A New Rejection Sampling Approach to k-means ++ with Improved Tradeoffs

Anonymous Authors'

Abstract

The k-means++ seeding algorithm (Arthur & Vas-
silvitskii, 2007) is widely used in practice for the
k-means clustering problem where the goal is to
cluster a dataset X C R into k clusters. The pop-
ularity of this algorithm is due to its simplicity and
provable guarantee of being O(log k) competitive
with the optimal solution in expectation. However,
its running time is O(|X'|kd), making it expen-
sive for large datasets. In this work, we present
a simple and effective rejection sampling based
approach for speeding up k-means++. Our first
method runs in time O(nnz(X) + Sk2d) while
still being O(log k) competitive in expectation.
Here, (5 is a parameter which is the ratio of the
variance of the dataset to the optimal k-means
cost in expectation and O hides logarithmic fac-
tors in k and | X’|. Our second method presents a
new trade-off between computational cost and
solution quality. It incurs an additional scale-
invariant factor of &£~("/) Var(X) in addition
to the O(log k) guarantee of k-means++ improv-
ing upon the result of (Bachem et al., 2016a) who
get an additional factor of i ~! Var(X') while still
running in time O (nnz(X') +mk2d). We perform
extensive empirical evaluations to validate our the-
oretical results and to show the effectiveness of
our approach on real datasets.

1. Introduction

Data clustering has numerous applications in data process-
ing and is one of the classic problems in unsupervised ma-
chine learning. Its formulation as the k-means problem is
defined as: given a data set X C R? and a positive integer
k representing the number of clusters into which the dataset
is to be partitioned, find a set C' C R4 of k centers such that

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

the following objective or cost function is minimized :

— : 2
A(Xx,C) ._Zgggux e

reX

The set C implicitly defines a partition of X based on the
closest center from C'. A set of centers which achieve the
minimum k-means cost is denoted by OPTy, = {c{,...,c}}.
We shall be using the shorthand Ay (X') :== A(X,0PTg) to
refer to the optimal k-means cost.

Background on the k-means problem. On the hardness
front, solving the k-means problem exactly is known to be
NP-hard (Dasgupta, 2008), even when the data points are
restricted to lie in a plane (Mahajan et al., 2009). Moreover,
there exists a constant ¢ > 1 such that it is NP-hard to
solve the c-approximate version of k-means where we are
allowed to output cluster centers C' such that A(X,C) <
cAR(X) (Awasthi et al., 2015; Lee et al., 2017; Cohen-
Addad & C.S.,2019) . On the algorithmic front, a significant
amount of effort has been put into designing algorithms for
k-means that have strong theoretical guarantees. These
include, for example, the constant factor approximation
results of (Jain & Vazirani, 2001; Kanungo et al., 2002;
Ahmadian et al., 2020; Cohen-Addad et al., 2022) and the
(1 +) approximation schemes of (Kumar et al., 2010;
Jaiswal et al., 2014; 2015; Cohen-Addad, 2018; Friggstad
et al., 2019; Cohen-Addad et al., 2019; Bhattacharya et al.,
2020) which have exponential dependence on one or more of
e~ 1 k or d. While these works provide important insights
into the structure of the k-means problem, they are seldom
used in practice due to their slow speed. Indeed, one of the
most popular heuristics used in practice (Wu et al., 2008) is
Lloyd’s iterations (Lloyd, 1982), also referred to as the k-
means method. It starts off with an initial set of centers ! and
iteratively refines the solution. This hill-climbing approach
may get stuck in local minima and provide arbitrarily bad
clusterings even for fixed n and k& (Dasgupta, 2003; Har-
Peled & Sadri, 2005; Arthur & Vassilvitskii, 2006a;b).

k-means ++ and DZ?-sampling. Usually, Lloyd’s itera-
tions are preceded by the k-means ++ seeding introduced in
(Arthur & Vassilvitskii, 2007). Even though the k-means++
algorithm is the Lloyd’s iterations preceded by k-means++

'"This is commonly known as seeding. A simple seeding
method is to arbitrarily pick k points from X'.

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

seeding, it is common to refer to the seeding procedure as
k-means++. We follow this in the remaining discussion. k-
means ++ is a fast sampling-based approach. Starting with
arandomly chosen center S = {c; }, anew point x € X is
chosen as the next center with probability proportional to
A({x}, S) in each iteration. This is commonly referred to as
D?-sampling. The centers generated by this seeding method
are guaranteed to be O(log k) competitive with the optimal
solution in expectation. Thus, k-means ++ provides the
best of both worlds : theory and practice and unsurprisingly,
a lot of work has been done on it. This includes extend-
ing it to the distributed setting (Bahmani et al., 2012) and
the streaming setting (Ailon et al., 2009; Ackermann et al.,
2012). Furthermore, several results on coreset constructions
2 are inspired by or rely on the theoretical guarantees of k-
means ++. Recently, it was shown that appending k-means
++ with a sufficiently large number of local search steps
(Lattanzi & Sohler, 2019; Choo et al., 2020) can lead to
O(1) competitive solutions.

A downside of k-means ++ is that its © (nkd) computational
complexity becomes impractical on large datasets. Various
approaches (Bachem et al., 2016a;b; Cohen-Addad et al.,
2020; Charikar et al., 2023) have been presented to speed up
k-means ++ with varying trade-offs, and our work also falls
into this category. A detailed discussion about the position
of our approach in the literature is presented in Section 2.3.
We also include Table 1 as a summary for reference.

2. Our Results

In this section, we present a high level discussion of our
results, contributions and their significance.

Improved tradeoffs. Our main technical contribution is a
novel simple yet fast algorithm based on rejection sampling
with an improved trade-off between the computational cost
and solution quality for k-means ++ in the Euclidean metric.
A description is given in Algorithm 1. We state our result
formally below.

Theorem 2.1. (Main Theorem) Let m € N be a parameter
and k € N be the number of clusters. Let X C R be any
dataset of n points and S be the output of RS-k-means++
(X, k,m') where m' = ecm/Ink for some constant ¢ > 1.
Then the following guarantee holds :

6k

28(X)

Ay (X)

Here B(X) * is a parameter such that E[3(X)] = 222?8

Moreover; the computational cost of the algorithm includes

2See, for example (Bachem et al., 2017a; Feldman, 2020) and
the extensive references cited therein.

3As can be seen from the description, the value of B(X') is not
needed to be known by our algorithm

a single-time preprocessing cost of O(nnz(X)) *, with the
cost of performing a single clustering being O(mk?dlogk).

To the best of our knowledge, such trade-offs were not
known before this work. The approximation guarantee can
be seen to be composed of two terms. The first term is
the standard O(log k) guarantee of k-means ++, while the
second term can be thought of as an additive, scale-invariant
term representing the variance of the dataset. Note that
as m grows, the second term diminishes rapidly. Indeed,
this exponentially decreasing dependence of k—("/5(X))
improves on a similar result by (Bachem et al., 2016a) who
instead get a linearly decreasing dependence of O(1/m) ,
although through a significantly different approach.

Correct number of iterations. Whenever we have such
trade-offs, a natural question to ask is : for which value of
m can we get O(log k) competitive solutions like those of

Ap(X)
(Bachem et al., 2016a)’s algorithm. But this means that we
would some how need to get an estimate for A (X"), which
involves solving the k-means problem itself ! Fortunately,
Algorithm 1 can “discover” the value of 5(X) as it executes.
We state this as follows :

Theorem 2.2. Let € € (0,1) and k € N be the number of
clusters. Let X C R? be any dataset of n points and S be
the output of RS-k-means++ (X, k, 00). Then the following
guarantee holds :

k-means ++ ? For example, we require m = () (Al(X)> in

E[A(X, S)] < 8(Ink + 2) Ag(X)

Moreover, the computational cost of the algorithm includes
a single-time preprocessing cost of O(nnz(X)) with the
cost of performing a single clustering being bounded by
O(B(X)k*dlog(k/€)) with probability atleast 1 — €. Here,
B(X) is a parameter such that E[5(X)] = %.
Experimental results. We evaluate our algorithms experi-
mentally on several data sets as described in Section 5.

2.1. Overview of Our Techniques

Algorithm. Our main algorithm is outlined in Algo-
rithm 1. It consists of a light-weight pre-processing step
followed by choosing new centers according to the pro-
cedure D?-sample. This procedure consists of two parts :
the first part is a rejection sampling loop, which generates
samples distributed according to the D? distribution using
samples generated from a specific distribution which is easy
to sample from, being setup during the pre-processing it-
self. In case no sample is generated in m iterations, the

*nnz(X) represents the number of non zero entries in the
dataset X. When X is sparse, this can be much smaller than
nd.

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

second part consists of choosing the next center uniformly
at random.

Proof intuition. To analyze the expected solution quality of
RS-k-means++, we study a variant of k-means++ which we
call 6-k-means++ . In this variant , instead of sampling the
next center from the D? distribution p(z) = AA((;’,?), we
sample from a different distribution defined by

Az, S)

, _ 1

The parameter § can be thought of as representing the prob-
ability that sampled = False after the repeat loop is exe-
cuted. If this event happens, we choose a center uniformly
at random. Consider the case when 6 = 0 : this means
that we get O(log k) competitive solutions since we sample
exactly from the D? distribution. Now consider the case
when 6 = 1. This corresponds to choosing all centers uni-
formly at random. It can be seen > that in this case, we
have E[A(X, S)] < 2A1(X). So, we expect that 6 € (0, 1)
leads to a trade-off between these two terms. The technical
analysis of error propagation due to the use of a slightly
perturbed distribution may be of independent interest.

Algorithm 1 RS-k-means++ (X, k, m)
Input : dataset X C R?, number of clusters k& € N and the
upper bound on number of iterations m € N
Output: S ={c1,...,cx} C X
1: preprocess(X)
2: Choose ¢; € X uniformly at random and set S < {c; }
3: forie{2,...,k} do
4 ¢; + D%-sample(X, S, m)
5: S+ SuU {C,}
6
7

: end for
: return S

Procedure 2 preprocess(X)

Input : dataset X' C R
Ensure : X is centered

1: Compute the mean p(X) of the dataset X’ and perform
x4 x — u(X) forevery x € X
2: Setup the sample and query access data structure to

enable sampling from the distribution Dy (z) = ||‘|;‘||;

2.2. Advantages of our approach

Fast data updates. Rejection sampling essentially in-
volves converting samples from a distribution which is

3The cost considering all centers is upper bounded by the cost
considering only the first center. Since it is chosen uniformly at
random , we can use Lemma 3.1 of (Arthur & Vassilvitskii, 2007).

Procedure 3 D?-sample(X, S, m)

Input : dataset X' C R4, currently chosen centers S C X
and upper bound on number of iterations m € N
Output : next center c € X

1: iter < 0 and sampled < False

2: repeat

3: iter <~ iter+1

4 r~|[0,1]

5: Choose x € &' with probability JrlHlerl”
6: Compute p(z) = %%

7. ifr < p(z) then

8: Set c to be x and sampled = True

9: endif

10: until sampled = True or iter > m
11: if sampled = False then

12: Choose ¢ € X uniformly at random
13: end if

14: return c

“easy to sample from” to a required distribution. The sin-
gle time pre-processing sets up a simple binary tree data
structure © for sampling from an appropriate distribution.
This structure supports addition and update of a data point
in O(log |X|) time while taking up only O(nnz(X')) addi-
tional space. The details are given in Section A.2.

Parallel setting. The simplicity of our approach extends
easily to parallel and distributed settings. We briefly discuss
implementing the procedure D?-sample in such settings.
We assume that the dataset X’ is on a single machine which
has M cores. Suppose that the probability that a sample
is output in a single round of the repeat loop is p. Recall
that we have p > ﬁT’Z. The expected number of rounds
that one must wait for a sample to be generated is atmost
2A1/Ay. Also notice that each round is independent of
other rounds. So we can utilize all M cores to perform re-
jection sampling until one of them outputs a sample. Hence,
the probability that a sample is generated in a round now
becomes 1 — (1 — p)™ > 1 — e~ PM. Hence the num-

. pM
ber of rounds needed to get a sample is atmost —— in
expectation, which decreases drastically as M increases.

2.3. Comparison with Related Work

In this section we compare our results for k-means ++ with
other fast implementations having theoretical guarantees.

MCMC methods. The line of work (Bachem et al.,
2016b;a) uses the Monte-Carlo-Markov-Chain based
Metropolis-Hastings algorithm (Hastings, 1970) to approx-

%We were inspired by (Tang, 2019) which introduced a ran-
domized linear algebra based framework for efficient simulation
of quantum machine learning algorithms.

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

imate the D?-distribution in k-means ++. This involves
setting up a markov chain of length m to generate samples
from the D? distribution p(-) using samples from a proposal
distribution ¢(-). (Bachem et al., 2016b) used ¢(-) as the
uniform distribution. To bound the solution quality of their
method, they introduce the following parameters :

Az, p(X))
A1(X)

(X) =
a(X) max

B(X) =
and show that a(X) € O(log®n) and B(X) € O(k) un-
der some assumptions on the data distribution that is nat-
ural, but NP-hard to check. By doing so, they bound the
required chain length m € O(«(X)B(X)logkB(X)) €
O(k*dlog® nlog k) to achieve O(log k) competitive solu-
tions. This was improved upon by (Bachem et al., 2016a)
by using a more suitable proposal distribution which needs
O(nd) pre-computation time. By doing so, they get rid
of dependence on a(X) while showing a tradeoff between
computational cost and approximation guarantee (see Table
1) without any data assumptions. They incur an additional
O(1/m)A+(X) error for a runtime € O(mk?dlog k). Our
rejection sampling approach has the advantage of being inde-
pendent of a(X'), providing a stronger guarantee with only

k= (5t) A4 (X) additive error and being easy to extend
to the parallel setting. On the other hand, MCMC methods
are generally viewed to be inherently sequential ’.

Tree embeddings and ANNS. (Cohen-Addad et al., 2020)
introduced an algorithmically sophisticated approach to
speeding up k-means ++, focusing on the large k regime.
They use MultiTree embeddings with O(d) expected dis-
tance distortions to update the D? distribution efficiently.
They then use locality-sensitive hashing-based data struc-
tures for approximate nearest neighbor search to speed up
their algorithm. This adds a significant layer of complex-
ity in implementation. Their runtime also depends on the
aspect ratio 7, which may be quite large in case there are
points in the dataset which are very close to each other. It
has better dependence on k but additional n®), logo(l) n
factors and cubic dependence on d 8. Moreover, their algo-
rithm is advantageous only for large k ~ 103. Note that
they also use rejection sampling to take into account the
distance distortions, which is different from our use of rejec-
tion sampling. Our approach provides improved trade-offs
while being simple.

1-D projections. (Charikar et al., 2023) proposed an
efficient method to perform the k-means ++ seeding in 1

"Note that the pre-processing step of (Bachem et al., 2016a) is
easily parallelized.

8(Cohen-Addad et al., 2020) recommend using dimension re-
duction techniques such as the Johnson-Lindenstrauss transforma-
tion (Johnson & Lindenstrauss, 1984), which adds to the complex-
ity of their approach.

dimension in O(nlogn) time with high probability. For
a general d-dimensional dataset, they first project it on a
randomly chosen d- dimensional gaussian vector followed
by an application of the 1-D method. This allows them
to get an extremely fast runtime of O(nnz(X) + nlogn).
However, they only get O(k*log k) competitive solutions,
which shows up in their experimental evaluations as well.
They show how to get O(log k) competitive solutions by
using coresets, but end up with an additional high degree
O(k5dlog klog(klogk)) ° dependence. This may be re-
strictive even for moderate values of %, while our algorithm
only has O(k?) dependence.

Other related works. (Bachem et al., 2017b) showed simi-
lar trade-offs for the k-means || algorithm of (Bahmani et al.,
2012) in the distributed setting. They also get an additive
scale-invariant factor in the approximation guarantee which
diminishes with increase in the number of rounds and the
oversampling factor of k-means ||. In contrast, we present
a new rejection sampling based algorithm for k-means ++
with improved trade-offs. More recently, (Jaiswal & Shah,
2024) proposed an algorithm for performing the k-means
++ seeding in O(nd + 1?k?d) by using the framework of
(Tang, 2019) through a data structure similar to the one used
by us in the pre-processing step.

3. Preliminaries

For any two points p,q C R, ||p — ¢|| denotes their Eu-
clidean distance. Throughout the paper, we denote the d di-
mensional dataset to be clustered by X C R? with |X| = n.
For a set of points P C R<, The number of non-zero ele-
ments in P is denoted by nnz(P). Note that when all points
in P are distinct, we have |P| < nnz(P). We define the

\ 2pep 12112

The k-means clustering cost of P with respect to a set of
centers C is denoted by :

norm of the set P to be the quantity | P|| =

A(P,C) = min ||p — ¢||?
(P.C)= 3 miglp—|
When either P or C'is a singleton set, we use expressions
like A(p, C) or A(P, c) instead of A({p}, C) or A(P, {c})
respectively. The D? distribution over P with respect to C
is denoted by D?(P, C') where the probability of a point

p € P being chosen is ﬁ‘((%g)).

over P defined as Dp(p) = % for each p € P. For a set
‘P and a probability distribution D over P, p ~ D denotes

Dp denotes the distribution

9(Charikar et al., 2023) denote the size of the coreset as s €
Q (572k’yd log(k'y)) where + is the approximation ratio of the
1-d method i.e, v € O(k*logk) . This is only required for the
theoretical guarantee of being O(log k) competitive to hold true.
The coreset size can be treated as a hyper-paramter for trade-off
between runtime and solution quality as well.

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Table 1. Comparison of computational complexity and approximation guarantee of various approaches to speed up k-means ++. Here, A
is the clustering cost for the centers returned by the algorithm and Ay, is the optimal k-means cost

APPROACH CoMmP. COMPLEXITY

APPROX. GUARANTEE

REMARKS

(Bachem et al., O (k3dlog? n log k)

2016b)

E[A] < 8(Ink + 2)Ag

The analysis only holds when the dataset
satisfies certain assumptions which are
NP-hard to check

(Bachem et al., O(nd) + O(mk?dlogk)

2016a)

E[A] < 8(Ink 4+ 2)A;, + 0 (1) Ay

m is the markov chain length used

Our O(nnz(X)) + O(mk?dlog k)

E[A] < 8(Ink+2)Ay +6k~ (/A A,

nnz(X') represents the input sparsity.
The bound on number of iterations
for rejection sampling is O(mlog k).
E[B] = Ay/A

(Cohen-Addad O (n(d + log n) log(nd)) +

E[A] < 87 3(Ink + 2) Ay,

e € (0,1) is a sufficiently small er-

et al., 2020) o (e 1kd31 1 O(e) ror factor for the LSH data structure
(E ogn(nlogn)) n is the aspect ratio ie, n =
maxy yex lz—vll
ming yex 12—yl
(Charikar etal., O(nnz(X)) + O(nlogn) E[A] < 51k*(Ink + 2) A nnz(X') represents the input sparsity.
2023) The exact constant is upper bounded by
81/24+/e ~ 50.3
(Charikaretal., O(nnz(X)) + O(nlogn) + E[A] <8(Ink+2)(1+¢e)Ag nnz(X') represents the input sparsity.
2023) O(e~2k%d log k log(k log k) The high polynomial factor in k is due

to coreset constructions

sampling a point p € P with probability D(p).

3.1. Data Dependent Parameter

The computation-cost vs. solution-quality trade-off of our
algorithm depends on a data-dependent parameter which
is bounded by B(X) := A1 (X)/Ak(X). Without any as-
sumptions on X, this parameter is unbounded (for example,
if the data set had only & points, then (X’) = oo, but as
(Bachem et al., 2016b) point out, what is the point of clus-
tering such a dataset if the solution is trivial ?). Indeed, if
we assume that X’ is generated from some probability distri-
bution over R<, this parameter becomes independent of |X'|,
as | X| grows larger (Pollard, 1981). Moreover (Bachem
et al., 2016b) showed that for a wide variety of commonly
used distributions'” 3(X') € O(k). In the experimental sec-
tion, we shall also see that on many practical datasets, this
parameter does not take on values which are prohibitively
large ''.

4. Technical Overview

In this section, we describe the techniques used in our ap-
proach. Due to space constraints, the complete proofs of the
results are deferred to the Appendix A, B. Instead, we try
to provide intuition for our theoretical results.

9These include the uni-variate and multivariate Gaussian, the
Exponential and the Laplace distributions along with their mixtures.
For the exact assumptions made on the dataset, see section 5 of
(Bachem et al., 2016b)

" Also see the estimated values this parameter for other datasets
in Table 1 of (Bachem et al., 2016b)

Given a dataset X C R and a set of already chosen centers
S C &, our goal is to obtain a sample from X according
to the D?(X,) distribution. The main ingredient of our
algorithm is a rejection sampling procedure which allows
us convert samples from Dy !? to a sample from D?(X, S).
Why choose the starting point as Dy ? Because there exists
a light-weight data structure that can efficiently generate
samples from Dy, which we describe next.

4.1. Preprocessing to sample from D »

Given X C R, consider the vector vy € RI*| given by
vy (x) = ||z||. We will use a (complete) binary tree data
structure to sample from Dy. This data structure is also
referred to as a sample and query access data structure. The
leaves of the binary tree correspond to the entries of vy
and store weight vy ()2 along with the sign of vy (). The
internal nodes also store a weight that is equal to the sum
of weights of its children. To sample from Dy, we traverse
the tree, choosing either to go left or right at each node with
probability proportional to the weight of its two children un-
til reaching the leaves. This data structure similarly supports
querying and updating the entries of vy. More details can
be found in the appendix. For now, we state the following :

Lemma 4.1. There exists a data structure that can be pre-
pared in O(nnz(X)) time and space, and enables generat-
ing a sample from D x as well as updating an entry of X in
O(log |X]) time.

2Recall that we defined Dx as the distribution over X’ with

12
Dx(w) = {3}z

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

4.2. Rejection Sampling

Now that we know how to sample from Dy, let us describe
the rejection sampling procedure.

Definition 4.2. Suppose D, D, define probability distribu-
tions over X'. The distribution D5 is said to T-oversample
D, for 7 > 0if Dy (z) < 7Dy(z) foreach z € X.

Let Dy, D5 be probability distributions over X’ such that D,
T-oversamples D1. Suppose we have a collection of samples
T1, T3, ... from the distribution Ds. Consider the following
strategy RejectionSample: iterate through samples {x;};

and terminate if a sample z; is accepted with probability
N — D)
plxi) = TDa(x3)"

It is not difficult to argue that an accepted sample comes
from the distribution D;. Moreover, for any € € (0,1) it
takes at most 7 In(1/¢) samples from D to accept a sample
with probability at least 1 — €. Note that strategy does not
need to know 7 in advance (indeed, computing 7 may be
non trivial as we shall see), but only requires the ability to
compute the quantity p(z;).

In the current form, our strategy does not have any control
over the number of samples from D» which it may need to
examine. However, a bound on the number of samples to be
examined can be used if we are content with sampling from
a slightly perturbed distribution. Suppose we have another
distribution D3 over X. This time we are allowed to use
samples coming from Dy and D3 and instead of a sample
from D, we are content with obtaining a sample generated
by a hybrid distribution D(z) = (1—0)D1(x)+0D3(x) for
some small enough ¢ € (0, 1). For this we can modify the
above strategy which we now call RejectionSample(m):
Iterate through m samples z1, . .., z,, from D5, terminate
if a sample z; is accepted with probability p(z;). If no
sample is accepted, terminate with a sample from Ds.

It can be shown that the failure probability diminishes
with increasing m. Indeed, we show that § < e~ m/T,

4.3. Application to RS-k-means++

Recall that our goal in k-means++ is to sample the cen-
ters from the D?(X, S) distribution, corresponding to D;
in the previous discussion. We present two methods, one
which samples the centers from the D? distribution and
another which samples from a slightly ‘perturbed’ distri-
bution D?(X,S) = (1 — §)D*(X, S) + dU[X]. This cor-
responds to D3(z) = ﬁ simply being the uniform dis-
tribution over X. We will use the RejectionSample and
RejectionSample(m) for these methods respectively. In
both cases we need to find a suitable distribution Dy over
X that T-oversamples D (for a suitable 7) and for which
we obtain samples efficiently.

Lemma4.3. Let S = {cy,...,ct} C X be chosen accord-

ing to the D? distribution (In particular, c1 is a uniformly
random point in X). Let D(+; c1) be the distribution over X
defined by

[]? + flea |12
X112 + X f[ea]

D(z;c1) =

Then D(x;ci) T-oversamples D?*(X,S) for T =
o IXIZ+| X er]|
A(X,5) -

Proof. The choice of this distribution is given by the sim-
ple observation that A(z,S) = mineeg ||z — ¢[|? <
lz — el < 2(||z]|* + ||c1]|?) where the final step uses
the Cauchy-Schwarz inequality. Multiplying both sides by

m gives the required result.]

How do we actually obtain samples from D,? We can
employ a simple technique: With probability %,
sample from Dy and with remaining probability, sample
from U[X]. A standard calculation shows that this indeed
gives the required distribution.

Lemma 4.4. There is an algorithm that produces a sample
from X according to the distribution D(x; ¢1) as defined in
Lemma 4.3. Moreover it takes O(log | X|) time after a one
time preprocessing time of O(nnz(X)).

It can be seen that for these distributions,
RejectionSample is equivalent to Procedure 3 with
m = oo. We then obtain the following:

Lemma 4.5. Let ¢ € (0,1) and X C R? be any dataset
of n points and S = {c1,...,¢t} C X such that ¢;
is a uniformly random point in X. Then Procedure 3
outputs a sample ¢ € X according to the distribution
D%*(X,S). Moreover; the computational cost of the algo-
rithm is bounded by O(B(X)- (td+log | X|)-log (1/€)) with
probability atleast 1 — €. Here, §(X) is a parameter such

that E[3(X)] < 2153

We can apply this D? sampling technique k times to
obtain the centers according to k-means++ . This is
what RS-k-means++(X, k, 00) does and it can be seen that
Theorem 2.2 follows from Lemma 4.5; in particular the
8(log k + 2) approximation guarantee of the sampled cen-
ters follows from the k-means++ approximation guarantee
by (Arthur & Vassilvitskii, 2007).

In our second approach, we replace RejectionSample
by RejectionSample(m) which only repeats the rejec-
tion sampling loop m times for a suitable choice of
m. In particular, notice that Procedure 3 is essentially
RejectionSample(m) for D; = D?*(X,S), D3 being
the uniform distribution over X and D5 as in Lemma 4.3.
This gives us the following result which is analogous to
Lemma 4.5:

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Lemma 4.6. Ler m € N be a parameter, X C R? be
any dataset of n points and S = {c1,...,¢c;} C X such
that cy1 is a uniformly random point in X. Then Proce-
dure 3 with input (X, S, mlogt) outputs a sample c € X
according to the distribution (1 — §)- D*(X,S) + §-U[X]
for § < e=™/B(X) Moreover, the computational cost of the
algorithm is bounded by O(m- (td + log |X|)-logt) with
probability atleast 1 — €. Here, (X)) is a parameter such

that E[B(X)] < ﬁigf;g.

Again we can apply this sampling technique & times to
obtain k centers and get towards Theorem 2.1. However,
unlike Theorem 2.2, the approximation guarantee no longer
follows directly from (Arthur & Vassilvitskii, 2007) be-
cause this sampling is from a ‘perturbed’ distribution from
D?%(X, S). We consider this problem in the next section.

4.4. Analysis of §-k-means++

In order to analyze the solution quality of RS-k-means++,
we examine an abstract variant of k-means++ which we
call 6-k-means++ . Instead of sampling from the D2-
distribution as in k-means++ , we sample from a distribution
which is a weighted average of the D?-distribution and the
uniform distribution with weights (1 — §) and § respectively.
We show the following bound on the quality of solutions
produced by this variant :

Algorithm 4 §-k-means++(X, k,)

Input : dataset X C R?, number of clusters k¥ € N and
parameter § € (0, 1)
Output : S = {cy, ..

.,Ck}CX

1: Choose ¢; € X uniformly at random and set S < {¢; }
2: fort € {2,...,k} do

3: Choseapointz € X with prob. (1—4§) ﬁ((;’f;)) +6 ﬁ
4 gz, S+ SU{x}

5: end for

6: return S

Theorem 4.7. Let X C R? be any dataset which is to
be partitioned into k clusters. Let S be the set of centers
returned by 6-k-means++ (X, k, §) forany 6 € (0,1) . The
following approximation guarantee holds :

E[A(X, S)] < 8(Ink + 2)Ak(X) + %Alm

From the previous discussions, Theorem 2.1 follows from
Theorem 4.7 after substituting the expression for the failure
probability 9.

Our analysis uses the potential based approach introduced
by (Dasgupta, 2013). Since we sample from a different
distribution as compared to the standard k-means++ , its

analysis does not directly carry over to d-k-means++ . In-
deed, it is known that the k-means++ procedure is quite
sensitive to even small changes in the D? distribution. This
was first studied by (Bhattacharya et al., 2020) who were
able to show only a O(log2 k) guarantee when the centers
are sampled from a distribution which is e-close '* to the ex-
act D? distribution for a sufficiently small constant ¢ . This
result was recently improved upon by (Grunau et al., 2023)
who recover the tight O(log k) guarantee of k-means++ .
In their analysis, (Grunau et al., 2023) incur a very large
constant multiplicative blow-up ' in the approximation
guarantee and leave it as an open problem to show whether
the true approximation guarantee can be bounded by a mul-
tiplicative factor of 1 + O(e). In contrast, we show that
the approximation guarantee of J-k-means++ consists of an
additive scale invariant variance factor proportional to J in
addition to the standard guarantee of k-means++ with the
same constants, which requires a careful analysis of propa-
gation of the extra cost due to sampling from the uniform
distribution in case a sample from the exact D? distribution
is not generated by rejection sampling.

5. Experiments

In this section, we describe experimental validation of our
theoretical results. The five data sets used for the exper-
iments are described in Table 2. We also include an es-
timate of the data dependent parameter. This estimation
was done by computing the ratio of the variance of the
dataset with the clustering cost of the solution output by
RS-k-means++(+, -, 00) averaged over 20 iterations.

Observation 1. The data dependent parameter 3 does not
take on prohibitively large values. Indeed, for the data sets
used in our experiments, these values are quite reasonable.
This observation is in accordance with the experiments of
(Bachem et al., 2016b).

Table 2. Datasets used for experiments '®

X n k d 154

DIABETES 253,680 50 21 ~6.5
FOREST 581,010 7 54 ~ 3.3
PROTEIN 145,751 100 74 ~9.7
POKER 1,025,010 50 10 ~24
CANCER 94,730 100 117 ~1.9

Next, we compare the performance of the Monte Carlo

PLet p(+) and p’(-) represent probability mass functions over
X. pissaid to be e-close to pif |[p’(z) — p(x)| < ep(z)Vz € X.
"“The constant blow-up of (Grunau et al., 2023) is bounded

above by 5% 900~ G0 = — 90~ 148 x 10°

T (1_e-1/10)2 —

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Markov Chain based algorithm AF-k-MC? of (Bachem et al.,
2016a) using the prescribed chain length of m = 200
with our first algorithm i.e, RS-k-means++ without any
upper-bound on the number of rejection-sampling rounds.
We do so for each data set with various values of k €
{5, 10,20, 50,100}. The results are summarized in Table
3. The averages reported are over 20 iterations of each
algorithm.

Observation 2. RS-k-means++ provides solutions with
comparable quality to AF-k-MC2, while generally being
much faster. On datasets like POKER where the data size
is much larger than the number of clusters, we observe
a speedup of ~ 40 - 70x. Moreover, this version of
RS-k-means++ does not require choosing any extra parame-
ters as input.

Table 3. Comparison ~ of AF-k-MC?(-,-,200) with

RS-k-means++(+, -, 00)

RS-k-means++ AF-k-MC? TIME
CosT CosT RATIO

DATASET k

3.089 x 107 37.5
1.740 x 107 41.6
1.195 x 107 31.4
7.446 x 106 20.3
5.476 x 10° 13.5

DIABETES 5 2.847 x 107
10 1.768 x 107
20 1.174 x 107
50 7.401 x 106
100 5.515 x 10°

1.062 x 102 20.4
5.853 x 101 21.9
3.373 x 101t 16.6
1.846 x 10t 9.1
1.221 x 10'* 5.8

FOREST 5 1.041 x 10*2
10 5.941 x 10!
20 3.377 x 10!
50 1.834 x 10!
100 1.221 x 10!

1.085 x 10'2 25.0
5.882 x 10'Y 30.5
4.434 x 10** 23.2
3.059 x 10t 19.2
2.456 x 10** 11.9

PROTEIN 5 1.048 x 10*2
10 6.394 x 10!
20 4.388 x 10!
50 3.029 x 10!
100 2.417 x 10!

POKER 5 7.81 x 107 8.03 x 107 71.5
10 5.88 x 107 6.04 x 107 71.3
20 4.58 x 107 4.51 x 107 60.7
50 3.31 x 107 3.31 x 107 49.3
100 2.68 x 107 2.69 x 107 40.1
CANCER 5 1.21 x 107 1.23 x 107 19.1
10 1.07 x 107 1.06 x 107 34.1
20 8.83 x 10° 8.75 x 10° 47.3
50 7.02 x 10° 7.06 x 108 54.0
100 6.08 x 10° 6.06 x 10° 25.7

Next, we study the convergence properties of the version
of RS-k-means++ which allows for a computational cost vs.
solution quality trade-off. We plot the clustering cost of
the solutions output against the time taken to generate them
for various values of m € {5, 10, 20, 50, 75, 100, 125, 150}.
We compare the the solution quality with the baseline
k-means++ solution as well.

Observation 3. The solution quality of RS-k-means++ ap-
proaches that of k-means ++ rapidly with increase in the
upper bound for the number of rejection sampling rounds

allowed. This can be seen from the plots in Figure 5

More complete experimental details such as references for
the data sets, variance for the clustering costs and data points
for the plots can be found in Appendix C.

Figure 1. Trade-off plots showing the convergence of the solution
quality of RS-k-means++ with respect to the k-means ++ baseline

6. Conclusion

In this work, we present a simple rejection sampling ap-
proach to k-means ++ through the RS-k-means++ algo-
rithm. We show that our algorithm allows for new trade-offs
between the computational cost and solution quality of the
k-means ++ seeding procedure. It also has the advantage
of supporting fast data updates and being easy to adapt in
the parallel setting. The solution quality of RS-k-means++
is bounded through the analysis of a perturbed version of
the standard k-means ++ method. The effectiveness of our
approach is reflected in the experimental evaluations per-
formed. Interesting future directions include the possibility
of improving the dependence of the runtime - quality trade-
off on the data dependent parameter. We believe that similar
techniques could be adapted to the setting where the data
set is present in the disk instead of the main memory and
the goal is to minimize the number of disk accesses.

Impact Statement

Our work focuses on speeding-up the k-means ++ algorithm
for clustering. Therefore, we expect that our new algorithm
could have impact on domains in which clustering plays an
important role. A concrete impact in society is harder to
predict since this is mainly fundamental research.

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

References

Ackermann, M. R., Mirtens, M., Raupach, C., Swierkot,
K., Lammersen, C., and Sohler, C. Streamkm++: A
clustering algorithm for data streams. ACM J. Exp. Al-
gorithmics, 17, May 2012. ISSN 1084-6654. doi: 10.
1145/2133803.2184450. URL https://doi.org/
10.1145/2133803.2184450.

Ahmadian, S., Norouzi-Fard, A., Svensson, O., and Ward,
J. Better guarantees for k-means and euclidean k-
median by primal-dual algorithms. SIAM Journal on
Computing, 49(4):FOCS17-97-FOCS17-156, 2020. doi:
10.1137/18M1171321. URL https://doi.org/10.
1137/18M1171321.

Ailon, N., Jaiswal, R., and Monteleoni, C. Streaming
k-means approximation. In Bengio, Y., Schuur-
mans, D., Lafferty, J., Williams, C., and Culotta,
A. (eds.), Advances in Neural Information Process-
ing Systems, volume 22. Curran Associates, Inc.,
2009. URL https://proceedings.neurips.
cc/paper_files/paper/2009/file/

4£f16c818875d9fcb6867c7bdc89%be7eb-Paper.

pdf.

Arthur, D. and Vassilvitskii, S. Worst-case and smoothed
analysis of the icp algorithm, with an application to the
k-means method. In Symposium on Foundations of Com-
puter Science, 2006a.

Arthur, D. and Vassilvitskii, S. How slow is the k-means
method? In SCG ’06: Proceedings of the twenty-second
annual symposium on computational geometry. ACM
Press, 2006b.

Arthur, D. and Vassilvitskii, S. k-means++: the advantages
of careful seeding. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA °07, pp. 1027-1035, USA, 2007. Society for Indus-
trial and Applied Mathematics. ISBN 9780898716245.

Awasthi, P., Charikar, M., Krishnaswamy, R., and
Sinop, A. K. The Hardness of Approximation of
Euclidean k-Means. In Arge, L. and Pach, J. (eds.),
31st International Symposium on Computational
Geometry (SoCG 2015), volume 34 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pp.
754-767, Dagstuhl, Germany, 2015. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik. ISBN 978-3-939897-
83-5. doi: 10.4230/LIPIcs.SOCG.2015.754. URL
https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.SOCG.2015.754.

Bachem, O., Lucic, M., Hassani, H., and Krause, A.
Fast and provably good seedings for k-means. In
Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and

Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.,
2016a. URL https://proceedings.neurips.
cc/paper_files/paper/2016/file/
d67d8ab4f4cl0bf22aa353e27879133c—Paper.
pdf.

Bachem, O., Lucic, M., Hassani, S. H., and Krause,
A. Approximate k-means++ in sublinear time. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 30(1), Feb. 2016b. doi: 10.1609/aaai.v30il.
10259. URL https://ojs.aaai.org/index.
php/AAAT/article/view/10259.

Bachem, O., Lucic, M., and Krause, A. Practical core-
set constructions for machine learning. arXiv preprint
arXiv:1703.06476, 2017a.

Bachem, O., Lucic, M., and Krause, A. Distributed
and provably good seedings for k-means in constant
rounds. In Precup, D. and Teh, Y. W. (eds.), Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 292-300. PMLR, 06—-11 Aug 2017b.
URL https://proceedings.mlr.press/v70/
bacheml7b.html.

Bahmani, B., Moseley, B., Vattani, A., Kumar, R., and
Vassilvitskii, S. Scalable k-means++. Proc. VLDB
Endow., 5(7):622—633, March 2012. ISSN 2150-8097.
doi: 10.14778/2180912.2180915. URL https://doi.
org/10.14778/2180912.2180915.

Bhattacharya, A., Eube, J., Roglin, H., and Schmidt,
M. Noisy, Greedy and Not so Greedy k-Means++.
In Grandoni, F., Herman, G., and Sanders, P. (eds.),
28th Annual European Symposium on Algorithms
(ESA 2020), volume 173 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 18:1-
18:21, Dagstuhl, Germany, 2020. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik. ISBN 978-3-95977-
162-7. doi: 10.4230/LIPIcs.ESA.2020.18. URL
https://drops.dagstuhl.de/entities/
document /10.4230/LIPIcs.ESA.2020.18.

Blackard, J. Covertype [dataset], 1998. URL https://
doi.org/10.24432/C50K5N. UCI Machine Learn-
ing Repository.

Caruana, R. and Joachims, T. Kdd cup 2004: Protein homol-
ogy dataset. https://kdd.org/kdd-cup/view/
kdd-cup—-2004/Data, 2004. Accessed: 2025-01-29.

Cattral, R. and Oppacher, F. Poker hand [dataset],
2002. URL https://doi.org/10.24432/
C5KW38. UCI Machine Learning Repository.

https://doi.org/10.1145/2133803.2184450
https://doi.org/10.1145/2133803.2184450
https://doi.org/10.1137/18M1171321
https://doi.org/10.1137/18M1171321
https://proceedings.neurips.cc/paper_files/paper/2009/file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.754
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.754
https://proceedings.neurips.cc/paper_files/paper/2016/file/d67d8ab4f4c10bf22aa353e27879133c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d67d8ab4f4c10bf22aa353e27879133c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d67d8ab4f4c10bf22aa353e27879133c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d67d8ab4f4c10bf22aa353e27879133c-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/10259
https://ojs.aaai.org/index.php/AAAI/article/view/10259
https://proceedings.mlr.press/v70/bachem17b.html
https://proceedings.mlr.press/v70/bachem17b.html
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.14778/2180912.2180915
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.18
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.18
https://doi.org/10.24432/C50K5N
https://doi.org/10.24432/C50K5N
https://kdd.org/kdd-cup/view/kdd-cup-2004/Data
https://kdd.org/kdd-cup/view/kdd-cup-2004/Data
https://doi.org/10.24432/C5KW38
https://doi.org/10.24432/C5KW38

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Charikar, M., Henzinger, M., Hu, L., Votsch, M., and Wain-
garten, E. Simple, scalable and effective clustering via
one-dimensional projections. In Oh, A., Naumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 64618-64649. Curran Associates,
Inc., 2023.

Choo, D., Grunau, C., Portmann, J., and Rozhon, V.
k-means++: few more steps yield constant approx-
imation. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1909-1917. PMLR, 13-18 Jul
2020. URL https://proceedings.mlr.press/
v119/choo20a.html.

Cohen-Addad, V. A fast approximation scheme for low-
dimensional k-means. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 18, pp. 430440, USA, 2018. Society for Indus-
trial and Applied Mathematics. ISBN 9781611975031.

Cohen-Addad, V. and C.S., K. Inapproximability of cluster-
ing in Ip metrics. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 519—
539, 2019. doi: 10.1109/FOCS.2019.00040.

Cohen-Addad, V., Klein, P. N., and Mathieu, C. Local
search yields approximation schemes for k-means and
k-median in euclidean and minor-free metrics. SIAM
Journal on Computing, 48(2):644-667, 2019. doi: 10.
1137/17M112717X. URL https://doi.org/10.
1137/17M112717X.

Cohen-Addad, V., Lattanzi, S., Norouzi-Fard, A., Sohler,
C., and Svensson, O. Fast and accurate k-means++
via rejection sampling. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 16235-16245. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/

babcff88£f8be8cd4795bd6f0f8ccccabl-Paper.

pdf.

Cohen-Addad, V., Esfandiari, H., Mirrokni, V., and
Narayanan, S. Improved approximations for euclidean
k-means and k-median, via nested quasi-independent
sets. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2022, pp.
1621-1628, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450392648. doi: 10.
1145/3519935.3520011. URL https://doi.org/
10.1145/3519935.3520011.

10

Dasgupta, S. How fast is k-means? In Scholkopf, B. and
Warmuth, M. K. (eds.), COLT, volume 2777 of Lecture
Notes in Computer Science, pp. 735. Springer, 2003.

Dasgupta, S. The hardness of k-means clustering. Tech-
nical report, UC San Diego: Department of Com-
puter Science & Engineering, 2008. URL https:
//escholarship.org/uc/item/2gm3k10c.

Dasgupta, S., 2013. URL https://cseweb.ucsd.
edu/~dasgupta/291-geom/kmeans.pdf. CSE
291 : Geometric Algorithms, Lecture 3 - Algorithms for
k-means clustering.

Feldman, D. Introduction to core-sets: an updated survey.
arXiv preprint arXiv:2011.09384, 2020.

Friggstad, Z., Rezapour, M., and Salavatipour, M. R. Local
search yields a ptas for k-means in doubling metrics.
SIAM Journal on Computing, 48(2):452-480, 2019. doi:
10.1137/17M1127181. URL https://doi.org/10.
1137/17M1127181.

Grunau, C., C")ziidogru, A. A., and Rozhon, V. Noisy
k-Means++ Revisited. In Gogrtz, 1. L., Farach-
Colton, M., Puglisi, S. J.,, and Herman, G. (eds.),
31st Annual European Symposium on Algorithms
(ESA 2023), volume 274 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 55:1-
55:7, Dagstuhl, Germany, 2023. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik. ISBN 978-3-95977-
295-2. doi: 10.4230/LIPIcs.ESA.2023.55. URL
https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ESA.2023.55.

Har-Peled, S. and Sadri, B. How fast is the k-means method?
In SODA ’05: Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 877-885,
Philadelphia, PA, USA, 2005. Society for Industrial and
Applied Mathematics.

Hastings, W. K. Monte carlo sampling methods using
markov chains and their applications. Biometrika, 57
(1):97-109, 1970.

Jain, K. and Vazirani, V. V. Approximation algorithms for
metric facility location and k-median problems using the
primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274-296, March 2001. ISSN 0004-5411. doi:
10.1145/375827.375845. URL https://doi.org/
10.1145/375827.375845.

Jaiswal, R. and Shah, P. Quantum (inspired) d?-sampling
with applications, 2024. URL https://arxiv.org/
abs/2405.13351.

https://proceedings.mlr.press/v119/choo20a.html
https://proceedings.mlr.press/v119/choo20a.html
https://doi.org/10.1137/17M112717X
https://doi.org/10.1137/17M112717X
https://proceedings.neurips.cc/paper_files/paper/2020/file/babcff88f8be8c4795bd6f0f8cccca61-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/babcff88f8be8c4795bd6f0f8cccca61-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/babcff88f8be8c4795bd6f0f8cccca61-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/babcff88f8be8c4795bd6f0f8cccca61-Paper.pdf
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1145/3519935.3520011
https://escholarship.org/uc/item/2qm3k10c
https://escholarship.org/uc/item/2qm3k10c
https://cseweb.ucsd.edu/~dasgupta/291-geom/kmeans.pdf
https://cseweb.ucsd.edu/~dasgupta/291-geom/kmeans.pdf
https://doi.org/10.1137/17M1127181
https://doi.org/10.1137/17M1127181
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.55
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.55
https://doi.org/10.1145/375827.375845
https://doi.org/10.1145/375827.375845
https://arxiv.org/abs/2405.13351
https://arxiv.org/abs/2405.13351

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Jaiswal, R., Kumar, A., and Sen, S. A simple D2-
sampling based PTAS for k-means and other cluster-
ing problems. Algorithmica, 70(1):22-46, 2014. doi:
10.1007/s00453-013-9833-9.

Jaiswal, R., Kumar, M., and Yadav, P. Improved analysis
of D2-sampling based PTAS for k-means and other clus-
tering problems. Information Processing Letters, 115(2):
100-103, 2015. doi: 10.1016/}.ip1.2014.09.018.

Johnson, W. B. and Lindenstrauss, J. Extensions of lipschitz

maps into a hilbert space. Contemporary Mathematics,
26:189-206, 1984.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko,
C. D., Silverman, R., and Wu, A. Y. A local search
approximation algorithm for k-means clustering. In Pro-
ceedings of the Eighteenth Annual Symposium on Com-
putational Geometry, SCG *02, pp. 10-18, New York,
NY, USA, 2002. Association for Computing Machinery.
ISBN 1581135041. doi: 10.1145/513400.513402. URL
https://doi.org/10.1145/513400.513402.

Kelly, M., Longjohn, R., and Nottingham, K. Cdc dia-
betes health indicators dataset, 2021. URL https://
archive.ics.uci.edu. The UCI Machine Learn-
ing Repository.

Krishnapuram, B. Kdd cup 2008: Breast can-
cer dataset. https://kdd.org/kdd-cup/view/
kdd-cup-2008/Data, 2008. Accessed: 2025-01-29.

Kumar, A., Sabharwal, Y., and Sen, S. Linear-time ap-
proximation schemes for clustering problems in any di-
mensions. J. ACM, 57(2), February 2010. ISSN 0004-
5411. doi: 10.1145/1667053.1667054. URL https:
//doi.org/10.1145/1667053.1667054.

Lattanzi, S. and Sohler, C. A better k-means++ algorithm
via local search. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 3662-3671. PMLR, 09—
15 Jun 2019. URL https://proceedings.mlr.
press/v97/lattanzil9a.html.

Lee, E., Schmidt, M., and Wright, J. Improved and sim-
plified inapproximability for k-means. Inf. Process.
Lett., 120:40-43, 2017. doi: 10.1016/J.IPL.2016.11.
009. URL https://doi.org/10.1016/75.ipl.
2016.11.0009.

Lloyd, S. Least squares quantization in pcm. [EEE Transac-
tions on Information Theory, 28(2):129—-137, 1982. doi:
10.1109/TIT.1982.1056489.

11

Mahajan, M., Nimbhorkar, P., and Varadarajan, K. The
planar k-means problem is np-hard. In Proceedings of
the 3rd International Workshop on Algorithms and Com-
putation, WALCOM ’09, pp. 274-285, Berlin, Heidel-
berg, 2009. Springer-Verlag. ISBN 9783642002014. doi:
10.1007/978-3-642-00202-124. URL https://doi.
0rg/10.1007/978-3-642-00202-1_24.

Pollard, D. Strong consistency of k-means clustering. The
Annals of Statistics, 9(1):135-140, 1981. URL http:
//www. Jjstor.org/stable/2240876.

Tang, E. A quantum-inspired classical algorithm for
recommendation systems. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, pp. 217-228, New York,
NY, USA, 2019. Association for Computing Machin-
ery. ISBN 9781450367059. doi: 10.1145/3313276.
3316310. URL https://doi.org/10.1145/
3313276.3316310.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q.,
Motoda, H., McLachlan, G. J., Ng, A., Liu, B, Yu, P. S,
Zhou, Z.-H., Steinbach, M., Hand, D. J., and Steinberg,
D. Top 10 algorithms in data mining. Knowledge and
Information Systems, 14(1):1-37, 2008. doi: 10.1007/
s10115-007-0114-2.

https://doi.org/10.1145/513400.513402
https://archive.ics.uci.edu
https://archive.ics.uci.edu
https://kdd.org/kdd-cup/view/kdd-cup-2008/Data
https://kdd.org/kdd-cup/view/kdd-cup-2008/Data
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1145/1667053.1667054
https://proceedings.mlr.press/v97/lattanzi19a.html
https://proceedings.mlr.press/v97/lattanzi19a.html
https://doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1007/978-3-642-00202-1_24
https://doi.org/10.1007/978-3-642-00202-1_24
http://www.jstor.org/stable/2240876
http://www.jstor.org/stable/2240876
https://doi.org/10.1145/3313276.3316310
https://doi.org/10.1145/3313276.3316310

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Appendix
A. Rejection Sampling

Given the dataset X C R? and a set of already chosen centers S C X', our goal is to obtain a sample from X’ according to
— l=)?

the D?(X, S) distribution. Recall that we defined the distribution Dy over X by Dy (x) = 17z The main ingredient of
our algorithm is a rejection sampling procedure which allows us convert samples from Dy to a sample from D?(X, S).

We shall pre-process our dataset so that we can efficiently sample from D », and then convert samples from D to samples
from D?(X,S). Choosing the first center uniformly at random from X" and repeating this procedure for k¥ — 1 times is
precisely our algorithm for performing the k-means ++ seeding.

Definition A.1. Suppose D;, D, define probability distributions over X'. The distribution D5 is said to T-oversample D
for 7 > 0if Dy(z) < 7Dy(x) foreach z € X.

Algorithm 5 RejectionSample

Input: Samples generated from Do
Output: A sample generated from D,

1: sampled = False

2: repeat

33 x~Dy,r~|[0,1]

4: Compute p(z) = 7%2(3)

5: if r < p(x) then

6: output = and set sampled = True
7: endif

8: until sampled = True

Consider Algorithm 5 which takes samples generated from D5 as input and outputs a sample generated from D, .

Lemma A.2. Let Dy, Dy be probability distributions over X such that Dy T-oversamples D1. The expected number of
samples from Dy required by RejectionSample fo output a single sample from D1 is T. Moreover, for any € € (0,1) the
probability that more than T In % samples are required is atmost €.

Proof. Let T be the random variable denoting the number of rounds required for a sample to be output by Re jectionSample.
Let Output denote the event that a sample is output in a particular round. We have

Pr[Output] = Z Dy(x)p(x) = 7" Z Dy(z)=71""

zeX zeX

Given that a sample is generated, it is easy to see that it is distributed according to D;. It takes exactly ¢ rounds for a sample
to be generated if no sample is generated in the first ¢ — 1 iterations and a sample is generated in the last iteration. Hence,

Pr[T = #] = (Pr[-0Output])’ ' Pr[Output] = 7~ '(1 — 71!~}

which means that T is a geometric random variable with parameter 771, so that E[T] = 7. It is easy to see that 7" has
exponentially diminishing tails :

Pr[T > t] = Z 1Y T = (1) <7
j=t+1
from which the lemma follows. O

Remark A.3. Note that the algorithm does not require any estimate on the value of 7, computing which may be non-trivial.

7%2((”2) foreach z € X.

It only requires the ability to compute the ratio p(z) =

12

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

In the current form, Algorithm 5 does not have any control over the number of samples from D, which it may need to
examine. However, a bound on the number of samples to be examined can be used if we are content with sampling from a
slightly perturbed distribution. Suppose we have another distribution D3 over X. This time we are allowed to use samples
coming from Dy and D3 and instead of a sample from D, we are content with obtaining a sample generated by a hybrid
distribution D(z) = (1 — §)D1(x) + dD3(x) for some small enough § € (0, 1). For this we can modify Algorithm 5 to
Algorithm 6 as follows :

Algorithm 6 RejectionSample(m)

Input: Samples generated from Do, D3
Output: A sample 2 with probability D(z) = (1 —) Dy (z) + 6 D3(z) where § < e=™/7

sampled = False, iter =0
repeat
iter = iter +1
x~ Dy,r~[0,1]
Compute p(x) =
if r < p(z) then
output = and set sampled = True
end if
until sampled = True or iter > m
if sampled = False then
output z ~ D3
. end if

_—
N2 QPRI RPN

Lemma A.4. Let m > 0 be the upper bound on the number of rounds in RejectionSample. The output samples come
from a distribution D which can be expressed as D(z) = (1 — §)D1(z) + 6 D3(z) where § < e~ ™/,

Proof. A point is sampled from Ds if and only if no sample is generated in m rounds of rejection sampling. Hence, the
probability of sampling a point z € X is :

Pr[z ~ RejectionSample(m)]
= Pr[z|T < m]Pr[T < m]+ Pr[z|T > m|Pr[T > m]
= (1-=96)D1(z) + 6 D3(x)

where § = Pr[T > m] < e~/ from the proof of Lemma A.2. O

A.1. Application to RS-k-means++

Recall that our goal in k-means++ is to sample the centers from the distribution D?(X, S) over X given by D?(X, S) =
Dy(z) = AA((;?) In this work we present two methods, one which samples the centers from the D? distribution and
another which samples from a slightly ‘perturbed’ distribution D(x) = (1 — §)D;(x) + 6 D3(x) where D3(x) = ﬁ is
simply the uniform distribution over X'. We will use the RejectionSample and RejectionSample(m) for these methods
respectively. In both cases we need to find a suitable distribution Dy over X that T-oversamples D; (for a suitable 7) and
for which we have an efficient method to obtain samples.

Lemma A.5. Let S = {cy,...,c;} C X be chosen according to the D? distribution (In particular, c; is a uniformly random
point in X). Let Dy be the distribution over X defined by

el + flea]?
Do(z) =
(%) = Xy Al

Then Dy T-oversamples D*(X, S) for T = 2%.

13

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Proof.

A, §) = min o —c|* < [z — et < 2([}2]* + flen]]*)

where the final inequality is obtained via the Cauchy-Schwarz inequality. Multiplying both sides by m gives the
required result. O

An immediate issue is: how do we actually obtain samples from D5? We will deal with this issue in a bit; for now, assume
that we can efficiently obtain such samples after a preprocessing step.

With this, we can apply Algorithm 5 for D; being the required D?(X, S) distribution and D5 as in Lemma A.5. It can
be seen that for these distributions, Algorithm 5 is equivalent to Procedure3 where m = co. Thus Lemma A.2 gives the
following Corollary.

Corollary A.6. Lete € (0,1) and X C R? be any dataset of n points and S = {c1,...,c;} C X such that c, is a uniformly
random point in X. Assume that we can obtain a sample from the following distribution over X in O(log|X|) time:

[]” + flea |12
X112 + [fled]2

Dg(iﬁ) =

Then Procedure 3 outputs a sample ¢ € X according to the distribution D*(X, S). Moreover, the computational cost of the
algorithm is bounded by O(3(X)- (td + log | X|)- log (1/€)) with probability atleast 1 — €. Here, 3(X) is a parameter such

that E[B(X)] < 3154

Proof. By Lemma A.5 we know that Dy T-oversamples D? (X, S) for 7 = 2 ”X”ZJ(FLfgl)Cllﬁ <2 ”XHQAJ;I();”)‘CIHQ. So

[X% + [X[E[]|e1]
Ag(X)
- X1 + 12 3y Zen N2l
B Ag(X)
A2 4A(X)
Ap(X) Ap(X)

Efr] <2

where the last inequality follows from the fact that X is translated so that its centroid is at the origin.

Thus applying Lemma A.2 gives us the result for 3(X) = 7/4. O

We can apply this D? sampling technique % times to obtain the centers according to k-means++ . This is what
RS-k-means++(X, k,00) does and it can be seen that Theorem 2.2 follows from Corollary A.6; in particular the ap-
proximation guarantee of the sampled centers follows from (Arthur & Vassilvitskii, 2007).

In our second approach, we replace RejectionSample by RejectionSample(m) which only repeats the rejection
sampling loop m times for a suitable choice of m. In particular, notice that Procedure 3 is essentially Algorithm 6 for
Dy = D2(X ,S), D3 being the uniform distribution over X and D5 as in Lemma A.5.

This gives us the following corollary whose proof can be argued analogous to A.6:

Corollary A.7. Let m € N be a parameter; X C R? be any dataset of n points and S = {cy, ..., c;} C X such that c, is a
uniformly random point in X. Assume that we can obtain a sample from the following distribution over X in O(log |X|)
time:

el + fle|?
Do(z) =
2(%) = Xy AP

Then Procedure 3 with input (X, S, mlogt) outputs a sample ¢ € X according to the distribution (1 — 6)- D*(X,S) +
§-U[X] for § < e=™/BX) Moreover, the computational cost of the algorithm is bounded by O(m- (td + log|X|)-logt)

with probability at least 1 — e. Here, $(X) is a parameter such that E[3(X)] < 2;2;‘3

14

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Again we can apply this sampling technique % times to obtain k centers. Note that this sampling is from a ‘perturbed’
distribution from D?(X’, S), so the approximation guarantee no longer follows directly from (Arthur & Vassilvitskii, 2007).
However we analyse this in AppendixB to get the following:

Theorem A.8. Let X C R? be any dataset which is to be partitioned into k clusters. Let S be the set of centers returned by
d-k-means++(X, k,) for any 6 € (0,0.5) . The following approximation guarantee holds :

E[A(X,S)] < 8(Ink + 2)Ar(X) + %Al(w

which will finally prove Theorem 2.1 after substituting value of the failure probability 6.

In the following section we show how to obtain samples from Ds.

A.2. Sampling from D via a Preprocessed Data Structure

Given X C RY, consider the vector vy € RI*! given by vy (2) = ||z||. Define Dy (z) = % as a distribution over X'.
We will use a (complete) binary tree data structure to sample from Dy . The leaves of the binary tree correspond to the
entries of vy and store weight vy (z)? along with the sign of vy (). The internal nodes also store a weight that is equal to
the sum of weights of its children. To sample from D y, we traverse the tree, choosing either to go left or right at each node
with probability proportional to the weight of its two children until reaching the leaves. The binary tree similarly supports
querying and updating the entries of vy .

Jlv]|?
/ \
v(1)? +v(2)? v(3)% + v(4)?
N\ <N\
v(1)? v(2)? v(3)* v(4)*

sign(v(1)) sign(v(2)) sign(v(3)) sign(v(4))
Figure 2. Data structure for sampling from a vector v € R*

We state this formally following (Tang, 2019), in which such data structures, called sample and query access data structures
were introduced.

Lemma A.9. (Lemma 3.1 in (Tang, 2019)) There exists a data structure storing a vector v € R™ with v nonzero entries in
O(vlogn) space which supports the following operations:

* Reading and updating an entry of v in O(logn) time
e Finding ||v||? in O(1) time

* Generating an independent sample i € {1, ..., n} with probability E,LL&J)Q in O(logn) time.
j=1

Note that if n is not a perfect power of 2 then we can find a n’ € N which is a perfect power of 2 such that n’ < n < 2n'.
We can then set the remaining 2n’ — n data points to have zero norm and use this dataset instead to construct the complete
binary tree. Thus the following corollary is immediate.

Corollary A.10. There is a data structure that can be prepared in O(nnz(.)c')) time which enables generating a sample
from Dy in O(log |X]) time.
We will now show how to sample from D5 in O(log | X|) time by Procedure 7.

Lemma A.11. Procedure 7 produces a sample from X according to the distribution Dy as defined in Lemma A.5. Moreover
it takes O(log |X|) time after a one time preprocessing time of O(nnz(X)).

15

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Procedure 7 SampleDistribution
Input: Acenterc € X

Output: A sample according to the distribution Dy defined as Do(z) = %
1: Generate r ~ U0, 1]
. i x|
2007 < rp e ten .
3: Generate a sample x ~ Dy using the data structure from Section A.2
4: else
5: Generate a sample x ~ U[X]
6: end if
7: output x
Proof. The probability of a sampled point is as follows:
1]
Priz|=Pr|r < ————— | Prlx ~ Dy
o =P |7 < [l o] Pt~ Do
[l }
+Pr |:’I” > Pr[z ~ U[X]]
X0 + X fea]?
[Befs EllS | Xlllea | 1

= —+ —_—
VI + &l (1202 (X2 + [Xflea]|]

2osl + fler|2)
= = Dg(l‘
AT + el)

The time complexity follows from A.10. O

B. Analysis of §-k-means++

In order to analyze the solution quality of RS-k-means++, we examine an abstract variant of k-means++ which we call
d-k-means++ . Instead of sampling from the D?-distribution as in k-means++ , we sample from a distribution which is a
weighted average of the D?-distribution and the uniform distribution with weights (1 — §) and & respectively. We refer to
this distribution on X as DZ(X, S) for some set of centers S C X . When clear from context, we just use D3.

Algorithm 8 §-k-means++(X, k,)

Input : dataset X C R?, number of clusters k € N and parameter § € (0, 1)
Output: S ={c1,...,c,} C X

1: Choose ¢; € X uniformly at random and set S < {c;}
2: fort € {2,...,k}do

3: Chose a point z € X with prob. (1 — §) ﬁ((;’?) +6 ﬁ
4: Ct T

5 S+ Su{a}

6: end for

7: return S

The main objective of this section is to prove the following :
Theorem B.1. Let X C R? be any dataset which is to be partitioned into k clusters. Let S be the set of centers returned by
d-k-means++(X, k,d) for any § € (0,0.5) . The following approximation guarantee holds :

E[A(X, S)] < 8(Ink + 2)Ak(X) + f—f‘;m(;{)

Our analysis closely follows the potential based approach of (Dasgupta, 2013). Since we sample from a different distribution
as compared to the standard k-means++ , its analysis does not directly carry over to J-k-means++ . Indeed, it is known

16

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

that the k-means++ procedure is quite sensitive to even small changes in the D? distribution. This was first studied by
(Bhattacharya et al., 2020) who were able to show only a O(log2 k) guarantee when the centers are sampled from a
distribution which is e-close ! to the exact D? distribution for a sufficiently small constant & . This result was recently
improved upon by (Grunau et al., 2023) who recover the tight O(log k) guarantee of k-means++ . In their analysis, (Grunau
et al., 2023) incur a very large constant multiplicative blow-up '® in the approximation guarantee and leave it as an open
problem to show whether the true approximation guarantee can be bounded by a multiplicative factor of 1 + O(e). In
contrast, we show that the approximation guarantee of §-k-means++ consists of an additive scale invariant variance factor
proportional to § in addition to the standard guarantee of k-means++ with the same constants.

B.1. Some Useful Lemmas

In this section, we state some crucial lemmas that shall be helpful in the analysis. Throughout our work, the centroid of a set
of points P C R? is denoted by u(P) = |%\ > pep P
The following folklore lemma is analogous to the bias-variance decomposition in machine learning.

Lemma B.2. For any set of points P C R and any point z € R? (possibly not in P), the following holds :

A(P,z) = AP, u(P)) + [Pz — u(P)|”

This shows that the solution for the 1-means problem is the centroid of the data seti.e, Ay (P) = A(P, u(P)). The above
lemma can be easily used to show the following.

Lemma B.3. (Lemma 3.1 in (Arthur & Vassilvitskii, 2007)) For any set of points P C RY, if a point z € P is chosen
uniformly at random, then the following holds :

E[A(P, 2)] = 2A(P, u(P))

We now state some useful bounds on the probability that a point is chosen from the D? distribution with respect to some
centers S conditioned on it coming from a particular subset of points. For a point z € R? (possibly chosen randomly from
some probability distribution) and a set of points P C R%, we denote the event {z € P} by xp(2).

Lemma B.4. Let P C R be a set of points with Q C P being an arbitrary subset of P such that |Q| # 0. Let S C P be a
set of cluster centers. For any point z € Q and parameter 6 € (0, 1), the following hold :

A(z A
1 Prfe ~ Dilxo(s)] < AE 4 18, 1 80

Q =6 [Pl A(Q
Az A(z)A
2. Prfs ~ Dixo(2)] > A& — £ 18 2AE)

Here, A(+) denotes A(-, S) for simplicity.

Proof. The probability that a chosen point belongs to Q is

Pr[z ~ D3N xo(2)] = Z <(1 N 6)2((7?) * 6|713>

qeQ

AQ) | (9l

=(1-0)—= +d—=r

A(P) [P

Hence the required conditional probability is
(1-0) R + 0k
Prlz ~ Dj|xo(2)] = A

(Q) Q]
(1- 6)A(7,) + 5W

'"Let p(-) and p’(-) represent probability mass functions over X'. p’ is said to be e-close to p if [p’(z) — p(z)| < ep(x)Va € X.
£4—1
"®The constant blow-up of (Grunau et al., 2023) is bounded above by > ;% | 90fe™ 10 = ﬁ ~ 1.48 x 10°

17

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

For 1. we have :

Az Az
(1-0)2F +ok (1-0)RE +0
A A
(1-06)35 + o} (1-0)5
_AR) 8 1 AP
S A(Q) 1-6[PA(Q)
For 2. we have :
Az A(P
(-5 +H0m1 _ A [1+ 5 miac
A(Q Q QlA
IR R RRCAREEC
-1
:>A®)<1% 5IQMGU>
A(Q) 1-0|PIA(Q)
S A) (1_ g IQIA(P)>
T AQ) 1-0|PIA(Q)

where in the last step we used the fact that (1 4+ x)~* > 1 — z for any 2 > 0. This completes the proof of the lemma.

Recall that OPT), = {cj, ..

from Lemma B.2.

Next, we show a bound on the expected cost of a cluster C; of 0PT; when a point is added to the current set of clusters
from C; through the D? distribution. The following is analogous to Lemma 3.2 of (Arthur & Vassilvitskii, 2007) with an

additional factor depending on 4.

Lemma B.5. Let X C R? be any dataset. Suppose we have a set of already chosen cluster centers S and a new center z is
added to S from the set of points C; in the cluster corresponding to some c; € OPTy, through the D3 (X, S) distribution. The

following holds :

E[A(Ci, S U{z})IS, xe, (2)] < BA(Cs, u(Ci))

. ¢} } represented the optimal set of centers of the k-means problem for the dataset X. For a
center ¢; € OPTy, let us denote the set of all points in X closer to ¢; than any other center in OPTy, by C;. Note ¢} = u(C;)

5 ICil A
5 ||

A%, 5)

Proof. When the new center z is added, each point z € C contributes

Az, SU{z})

= min(||z — 2%,

Az, 5))

to the overall cost. The expected cost of the cluster C can hence be written as :

E[A(Ci, S U {2})]5, xc. (2)]

— Z Pr[z ~ D3|S, xe, (2)]

z€Cy zeC,

Z Az, SU{z})

<Y S me (o = 2/ Afa,)

z€eC;

3

z€C;

(r=5m 5e.5)

z€eC;

where in the last step we used item (i) of Lemma B.4. From Lemma 3.2 of (Arthur & Vassilvitskii, 2007), the first term is

> min(||z - z|*, Az, 5))

bounded above by 8A(C;, u(C;)). Let us focus on the second term. Noting that

Z min(|jz — 2%, A

z€eC;

18

ZAJCS

zeC;

(Ci7S)

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

the second term can be bounded above by the following :

z; (1—6|X|A(ci,5)> A 8) = 75 A 5)

from which the lemma follows. O

B.2. Main Analysis
Before getting into the proof, let us set up some notation.

Notation. Let ¢ € {1,. ...k} denote the number of centers already chosen by d-k-means++ . Let Sy := {c1,..., ¢} be the
set of centers after iteration ¢ . We say that a cluster C; of OPTy, is covered by S; if at least one of its centers is in C;. If not,
then it is uncovered. We denote

2{26{1,,k}CzﬂSt7é(Z)}, Ut:{l,,k’}\Ht

Similarly, the dataset X can be partitioned in two parts : ‘H; C X being the points belonging to covered clusters and
Uy = X'\'H; being the points belonging to uncovered clusters. Let W; = t — | H;| denote the number of wasted iterations
so far i.e, the number of iterations in which no new cluster was covered. Note that we always have |H;| < t and hence
|U;| > k — t. For any P C X, we use the notation A*(P) := A(P, .S;) for brevity.

The total cost can be decomposed as :

ALX) = AL (H,) + AN U)

We can use Lemma B.5 to bound the first term directly.
Lemma B.6. Foreacht € {1,..., k} the following holds :

26

E[A*(H,)] < 8AL(X) + T—521(%)
Proof.
k
E[A'(H,)] = E[Y | AY(C)] <) E[AY(C)]
1€ Hy i=1
0 t
< 8A(X) + T E[A(X)]
20
< . -
< 8Ak(X) + T —5A1(F)
Where in the last line we used Lemma B.3 and the fact that the first center is chosen uniformly at random from X'. O

Potential function. To bound the second term i.e, the cost of the uncovered clusters we use the potential function introduced
in (Dasgupta, 2013) :

Wi

g
T

AN (Uy)

Instead of paying the complete clustering cost A¥(X') at once, we make sure that at the end of iteration ¢, we have payed an
amount of atleast ¥, . Observe that when ¢ = k, we have W, = |U;| so the potential becomes A¥ (14, which is indeed the
total cost of the uncovered clusters returned by RS-k-means++. We now show how to bound the expected increase in the
potential i.e, ;1 — U;. To do this, we shall analyze the error propagation due to using the D? distribution instead of the
D? distribution on the way.

19

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Bounding the Increments. Suppose ¢ centers have been chosen. The next center ¢, is chosen which belongs to some
optimal cluster C;. We consider two cases : the first case is when ¢ € Uy i.e, a new cluster is covered and the the second case
is when ¢ € H, i.e, the center is chosen from an already covered cluster. We shall denote all the set of all random variables
after the end of iteration ¢ by JF;.

Lemma B.7. Foranyt € {1,...,k — 1}, the following holds :

E[\I/t+]_ - lIJt‘]:ta XU, (Z)]
20 i
<
~ 1—90max(1l,k—t—1)2

Ay (X)

PVOOf: When i € Ut, we have Wt+1 = Wt, Ht+1 = Ht @] {Z} and Ut+1 = Ut\{l} Thus,

At+1(ut+1) < Wt

Wi W
~ U -1

U1
We can use item (ii) of Lemma B.4 for getting a lower bound on the second term :
E[AY(C)|Fe, xo, (1)]
- st AtUy) 1—0 U AHU)? J

5 ALX) AY(C;)?
= (1_ 16At(ut)> 2 N,

Vi1 = (At(ut) - At(ci))

Where in the second step we used the fact that |C;| < || for each j € U;. We can use the cauchy-schwarz '° inequality to
simplify the last expression as follows :

U Y ANC)? 2 (U Y ANC) = |UA' (W)

jeU, jeU

This shows that
At Uy) 5 AlX)

U, 1-6 |U

E[AY(C))|Fe, xw, (6)] =
Now,

]E[\Ilt-'rl |~Ft7 XU, (7’)}

< |U:|Vt_ 1 (A" @) —EIAC) I, xu, (D))

Wi t A (Uy) g A'X)
< 1 (A (Uy) — U,| +175 |Ut| >
— g4 0 e Ata)

1=6 U] (|U] = 1)
Recall that W; < ¢ and |Uy| > k — t. So for t < k — 2, the following holds after taking expectation :

E[\I/t+1 - \Ilt‘]:h XU, (Z)]

5 ¢ . .
) t ¢

< 175(k7t—1)2E[A (2]
20 t

= 1—6(k—t—1)2A1(X)

"for lists of numbers a1, . .., @m and by, . .., by, we have (3, aibi)2 < (X,af) (3,09)

20

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Now consider the case when ¢ = k — 1. We cannot use the above argument directly because it may so happen that |U| = 0.
If this happens, the potential of the uncovered clusters is always 0 . This only happens when a new cluster is covered in each
iteration. Let this event be AC (for All Clusters being covered). Denoting £ = F_1, X, _, (i) We have the following :
E[\Ifk - \I/k_1|5] = E[\I’k - \I/k_1|g,AC] PI‘[AC|€}
+ E[\I’k — \I/kfllg, ﬁAC] PI‘[ﬁAC‘g]
S E[\I/k - \:[/]€,1|g7 —‘AC] PI‘[“AC|5]
<E[¥y — Ur_1|E, 0AC]

Where in the last line we used the fact that |U_1| > 1 if all clusters are not covered. Combining both cases completes the
proof. O

Lemma B.8. Foranyt € {1,...,k — 1}, the following holds :

A (Uy)

E[\I}t+1 - \Ijtlft: XH; (Z)] < k—t

Proof. Wheni € H;, we have Hyy1 = Hy, Wy 41 = Wy + 1 and Uyyy = U,. Thus,

W, W,
For =)~ s
Wit 1o Wi

=T & g

AN Uy) < A (Uy)
U] T k-t

We can now combine the two cases to get :
Lemma B.9. Foranyt € {1,...,k — 1}, the following holds :

E[A%(#,)]
k—t

2 2t
o <k:—t * max(1,k —t — 1)2) A(X)

Proof. To compute the overall expectation, we have :
BlWii1 — W Fe] = E[Wq1 — el Fe, xo, (4)] Prlxu, (4)]
+]E[\IjH»l - \Ilt|-Ft7 XHt (Z)] Pr[XHt (Z)}
We can bound the first term using Lemma B.7
E[Wy1 — V| F, xu, ()] Prxw, (4)]
S EWi1 — V| F, xo, (4)]

< 20 t
~ 1—¢max(l,k—t—1)2

E[Wy1 — W| 7] < (1-0)

Ay (X)

and the second term using Lemma B.8

E[W;1 — Wy|Fp, xa, (1) Prixm, (4)]

IN

k—t Af(x) O]
<(1- 5)%5%) +5Akt(j)

21

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Where in the last step we used Af(U;) < AY(X) and |H;| < |X|. Combining both the terms completes the proof.

We are now ready to provide a proof for Theorem B.1, which we state again :

Theorem B.10. Let X C R? be any dataset which is to be partitioned into k clusters. Let S be the set of centers returned
by 6-k-means++ (X, k,0) for any 6 € (0,0.5) . The following approximation guarantee holds :

6kd

E[AX,S)] < 8(Ink +2)Ak(X) + T—

Ay (X)

Proof. At the end of k iterations, we have A(X,S) = AY(H,) + AY(Uy) = A*(H;) + Py The first term can be bound
using Lemma B.6. For the second term, we can express Uy, as a telescopic sum :

k—1
E[A(X, S)] = B[A*(H)] + > E[Wi1 — U] F
t=0
k-1 +
Bl ()] + Y1 - 0) 22
t=0

2t
+Z5(e (1k;—t—1)>A1(X)
k—

f§8AkGY)<)
t=0

k—

26

m 5 ‘

To simplify this, note that Zf o7 <1+ Ink, Zt 0 m <kY o n?= %zk and4Ink < (47 %2> k for
sufficiently large k. Using these above we get our final bound :

E[A(X,S)] < 8(Ink + 2)Ap(X)+&55A1()

This completes the proof of the theorem.

C. Experiments
SETUP

All the experiments were performed on a personal laptop with an Apple M3 Pro CPU chip, 11 cores and 18GB RAM. No
dimensionality reduction was done on the datasets. No multi - core parallelization was used during the experiments. We
have included the code for the experiments in the supplementary material.

DATASETS

The data sets used for the experiments were taken from the annual KDD competitions and the UCI Machine Learning
Repository. In the case that the data set consists of a train - test split, only the training data set without the corresponding
labels was used for perform clustering. We also provide rough estimates of the § parameters for the datasets used. These
are computed by taking the ratio of the variance of the dataset with the average clustering cost of the solution output by
RS-k-means++(-, -, 00).

22

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Table 4. Description of datasets used for experiments

X n k d Br(X)
DIABETES (KELLY ET AL., 2021) 253,680 50 21 ~ 6.5
FOREST (BLACKARD, 1998) 581,010 7 54 ~ 3.3
PROTEIN (CARUANA & JOACHIMS, 2004) 145,751 100 74 ~ 9.7
POKER (CATTRAL & OPPACHER, 2002) 1,025,010 50 10 ~ 24
CANCER (KRISHNAPURAM, 2008) 94,730 100 117 ~ 1.9

Table 5. Comparison of AF-k-MC?(-, -, 200) with RS-k-means++(-, -, 00)

NAME RS-k-means++ AF-k-MC? RS-k-means++ AF-k-MC? STD. RS-k-means++ AF-k-MC?
CosT CosT STD. DEV. DEV. TIME TIME
DIABETES 7.475 x 108 7.503 x 10° 3.23 x 10° 3.13 x 10° 5.15 x 107Y 1.02 x 10!
FOREST 7.707 x 101t 7.748 x 10** 1.31 x 10! 9.61 x 1010 1.48 x 10~Y 3.51 x 10°
PROTEIN 2.439 x 10t 2.436 x 10** 4.09 x 10*° 4.44 x 1010 1.06 x 10° 1.37 x 10%
POKER 3.322 x 107 3.333 x 107 5.55 x 10° 5.96 x 10° 8.95x 1071 5.43 x 10!
CANCER 6.067 x 10° 6.086 x 10° 1.19 x 10° 7.18 x 10% 3.75 x 1071 9.69 x 10°
ALGORITHMS

1. RS-k-means++ : Our approach takes as input the parameter m which is an upper bound on the number of iterations of
rejection sampling. This provides a trade-off between computational cost and solution quality. We can also set m = oo
to recover the O(log k) guarantee of k-means ++.

2. AF-k-MC? : This is the Monte Carlo Markov Chain based approach of (Bachem et al., 2016a). It also takes as input a
parameter m which is the length of the markov chain used for sampling.

Remark C.1. We do not include comparisons with the algorithm of (Cohen-Addad et al., 2020) since their techniques are
algorithmically sophisticated including tree embeddings and LSH data structures for approximate nearest neighbor search.
This incurs additional poly-logarithmic dependence on the aspect ratio of the dataset and even n°(!) terms for performing
a single clustering. Moreover, a publicly available implementation is not available to the best of our knowledge. Similar
reasons are also mentioned in (Charikar et al., 2023) for not including this algorithm in their experiments as well. As for
the algorithm of (Charikar et al., 2023) called PRONE, it achieves an O(k*log k) guarantee while running in expected time
O(nlogn) after O(nnz (X)) pre-processing. Due to the large approximation factor, (Charikar et al., 2023) suggest to use
PRONE in a pipeline for constructing coresets instead of clustering the whole dataset. Moreover, the class of datasets targeted
by both (Cohen-Addad et al., 2020) and (Charikar et al., 2023) include the large k(~ 5 x 10?) regime, while our approach
is more suitable for massive datasets where n >> k. This is because the time taken by our algorithm to perform a single
clustering is sublinear in n, much like the results of (Bachem et al., 2016a). Hence, we compare our approach with their
AF-%k-MC? algorithm.

Experiment 1

In this experiment, we compare the performance of the default AF-k-MC? with m = 200 (as done by (Bachem et al., 2016a)
in their implementation) with the performance RS-k-means++ without setting any upper bound for the number of iterations
for the datasets given in Table 4. Recall that our algorithm does not require an estimate of (3, thus making it free of any
extra parameters which require tuning. The algorithms were run for 20 iterations for computing the averages and standard
deviations. We also study the effect of varying the number of clusters k& € {5, 10, 20, 50, 100} for each dataset.

Experiment 2

In this experiment we study the convergence properties of RS-k-means++. We plot the average clustering cost of the solutions
output by RS-k-means++ vs the time taken to compute these solutions and compare these with the baseline k-means ++

23

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Table 6. Comparison of RS-k-means++ and AF-k-MC? for different datasets.

DATASET k RS-k-means++ AF-k-MC? COST RS-k-means++ AF-k-MC? STD. RS-k-means++ AF-k-MC? TIME
CosT STD. DEV. DEv. TIME
DIABETES 5 2.847 x 107 3.089 x 107 3.59 x 108 4.92 x 10° 2.32 x 1072 8.71 x 107*
10 1.768 x 107 1.740 x 107 1.33 x 10° 2.23 x 10° 4.78 x 1072 1.99 x 10°
20 1.174 x 107 1.195 x 107 5.03 x 10° 9.98 x 10° 1.32 x 1071 4.15 x 10°
50 7.401 x 10° 7.446 x 10° 3.26 x 10° 2.29 x 10° 5.08 x 107 % 1.03 x 10*
100 5.515 x 10 5.476 x 10° 1.39 x 10° 1.25 x 10° 1.59 x 10° 2.14 x 10*
FOREST 5 1.041 x 10*2 1.062 x 10*2 1.69 x 10** 1.78 x 10! 1.13 x 1071 2.31 x 10°
10 5.941 x 10! 5.853 x 101! 8.65 x 10'° 6.37 x 10'° 2.47 x 1071 5.41 x 10°
20 3.377 x 101! 3.373 x 101! 2.51 x 101° 2.02 x 1010 6.97 x 1071 1.16 x 10*
50 1.834 x 101! 1.846 x 10t 8.35 x 10° 6.48 x 10° 3.27 x 10° 2.98 x 10*
100 1.221 x 10'! 1.221 x 10! 2.64 x 10° 3.41 x 10° 1.01 x 10* 5.85 x 10!
PROTEIN 5 1.048 x 10*? 1.085 x 10'? 2.88 x 10! 3.00 x 10! 2.48 x 1072 6.21 x 107!
10 6.394 x 10! 5.882 x 101! 9.71 x 10*° 6.15 x 101° 4.59 x 1072 1.40 x 10°
20 4.388 x 10! 4.434 x 10! 2.83 x 10'° 3.81 x 10'° 1.26 x 1071 2.93 x 10°
50 3.029 x 10'! 3.059 x 101! 1.20 x 10%° 8.55 x 10° 3.96 x 107 % 7.59 x 10°
100 2.417 x 10! 2.456 x 10! 4.73 x 10° 5.44 x 10° 1.24 x 10° 1.47 x 10*
POKER 5 7.81 x 107 8.03 x 107 5.72 x 10° 9.10 x 108 4.77 x 1072 3.41 x 10°
10 5.88 x 107 6.04 x 107 2.61 x 108 3.41 x 108 1.14 x 1071 8.13 x 10°
20 4.58 x 107 4.51 x 107 1.70 x 10° 1.16 x 10° 2.70 x 1071 1.64 x 10*
50 3.31 x 107 3.31 x 107 5.41 x 10° 4.68 x 10° 8.24 x 1071 4.06 x 10*
100 2.68 x 107 2.69 x 107 4.81 x 10° 3.89 x 10° 2.07 x 10° 8.29 x 10!
CANCER 5 1.21 x 107 1.23 x 107 1.03 x 10° 1.17 x 108 1.96 x 1072 3.75 x 1071
10 1.07 x 107 1.06 x 107 5.96 x 10° 7.44 x 10° 2.46 x 1072 8.40 x 1071
20 8.83 x 10° 8.75 x 10° 4.02 x 10° 4.05 x 10° 3.89 x 1072 1.84 x 10°
50 7.02 x 10° 7.06 x 108 1.46 x 10° 1.96 x 10° 8.84 x 1072 4.77 x 10°
100 6.08 x 10° 6.06 x 10° 1.06 x 10° 7.22 x 10% 3.69 x 107 9.49 x 10°

solution. We also report 95% confidence intervals in the plots over 40 iterations of the algorithms. The plots are generated
by varying the upper bound on the number of rejection sampling iterations from m € {5, 10, 20, 50, 75, 100, 125, 150}.

Observations

Based on the above experiments, we summarize our observations as follows :

* Observation 1. The data dependent parameter 3 does not take on prohibitively large values. Indeed, for the data sets
used in our experiments, these values are quite reasonable. This observation is in accordance with the experiments of
(Bachem et al., 2016b).

 Observation 2. RS-k-means++ provides solutions with comparable quality to AF-k-MC?, while generally being much
faster. On datasets like POKER where the data size is much larger than the number of clusters, we observe a speedup of
~ 40 - 70 x. Moreover, this version of RS-k-means++ does not require choosing any extra parameters as input.

¢ Observation 3. The solution quality of RS-k-means++ approaches that of k-means ++ rapidly with increase in the
upper bound for the number of rejection sampling rounds allowed. This can be seen from the plots in Figure 5

24

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Clustering Cost

Clustering Cost

B

©

le6 Dataset = Cancer with k = 50 1e6 Dataset = Diabetes with k = 50
RS-k-means++ RS-k-means-++
- k-means++ 9.0 ==+ k-means++
85
8
S
a0
g
@
3
s}
75 —
7.0
00775 0.0800 0.0825 0.0850 0.0875 00900 00925 0.0950 02 03 04 05 06 07
Time (seconds) Time (seconds)
le12 Dataset = Forest with k = 7 le11 Dataset = Protein with k = 50
RS-k-means++ a5 RS-k-means++
==+ k-means++ —=- k-means++
40
8
O35
o
£
g
@
El
S |- -
30
25
010 011 012 013 014 020 025 030 035 040 045 050 055
Time (seconds) Time (seconds)
le7 Dataset = Poker with k = 50
345
3.40
]
S
335
£
g
a
3
G 330
325
320 RS-k-means++
—=- k-means++
05 06 08 09

07
Time (seconds)

Figure 3. Trade-off plots

25

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Table 7. Data points for the trade-off plots

DATASET m Cost STD. DEV. TIME

DIABETES 5 8.235 x 10° 4.39 x 10° 214 x 107!
10 7.804 x 108 3.87 x 10° 3.70
20 7.593 x 108 3.04 x 10° 5.46
50 7.443 x 108 3.10 x 10° 6.53
75 7.495 x 108 2.35 x 10° 6.93
100 7.386 x 10° 2.11 x 10° 6.79
125 7.493 x 10° 2.42 x 10° 7.09
150 7.437 x 10° 2.76 x 10° 6.96

X X X X X X X
=
B
_

FOREST 5 8.504 x 101 1.32 x 10** 9.76
10 8.375 x 10** 1.55 x 10'* 1.15
20 8.122 x 10'' 1.46 x 10** 1.19
50 7.798 x 10** 1.15 x 10'1 1.32
75 7.816 x 10** 9.64 x 10'° 1.39
100 7.504 x 10'* 9.85 x 10'° 1.39
125 7.775 x 10'* 1.03 x 10'* 1.40
150 7.932 x 10** 9.67 x 101° 1.40

X X X X X X X X
=
o
|
_

1071

PROTEIN 5 3.356 x 10'Y 5.73 x 10*° 1.70 x 107!
10 3.114 x 10! 1.06 x 10'° 2.78
20 3.071 x 10** 1.16 x 10*°
50 3.070 x 10** 1.18 x 10'° 5.33
75 3.029 x 10'* 1.01 x 10'° 5.44
100 3.076 x 10** 1.14 x 101° 5.58
125 3.054 x 10** 1.08 x 10! 5.44
150 3.050 x 10** 8.80 x 10° 5.21

=
o
=

1071

X X X X X X X X
=
B
-

1071
1071

POKER 5 3.35 x 107 5.65 x 10° 4.88
10 3.36 x 107 6.27 x 10° 6.90
20 3.33 x 107 7.06 x 10° 8.41

X

X

X
50 3.33 x 107 6.91 x 10° 9.32x 107!
75 3.33 x 107 5.91 x 10° 8.65 x 107!
100 3.32 x 107 5.65 x 10° 8.82 x 1071
125 3.34 x 107 6.21 x 10° 9.34 x 107!
150 3.34 x 107 6.21 x 10> 9.34 x 107¢
CANCER 5 7.17 x 108 2.60 x 10° 7.80 x 10~2
10 7.06 x 108 1.68 x 10° 7.68 x 1072
20 7.05 x 108 1.95 x 10° 8.58 x 1072
50 7.05 x 108 1.85 x 10° 9.53 x 1072
75 7.13 x 10° 2.41 x 10° 9.02 x 1072
100 7.10 x 108 1.71 x 10° 9.15 x 1072
125 7.09 x 108 2.24 x 10° 7.99 x 10~2
150 7.10 x 10° 2.04 x 10° 8.97 x 1072

26

