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Abstract

Open-World Compositional Zero-Shot Learning (OW-CZSL) addresses the chal-
lenge of recognizing novel compositions of known primitives and entities. Even
though prior works utilize language knowledge for recognition, such approaches
exhibit limited interactions between language-image modalities. Our approach pri-
marily focuses on enhancing the inter-modality interactions through fostering richer
interactions between image and textual data. Additionally, we introduce a novel
module aimed at alleviating the computational burden associated with exhaustive
exploration of all possible compositions during the inference stage. While previous
methods exclusively learn compositions jointly or independently, we introduce an
advanced hybrid procedure that leverages both learning mechanisms to generate
final predictions. Our proposed model, achieves state-of-the-art in OW-CZSL in
three datasets.

1 Introduction
Compositional Zero-Shot Learning (CZSL) involves generating new compositions from established
primitives and entities. Prior works are generally classified into closed-world and open-world settings.
Conventional CZSL Saini u. a. (2022); Kim u. a. (2023); Xu u. a. (2021); Wang u. a. (2023); Yang u. a.
(2020) approaches use a closed-world setting, requiring prior knowledge of unseen pairs. Mancini et
al. proposed an open-world setting, encompassing all possible combinations of attributes and objects
|A| · |O| (with |A| attributes and |O| objects), which is more effective for real-world deployments. To
manage the large label space in OW-CZSL, KG-SP Karthik u. a. (2022) classifies primitives (objects
and attributes) separately, reducing computational burden, though it does not explicitly learns pair
compositions. In contrast, direct composition recognition, as used by Nayak et al.Nayak u. a. (2022),
becomes challenging with an increasing number of attributes and objects. Our proposed approach
integrates the strengths of both paradigms, enabling the model to learn primitives both independently
and compositionally via a novel sparse linear layer.

Textual features serve a crucial role in incorporating semantic knowledge into the learning framework
Saini u. a. (2022). Therefore, fusion of visual and textual modalities essential for disentangling
and generating compositions. However, most works in CZSL Mancini u. a. (2021); Naeem u. a.
(2021) adopt a simple fusion approach, projecting both modalities into a shared embedding space
and generating a similarity function between them, which requires computing similarity scores
for each potential composition during inference. To mitigate this, we propose a Top-K selection
module that automatically identifies a subset of candidate text embeddings at an early stage. We
hypothesize that simple fusion, even from high-performing unimodal embedders, may be insufficient
for learning complex vision-and-language compositions Kim u. a. (2021); Nguyen u. a. (2020),
motivating the need for a more effective inter-modal interaction method in compositional learning.
Our key contributions are as follows:
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Figure 1: The overall architecture of the proposed method. Input embeddings to the transformer encoder are
formed by concatenating image patch embeddings and text embeddings. TopK Embedding Selection Module
effectively selects relevant text embeddings that align with the provided image through cross attention. Sparse
Linear Compositor computes attribute and object predictions alongside a final prediction vector, utilizing a
sparse linear layer.

• Introducing a unified framework for OW-CZSL by utilizing a single transformer while
preserving model performance to attain superior results compared to LLVMs showing
state-of-the-art performance.

• Proposed Top-K selection module mitigate the challenge of exhaustively exploring all
potential pairings during the inference process.

• A novel sparse linear layer is proposed to facilitate the integration of multiple tokens, aiding
in the disentanglement of attributes and objects and enabling the generation of compositions
with computational complexity reduced to O(|A| · |O|).

2 Method
2.1 Problem Formulation
We follow the open world setting proposed by Mancini et al.Mancini u. a. (2021) for OW-CZSL.
Each training sample consists of two elements, Image x ∈ X and corresponding text pair t =
(tattr, tobj) ∈ T . Followed by attribute and object labels, y = (yattr, yobj) ∈ Y . Y consists of two
subsets: seen pairs Y s and unseen pairs Y u which, contain all the attribute and object compositions
that were present during training and compositions that are not available during training respectively.
Resulting, Y s ∪ Y u = Y and Y s ∩ Y u = ∅.
2.1.1 Linear Patch Projection and Language Embeddings
We utilize the linear flattened patch projection schema from ViT Dosovitskiy u. a. (2020) where, the
image x ∈ RH×W×C flattened into to v ∈ RN×(P 2·C) with N = HW/P 2 number of P × P patch
projections. Followed by linear projection V ∈ R(P 2·C)×H of v, producing xv ∈ RN×(P 2·C) as
visual embeddings for the network. xv , combined with three [class] tokens for attributes, objects and
pairs produces patch embeddings ṽ. Lastly, positional embeddings V pos ∈ R(N+1)×H are embedded
to the patch embeddings.

We create a fixed auxiliary vocabulary input for each dataset by collecting BERT embeddings Kenton
und Toutanova (2019) for each attribute or object in T . For each text, the last embedding output
uattr
i ∈ R(|A|)×d, uobj

i ∈ R(|O|)×d is extracted and concatenated to form a vocabulary embedding
matrix uvocab ∈ R(|A|+|O|)×d where d is the dimension of the vocabulary embedding and d = P 2 ·C.

ṽ = [vattr; vobj ; vpair; v1V ; · · · ; vNV ] + V pos and uvoc = [uattr
1 ; · · · ;uattr

|A| ;u
obj
1 ; · · · ;uobj

|O|]

(1)
2.2 TopK embedding Selection
The objective of this module is to perform visual-assisted vocabulary mapping to create the text input
for the primary multi-modality transformer. To represent a class, we combine two text embeddings
from the vocabulary: one pertaining to attribute and the other to object. For brevity, we explain TopK
attribute selection, while TopK object selection follows the same procedure. To find relevance scores
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for the attribute entry, we use respective image embeddings ṽ as the Query vector and the attribute
portion of text embeddings uvocab[0 : |A|] as the Key vector. We impose cross attention between
Query and Key to produce an attention map, Aa ∈ R(P 2·C)×|A|. As illustrated in Figure 1, final score
is calculated by summing Aa along the image axis to produce a 1-D vector consisting of attention
scores, Ãa ∈ R|A| for each word. .

Aa = softmax
(
ṽ · uvoc[0 : |A|]√

P 2 · C

)
and Ãa =

P 2C∑
i=0

Aa[i] (2)

From sorted Ã, we select text embeddings of words that have top K highest attention scores. The
same procedure is repeated for selecting top K object embeddings by utilizing the sorted attention
scores corresponding to objects Ão ∈ R|O|. Text input ũ ∈ R2K to multi modality transformer is
created by ũ = [uattr

Ãa[1]
; · · · ;uattr

Ãa[K]
;uobj

Ão[1]
; · · · ;uobj

Ão[k]
] (3)

2.3 Language based Visual Modality Transformer
Similar to Kim et al.Kim u. a. (2021), we initialize the transformer weights from pre-trained ViT
Dosovitskiy u. a. (2020) weights rather than that of BERT. This expects to bolster the model’s ability
to process visual features effectively, thereby addressing the challenge of lacking a separate uni-model
visual embedder.

In order to separate the two modalities, the text and image embeddings are combined with their
respective modal-type learnable embedding vectors, denoted as vtype and utype, where utype, vtype ∈
RP 2·C then concatenated along the embedding axis to form input sequence z0 ∈ RM×P 2·C where,
M = N + 2K + 3 is the total number of input tokens.

z0 = [ṽ + vtype; ũ+ utype] (4)
Following Dosovitskiy et al.Dosovitskiy u. a. (2020), we iteratively update the contextualized vector
through 12 transformer layers with multi-head self-attention, using ViT-B/16 pre-trained on ImageNet-
21K with a hidden size of 768, patch size of 16, and 12 attention heads.
2.3.1 Sparse Linear Compositor
Given three [class] tokens, Sparse Linear Compositor(SLC) computes an attribute prediction vector,
an object prediction vector as auxiliary outputs and a composition vector between |A| number of
attributes and |O| number of objects. To derive the auxiliary outputs, the first two [class] tokens are
processed through two learnable MLP heads.

ỹattr = MLPattr(z
D
0 ) and ỹobj = MLPobj(z

D
1 ) (5)

Where, ỹattr ∈ R|A| and ỹobj ∈ R|O|. In order to compute the decomposition pair predictions, we
normalize the linear head outputs and multiply to create ỹdecompose ∈ R(|A|·|O|)

ỹdecompose = Norm(ỹattr)×Norm(ỹobj) (6)
Third [class] token is combined with the row wise concatenation of attribute and object predictions
to produce z̃pair ∈ R|A|+|O|.

zpair = MLPpair(z
D
2 ) and z̃pair = zpair + concat(ỹattr, ỹobj) (7)

As illustrated in Figure 1, pair output is calculated by learnable weighted (Wa ∈ R|A|·|O|,Wo ∈
R|O|·|A|) addition of corresponding attribute and object of each composition of z̃pair. Resulting
compositional pair prediction ỹcompose ∈ R|A|·|O|.

ỹcompose[Ai, Oj ] = z̃pair[Ai]⊙W i
a + z̃pair[Oj ]⊙W j

o (8)

Where, Wa ∈ R|A|·|O|,Wo ∈ R|O|·|A|, i ∈ (1, ..., |A|) and j ∈ (1, ..., |O|). Proposed Sparse Linear
Layer requires only 2(|A| · |O|) number of learnable parameters while a standard linear layer would
require (|A|+ |O|)(|A| · |O|) number of parameters. Lastly, we combine both decomposition pair
prediction and compositional pair prediction to produce final pair prediction with scale factor η.

ỹ = ỹdecompose + ηỹcompose (9)

2.4 Classification Head
For classification of attributes, objects and pairs, we extract the three [class] tokens from the last
layer output zD of the transformer network and process each token through SLC to get ỹ.

ỹ = SLC(zD0 , zD1 , zD2 ) (10)
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Table 1: Open world performance on MIT-States, C-GQA and VAW-CZSL. As evaluation matrices we refer to
AUC with seen and unseen accuracy with different bias terms along with HM.

Method Backbone MIT C-GQA VAW-CZSL
S U HM AUC S U HM AUC S U HM AUC

TMN Purushwalkam u. a. (2019) R18 12.6 0.9 1.2 0.1 - - - - - - - -
VisProd Misra u. a. (2017) R18 20.9 5.8 5.6 0.7 24.8 1.7 2.8 0.33 - - - -
SymNet Li u. a. (2020) R18 21.4 7.0 5.8 0.8 26.7 2.2 3.3 0.43 - - - -
ComCos Mancini u. a. (2021) R18 25.4 10.0 8.9 1.6 28.4 1.8 2.8 0.39 4.3 1.0 1.1 0.03
CGE Naeem u. a. (2021) R18 32.4 5.1 6.0 1.0 32.7 1.8 2.9 0.47 8.6 2.8 2.2 0.13
KG-SP Karthik u. a. (2022) R18 28.4 7.5 6.7 1.3 31.5 2.9 4.7 0.78 6.4 2.4 1.8 0.08
SAD-SP Li u. a. (2023) R18 29.1 7.6 7.8 1.4 31.0 3.9 5.9 1.0 - - - -
DRANet Liu u. a. (2023) R18 29.8 7.8 7.9 1.5 31.3 3.9 6.0 1.05 - - - -
ADE Hao u. a. (2023) ViT-B - - - - 35.1 4.8 7.6 1.42 - - - -
KG-SPvit ViT-B 28.6 11.8 10.3 2.1 31.3 3.4 5.1 0.87 15.0 4.5 3.9 0.38
Ours ViT-B 36.3 12.5 12.4 3.1 35.8 5.6 7.8 1.6 16.5 6.7 6.7 0.82

In OW-CZSL, as the label space expands proportionally to |A| · |O|, we deploy a filtering schema
similar to previous OW-CZSL works Karthik u. a. (2022); Nayak u. a. (2022) to exclude unfeasible
compositions. Aggregated text embeddings from ConceptNet Speer u. a. (2017) and GloVe Penning-
ton u. a. (2014) are utilized to calculate feasibility scores by using cosine similarity between attributes
and objects. A threshold-based binary mask is then applied to generate the final compositional output.

ȳ = ỹ · fpair (11)

2.5 Training Objectives
Compared to conventional OW-CZSL setting, rather than computing cosine similarity in an embedding
space, the proposed method utilizes cross-entropy loss over predictions. Namely, Pair Loss: Cross
entropy loss between pair predictions ȳ with ground truth y. TopK embedding Loss: Cross-entropy
loss between TopK selection module outputs with ground truth yattr and yobj . Disentangling Loss:
Cross-entropy loss between final attribute and object predictions ỹattr and ỹobj with the ground truth
yattr and yobj . A combined loss function L is minimized over all the training images, to train the
proposed method end-to-end manner. The weights for each loss (αi, i = 1, 2, 3) are empirically
computed.

L = Lcls + α1Ltopk + α2Lattr + α3Lobj (12)

3 Experiments
3.1 Datasets and Metrics
When evaluating the proposed model, we refer to three datasets, MIT-states Isola u. a. (2015) (28175
pairs), C-GQA Mancini u. a. (2021)(278362 pairs) and VAW-CZSL Saini u. a. (2022)(238040 pairs).
We use general OW-CZSL setup suggested by Purushwalkam u. a. (2019) combine with the evaluation
statistics. Namely, best Seen accuracy (S), best Unseen accuracy (U), Area Under the Curve (AUC)
and Harmonic Mean (HM).
3.2 Results
Table 1 presents a comprehensive summary of the primary experiments and compares the performance
of the proposed model against that of various baseline models. Even though, MIT-states contains
label noise Atzmon u. a. (2020), our model shows better performance over seen accuracy with a
7.7% margin along with a 2.1% increment in HM and a 1% increment in AUC demonstrating higher
performance compared to KG-SPvit. Amidst C-GQA containing significantly higher number of
compositions, proposed model was able to achieve state-of-the-art performance. With 4.1% seen
accuracy improvement in addition to 2.2% increment in HM over KG-SPvit. Resulting gain in AUC
of 0.6%. We evaluate our model on the VAW-CZSL dataset as a refined alternative to C-GQA,
achieving a 9.5% improvement in seen accuracy, a 0.6% increase in AUC, and a 3.5% gain in HM,
while maintaining comparable unseen accuracy with KG-SPvit.

4 Conclusion
In this work, we introduce a unified framework for OW-CZSL to enhance inter-modality interactions
beyond prior approaches with shallow interactions. Top-K selection module reduces inference ambi-
guity, while the sparse linear compositor improves generalization by decomposing and composing
attributes and objects. Extensive experiments show our model outperforms previous methods across
three benchmarks.
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