44) 96.89(±1.66) 76.62(±5.64)
30 93.36(±1.61) 97.54(±0.91) 77.56(±0.84)

True label 97.38 98.74 89.06

MAE (FFHQ)

2 51.20(±3.78) 72.95(±17.09) 50.50(±21.40)
5 50.60(±4.30) 76.80(±10.82) 56.81(±17.47)

10 50.42(±4.31) 77.91(±9.24) 59.33(±14.51)
30 51.33(±3.97) 78.08(±8.61) 62.97(±11.19)

True label 96.82 98.44 92.48

MAE (CelebA)

2 50.11(±7.66) 89.22(±17.87) 61.94(±22.94)
5 52.83(±7.79) 90.65(±13.96) 71.18(±15.37)

10 53.72(±6.88) 93.54(±1.09) 71.18(±14.90)
30 54.04(±6.99) 93.65(±0.13) 75.98(±7.80)

True label 98.24 93.67(±0.01) 77.40(±0.42)

Table 4: Comparison of FFHQ facial attribute clustering accuracy using varying number of images
for few-shot channel selection. The number of adopted images for each facial attribute class varying
from 1 to 8 are randomly selected. We repeat such selection 50 times and report clustering accuracy
and standard deviation.

Attributes Number of images for each facial attribute class

1 2-3 4-5 6-7 8
Gender 58.33±(3.11) 73.63±(12.73) 81.04±(10.65) 84.59±(10.49) 82.41±(11.77)

Age 67.14±(1.18) 75.04±(5.30) 76.55±(4.78) 77.69±(4.07) 77.32±(3.75)
Glasses 96.79±(5.32) 97.72±(0.05) 97.72±(0.03) 97.73±(0.03) 97.74±(0.02)

Table 5: Compared facial attribute clustering results without few-shot channel selection across
two datasets (FFHQ and CelebA). The discrepancy highlights the performance degradation when
the few-shot channel selection module is removed. Performance drop are highlighted in bold.

Data Type Glasses Gender Age

ACC NMI ARI ACC NMI ARI ACC NMI ARI
SG2(FFHQ) 97.69 80.32 91.11 59.13 2.70 3.77 66.92 0 0
Discrepancy +0.03 +0.26 +0.17 -28.54 -49.81 -53.98 -12.14 -35.48 -35.62

SG2(CelebA) 93.67 0 0 87.43 46.52 56.03 77.47 0 0
Discrepancy -0.4 -65.14 -80.58 -6.9 -22.35 -22.54 0 0 0
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Figure 8: Choice justification of max pooling (Sec. 4).

Model ACC NMI ARI
SG2 98.61 97.20 97.36
VGG16 70.01 65.78 59.87
MAE 67.16 53.40 53.30

Figure 9: Clustering results using the repre-
sentations learned by our SG2-ased method,
VGG16, and Masked Autoencoder (MAE)
on the AFHQ-Wild dataset. Our method
still performs the best on all metrics.

5.6 GENERALIZATION TO NON-HUMAN FACIAL DATASETS

To demonstrate the generalizability of our method to non-human facial datasets, we test our few-shot
clustering method (Sec. 5.2) on the AFHQ-Wild dataset . Compared methods are MAE and VGG16.
We use ViT-large Dosovitskiy et al. (2020) as the backbone of MAE and pretrain on AFHQ-Wild for
800 epoches, while other settings follow the released code of He et al. (2022). VGG16 is pretrained
on ImageNet-1K which contains all 7 species in AFHQ-Wild.

T-SNE Visualization on AFHQ-Wild. We also perform t-SNE visualization on the AFHQ-Wild
dataset, with results shown in Fig. 10. Similar to the results on human facial datasets, SG2 repre-
sentations exhibit the clearest distinguishability.

(a) SG2 (b) VGG16 (c) MAE (d) Examples

Figure 10: Visualization of representations learned by StyleGAN2 (SG2), VGG16, and Masked
Autoencoder (MAE) for eight animal classes (cheetah, leopard, snow leopard, female lion, male
lion, tiger, fox, wolf) using t-SNE. The results are obtained using 5,000 images from AFHQ-Wild
dataset.

6 CONCLUSION

In conclusion, we propose a novel unsupervised approach to learn facial attribute representations
that leverages the unique capabilities of StyleGAN. By exploiting StyleGAN’s Hierarchical Feature
Modulation, we have demonstrated a method to automatically discover rich, disentangled represen-
tations of facial attributes in an unsupervised manner. The effectiveness of our method is evidenced
by its strong performance across a range of unsupervised and few-shot downstream tasks, including
facial attribute clustering, few-shot classification, and few-shot facial attribute annotation. To the
best of our knowledge, ours is the first method to successfully achieve these results.

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
stylegan latent space? In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 4432–4441, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan++: How to edit the embedded
images? In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 8296–8305, 2020.

Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and Amit Bermano. Hyperstyle: Stylegan inver-
sion with hypernetworks for real image editing. In Proceedings of the IEEE/CVF conference on
computer Vision and pattern recognition, pp. 18511–18521, 2022.

Zhixi Cai, Shreya Ghosh, Kalin Stefanov, Abhinav Dhall, Jianfei Cai, Hamid Rezatofighi, Reza
Haffari, and Munawar Hayat. Marlin: Masked autoencoder for facial video representation learn-
ing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1493–1504, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

FFHQ-features. Ffhq-features-dataset: Gender, age, and emotion for flickr-faces-hq dataset (ffhq),
2020. URL https://github.com/DCGM/ffhq-features-dataset.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Mahdi M Kalayeh, Boqing Gong, and Mubarak Shah. Improving facial attribute prediction using
semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6942–6950, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in neural information processing
systems, 33:12104–12114, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8110–8119, 2020b.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-free generative adversarial networks. Advances in neural information processing
systems, 34:852–863, 2021.

Yassin Kortli, Maher Jridi, Ayman Al Falou, and Mohamed Atri. Face recognition systems: A
survey. Sensors, 20(2):342, 2020.

Maksim Kuprashevich and Irina Tolstykh. Mivolo: Multi-input transformer for age and gender
estimation. In International Conference on Analysis of Images, Social Networks and Texts, pp.
212–226. Springer, 2023.

Wanhua Li, Zhexuan Cao, Jianjiang Feng, Jie Zhou, and Jiwen Lu. Label2label: A language mod-
eling framework for multi-attribute learning. In European Conference on Computer Vision, pp.
562–579. Springer, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

11

https://github.com/DCGM/ffhq-features-dataset


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kartik Narayan, Vibashan VS, Rama Chellappa, and Vishal M Patel. Facexformer: A unified trans-
former for facial analysis. arXiv preprint arXiv:2403.12960, 2024.

Lixiong Qin, Mei Wang, Chao Deng, Ke Wang, Xi Chen, Jiani Hu, and Weihong Deng. Swinface:
a multi-task transformer for face recognition, expression recognition, age estimation and attribute
estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Licai Sun, Zheng Lian, Bin Liu, and Jianhua Tao. Mae-dfer: Efficient masked autoencoder for self-
supervised dynamic facial expression recognition. In Proceedings of the 31st ACM International
Conference on Multimedia, pp. 6110–6121, 2023.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826, 2016.

Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an encoder
for stylegan image manipulation. ACM Transactions on Graphics (TOG), 40(4):1–14, 2021.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Advances in Neural Information Processing Systems, volume 30, 2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Yuri Viazovetskyi, Vladimir Ivashkin, and Evgeny Kashin. Stylegan2 distillation for feed-forward
image manipulation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXII 16, pp. 170–186. Springer, 2020.

Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace analysis: Disentangled controls for
stylegan image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12863–12872, 2021.

Wei Zhang, Bowen Ma, Feng Qiu, and Yu Ding. Multi-modal facial affective analysis based on
masked autoencoder. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 5793–5802, 2023.

Xiang Zhang, Huiyuan Yang, Taoyue Wang, Xiaotian Li, and Lijun Yin. Multimodal channel-
mixing: Channel and spatial masked autoencoder on facial action unit detection. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6077–6086, 2024.

Yinglin Zheng, Hao Yang, Ting Zhang, Jianmin Bao, Dongdong Chen, Yangyu Huang, Lu Yuan,
Dong Chen, Ming Zeng, and Fang Wen. General facial representation learning in a visual-
linguistic manner. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 18697–18709, 2022.

A ADDITIONAL EXPERIMENTAL RESULTS

We show additional experimental results on few-shot annotation and few-shot classification in Ta-
ble 6 and Table 7, supporting the same conclusions drawn in the main paper.
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Table 6: Few-shot annotation accuracy against the total number of annotated images. For most
cases, 3 images per cluster are randomly selected for annotation. However, for cases with a total of
2, 5, or 10 annotated images, only 1 image per cluster is annotated.

Dataset Annotated Images Count Attributes

Gender(%) Glasses(%) Age(%)

SG2 (FFHQ)

2 86.28(±13.37) 83.65(±7.38) 52.72(±14.49)
5 84.08(±8.48) 97.05(±5.08) 70.87(±8.93)

10 85.02(±5.10) 95.97(±3.88) 69.90(±6.63)
30 87.35(±1.85) 97.39(±2.31) 75.51(±5.83)
60 89.19(±1.78) 98.21(±1.24) 76.76(±3.17)

120 90.03(±1.15) 98.04(±0.69) 76.83(±2.32)
600 91.35(±0.64) 98.47(±0.32) 80.06(±0.89)

SG2 (CelebA)

2 89.76(±11.12) 87.8(±12.97) 66.93(±15.4)
5 89.16(±7.22) 91.51(±3.64) 69.83(±8.98)

10 89.44(±3.95) 96.56(±2.90) 70.85(±6.62)
30 91.01(±2.12) 97.96(±1.39) 74.48(±5.40)
60 91.19(±1.52) 97.31(±1.05) 75.56(±3.34)

120 93.62(±1.04) 97.68(±0.56) 76.46(±2.26)
600 94.58(±0.43) 97.88(±0.25) 77.74(±0.81)

MAE (FFHQ)

2 50.62(±4.30) 77.06(±8.23) 54.46(±14.82)
5 51.08(±4.18) 91.51(±7.44) 64.67(±11.9)

10 51.71(±3.38) 90.73(±5.11) 67.18(±7.37)
30 53.47(±2.83) 93.39(±3.08) 72.21(±5.52)
60 55.07(±2.48) 94.74(±1.80) 73.57(±3.94)

120 57.93(±2.02) 94.49(±1.33) 74.07(±2.28)
600 62.12(±0.95) 95.23(±0.45) 75.31(±1.14)

MAE (CelebA)

2 50.38(±6.37) 89.30(±13.1) 64.98(±17.19)
5 56.36(±6.24) 89.11(±9.59) 68.58(±9.62)

10 56.89(±4.64) 87.84(±6.30) 66.81(±7.78)
30 58.58(±3.24) 92.40(±3.04) 73.15(±4.74)
60 60.29(±2.84) 92.27(±2.33) 72.90(±3.43)

120 62.00(±2.08) 92.60(±1.42) 73.37(±2.33)
600 66.77(±0.87) 92.56(±0.59) 74.65(±0.92)
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Table 7: Few-shot classification accuracy against the total number of annotated images. The anno-
tated images are the same as those in Table 2. True label: the classification accuracy when the full
ground truth labels are used in training.

Dataset Annotated Images Count Attributes

Gender(%) Glasses(%) Age(%)

SG2 (FFHQ)

2 85.88(±11.77) 92.71(±8.54) 53.86(±13.93)
5 85.44(±9.15) 97.54(±3.99) 73.77(±8.93)

10 88.25(±2.74) 97.40(±3.06) 77.09(±4.00)
30 89.36(±1.12) 98.06(±1.69) 78.03(±4.36)
60 89.87(±0.69) 98.41(±0.43) 78.29(±2.09)

120 93.44(±1.22) 97.11(±1.13) 77.59(±0.48)
600 90.03(±0.45) 98.46(±0.09) 79.34(±1.03)

True label

SG2 (CelebA)

2 90.59(±11.41) 90.05(±8.30) 68.05(±16.55)
5 89.23(±9.13) 95.28(±2.10) 74.66(±9.44)

10 92.34(±4.44) 96.89(±1.66) 76.62(±5.64)
30 93.36(±1.61) 97.54(±0.91) 77.56(±0.84)
60 93.44(±1.22) 97.11(±1.13) 77.59(±0.48)

120 93.89(±0.79) 97.11(±1.22) 77.52(±0.28)
600 94.02(±0.78) 97.29(±1.03) 77.50(±0.16)

True label 97.38 98.74 88.56

MAE (FFHQ)

2 51.20(±3.78) 72.95(±17.09) 50.50(±21.40)
5 50.60(±4.30) 76.80(±10.82) 56.81(±17.47)

10 50.42(±4.31) 77.91(±9.24) 59.33(±14.51)
30 51.33(±3.97) 78.08(±8.61) 62.97(±11.19)
60 52.46(±3.45) 79.41(±4.16) 65.22(±6.95)

120 53.27(±2.55) 78.75(±5.17) 66.11(±5.56)
600 54.21(±1.73) 77.03(±12.04) 64.97(±6.45)

True label 96.82 98.44 88.56

MAE (CelebA)

2 50.11(±7.66) 89.22(±17.87) 61.94(±22.94)
5 52.83(±7.79) 90.65(±13.96) 71.18(±15.37)

10 53.72(±6.88) 93.54(±1.09) 71.18(±14.9)
30 54.04(±6.99) 93.65(±0.13) 75.98(±7.80)
60 55.61(±5.74) 93.59(±0.60) 75.81(±7.28)

120 57.42(±3.53) 93.65(±0.11) 76.30(±3.74)
600 58.36(±0.60) 93.60(±0.65) 77.03(±2.45)

True label 98.24 99.14 88.56
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