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Abstract— Visual-language models (VLMs) have recently
been introduced in robotic mapping by using the latent rep-
resentations, i.e., embeddings, of the VLMs to represent the
natural language semantics in the map. The main benefit is
moving beyond a small set of human-created labels toward
open-vocabulary scene understanding. While there is anecdotal
evidence that maps built this way support downstream tasks,
such as navigation, rigorous analysis of the quality of the
maps using these embeddings is lacking. In this paper, we
propose a way to analyze the quality of maps created using
VLMs by evaluating two critical properties: queryability and
consistency. We demonstrate the proposed method by evaluating
the maps created by two state-of-the-art methods, VLMaps
and OpenScene, using two encoders, LSeg and OpenSeg, using
real-world data from the Matterport3D data set. We find that
OpenScene outperforms VLMaps with both encoders, and LSeg
outperforms OpenSeg with both methods.

I. INTRODUCTION

Mobile robots must understand the geometry and seman-
tics of the environment to accomplish complex tasks. While
semantic mapping is an established field, most methods are
only able to segment the map into a small pre-selected set
of categories. This imposes challenges in real-world settings
when a robot operates in an environment that the categories
do not fully describe [1], [2].

Visual-Language Models (VLMs), such as CLIP [3], are
networks that jointly train a visual and language encoder
with large amounts of data to learn a mapping of text and
image inputs into a common visual-language latent space.
This enables these models to effectively have an open vocab-
ulary, meaning visual semantics can be matched to natural
language instead of a set of selected symbols. Therefore, the
exploitation of VLMs in robotic mapping could allow richer
semantics to be represented and to overcome the difficulty
of adapting to new environments. We call maps using the
embeddings of VLMs as semantics visual-language maps.

Complex queries have been long possible in semantic
maps by inference using object ontologies [4]. However,
while semantic labels support only binary comparison as
they are enumerations with no notion of distance, visual-
language maps can evaluate the query by directly comparing
the embedding of the query to the embeddings of the map
with a similarity metric. Several successful algorithms have
been built on VLMs that can perform mobile robot tasks,
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Fig. 1: Maps built from visual-language models have the abil-
ity to represent complex semantics, encompassing both the
class of objects and their properties. We propose a benchmark
for these type of maps and evaluate the quality of different
state-of-the-art methods according to the consistency of their
representation and their ability to be queried.

such as navigation [5]–[7]. However, the analysis from the
robotic mapping perspective is left anecdotal.

In this work, we propose a way to evaluate the quality
of visual-language maps. We consider that two aspects of
the map capture its quality: queryability and consistency. We
evaluate queryability such that the evaluation is not restricted
to semantic segmentation of the map, which imposes that the
map must be partitioned. Instead, each query is evaluated
separately. Furthermore, we evaluate the consistency of the
representation, i.e., the embeddings themselves. To demon-
strate our method, we evaluate two state-of-the-art methods:
VLMaps [5] and OpenScene [8], using the Matterport3D [9]
data set.

The main contributions of this paper are:

i) We propose a way to analyze the quality of visual-
language maps by evaluating the queryability and con-
sistency of the representation

ii) We demonstrate our analysis method by evaluating two
state-of-the-art methods



II. RELATED WORK

Creating maps using embeddings of VLMs, especially
CLIP [3], has recently gained attention, with the proposal
of methods such as VLMaps [5], OpenScene [8], NLMaps
[10], and Uni-Fusion [11].

In this paper, we focus on VLMaps and OpenScene.
Both create a dense grid map, where each cell is associated
with a single VLM embedding. The embeddings are created
from RGBD images with VLM-based semantic segmentation
encoder, such as LSeg [12] or OpenSeg [13], and back-
projected to the 3D map. Each cell is represented as the mean
of the embeddings projected to the cell. In the original work,
the 3D map in VLMaps is projected to 2D by averaging the
embeddings in the z-axis. Additionally, OpenScene learns an
encoder that directly produces CLIP embeddings from the 3D
point cloud. Combining these two approaches, they propose
joint 2D-3D ”ensemble” features as the final representations
in the map.

In VLMaps, as with other zero-shot navigation methods
[6], [7], the map quality is not directly assessed, but instead,
they use the success of the downstream navigation task as the
metric, which does not fully evaluate the capabilities of the
representation. Because the metrics used in evaluating visual-
language maps in each prior work are different, comparing
the quality of their maps is non-trivial, which is the problem
we address in this paper.

III. PROBLEM STATEMENT

We aim to evaluate the quality of visual-language maps.
We only consider methods where the estimation of geometry
and semantics are disjoint, so we concentrate on evaluating
the semantic quality of the maps. We focus on two aspects
of the map that we believe capture its semantic quality:
queryability and consistency.

We must evaluate queryability, as it is the primary way to
retrieve information from the representation and, therefore,
acts as the measure of two things: first, indirectly, the ability
of the representation to contain relevant information, and
second, the accessibility of that information. It also must
address consistency, as consistent performance within and
between measuring runs, times, environments, and sensors
is desirable.

IV. METHODS

A. Evaluating queryability

1) Voxel-based queryability: The first method evaluates
the overall matching between the query results compared
to the ground truth in a binary classification setting. This
property cannot be evaluated using standard multi-class
classification, as the queries do not form a partition of the
map. Each query produces a query result, a binary mask,
over the whole map, and the same voxel might be a match
of multiple queries.

The method consists of the following steps:
i) A map m is created from each sequence from the data

set, forming the set M.

ii) Each map m ∈ M is queried with each query q
in the set of queries Q. The query result of a sin-
gle query is a binary segmentation mask of the map,
ŷq = {ŷ1, . . . , ŷN}, consisting of N voxel masks ŷ ∈
{true, false}. Combined, the query results form the set
of voxel-based predictions ŶV = {ŷq∀q ∈ Q}.

iii) For each query, the true mask yq is created from a
ground truth map mg by selecting the voxels answering
query q. The true masks form a set of true labels
YV = {yq∀q ∈ Q}.

iv) The binary classification metrics are calculated between
YV and ŶV .

The metrics used to evaluate the classification tasks are F1-
score, Intersection over Union (IoU), precision, and recall.
As the regions of interest are relatively small with most
queries, true negative predictions dominate the predictions.
Therefore, accuracy cannot be used as a metric, as it is
calculated using true negative predictions. The other metrics
are not affected by true negative predictions, so we use them
as the metrics for binary classification tasks in this work.

2) Instance-based queryability: The second method eval-
uates the capability of the map to detect and retrieve all
matching objects for the query. Each instance is predicted to
match or not match the query; therefore, this measures the
coverage of matches within an object rather than over the
whole map.

The method consists of the following steps:
i) Given M, Q, and ground truth instance segmentation

I, each map m ∈ M is queried with the each query
q ∈ Q, each query yielding binary predicted mask ŷq .

ii) For each object instance i ∈ I, the corresponding voxels
îi,q ⊂ ŷq are selected from the predicted map.

iii) If the majority of the voxels in î are true, the prediction
ŷi,q is true, otherwise false. The predictions for each
instance for each query combined form the set of
predictions ŶI = {ŷi,q∀i ∈ I; q ∈ Q}.

iv) Similar to the previous method, the true map mq is
created. If the instance i on the true map answers the
query q, the true label yi,q = true, otherwise false.
The true labels for each instance for each query form
the set of all true labels denoted YI .

v) The binary classification metrics are calculated between
YI and ŶI .

From YI and ŶI , the same metrics presented for the voxel-
based queryability are computed for each instance.

B. Evaluating consistency

We further subdivide the consistency of the map into
two distinct aspects, intra-map consistency, and inter-map
consistency, and propose a method for evaluating each.

1) Intra-map consistency: Intra-map consistency captures
the similarity of embeddings across the voxels within a
map, sharing semantic meaning. The hypothesis is that
embeddings sharing semantic meaning are clustered together
in the latent space to allow the separability of different
concepts. While each object instance is in some sense unique,



a consistent set of embeddings represents an abstract base
class to which the instances belong.

The method consists of the following steps:
i) Given a map m, and semantic label l, El is the set

of embeddings corresponding to voxels in the map m
where the ground truth semantic label is l, and Em is
the set of all embeddings in the map m. We form a set
of tuples T = {(El, Em)∀m ∈ M; l ∈ L}, where L is a
closed-set semantic label vocabolary. For computational
efficiency and to no considerable change in results, in
practice, the sets El and Em are subsampled. We use a
subsampling ratio of 0.1 in this work.

ii) The average absolute deviation dml is calculated for El,
and dmm for Em, for each tuple t ∈ T . We use the mean of
the embeddings as the central point and cosine distance
as the deviation metric, which is consistent with the use
of cosine distance loss for CLIP.

iii) The intra-map consistency ratio cml =
dm
l

dm
m

is computed
for each tuple t ∈ T , with label l in map m. This ratio
represents the distinguishability of the class compared
to the map average.

2) Inter-map consistency: Inter-map consistency captures
the similarity of voxels with the same semantic label across
different maps. The hypothesis is that embeddings within
the same label are closer to each other across maps than to
those with different labels with respect to a distance metric.
This would imply that the objects retain their distinctiveness
across maps, and therefore, the system generalizes better
across different environments.

The method consists of the following steps:
i) Given the set of tuples T , constructed according to

Section IV-B.1.
ii) For all pairs of tuples ((El,1, Em,1), (El,2, Em,2)), para-

metric Wasserstein 2-distance dw is calculated between
El,1 and El,2.

The Wasserstein p-distance is computationally heavy for
large sets of high-dimensional embeddings. For this reason,
given an n-dimensional embedding e ∈ Rn, we approximate
the set of embeddings E with an n-dimensional normal
distribution N (µ, P ). This allows us to have a closed-form
solution for the Wasserstein 2-distance.

V. EXPERIMENTS

The two main questions the benchmark aims to answer
with the experiments are:

1) How queryable state-of-the-art visual-language maps
are?

2) How consistent are their visual-language embeddings
within and across maps?

To answer these questions, we evaluated two state-of-the-
art methods, VLMaps [5] and OpenScene [8], in a series of
experiments.

A. Data set

In the evaluation, the same sequences from the same data
set, Matterport3D [9], and the same set of 42 labels L

that are used in the original work of VLMaps. The names
of the labels form the query set Q, used in the following
experiments.

Based on the ground truth semantics, instances used as
ground truth were segmented using a region growing algo-
rithm [14]. Each voxel is initialized as a seed cluster; then,
region growing steps are performed, where the labels of all
neighboring clusters are compared. If the labels are the same,
the clusters are joined. Otherwise, they are not. This step is
iterated until no more clusters can be joined or a maximum
iteration limit is reached.

B. Parametrization of the methods

The VLMaps map was created using the new 3D mapping
method available at the repository of the original authors
[15], where the central idea is the same, except the problems
of aggregating the embeddings along the z-axis are avoided.
All of the parameters were the default used by the original
authors.

When queried, VLMaps creates a list of queries by setting
the original query and string ”other” into a list of phrases.
Then, the most similar label for each voxel is selected for
the set of queries. The binary mask is created by binary
comparison between the acquired labels and the query. The
binary mask is then dilated to encompass whole object
instances.

OpenScene maps were created using the proposed param-
eters from the original paper. We use the proposed 2D-3D
ensemble features. OpenScene does not provide a way to
query open-vocabulary binary masks. Because we use the
set of labels as the queries, the binary query mask is created
by comparing the equality of the voxel labels and the query.

Both methods used the same pre-trained LSeg and
OpenSeg encoder provided by the original authors. Both
encoders are based on the CLIP backbone; LSeg uses the
CLIP-ViT-B/32 backbone, whereas OpenSeg uses the CLIP-
ViT-L/14.

C. Results

1) Queryability: The results of the queryability bench-
mark are presented in Table I, where the F1-score, precision,
recall, and IoU of the method and encoder combinations are
presented for the voxel- and instance-based tests. Overall,
OpenScene performs better than VLMaps with both en-
coders, based on the higher F1-scores and IoUs. The higher
recall showcased by VLMaps with LSeg is the result of
the post-processing of the queries, where the query results
are dilated to encompass whole objects. The instance-based
results mostly align with the voxel-based results, except the
performance is slightly decreased in all metrics.

Therefore, these results show that both the mapping
method and choice of encoder matter in the map creation
process. They also indicate that the 3D structure of the
environment (included by OpenScene) contains information
that can be leveraged in addition to the purely image-based
creation of embeddings.



TABLE I: Results of the voxel- and instance-based queryability tests.

Voxel-based Instance-based
Method Encoder F1 Precision Recall IoU F1 Precision Recall IoU

OpenScene LSeg 0.623 0.617 0.630 0.457 0.258 0.252 0.264 0.149
OpenScene OpenSeg 0.580 0.575 0.587 0.412 0.261 0.255 0.267 0.150
VLMaps LSeg 0.498 0.401 0.661 0.332 0.257 0.205 0.347 0.147
VLMaps OpenSeg 0.393 0.287 0.625 0.246 0.202 0.144 0.342 0.112

(a) OpenScene with LSeg (b) OpenScene with OpenSeg (c) VLMaps with LSeg (d) VLMaps with OpenSeg

Fig. 2: The histograms present the distribution of Wasserstein distances of matching and non-matching labels in orange
and blue, respectively. The medians of the distributions are presented with a dashed line. The means were biased by large
outliers in OpenScene, preventing their use in visualization.

Fig. 3: The intra-map consistency ratios of the methods
as histograms, with a kernel density estimation, which is
smoothed with a Gaussian kernel. The mean of the distribu-
tion is depicted with a vertical line of corresponding color.

Additionally, we qualitatively demonstrate the capability
of the benchmark to process open-vocabulary queries. We
use the VLMaps’ binary masking method without prompt
engineering or dilation as the comparison method. From the
results presented in Figure 1, it can be seen that OpenScene
query results are less noisy, indicating that the features are
more distinctive. LSeg yields the objects more accurately,
but the more abstract results, such as ”striped” or ”relax”,
produce no results. OpenScene is more sensitive, finding
solutions to abstract queries but yielding many false positive
results.

2) Consistency:
a) The intra-map consistency: The results are presented

in Figure 3, in which the intra-map consistency ratios of
the methods are illustrated with histograms. Additionally,
the means of data are shown with dashed lines. Notably,
the ordering of the methods according to their instra-map
consistency is the same as in the queryability experiment pre-
sented in Section V-C.1. OpenScene has better consistency
between the labels with each encoder, which is indicated
by the lower means of the distributions. This indicates that
OpenScene can cluster the embeddings of labels better using
the ensemble features. VLMaps with OpenSeg has a long tail
that continues beyond the figure, with several outliers.

b) The inter-map consistency: In Figure 2, the Wasser-
stein distances between matching, i.e., the label is the same,

and non-matching sets of embeddings across all maps are
shown. The medians of the data are shown with dashed
lines. The ratio between the medians of matching and non-
matching labels suggests that OpenScene separates the labels
better than VLMaps, and LSeg separates them better than
OpenSeg. The ratio of medians of OpenScene with LSeg is
9.21, OpenScene with OpenSeg is 3.67, VLMaps with LSeg
1.65, and VLMaps with OpenSeg 1.24, which is once again
the exact ordering previously observed in Sections V-C.1 and
V-C.2.a.

While the shapes of distributions are similar, OpenScene
has much larger distances on average, even with matching
labels. This results from the fact that the distilled features
of OpenSeg are of a larger magnitude than the image
features of both VLMaps and OpenScene image features. For
example, the average norm of all OpenScene with OpenSeg
embeddings in the map of the first sequence is 13.68 times
larger than the average norm of all VLMaps with OpenSeg
embeddings in the same map, and the maximum being 57.97
times larger than the maximum VLMaps feature.

VI. CONCLUSION

In this work, we present a method for evaluating the
quality of visual-language maps. To demonstrate our method,
we evaluate two state-of-the-art methods, VLMaps and
OpenScene, using two visual-language encoders, LSeg and
OpenSeg. We find that OpenScene outperforms VLMaps
with both encoders, and LSeg outperforms OpenSeg with
both methods.

While we were limited in our quantitative evaluation of
closed vocabulary, all the proposed metrics can be extended
to open vocabulary. A data set providing ground truth open-
vocabulary semantics is direly needed. This would allow
extending the evaluation to address the breadth of the vocab-
ulary adequately. With the current open-vocabulary methods
evaluated using zero-shot but closed-vocabulary context, the
real progress in this aspect is currently unknown. This opens
interesting research possibilities to capture the true promise
of the VLMs.
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