
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

A New Rejection Sampling Approach to k-means ++ with Improved Tradeoffs

Anonymous Authors1

Abstract

The k-means++ seeding algorithm (Arthur & Vas-
silvitskii, 2007) is widely used in practice for the
k-means clustering problem where the goal is to
cluster a dataset X ⊂ Rd into k clusters. The pop-
ularity of this algorithm is due to its simplicity and
provable guarantee of being O(log k) competitive
with the optimal solution in expectation. However,
its running time is O(|X |kd), making it expen-
sive for large datasets. In this work, we present
a simple and effective rejection sampling based
approach for speeding up k-means++. Our first
method runs in time Õ(nnz(X) + βk2d) while
still being O(log k) competitive in expectation.
Here, β is a parameter which is the ratio of the
variance of the dataset to the optimal k-means
cost in expectation and Õ hides logarithmic fac-
tors in k and |X |. Our second method presents a
new trade-off between computational cost and
solution quality. It incurs an additional scale-
invariant factor of k−Ω(m/β) Var(X) in addition
to the O(log k) guarantee of k-means++ improv-
ing upon the result of (Bachem et al., 2016a) who
get an additional factor of m−1 Var(X) while still
running in time Õ(nnz(X)+mk2d). We perform
extensive empirical evaluations to validate our the-
oretical results and to show the effectiveness of
our approach on real datasets.

1. Introduction
Data clustering has numerous applications in data process-
ing and is one of the classic problems in unsupervised ma-
chine learning. Its formulation as the k-means problem is
defined as: given a data set X ⊂ Rd and a positive integer
k representing the number of clusters into which the dataset
is to be partitioned, find a set C ⊂ Rd of k centers such that

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

the following objective or cost function is minimized :

∆(X , C) :=
∑
x∈X

min
c∈C
∥x− c∥2

The set C implicitly defines a partition of X based on the
closest center from C. A set of centers which achieve the
minimum k-means cost is denoted by OPTk = {c∗1, . . . , c∗k}.
We shall be using the shorthand ∆k(X) := ∆(X , OPTk) to
refer to the optimal k-means cost.

Background on the k-means problem. On the hardness
front, solving the k-means problem exactly is known to be
NP-hard (Dasgupta, 2008), even when the data points are
restricted to lie in a plane (Mahajan et al., 2009). Moreover,
there exists a constant c > 1 such that it is NP-hard to
solve the c-approximate version of k-means where we are
allowed to output cluster centers C such that ∆(X , C) ≤
c∆k(X) (Awasthi et al., 2015; Lee et al., 2017; Cohen-
Addad & C.S., 2019) . On the algorithmic front, a significant
amount of effort has been put into designing algorithms for
k-means that have strong theoretical guarantees. These
include, for example, the constant factor approximation
results of (Jain & Vazirani, 2001; Kanungo et al., 2002;
Ahmadian et al., 2020; Cohen-Addad et al., 2022) and the
(1 + ε) approximation schemes of (Kumar et al., 2010;
Jaiswal et al., 2014; 2015; Cohen-Addad, 2018; Friggstad
et al., 2019; Cohen-Addad et al., 2019; Bhattacharya et al.,
2020) which have exponential dependence on one or more of
ε−1, k or d. While these works provide important insights
into the structure of the k-means problem, they are seldom
used in practice due to their slow speed. Indeed, one of the
most popular heuristics used in practice (Wu et al., 2008) is
Lloyd’s iterations (Lloyd, 1982), also referred to as the k-
means method. It starts off with an initial set of centers 1 and
iteratively refines the solution. This hill-climbing approach
may get stuck in local minima and provide arbitrarily bad
clusterings even for fixed n and k (Dasgupta, 2003; Har-
Peled & Sadri, 2005; Arthur & Vassilvitskii, 2006a;b).

k-means ++ and D2-sampling. Usually, Lloyd’s itera-
tions are preceded by the k-means ++ seeding introduced in
(Arthur & Vassilvitskii, 2007). Even though the k-means++
algorithm is the Lloyd’s iterations preceded by k-means++

1This is commonly known as seeding. A simple seeding
method is to arbitrarily pick k points from X .

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

seeding, it is common to refer to the seeding procedure as
k-means++. We follow this in the remaining discussion. k-
means ++ is a fast sampling-based approach. Starting with
a randomly chosen center S = {c1}, a new point x ∈ X is
chosen as the next center with probability proportional to
∆({x}, S) in each iteration. This is commonly referred to as
D2-sampling. The centers generated by this seeding method
are guaranteed to be O(log k) competitive with the optimal
solution in expectation. Thus, k-means ++ provides the
best of both worlds : theory and practice and unsurprisingly,
a lot of work has been done on it. This includes extend-
ing it to the distributed setting (Bahmani et al., 2012) and
the streaming setting (Ailon et al., 2009; Ackermann et al.,
2012). Furthermore, several results on coreset constructions
2 are inspired by or rely on the theoretical guarantees of k-
means ++. Recently, it was shown that appending k-means
++ with a sufficiently large number of local search steps
(Lattanzi & Sohler, 2019; Choo et al., 2020) can lead to
O(1) competitive solutions.

A downside of k-means ++ is that its Θ(nkd) computational
complexity becomes impractical on large datasets. Various
approaches (Bachem et al., 2016a;b; Cohen-Addad et al.,
2020; Charikar et al., 2023) have been presented to speed up
k-means ++ with varying trade-offs, and our work also falls
into this category. A detailed discussion about the position
of our approach in the literature is presented in Section 2.3.
We also include Table 1 as a summary for reference.

2. Our Results
In this section, we present a high level discussion of our
results, contributions and their significance.

Improved tradeoffs. Our main technical contribution is a
novel simple yet fast algorithm based on rejection sampling
with an improved trade-off between the computational cost
and solution quality for k-means ++ in the Euclidean metric.
A description is given in Algorithm 1. We state our result
formally below.

Theorem 2.1. (Main Theorem) Let m ∈ N be a parameter
and k ∈ N be the number of clusters. Let X ⊂ Rd be any
dataset of n points and S be the output of RS-k-means++
(X , k,m′) where m′ = cm ln k for some constant c > 1.
Then the following guarantee holds :

E[∆(X , S)] ≤ 8(ln k + 2)∆k(X) +
6k

k
cm

2β(X) − 1
∆1(X)

Here β(X) 3 is a parameter such that E[β(X)] = ∆1(X)
∆k(X) .

Moreover, the computational cost of the algorithm includes

2See, for example (Bachem et al., 2017a; Feldman, 2020) and
the extensive references cited therein.

3As can be seen from the description, the value of β(X) is not
needed to be known by our algorithm

a single-time preprocessing cost of Õ(nnz(X)) 4, with the
cost of performing a single clustering being O(mk2d log k).

To the best of our knowledge, such trade-offs were not
known before this work. The approximation guarantee can
be seen to be composed of two terms. The first term is
the standard O(log k) guarantee of k-means ++, while the
second term can be thought of as an additive, scale-invariant
term representing the variance of the dataset. Note that
as m grows, the second term diminishes rapidly. Indeed,
this exponentially decreasing dependence of k−Ω(m/β(X))

improves on a similar result by (Bachem et al., 2016a) who
instead get a linearly decreasing dependence of O(1/m) ,
although through a significantly different approach.

Correct number of iterations. Whenever we have such
trade-offs, a natural question to ask is : for which value of
m can we get O(log k) competitive solutions like those of
k-means ++ ? For example, we require m = Ω

(
∆1(X)
∆k(X)

)
in

(Bachem et al., 2016a)’s algorithm. But this means that we
would some how need to get an estimate for ∆k(X), which
involves solving the k-means problem itself ! Fortunately,
Algorithm 1 can “discover” the value of β(X) as it executes.
We state this as follows :

Theorem 2.2. Let ϵ ∈ (0, 1) and k ∈ N be the number of
clusters. Let X ⊂ Rd be any dataset of n points and S be
the output of RS-k-means++ (X , k,∞). Then the following
guarantee holds :

E[∆(X , S)] ≤ 8(ln k + 2)∆k(X)

Moreover, the computational cost of the algorithm includes
a single-time preprocessing cost of Õ(nnz(X)) with the
cost of performing a single clustering being bounded by
O(β(X)k2d log(k/ϵ)) with probability atleast 1− ϵ. Here,
β(X) is a parameter such that E[β(X)] = ∆1(X)

∆k(X) .

Experimental results. We evaluate our algorithms experi-
mentally on several data sets as described in Section 5.

2.1. Overview of Our Techniques

Algorithm. Our main algorithm is outlined in Algo-
rithm 1. It consists of a light-weight pre-processing step
followed by choosing new centers according to the pro-
cedure D2-sample. This procedure consists of two parts :
the first part is a rejection sampling loop, which generates
samples distributed according to the D2 distribution using
samples generated from a specific distribution which is easy
to sample from, being setup during the pre-processing it-
self. In case no sample is generated in m iterations, the

4nnz(X) represents the number of non zero entries in the
dataset X . When X is sparse, this can be much smaller than
nd.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

second part consists of choosing the next center uniformly
at random.

Proof intuition. To analyze the expected solution quality of
RS-k-means++, we study a variant of k-means++ which we
call δ-k-means++ . In this variant , instead of sampling the
next center from the D2 distribution p(x) = ∆(x,S)

∆(X ,S) , we
sample from a different distribution defined by

p′(x) = (1− δ)
∆(x, S)

∆(X , S)
+ δ

1

|X |

The parameter δ can be thought of as representing the prob-
ability that sampled = False after the repeat loop is exe-
cuted. If this event happens, we choose a center uniformly
at random. Consider the case when δ = 0 : this means
that we get O(log k) competitive solutions since we sample
exactly from the D2 distribution. Now consider the case
when δ = 1. This corresponds to choosing all centers uni-
formly at random. It can be seen 5 that in this case, we
have E[∆(X , S)] ≤ 2∆1(X). So, we expect that δ ∈ (0, 1)
leads to a trade-off between these two terms. The technical
analysis of error propagation due to the use of a slightly
perturbed distribution may be of independent interest.

Algorithm 1 RS-k-means++ (X , k,m)

Input : dataset X ⊂ Rd, number of clusters k ∈ N and the
upper bound on number of iterations m ∈ N
Output : S = {c1, . . . , ck} ⊂ X

1: preprocess(X)
2: Choose c1 ∈ X uniformly at random and set S ← {c1}
3: for i ∈ {2, . . . , k} do
4: ci ← D2-sample(X , S,m)
5: S ← S ∪ {ci}
6: end for
7: return S

Procedure 2 preprocess(X)
Input : dataset X ⊂ Rd

Ensure : X is centered
1: Compute the mean µ(X) of the dataset X and perform

x← x− µ(X) for every x ∈ X
2: Setup the sample and query access data structure to

enable sampling from the distribution DX (x) = ∥x∥2

∥X∥2

2.2. Advantages of our approach

Fast data updates. Rejection sampling essentially in-
volves converting samples from a distribution which is

5The cost considering all centers is upper bounded by the cost
considering only the first center. Since it is chosen uniformly at
random , we can use Lemma 3.1 of (Arthur & Vassilvitskii, 2007).

Procedure 3 D2-sample(X , S,m)

Input : dataset X ⊂ Rd, currently chosen centers S ⊂ X
and upper bound on number of iterations m ∈ N
Output : next center c ∈ X

1: iter← 0 and sampled← False

2: repeat
3: iter← iter+ 1
4: r ∼ [0, 1]

5: Choose x ∈ X with probability ∥x∥2+∥c1∥2

∥X∥2+|X |∥c1∥2

6: Compute ρ(x) = 1
2

∆(x,S)
∥x∥2+∥c1∥2

7: if r ≤ ρ(x) then
8: Set c to be x and sampled = True

9: end if
10: until sampled = True or iter > m
11: if sampled = False then
12: Choose c ∈ X uniformly at random
13: end if
14: return c

“easy to sample from” to a required distribution. The sin-
gle time pre-processing sets up a simple binary tree data
structure 6 for sampling from an appropriate distribution.
This structure supports addition and update of a data point
in O(log |X |) time while taking up only O(nnz(X)) addi-
tional space. The details are given in Section A.2.

Parallel setting. The simplicity of our approach extends
easily to parallel and distributed settings. We briefly discuss
implementing the procedure D2-sample in such settings.
We assume that the dataset X is on a single machine which
has M cores. Suppose that the probability that a sample
is output in a single round of the repeat loop is p. Recall
that we have p ≥ ∆k

2∆1
. The expected number of rounds

that one must wait for a sample to be generated is atmost
2∆1/∆k. Also notice that each round is independent of
other rounds. So we can utilize all M cores to perform re-
jection sampling until one of them outputs a sample. Hence,
the probability that a sample is generated in a round now
becomes 1 − (1 − p)M ≥ 1 − e−pM . Hence the num-
ber of rounds needed to get a sample is atmost epM

epM−1
in

expectation, which decreases drastically as M increases.

2.3. Comparison with Related Work

In this section we compare our results for k-means ++ with
other fast implementations having theoretical guarantees.

MCMC methods. The line of work (Bachem et al.,
2016b;a) uses the Monte-Carlo-Markov-Chain based
Metropolis-Hastings algorithm (Hastings, 1970) to approx-

6We were inspired by (Tang, 2019) which introduced a ran-
domized linear algebra based framework for efficient simulation
of quantum machine learning algorithms.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

imate the D2-distribution in k-means ++. This involves
setting up a markov chain of length m to generate samples
from the D2 distribution p(·) using samples from a proposal
distribution q(·). (Bachem et al., 2016b) used q(·) as the
uniform distribution. To bound the solution quality of their
method, they introduce the following parameters :

α(X) := max
x∈X

∆(x, µ(X))
∆1(X)

β(X) := ∆1(X)
∆k(X)

,

and show that α(X) ∈ O(log2 n) and β(X) ∈ O(k) un-
der some assumptions on the data distribution that is nat-
ural, but NP-hard to check. By doing so, they bound the
required chain length m ∈ O(α(X)β(X) log kβ(X)) ∈
O(k3d log2 n log k) to achieve O(log k) competitive solu-
tions. This was improved upon by (Bachem et al., 2016a)
by using a more suitable proposal distribution which needs
O(nd) pre-computation time. By doing so, they get rid
of dependence on α(X) while showing a tradeoff between
computational cost and approximation guarantee (see Table
1) without any data assumptions. They incur an additional
O(1/m)∆1(X) error for a runtime ∈ O(mk2d log k). Our
rejection sampling approach has the advantage of being inde-
pendent of α(X), providing a stronger guarantee with only

k−Ω(m
β(X))∆1(X) additive error and being easy to extend

to the parallel setting. On the other hand, MCMC methods
are generally viewed to be inherently sequential 7.

Tree embeddings and ANNS. (Cohen-Addad et al., 2020)
introduced an algorithmically sophisticated approach to
speeding up k-means ++, focusing on the large k regime.
They use MultiTree embeddings with O(d) expected dis-
tance distortions to update the D2 distribution efficiently.
They then use locality-sensitive hashing-based data struc-
tures for approximate nearest neighbor search to speed up
their algorithm. This adds a significant layer of complex-
ity in implementation. Their runtime also depends on the
aspect ratio η, which may be quite large in case there are
points in the dataset which are very close to each other. It
has better dependence on k but additional nO(1), logO(1) η
factors and cubic dependence on d 8. Moreover, their algo-
rithm is advantageous only for large k ∼ 103. Note that
they also use rejection sampling to take into account the
distance distortions, which is different from our use of rejec-
tion sampling. Our approach provides improved trade-offs
while being simple.

1-D projections. (Charikar et al., 2023) proposed an
efficient method to perform the k-means ++ seeding in 1

7Note that the pre-processing step of (Bachem et al., 2016a) is
easily parallelized.

8(Cohen-Addad et al., 2020) recommend using dimension re-
duction techniques such as the Johnson-Lindenstrauss transforma-
tion (Johnson & Lindenstrauss, 1984), which adds to the complex-
ity of their approach.

dimension in O(n log n) time with high probability. For
a general d-dimensional dataset, they first project it on a
randomly chosen d- dimensional gaussian vector followed
by an application of the 1-D method. This allows them
to get an extremely fast runtime of O(nnz(X) + n log n).
However, they only get O(k4 log k) competitive solutions,
which shows up in their experimental evaluations as well.
They show how to get O(log k) competitive solutions by
using coresets, but end up with an additional high degree
O(k5d log k log(k log k)) 9 dependence. This may be re-
strictive even for moderate values of k, while our algorithm
only has O(k2) dependence.

Other related works. (Bachem et al., 2017b) showed simi-
lar trade-offs for the k-means || algorithm of (Bahmani et al.,
2012) in the distributed setting. They also get an additive
scale-invariant factor in the approximation guarantee which
diminishes with increase in the number of rounds and the
oversampling factor of k-means ||. In contrast, we present
a new rejection sampling based algorithm for k-means ++
with improved trade-offs. More recently, (Jaiswal & Shah,
2024) proposed an algorithm for performing the k-means
++ seeding in Õ(nd + η2k2d) by using the framework of
(Tang, 2019) through a data structure similar to the one used
by us in the pre-processing step.

3. Preliminaries
For any two points p, q ⊂ Rd, ∥p − q∥ denotes their Eu-
clidean distance. Throughout the paper, we denote the d di-
mensional dataset to be clustered by X ⊂ Rd with |X | = n.
For a set of points P ⊂ Rd, The number of non-zero ele-
ments in P is denoted by nnz(P). Note that when all points
in P are distinct, we have |P| ≤ nnz(P). We define the
norm of the set P to be the quantity ∥P∥ =

√∑
p∈P ∥p∥2.

The k-means clustering cost of P with respect to a set of
centers C is denoted by :

∆(P, C) =
∑
p∈P

min
c∈C
∥p− c∥2

When either P or C is a singleton set, we use expressions
like ∆(p, C) or ∆(P, c) instead of ∆({p}, C) or ∆(P, {c})
respectively. The D2 distribution over P with respect to C
is denoted by D2(P, C) where the probability of a point
p ∈ P being chosen is ∆(p,C)

∆(P,C) . DP denotes the distribution

over P defined as DP(p) =
∥p∥2

∥P∥2 for each p ∈ P . For a set
P and a probability distribution D over P , p ∼ D denotes

9(Charikar et al., 2023) denote the size of the coreset as s ∈
Ω
(
ε−2kγd log(kγ)

)
where γ is the approximation ratio of the

1-d method i.e, γ ∈ O(k4 log k) . This is only required for the
theoretical guarantee of being O(log k) competitive to hold true.
The coreset size can be treated as a hyper-paramter for trade-off
between runtime and solution quality as well.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Table 1. Comparison of computational complexity and approximation guarantee of various approaches to speed up k-means ++. Here, ∆
is the clustering cost for the centers returned by the algorithm and ∆k is the optimal k-means cost

APPROACH COMP. COMPLEXITY APPROX. GUARANTEE REMARKS

(Bachem et al.,
2016b)

O(k3d log2 n log k) E[∆] ≤ 8(ln k + 2)∆k The analysis only holds when the dataset
satisfies certain assumptions which are
NP-hard to check

(Bachem et al.,
2016a)

O(nd) + O(mk2d log k) E[∆] ≤ 8(ln k + 2)∆k + O
(

1
m

)
∆1 m is the markov chain length used

Our O(nnz(X)) + O(mk2d log k) E[∆] ≤ 8(ln k+2)∆k+6k−Ω(m/β)∆1 nnz(X) represents the input sparsity.
The bound on number of iterations
for rejection sampling is O(m log k).
E[β] = ∆1/∆k

(Cohen-Addad
et al., 2020)

O (n(d + logn) log(ηd)) +

O
(
ε−1kd3 log η(n log η)O(ε)

) E[∆] ≤ 8ε−3(ln k + 2)∆k ε ∈ (0, 1) is a sufficiently small er-
ror factor for the LSH data structure
. η is the aspect ratio i.e, η =
maxx,y∈X ∥x−y∥
minx,y∈X ∥x−y∥

(Charikar et al.,
2023)

O(nnz(X)) + O(n logn) E[∆] ≤ 51k4(ln k + 2)∆k nnz(X) represents the input sparsity.
The exact constant is upper bounded by
8
√

24
√
e ≃ 50.3

(Charikar et al.,
2023)

O(nnz(X)) + O(n logn) +

O(ε−2k5d log k log(k log k)

E[∆] ≤ 8(ln k + 2)(1 + ε)∆k nnz(X) represents the input sparsity.
The high polynomial factor in k is due
to coreset constructions

sampling a point p ∈ P with probability D(p).

3.1. Data Dependent Parameter

The computation-cost vs. solution-quality trade-off of our
algorithm depends on a data-dependent parameter which
is bounded by β(X) := ∆1(X)/∆k(X). Without any as-
sumptions on X , this parameter is unbounded (for example,
if the data set had only k points, then β(X) = ∞, but as
(Bachem et al., 2016b) point out, what is the point of clus-
tering such a dataset if the solution is trivial ?). Indeed, if
we assume that X is generated from some probability distri-
bution over Rd, this parameter becomes independent of |X |,
as |X | grows larger (Pollard, 1981). Moreover (Bachem
et al., 2016b) showed that for a wide variety of commonly
used distributions10 β(X) ∈ O(k). In the experimental sec-
tion, we shall also see that on many practical datasets, this
parameter does not take on values which are prohibitively
large 11.

4. Technical Overview
In this section, we describe the techniques used in our ap-
proach. Due to space constraints, the complete proofs of the
results are deferred to the Appendix A, B. Instead, we try
to provide intuition for our theoretical results.

10These include the uni-variate and multivariate Gaussian, the
Exponential and the Laplace distributions along with their mixtures.
For the exact assumptions made on the dataset, see section 5 of
(Bachem et al., 2016b)

11Also see the estimated values this parameter for other datasets
in Table 1 of (Bachem et al., 2016b)

Given a dataset X ⊂ Rd and a set of already chosen centers
S ⊂ X , our goal is to obtain a sample from X according
to the D2(X , S) distribution. The main ingredient of our
algorithm is a rejection sampling procedure which allows
us convert samples from DX

12 to a sample from D2(X , S).
Why choose the starting point as DX ? Because there exists
a light-weight data structure that can efficiently generate
samples from DX , which we describe next.

4.1. Preprocessing to sample from DX

Given X ⊂ Rd, consider the vector vX ∈ R|X | given by
vX (x) = ∥x∥. We will use a (complete) binary tree data
structure to sample from DX . This data structure is also
referred to as a sample and query access data structure. The
leaves of the binary tree correspond to the entries of vX
and store weight vX (x)2 along with the sign of vX (x). The
internal nodes also store a weight that is equal to the sum
of weights of its children. To sample from DX , we traverse
the tree, choosing either to go left or right at each node with
probability proportional to the weight of its two children un-
til reaching the leaves. This data structure similarly supports
querying and updating the entries of vX . More details can
be found in the appendix. For now, we state the following :

Lemma 4.1. There exists a data structure that can be pre-
pared in Õ(nnz(X)) time and space, and enables generat-
ing a sample from DX as well as updating an entry of X in
O(log |X |) time.

12Recall that we defined DX as the distribution over X with
DX (x) = ∥x∥2

∥X∥2

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

4.2. Rejection Sampling

Now that we know how to sample from DX , let us describe
the rejection sampling procedure.

Definition 4.2. Suppose D1, D2 define probability distribu-
tions over X . The distribution D2 is said to τ -oversample
D1 for τ > 0 if D1(x) ≤ τD2(x) for each x ∈ X .

Let D1, D2 be probability distributions over X such that D2

τ -oversamples D1. Suppose we have a collection of samples
x1, x2, . . . from the distribution D2. Consider the following
strategy RejectionSample: iterate through samples {xi}i
and terminate if a sample xi is accepted with probability
ρ(xi) =

D1(xi)
τD2(xi)

.

It is not difficult to argue that an accepted sample comes
from the distribution D1. Moreover, for any ε ∈ (0, 1) it
takes at most τ ln(1/ε) samples from D2 to accept a sample
with probability at least 1− ε. Note that strategy does not
need to know τ in advance (indeed, computing τ may be
non trivial as we shall see), but only requires the ability to
compute the quantity ρ(xi).

In the current form, our strategy does not have any control
over the number of samples from D2 which it may need to
examine. However, a bound on the number of samples to be
examined can be used if we are content with sampling from
a slightly perturbed distribution. Suppose we have another
distribution D3 over X . This time we are allowed to use
samples coming from D2 and D3 and instead of a sample
from D1, we are content with obtaining a sample generated
by a hybrid distribution D(x) = (1−δ)D1(x)+δD3(x) for
some small enough δ ∈ (0, 1). For this we can modify the
above strategy which we now call RejectionSample(m):
Iterate through m samples x1, . . . , xm from D2, terminate
if a sample xi is accepted with probability ρ(xi). If no
sample is accepted, terminate with a sample from D3.

It can be shown that the failure probability δ diminishes
with increasing m. Indeed, we show that δ ≤ e−m/τ .

4.3. Application to RS-k-means++

Recall that our goal in k-means++ is to sample the cen-
ters from the D2(X , S) distribution, corresponding to D1

in the previous discussion. We present two methods, one
which samples the centers from the D2 distribution and
another which samples from a slightly ‘perturbed’ distri-
bution D2

δ(X , S) = (1 − δ)D2(X , S) + δU [X]. This cor-
responds to D3(x) = 1

|X | simply being the uniform dis-
tribution over X . We will use the RejectionSample and
RejectionSample(m) for these methods respectively. In
both cases we need to find a suitable distribution D2 over
X that τ -oversamples D1 (for a suitable τ) and for which
we obtain samples efficiently.

Lemma 4.3. Let S = {c1, . . . , ct} ⊂ X be chosen accord-

ing to the D2 distribution (In particular, c1 is a uniformly
random point in X). Let D(·; c1) be the distribution over X
defined by

D(x; c1) =
∥x∥2 + ∥c1∥2

∥X∥2 + |X |∥c1∥2

Then D(x; c1) τ -oversamples D2(X , S) for τ =

2∥X∥2+|X |∥c1∥2

∆(X ,S) .

Proof. The choice of this distribution is given by the sim-
ple observation that ∆(x, S) = minc∈S ∥x − c∥2 ≤
∥x − c1∥2 ≤ 2(∥x∥2 + ∥c1∥2) where the final step uses
the Cauchy-Schwarz inequality. Multiplying both sides by

1
∆(X ,S) gives the required result.

How do we actually obtain samples from D2? We can
employ a simple technique: With probability ∥X∥2

∥X∥2+|X |∥c1∥2 ,
sample from DX and with remaining probability, sample
from U [X]. A standard calculation shows that this indeed
gives the required distribution.

Lemma 4.4. There is an algorithm that produces a sample
from X according to the distribution D(x; c1) as defined in
Lemma 4.3. Moreover it takes O(log |X |) time after a one
time preprocessing time of Õ(nnz(X)).

It can be seen that for these distributions,
RejectionSample is equivalent to Procedure 3 with
m =∞. We then obtain the following:

Lemma 4.5. Let ϵ ∈ (0, 1) and X ⊂ Rd be any dataset
of n points and S = {c1, . . . , ct} ⊂ X such that c1
is a uniformly random point in X . Then Procedure 3
outputs a sample c ∈ X according to the distribution
D2(X , S). Moreover, the computational cost of the algo-
rithm is bounded by O(β(X)· (td+log |X |)· log (1/ϵ)) with
probability atleast 1− ϵ. Here, β(X) is a parameter such
that E[β(X)] ≤ ∆1(X)

∆k(X) .

We can apply this D2 sampling technique k times to
obtain the centers according to k-means++ . This is
what RS-k-means++(X , k,∞) does and it can be seen that
Theorem 2.2 follows from Lemma 4.5; in particular the
8(log k + 2) approximation guarantee of the sampled cen-
ters follows from the k-means++ approximation guarantee
by (Arthur & Vassilvitskii, 2007).

In our second approach, we replace RejectionSample

by RejectionSample(m) which only repeats the rejec-
tion sampling loop m times for a suitable choice of
m. In particular, notice that Procedure 3 is essentially
RejectionSample(m) for D1 = D2(X , S), D3 being
the uniform distribution over X and D2 as in Lemma 4.3.
This gives us the following result which is analogous to
Lemma 4.5:

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Lemma 4.6. Let m ∈ N be a parameter, X ⊂ Rd be
any dataset of n points and S = {c1, . . . , ct} ⊂ X such
that c1 is a uniformly random point in X . Then Proce-
dure 3 with input (X , S,m log t) outputs a sample c ∈ X
according to the distribution (1− δ)·D2(X , S) + δ· U [X]
for δ ≤ e−m/β(X). Moreover, the computational cost of the
algorithm is bounded by O(m· (td + log |X |)· log t) with
probability atleast 1− ϵ. Here, β(X) is a parameter such
that E[β(X)] ≤ ∆1(X)

∆k(X) .

Again we can apply this sampling technique k times to
obtain k centers and get towards Theorem 2.1. However,
unlike Theorem 2.2, the approximation guarantee no longer
follows directly from (Arthur & Vassilvitskii, 2007) be-
cause this sampling is from a ‘perturbed’ distribution from
D2(X , S). We consider this problem in the next section.

4.4. Analysis of δ-k-means++

In order to analyze the solution quality of RS-k-means++,
we examine an abstract variant of k-means++ which we
call δ-k-means++ . Instead of sampling from the D2-
distribution as in k-means++ , we sample from a distribution
which is a weighted average of the D2-distribution and the
uniform distribution with weights (1− δ) and δ respectively.
We show the following bound on the quality of solutions
produced by this variant :

Algorithm 4 δ-k-means++(X , k, δ)
Input : dataset X ⊂ Rd, number of clusters k ∈ N and
parameter δ ∈ (0, 1)
Output : S = {c1, . . . , ck} ⊂ X

1: Choose c1 ∈ X uniformly at random and set S ← {c1}
2: for t ∈ {2, . . . , k} do
3: Chose a point x ∈ X with prob. (1−δ) ∆(x,S)

∆(X ,S)+δ 1
|X |

4: ct ← x, S ← S ∪ {ct}
5: end for
6: return S

Theorem 4.7. Let X ⊂ Rd be any dataset which is to
be partitioned into k clusters. Let S be the set of centers
returned by δ-k-means++(X , k, δ) for any δ ∈ (0, 1) . The
following approximation guarantee holds :

E[∆(X , S)] ≤ 8(ln k + 2)∆k(X) +
6kδ

1− δ
∆1(X)

From the previous discussions, Theorem 2.1 follows from
Theorem 4.7 after substituting the expression for the failure
probability δ.

Our analysis uses the potential based approach introduced
by (Dasgupta, 2013). Since we sample from a different
distribution as compared to the standard k-means++ , its

analysis does not directly carry over to δ-k-means++ . In-
deed, it is known that the k-means++ procedure is quite
sensitive to even small changes in the D2 distribution. This
was first studied by (Bhattacharya et al., 2020) who were
able to show only a O(log2 k) guarantee when the centers
are sampled from a distribution which is ε-close 13 to the ex-
act D2 distribution for a sufficiently small constant ε . This
result was recently improved upon by (Grunau et al., 2023)
who recover the tight O(log k) guarantee of k-means++ .
In their analysis, (Grunau et al., 2023) incur a very large
constant multiplicative blow-up 14 in the approximation
guarantee and leave it as an open problem to show whether
the true approximation guarantee can be bounded by a mul-
tiplicative factor of 1 + O(ε). In contrast, we show that
the approximation guarantee of δ-k-means++ consists of an
additive scale invariant variance factor proportional to δ in
addition to the standard guarantee of k-means++ with the
same constants, which requires a careful analysis of propa-
gation of the extra cost due to sampling from the uniform
distribution in case a sample from the exact D2 distribution
is not generated by rejection sampling.

5. Experiments
In this section, we describe experimental validation of our
theoretical results. The five data sets used for the exper-
iments are described in Table 2. We also include an es-
timate of the data dependent parameter. This estimation
was done by computing the ratio of the variance of the
dataset with the clustering cost of the solution output by
RS-k-means++(·, ·,∞) averaged over 20 iterations.

Observation 1. The data dependent parameter β does not
take on prohibitively large values. Indeed, for the data sets
used in our experiments, these values are quite reasonable.
This observation is in accordance with the experiments of
(Bachem et al., 2016b).

Table 2. Datasets used for experiments 16

X n k d β̃

DIABETES 253, 680 50 21 ∼ 6.5

FOREST 581, 010 7 54 ∼ 3.3

PROTEIN 145, 751 100 74 ∼ 9.7

POKER 1, 025, 010 50 10 ∼ 2.4

CANCER 94, 730 100 117 ∼ 1.9

Next, we compare the performance of the Monte Carlo

13Let p(·) and p′(·) represent probability mass functions over
X . p′ is said to be ε-close to p if |p′(x)−p(x)| ≤ εp(x) ∀x ∈ X .

14The constant blow-up of (Grunau et al., 2023) is bounded
above by

∑∞
ℓ=1 90ℓe

− ℓ−1
40 = 90

(1−e−1/40)2
≃ 1.48× 105

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Markov Chain based algorithm AF-k-MC2 of (Bachem et al.,
2016a) using the prescribed chain length of m = 200
with our first algorithm i.e, RS-k-means++ without any
upper-bound on the number of rejection-sampling rounds.
We do so for each data set with various values of k ∈
{5, 10, 20, 50, 100}. The results are summarized in Table
3. The averages reported are over 20 iterations of each
algorithm.

Observation 2. RS-k-means++ provides solutions with
comparable quality to AF-k-MC2, while generally being
much faster. On datasets like POKER where the data size
is much larger than the number of clusters, we observe
a speedup of ∼ 40 - 70×. Moreover, this version of
RS-k-means++ does not require choosing any extra parame-
ters as input.

Table 3. Comparison of AF-k-MC2(·, ·, 200) with
RS-k-means++(·, ·,∞)

DATASET k RS-k-means++
COST

AF-k-MC2

COST
TIME
RATIO

DIABETES 5 2.847 × 107 3.089 × 107 37.5
10 1.768 × 107 1.740 × 107 41.6
20 1.174 × 107 1.195 × 107 31.4
50 7.401 × 106 7.446 × 106 20.3
100 5.515 × 106 5.476 × 106 13.5

FOREST 5 1.041 × 1012 1.062× 1012 20.4
10 5.941 × 1011 5.853× 1011 21.9
20 3.377 × 1011 3.373× 1011 16.6
50 1.834 × 1011 1.846× 1011 9.1
100 1.221 × 1011 1.221× 1011 5.8

PROTEIN 5 1.048 × 1012 1.085× 1012 25.0
10 6.394 × 1011 5.882× 1011 30.5
20 4.388 × 1011 4.434× 1011 23.2
50 3.029 × 1011 3.059× 1011 19.2
100 2.417 × 1011 2.456× 1011 11.9

POKER 5 7.81 × 107 8.03 × 107 71.5
10 5.88 × 107 6.04 × 107 71.3
20 4.58 × 107 4.51 × 107 60.7
50 3.31 × 107 3.31 × 107 49.3
100 2.68 × 107 2.69 × 107 40.1

CANCER 5 1.21 × 107 1.23 × 107 19.1
10 1.07 × 107 1.06 × 107 34.1
20 8.83 × 106 8.75 × 106 47.3
50 7.02 × 106 7.06 × 106 54.0
100 6.08 × 106 6.06 × 106 25.7

Next, we study the convergence properties of the version
of RS-k-means++ which allows for a computational cost vs.
solution quality trade-off. We plot the clustering cost of
the solutions output against the time taken to generate them
for various values of m ∈ {5, 10, 20, 50, 75, 100, 125, 150}.
We compare the the solution quality with the baseline
k-means++ solution as well.

Observation 3. The solution quality of RS-k-means++ ap-
proaches that of k-means ++ rapidly with increase in the
upper bound for the number of rejection sampling rounds

allowed. This can be seen from the plots in Figure 5

More complete experimental details such as references for
the data sets, variance for the clustering costs and data points
for the plots can be found in Appendix C.

Figure 1. Trade-off plots showing the convergence of the solution
quality of RS-k-means++ with respect to the k-means ++ baseline

6. Conclusion
In this work, we present a simple rejection sampling ap-
proach to k-means ++ through the RS-k-means++ algo-
rithm. We show that our algorithm allows for new trade-offs
between the computational cost and solution quality of the
k-means ++ seeding procedure. It also has the advantage
of supporting fast data updates and being easy to adapt in
the parallel setting. The solution quality of RS-k-means++
is bounded through the analysis of a perturbed version of
the standard k-means ++ method. The effectiveness of our
approach is reflected in the experimental evaluations per-
formed. Interesting future directions include the possibility
of improving the dependence of the runtime - quality trade-
off on the data dependent parameter. We believe that similar
techniques could be adapted to the setting where the data
set is present in the disk instead of the main memory and
the goal is to minimize the number of disk accesses.

Impact Statement
Our work focuses on speeding-up the k-means ++ algorithm
for clustering. Therefore, we expect that our new algorithm
could have impact on domains in which clustering plays an
important role. A concrete impact in society is harder to
predict since this is mainly fundamental research.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

References
Ackermann, M. R., Märtens, M., Raupach, C., Swierkot,

K., Lammersen, C., and Sohler, C. Streamkm++: A
clustering algorithm for data streams. ACM J. Exp. Al-
gorithmics, 17, May 2012. ISSN 1084-6654. doi: 10.
1145/2133803.2184450. URL https://doi.org/
10.1145/2133803.2184450.

Ahmadian, S., Norouzi-Fard, A., Svensson, O., and Ward,
J. Better guarantees for k-means and euclidean k-
median by primal-dual algorithms. SIAM Journal on
Computing, 49(4):FOCS17–97–FOCS17–156, 2020. doi:
10.1137/18M1171321. URL https://doi.org/10.
1137/18M1171321.

Ailon, N., Jaiswal, R., and Monteleoni, C. Streaming
k-means approximation. In Bengio, Y., Schuur-
mans, D., Lafferty, J., Williams, C., and Culotta,
A. (eds.), Advances in Neural Information Process-
ing Systems, volume 22. Curran Associates, Inc.,
2009. URL https://proceedings.neurips.
cc/paper_files/paper/2009/file/
4f16c818875d9fcb6867c7bdc89be7eb-Paper.
pdf.

Arthur, D. and Vassilvitskii, S. Worst-case and smoothed
analysis of the icp algorithm, with an application to the
k-means method. In Symposium on Foundations of Com-
puter Science, 2006a.

Arthur, D. and Vassilvitskii, S. How slow is the k-means
method? In SCG ’06: Proceedings of the twenty-second
annual symposium on computational geometry. ACM
Press, 2006b.

Arthur, D. and Vassilvitskii, S. k-means++: the advantages
of careful seeding. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’07, pp. 1027–1035, USA, 2007. Society for Indus-
trial and Applied Mathematics. ISBN 9780898716245.

Awasthi, P., Charikar, M., Krishnaswamy, R., and
Sinop, A. K. The Hardness of Approximation of
Euclidean k-Means. In Arge, L. and Pach, J. (eds.),
31st International Symposium on Computational
Geometry (SoCG 2015), volume 34 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pp.
754–767, Dagstuhl, Germany, 2015. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. ISBN 978-3-939897-
83-5. doi: 10.4230/LIPIcs.SOCG.2015.754. URL
https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.SOCG.2015.754.

Bachem, O., Lucic, M., Hassani, H., and Krause, A.
Fast and provably good seedings for k-means. In
Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and

Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.,
2016a. URL https://proceedings.neurips.
cc/paper_files/paper/2016/file/
d67d8ab4f4c10bf22aa353e27879133c-Paper.
pdf.

Bachem, O., Lucic, M., Hassani, S. H., and Krause,
A. Approximate k-means++ in sublinear time. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 30(1), Feb. 2016b. doi: 10.1609/aaai.v30i1.
10259. URL https://ojs.aaai.org/index.
php/AAAI/article/view/10259.

Bachem, O., Lucic, M., and Krause, A. Practical core-
set constructions for machine learning. arXiv preprint
arXiv:1703.06476, 2017a.

Bachem, O., Lucic, M., and Krause, A. Distributed
and provably good seedings for k-means in constant
rounds. In Precup, D. and Teh, Y. W. (eds.), Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 292–300. PMLR, 06–11 Aug 2017b.
URL https://proceedings.mlr.press/v70/
bachem17b.html.

Bahmani, B., Moseley, B., Vattani, A., Kumar, R., and
Vassilvitskii, S. Scalable k-means++. Proc. VLDB
Endow., 5(7):622–633, March 2012. ISSN 2150-8097.
doi: 10.14778/2180912.2180915. URL https://doi.
org/10.14778/2180912.2180915.

Bhattacharya, A., Eube, J., Röglin, H., and Schmidt,
M. Noisy, Greedy and Not so Greedy k-Means++.
In Grandoni, F., Herman, G., and Sanders, P. (eds.),
28th Annual European Symposium on Algorithms
(ESA 2020), volume 173 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 18:1–
18:21, Dagstuhl, Germany, 2020. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. ISBN 978-3-95977-
162-7. doi: 10.4230/LIPIcs.ESA.2020.18. URL
https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ESA.2020.18.

Blackard, J. Covertype [dataset], 1998. URL https://
doi.org/10.24432/C50K5N. UCI Machine Learn-
ing Repository.

Caruana, R. and Joachims, T. Kdd cup 2004: Protein homol-
ogy dataset. https://kdd.org/kdd-cup/view/
kdd-cup-2004/Data, 2004. Accessed: 2025-01-29.

Cattral, R. and Oppacher, F. Poker hand [dataset],
2002. URL https://doi.org/10.24432/
C5KW38. UCI Machine Learning Repository.

9

https://doi.org/10.1145/2133803.2184450
https://doi.org/10.1145/2133803.2184450
https://doi.org/10.1137/18M1171321
https://doi.org/10.1137/18M1171321
https://proceedings.neurips.cc/paper_files/paper/2009/file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.754
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.754
https://proceedings.neurips.cc/paper_files/paper/2016/file/d67d8ab4f4c10bf22aa353e27879133c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d67d8ab4f4c10bf22aa353e27879133c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d67d8ab4f4c10bf22aa353e27879133c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d67d8ab4f4c10bf22aa353e27879133c-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/10259
https://ojs.aaai.org/index.php/AAAI/article/view/10259
https://proceedings.mlr.press/v70/bachem17b.html
https://proceedings.mlr.press/v70/bachem17b.html
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.14778/2180912.2180915
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.18
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.18
https://doi.org/10.24432/C50K5N
https://doi.org/10.24432/C50K5N
https://kdd.org/kdd-cup/view/kdd-cup-2004/Data
https://kdd.org/kdd-cup/view/kdd-cup-2004/Data
https://doi.org/10.24432/C5KW38
https://doi.org/10.24432/C5KW38

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Charikar, M., Henzinger, M., Hu, L., Vötsch, M., and Wain-
garten, E. Simple, scalable and effective clustering via
one-dimensional projections. In Oh, A., Naumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 64618–64649. Curran Associates,
Inc., 2023.

Choo, D., Grunau, C., Portmann, J., and Rozhon, V.
k-means++: few more steps yield constant approx-
imation. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1909–1917. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/choo20a.html.

Cohen-Addad, V. A fast approximation scheme for low-
dimensional k-means. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, pp. 430–440, USA, 2018. Society for Indus-
trial and Applied Mathematics. ISBN 9781611975031.

Cohen-Addad, V. and C.S., K. Inapproximability of cluster-
ing in lp metrics. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 519–
539, 2019. doi: 10.1109/FOCS.2019.00040.

Cohen-Addad, V., Klein, P. N., and Mathieu, C. Local
search yields approximation schemes for k-means and
k-median in euclidean and minor-free metrics. SIAM
Journal on Computing, 48(2):644–667, 2019. doi: 10.
1137/17M112717X. URL https://doi.org/10.
1137/17M112717X.

Cohen-Addad, V., Lattanzi, S., Norouzi-Fard, A., Sohler,
C., and Svensson, O. Fast and accurate k-means++
via rejection sampling. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 16235–16245. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
babcff88f8be8c4795bd6f0f8cccca61-Paper.
pdf.

Cohen-Addad, V., Esfandiari, H., Mirrokni, V., and
Narayanan, S. Improved approximations for euclidean
k-means and k-median, via nested quasi-independent
sets. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2022, pp.
1621–1628, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450392648. doi: 10.
1145/3519935.3520011. URL https://doi.org/
10.1145/3519935.3520011.

Dasgupta, S. How fast is k-means? In Schölkopf, B. and
Warmuth, M. K. (eds.), COLT, volume 2777 of Lecture
Notes in Computer Science, pp. 735. Springer, 2003.

Dasgupta, S. The hardness of k-means clustering. Tech-
nical report, UC San Diego: Department of Com-
puter Science & Engineering, 2008. URL https:
//escholarship.org/uc/item/2qm3k10c.

Dasgupta, S., 2013. URL https://cseweb.ucsd.
edu/˜dasgupta/291-geom/kmeans.pdf. CSE
291 : Geometric Algorithms, Lecture 3 - Algorithms for
k-means clustering.

Feldman, D. Introduction to core-sets: an updated survey.
arXiv preprint arXiv:2011.09384, 2020.

Friggstad, Z., Rezapour, M., and Salavatipour, M. R. Local
search yields a ptas for k-means in doubling metrics.
SIAM Journal on Computing, 48(2):452–480, 2019. doi:
10.1137/17M1127181. URL https://doi.org/10.
1137/17M1127181.

Grunau, C., Özüdoğru, A. A., and Rozhoň, V. Noisy
k-Means++ Revisited. In Gørtz, I. L., Farach-
Colton, M., Puglisi, S. J., and Herman, G. (eds.),
31st Annual European Symposium on Algorithms
(ESA 2023), volume 274 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 55:1–
55:7, Dagstuhl, Germany, 2023. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. ISBN 978-3-95977-
295-2. doi: 10.4230/LIPIcs.ESA.2023.55. URL
https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ESA.2023.55.

Har-Peled, S. and Sadri, B. How fast is the k-means method?
In SODA ’05: Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 877–885,
Philadelphia, PA, USA, 2005. Society for Industrial and
Applied Mathematics.

Hastings, W. K. Monte carlo sampling methods using
markov chains and their applications. Biometrika, 57
(1):97–109, 1970.

Jain, K. and Vazirani, V. V. Approximation algorithms for
metric facility location and k-median problems using the
primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274–296, March 2001. ISSN 0004-5411. doi:
10.1145/375827.375845. URL https://doi.org/
10.1145/375827.375845.

Jaiswal, R. and Shah, P. Quantum (inspired) d2-sampling
with applications, 2024. URL https://arxiv.org/
abs/2405.13351.

10

https://proceedings.mlr.press/v119/choo20a.html
https://proceedings.mlr.press/v119/choo20a.html
https://doi.org/10.1137/17M112717X
https://doi.org/10.1137/17M112717X
https://proceedings.neurips.cc/paper_files/paper/2020/file/babcff88f8be8c4795bd6f0f8cccca61-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/babcff88f8be8c4795bd6f0f8cccca61-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/babcff88f8be8c4795bd6f0f8cccca61-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/babcff88f8be8c4795bd6f0f8cccca61-Paper.pdf
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1145/3519935.3520011
https://escholarship.org/uc/item/2qm3k10c
https://escholarship.org/uc/item/2qm3k10c
https://cseweb.ucsd.edu/~dasgupta/291-geom/kmeans.pdf
https://cseweb.ucsd.edu/~dasgupta/291-geom/kmeans.pdf
https://doi.org/10.1137/17M1127181
https://doi.org/10.1137/17M1127181
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.55
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.55
https://doi.org/10.1145/375827.375845
https://doi.org/10.1145/375827.375845
https://arxiv.org/abs/2405.13351
https://arxiv.org/abs/2405.13351

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Jaiswal, R., Kumar, A., and Sen, S. A simple D2-
sampling based PTAS for k-means and other cluster-
ing problems. Algorithmica, 70(1):22–46, 2014. doi:
10.1007/s00453-013-9833-9.

Jaiswal, R., Kumar, M., and Yadav, P. Improved analysis
of D2-sampling based PTAS for k-means and other clus-
tering problems. Information Processing Letters, 115(2):
100–103, 2015. doi: 10.1016/j.ipl.2014.09.018.

Johnson, W. B. and Lindenstrauss, J. Extensions of lipschitz
maps into a hilbert space. Contemporary Mathematics,
26:189–206, 1984.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko,
C. D., Silverman, R., and Wu, A. Y. A local search
approximation algorithm for k-means clustering. In Pro-
ceedings of the Eighteenth Annual Symposium on Com-
putational Geometry, SCG ’02, pp. 10–18, New York,
NY, USA, 2002. Association for Computing Machinery.
ISBN 1581135041. doi: 10.1145/513400.513402. URL
https://doi.org/10.1145/513400.513402.

Kelly, M., Longjohn, R., and Nottingham, K. Cdc dia-
betes health indicators dataset, 2021. URL https://
archive.ics.uci.edu. The UCI Machine Learn-
ing Repository.

Krishnapuram, B. Kdd cup 2008: Breast can-
cer dataset. https://kdd.org/kdd-cup/view/
kdd-cup-2008/Data, 2008. Accessed: 2025-01-29.

Kumar, A., Sabharwal, Y., and Sen, S. Linear-time ap-
proximation schemes for clustering problems in any di-
mensions. J. ACM, 57(2), February 2010. ISSN 0004-
5411. doi: 10.1145/1667053.1667054. URL https:
//doi.org/10.1145/1667053.1667054.

Lattanzi, S. and Sohler, C. A better k-means++ algorithm
via local search. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 3662–3671. PMLR, 09–
15 Jun 2019. URL https://proceedings.mlr.
press/v97/lattanzi19a.html.

Lee, E., Schmidt, M., and Wright, J. Improved and sim-
plified inapproximability for k-means. Inf. Process.
Lett., 120:40–43, 2017. doi: 10.1016/J.IPL.2016.11.
009. URL https://doi.org/10.1016/j.ipl.
2016.11.009.

Lloyd, S. Least squares quantization in pcm. IEEE Transac-
tions on Information Theory, 28(2):129–137, 1982. doi:
10.1109/TIT.1982.1056489.

Mahajan, M., Nimbhorkar, P., and Varadarajan, K. The
planar k-means problem is np-hard. In Proceedings of
the 3rd International Workshop on Algorithms and Com-
putation, WALCOM ’09, pp. 274–285, Berlin, Heidel-
berg, 2009. Springer-Verlag. ISBN 9783642002014. doi:
10.1007/978-3-642-00202-1 24. URL https://doi.
org/10.1007/978-3-642-00202-1_24.

Pollard, D. Strong consistency of k-means clustering. The
Annals of Statistics, 9(1):135–140, 1981. URL http:
//www.jstor.org/stable/2240876.

Tang, E. A quantum-inspired classical algorithm for
recommendation systems. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, pp. 217–228, New York,
NY, USA, 2019. Association for Computing Machin-
ery. ISBN 9781450367059. doi: 10.1145/3313276.
3316310. URL https://doi.org/10.1145/
3313276.3316310.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q.,
Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S.,
Zhou, Z.-H., Steinbach, M., Hand, D. J., and Steinberg,
D. Top 10 algorithms in data mining. Knowledge and
Information Systems, 14(1):1–37, 2008. doi: 10.1007/
s10115-007-0114-2.

11

https://doi.org/10.1145/513400.513402
https://archive.ics.uci.edu
https://archive.ics.uci.edu
https://kdd.org/kdd-cup/view/kdd-cup-2008/Data
https://kdd.org/kdd-cup/view/kdd-cup-2008/Data
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1145/1667053.1667054
https://proceedings.mlr.press/v97/lattanzi19a.html
https://proceedings.mlr.press/v97/lattanzi19a.html
https://doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1007/978-3-642-00202-1_24
https://doi.org/10.1007/978-3-642-00202-1_24
http://www.jstor.org/stable/2240876
http://www.jstor.org/stable/2240876
https://doi.org/10.1145/3313276.3316310
https://doi.org/10.1145/3313276.3316310

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Appendix

A. Rejection Sampling
Given the dataset X ⊂ Rd and a set of already chosen centers S ⊂ X , our goal is to obtain a sample from X according to
the D2(X , S) distribution. Recall that we defined the distribution DX over X by DX (x) = ∥x∥2

∥X∥2 . The main ingredient of
our algorithm is a rejection sampling procedure which allows us convert samples from DX to a sample from D2(X , S).

We shall pre-process our dataset so that we can efficiently sample from DX , and then convert samples from DX to samples
from D2(X , S). Choosing the first center uniformly at random from X and repeating this procedure for k − 1 times is
precisely our algorithm for performing the k-means ++ seeding.

Definition A.1. Suppose D1, D2 define probability distributions over X . The distribution D2 is said to τ -oversample D1

for τ > 0 if D1(x) ≤ τD2(x) for each x ∈ X .

Algorithm 5 RejectionSample

Input: Samples generated from D2

Output: A sample generated from D1

1: sampled = False

2: repeat
3: x ∼ D2 , r ∼ [0, 1]

4: Compute ρ(x) = D1(x)
τD2(x)

5: if r ≤ ρ(x) then
6: output x and set sampled = True

7: end if
8: until sampled = True

Consider Algorithm 5 which takes samples generated from D2 as input and outputs a sample generated from D1.

Lemma A.2. Let D1, D2 be probability distributions over X such that D2 τ -oversamples D1. The expected number of
samples from D2 required by RejectionSample to output a single sample from D1 is τ . Moreover, for any ε ∈ (0, 1) the
probability that more than τ ln 1

ε samples are required is atmost ε.

Proof. Let T be the random variable denoting the number of rounds required for a sample to be output by RejectionSample.
Let Output denote the event that a sample is output in a particular round. We have

Pr[Output] =
∑
x∈X

D2(x)ρ(x) = τ−1
∑
x∈X

D1(x) = τ−1

Given that a sample is generated, it is easy to see that it is distributed according to D1. It takes exactly t rounds for a sample
to be generated if no sample is generated in the first t− 1 iterations and a sample is generated in the last iteration. Hence,

Pr[T = t] = (Pr[¬Output])t−1
Pr[Output] = τ−1(1− τ−1)t−1

which means that T is a geometric random variable with parameter τ−1, so that E[T] = τ . It is easy to see that T has
exponentially diminishing tails :

Pr[T > t] =

∞∑
j=t+1

τ−1(1− τ−1)j−1 = (1− τ−1)t ≤ e−t/τ

from which the lemma follows.

Remark A.3. Note that the algorithm does not require any estimate on the value of τ , computing which may be non-trivial.
It only requires the ability to compute the ratio ρ(x) = D1(x)

τD2(x)
for each x ∈ X .

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

In the current form, Algorithm 5 does not have any control over the number of samples from D2 which it may need to
examine. However, a bound on the number of samples to be examined can be used if we are content with sampling from a
slightly perturbed distribution. Suppose we have another distribution D3 over X . This time we are allowed to use samples
coming from D2 and D3 and instead of a sample from D1, we are content with obtaining a sample generated by a hybrid
distribution D(x) = (1− δ)D1(x) + δD3(x) for some small enough δ ∈ (0, 1). For this we can modify Algorithm 5 to
Algorithm 6 as follows :

Algorithm 6 RejectionSample(m)

Input: Samples generated from D2, D3

Output: A sample x with probability D(x) = (1− δ)D1(x) + δD3(x) where δ ≤ e−m/τ

1: sampled = False , iter = 0
2: repeat
3: iter = iter+ 1

4: x ∼ D2 , r ∼ [0, 1]

5: Compute ρ(x) = D1(x)
τD2(x)

6: if r ≤ ρ(x) then
7: output x and set sampled = True

8: end if
9: until sampled = True or iter > m

10: if sampled = False then
11: output x ∼ D3

12: end if

Lemma A.4. Let m > 0 be the upper bound on the number of rounds in RejectionSample. The output samples come
from a distribution D which can be expressed as D(x) = (1− δ)D1(x) + δD3(x) where δ ≤ e−m/τ .

Proof. A point is sampled from D3 if and only if no sample is generated in m rounds of rejection sampling. Hence, the
probability of sampling a point x ∈ X is :

Pr[x ∼ RejectionSample(m)]

= Pr[x|T ≤ m] Pr[T ≤ m] + Pr[x|T > m] Pr[T > m]

= (1− δ)D1(x) + δD3(x)

where δ = Pr[T > m] ≤ e−m/τ from the proof of Lemma A.2.

A.1. Application to RS-k-means++

Recall that our goal in k-means++ is to sample the centers from the distribution D2(X , S) over X given by D2(X , S) =
D1(x) = ∆(x,S)

∆(X ,S) . In this work we present two methods, one which samples the centers from the D2 distribution and
another which samples from a slightly ‘perturbed’ distribution D(x) = (1 − δ)D1(x) + δD3(x) where D3(x) =

1
|X | is

simply the uniform distribution over X . We will use the RejectionSample and RejectionSample(m) for these methods
respectively. In both cases we need to find a suitable distribution D2 over X that τ -oversamples D1 (for a suitable τ) and
for which we have an efficient method to obtain samples.

Lemma A.5. Let S = {c1, . . . , ct} ⊂ X be chosen according to the D2 distribution (In particular, c1 is a uniformly random
point in X). Let D2 be the distribution over X defined by

D2(x) =
∥x∥2 + ∥c1∥2

∥X∥2 + |X |∥c1∥2

Then D2 τ -oversamples D2(X , S) for τ = 2∥X∥2+|X |∥c1∥2

∆(X ,S) .

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Proof.

∆(x, S) = min
c∈S
∥x− c∥2 ≤ ∥x− c1∥2 ≤ 2(∥x∥2 + ∥c1∥2)

where the final inequality is obtained via the Cauchy-Schwarz inequality. Multiplying both sides by 1
∆(X ,S) gives the

required result.

An immediate issue is: how do we actually obtain samples from D2? We will deal with this issue in a bit; for now, assume
that we can efficiently obtain such samples after a preprocessing step.

With this, we can apply Algorithm 5 for D1 being the required D2(X , S) distribution and D2 as in Lemma A.5. It can
be seen that for these distributions, Algorithm 5 is equivalent to Procedure3 where m =∞. Thus Lemma A.2 gives the
following Corollary.

Corollary A.6. Let ϵ ∈ (0, 1) and X ⊂ Rd be any dataset of n points and S = {c1, . . . , ct} ⊂ X such that c1 is a uniformly
random point in X . Assume that we can obtain a sample from the following distribution over X in O(log |X |) time:

D2(x) =
∥x∥2 + ∥c1∥2

∥X∥2 + |X |∥c1∥2

Then Procedure 3 outputs a sample c ∈ X according to the distribution D2(X , S). Moreover, the computational cost of the
algorithm is bounded by O(β(X)· (td+ log |X |)· log (1/ϵ)) with probability atleast 1− ϵ. Here, β(X) is a parameter such
that E[β(X)] ≤ ∆1(X)

∆k(X) .

Proof. By Lemma A.5 we know that D2 τ -oversamples D2(X , S) for τ = 2∥X∥2+|X |∥c1∥2

∆(X ,S) ≤ 2∥X∥2+|X |∥c1∥2

∆k(X) . So

E[τ] ≤ 2
∥X∥2 + |X |E[∥c1∥2]

∆k(X)

= 2
∥X∥2 + |X |· 1

|X |
∑

x∈X ∥x∥2

∆k(X)

=
4∥X∥2

∆k(X)
=

4∆1(X)
∆k(X)

where the last inequality follows from the fact that X is translated so that its centroid is at the origin.

Thus applying Lemma A.2 gives us the result for β(X) = τ/4.

We can apply this D2 sampling technique k times to obtain the centers according to k-means++ . This is what
RS-k-means++(X , k,∞) does and it can be seen that Theorem 2.2 follows from Corollary A.6; in particular the ap-
proximation guarantee of the sampled centers follows from (Arthur & Vassilvitskii, 2007).

In our second approach, we replace RejectionSample by RejectionSample(m) which only repeats the rejection
sampling loop m times for a suitable choice of m. In particular, notice that Procedure 3 is essentially Algorithm 6 for
D1 = D2(X , S), D3 being the uniform distribution over X and D2 as in Lemma A.5.

This gives us the following corollary whose proof can be argued analogous to A.6:

Corollary A.7. Let m ∈ N be a parameter, X ⊂ Rd be any dataset of n points and S = {c1, . . . , ct} ⊂ X such that c1 is a
uniformly random point in X . Assume that we can obtain a sample from the following distribution over X in O(log |X |)
time:

D2(x) =
∥x∥2 + ∥c1∥2

∥X∥2 + |X |∥c1∥2

Then Procedure 3 with input (X , S,m log t) outputs a sample c ∈ X according to the distribution (1 − δ)·D2(X , S) +
δ· U [X] for δ ≤ e−m/β(X). Moreover, the computational cost of the algorithm is bounded by O(m· (td+ log |X |)· log t)
with probability at least 1− ϵ. Here, β(X) is a parameter such that E[β(X)] ≤ ∆1(X)

∆k(X) .

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Again we can apply this sampling technique k times to obtain k centers. Note that this sampling is from a ‘perturbed’
distribution from D2(X , S), so the approximation guarantee no longer follows directly from (Arthur & Vassilvitskii, 2007).
However we analyse this in AppendixB to get the following:

Theorem A.8. Let X ⊂ Rd be any dataset which is to be partitioned into k clusters. Let S be the set of centers returned by
δ-k-means++(X , k, δ) for any δ ∈ (0, 0.5) . The following approximation guarantee holds :

E[∆(X , S)] ≤ 8(ln k + 2)∆k(X) +
6kδ

1− δ
∆1(X)

which will finally prove Theorem 2.1 after substituting value of the failure probability δ.

In the following section we show how to obtain samples from D2.

A.2. Sampling from D2 via a Preprocessed Data Structure

Given X ⊂ Rd, consider the vector vX ∈ R|X | given by vX (x) = ∥x∥. Define DX (x) = ∥x∥2

∥X∥2 as a distribution over X .
We will use a (complete) binary tree data structure to sample from DX . The leaves of the binary tree correspond to the
entries of vX and store weight vX (x)2 along with the sign of vX (x). The internal nodes also store a weight that is equal to
the sum of weights of its children. To sample from DX , we traverse the tree, choosing either to go left or right at each node
with probability proportional to the weight of its two children until reaching the leaves. The binary tree similarly supports
querying and updating the entries of vX .

∥v∥2

v(1)2 + v(2)2

v(1)2

sign(v(1))

v(2)2

sign(v(2))

v(3)2 + v(4)2

v(3)2

sign(v(3))

v(4)2

sign(v(4))

Figure 2. Data structure for sampling from a vector v ∈ R4

We state this formally following (Tang, 2019), in which such data structures, called sample and query access data structures
were introduced.

Lemma A.9. (Lemma 3.1 in (Tang, 2019)) There exists a data structure storing a vector v ∈ Rn with ν nonzero entries in
O(ν log n) space which supports the following operations:

• Reading and updating an entry of v in O(log n) time

• Finding ∥v∥2 in O(1) time

• Generating an independent sample i ∈ {1, . . . , n} with probability v(i)2∑n
j=1 v(j)2 in O(log n) time.

Note that if n is not a perfect power of 2 then we can find a n′ ∈ N which is a perfect power of 2 such that n′ < n < 2n′.
We can then set the remaining 2n′ − n data points to have zero norm and use this dataset instead to construct the complete
binary tree. Thus the following corollary is immediate.

Corollary A.10. There is a data structure that can be prepared in Õ(nnz(X)) time which enables generating a sample
from DX in O(log |X |) time.

We will now show how to sample from D2 in O(log |X |) time by Procedure 7.

Lemma A.11. Procedure 7 produces a sample from X according to the distribution D2 as defined in Lemma A.5. Moreover
it takes O(log |X |) time after a one time preprocessing time of Õ(nnz(X)).

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Procedure 7 SampleDistribution

Input: A center c ∈ X
Output: A sample according to the distribution D2 defined as D2(x) =

∥x∥2+∥c∥2

∥X∥2+|X |∥c∥2

1: Generate r ∼ U [0, 1]
2: if r ≤ ∥X∥2

∥X∥2+|X |∥c∥2 then
3: Generate a sample x ∼ DX using the data structure from Section A.2
4: else
5: Generate a sample x ∼ U [X]
6: end if
7: output x

Proof. The probability of a sampled point is as follows:

Pr[x] = Pr

[
r ≤ ∥X∥2

∥X∥2 + n∥c1∥2

]
Pr[x ∼ DX]

+ Pr

[
r >

∥X∥2

∥X∥2 + |X |∥c1∥2

]
Pr[x ∼ U [X]]

=
∥X∥2

∥V ∥2 + |X |∥c1∥2
∥x∥2

∥X∥2
+

|X |∥c1∥2

∥X∥2 + |X |∥c1∥2
1

|X |

=
2(∥vi∥2 + ∥c1∥2)

2(∥X∥2 + |X |∥c1∥2)
= D2(x)

The time complexity follows from A.10.

B. Analysis of δ-k-means++
In order to analyze the solution quality of RS-k-means++, we examine an abstract variant of k-means++ which we call
δ-k-means++ . Instead of sampling from the D2-distribution as in k-means++ , we sample from a distribution which is a
weighted average of the D2-distribution and the uniform distribution with weights (1− δ) and δ respectively. We refer to
this distribution on X as D2

δ(X , S) for some set of centers S ⊂ X . When clear from context, we just use D2
δ .

Algorithm 8 δ-k-means++(X , k, δ)
Input : dataset X ⊂ Rd, number of clusters k ∈ N and parameter δ ∈ (0, 1)
Output : S = {c1, . . . , ck} ⊂ X

1: Choose c1 ∈ X uniformly at random and set S ← {c1}
2: for t ∈ {2, . . . , k} do
3: Chose a point x ∈ X with prob. (1− δ) ∆(x,S)

∆(X ,S) + δ 1
|X |

4: ct ← x
5: S ← S ∪ {ct}
6: end for
7: return S

The main objective of this section is to prove the following :

Theorem B.1. Let X ⊂ Rd be any dataset which is to be partitioned into k clusters. Let S be the set of centers returned by
δ-k-means++(X , k, δ) for any δ ∈ (0, 0.5) . The following approximation guarantee holds :

E[∆(X , S)] ≤ 8(ln k + 2)∆k(X) +
6kδ

1− δ
∆1(X)

Our analysis closely follows the potential based approach of (Dasgupta, 2013). Since we sample from a different distribution
as compared to the standard k-means++ , its analysis does not directly carry over to δ-k-means++ . Indeed, it is known

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

that the k-means++ procedure is quite sensitive to even small changes in the D2 distribution. This was first studied by
(Bhattacharya et al., 2020) who were able to show only a O(log2 k) guarantee when the centers are sampled from a
distribution which is ε-close 17 to the exact D2 distribution for a sufficiently small constant ε . This result was recently
improved upon by (Grunau et al., 2023) who recover the tight O(log k) guarantee of k-means++ . In their analysis, (Grunau
et al., 2023) incur a very large constant multiplicative blow-up 18 in the approximation guarantee and leave it as an open
problem to show whether the true approximation guarantee can be bounded by a multiplicative factor of 1 + O(ε). In
contrast, we show that the approximation guarantee of δ-k-means++ consists of an additive scale invariant variance factor
proportional to δ in addition to the standard guarantee of k-means++ with the same constants.

B.1. Some Useful Lemmas

In this section, we state some crucial lemmas that shall be helpful in the analysis. Throughout our work, the centroid of a set
of points P ⊂ Rd is denoted by µ(P) = 1

|P|
∑

p∈P p.

The following folklore lemma is analogous to the bias-variance decomposition in machine learning.

Lemma B.2. For any set of points P ⊂ Rd and any point z ∈ Rd (possibly not in P), the following holds :

∆(P, z) = ∆(P, µ(P)) + |P|∥z − µ(P)∥2

This shows that the solution for the 1-means problem is the centroid of the data set i.e, ∆1(P) = ∆(P, µ(P)). The above
lemma can be easily used to show the following.

Lemma B.3. (Lemma 3.1 in (Arthur & Vassilvitskii, 2007)) For any set of points P ⊂ Rd, if a point z ∈ P is chosen
uniformly at random, then the following holds :

E[∆(P, z)] = 2∆(P, µ(P))

We now state some useful bounds on the probability that a point is chosen from the D2
δ distribution with respect to some

centers S conditioned on it coming from a particular subset of points. For a point z ∈ Rd (possibly chosen randomly from
some probability distribution) and a set of points P ⊂ Rd, we denote the event {z ∈ P} by χP(z).

Lemma B.4. Let P ⊂ Rd be a set of points with Q ⊂ P being an arbitrary subset of P such that |Q| ≠ 0. Let S ⊂ P be a
set of cluster centers. For any point z ∈ Q and parameter δ ∈ (0, 1), the following hold :

1. Pr[z ∼ D2
δ |χQ(z)] ≤ ∆(z)

∆(Q) +
δ

1−δ
1

|P|
∆(P)
∆(Q)

2. Pr[z ∼ D2
δ |χQ(z)] ≥ ∆(z)

∆(Q) −
δ

1−δ
|Q|
|P|

∆(z)∆(P)
∆(Q)2

Here, ∆(·) denotes ∆(·, S) for simplicity.

Proof. The probability that a chosen point belongs to Q is

Pr[z ∼ D2
δ ∩ χQ(z)] =

∑
q∈Q

(
(1− δ)

∆(q)

∆(P)
+ δ

1

|P|

)

= (1− δ)
∆(Q)
∆(P)

+ δ
|Q|
|P|

Hence the required conditional probability is

Pr[z ∼ D2
δ |χQ(z)] =

(1− δ) ∆(z)
∆(P) + δ 1

|P|

(1− δ)∆(Q)
∆(P) + δ |Q|

|P|

17Let p(·) and p′(·) represent probability mass functions over X . p′ is said to be ε-close to p if |p′(x)− p(x)| ≤ εp(x) ∀x ∈ X .
18The constant blow-up of (Grunau et al., 2023) is bounded above by

∑∞
ℓ=1 90ℓe

− ℓ−1
40 = 90

(1−e−1/40)2
≃ 1.48× 105

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

For 1. we have :

(1− δ) ∆(z)
∆(P) + δ 1

|P|

(1− δ)∆(Q)
∆(P) + δ |Q|

|P|

≤
(1− δ) ∆(z)

∆(P) + δ 1
|P|

(1− δ)∆(Q)
∆(P)

=
∆(z)

∆(Q)
+

δ

1− δ

1

|P|
∆(P)
∆(Q)

For 2. we have :

(1− δ) ∆(z)
∆(P) + δ 1

|P|

(1− δ)∆(Q)
∆(P) + δ |Q|

|P|

=
∆(z)

∆(Q)

 1 + δ
1−δ

∆(P)
|P|∆(z)

1 + δ
1−δ

|Q|∆(P)
|P|∆(Q)


≥ ∆(z)

∆(Q)

(
1 +

δ

1− δ

|Q|∆(P)
|P|∆(Q)

)−1

≥ ∆(z)

∆(Q)

(
1− δ

1− δ

|Q|∆(P)
|P|∆(Q)

)

where in the last step we used the fact that (1 + x)−1 ≥ 1− x for any x ≥ 0. This completes the proof of the lemma.

Recall that OPTk = {c∗1, . . . c∗k} represented the optimal set of centers of the k-means problem for the dataset X . For a
center ci ∈ OPTk, let us denote the set of all points in X closer to ci than any other center in OPTk by Ci. Note c∗i = µ(Ci)
from Lemma B.2.

Next, we show a bound on the expected cost of a cluster Ci of OPTk when a point is added to the current set of clusters
from Ci through the D2

δ distribution. The following is analogous to Lemma 3.2 of (Arthur & Vassilvitskii, 2007) with an
additional factor depending on δ.

Lemma B.5. Let X ⊂ Rd be any dataset. Suppose we have a set of already chosen cluster centers S and a new center z is
added to S from the set of points Ci in the cluster corresponding to some ci ∈ OPTk through the D2

δ(X , S) distribution. The
following holds :

E[∆(Ci, S ∪ {z})|S, χCi
(z)] ≤ 8∆(Ci, µ(Ci)) +

δ

1− δ

|Ci|
|X |

∆(X , S)

Proof. When the new center z is added, each point x ∈ C contributes

∆(x, S ∪ {z}) = min(∥x− z∥2,∆(x, S))

to the overall cost. The expected cost of the cluster C can hence be written as :

E[∆(Ci, S ∪ {z})|S, χCi
(z)]

=
∑
z∈Ci

Pr[z ∼ D2
δ |S, χCi

(z)]
∑
x∈Ci

∆(x, S ∪ {z})

≤
∑
z∈Ci

∆(z, S)

∆(Ci, S)
∑
x∈Ci

min(∥x− z∥2,∆(x, S))

+
∑
z∈Ci

(
δ

1− δ

1

|X |
∆(X , S)
∆(Ci, S)

)∑
x∈Ci

min(∥x− z∥2,∆(x, S))

where in the last step we used item (i) of Lemma B.4. From Lemma 3.2 of (Arthur & Vassilvitskii, 2007), the first term is
bounded above by 8∆(Ci, µ(Ci)). Let us focus on the second term. Noting that∑

x∈Ci

min(∥x− z∥2,∆(x, S)) ≤
∑
x∈Ci

∆(x, S) = ∆(Ci, S)

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

the second term can be bounded above by the following :∑
z∈Ci

(
δ

1− δ

1

|X |
∆(X , S)
∆(Ci, S)

)
∆(Ci, S) =

δ

1− δ

|Ci|
|X |

∆(X , S)

from which the lemma follows.

B.2. Main Analysis

Before getting into the proof, let us set up some notation.

Notation. Let t ∈ {1,k} denote the number of centers already chosen by δ-k-means++ . Let St := {c1, . . . , ct} be the
set of centers after iteration t . We say that a cluster Ci of OPTk is covered by St if at least one of its centers is in Ci. If not,
then it is uncovered. We denote

Ht = {i ∈ {1, . . . , k} : Ci ∩ St ̸= ∅}, Ut = {1, . . . , k}\Ht

Similarly, the dataset X can be partitioned in two parts : Ht ⊂ X being the points belonging to covered clusters and
Ut = X\Ht being the points belonging to uncovered clusters. Let Wt = t− |Ht| denote the number of wasted iterations
so far i.e, the number of iterations in which no new cluster was covered. Note that we always have |Ht| ≤ t and hence
|Ut| ≥ k − t. For any P ⊂ X , we use the notation ∆t(P) := ∆(P, St) for brevity.

The total cost can be decomposed as :

∆t(X) = ∆t(Ht) + ∆t(Ut)

We can use Lemma B.5 to bound the first term directly.

Lemma B.6. For each t ∈ {1, . . . , k} the following holds :

E[∆t(Ht)] ≤ 8∆k(X) +
2δ

1− δ
∆1(X)

Proof.

E[∆t(Ht)] = E[
∑
i∈Ht

∆t(Ci)] ≤
k∑

i=1

E[∆t(Ci)]

≤ 8∆k(X) +
δ

1− δ
E[∆t(X)]

≤ 8∆k(X) +
2δ

1− δ
∆1(X)

Where in the last line we used Lemma B.3 and the fact that the first center is chosen uniformly at random from X .

Potential function. To bound the second term i.e, the cost of the uncovered clusters we use the potential function introduced
in (Dasgupta, 2013) :

Ψt =
Wt

|Ut|
∆t(Ut)

Instead of paying the complete clustering cost ∆k(X) at once, we make sure that at the end of iteration t, we have payed an
amount of atleast Ψt . Observe that when t = k, we have Wt = |Ut| so the potential becomes ∆k(Uk), which is indeed the
total cost of the uncovered clusters returned by RS-k-means++. We now show how to bound the expected increase in the
potential i.e, Ψt+1 −Ψt. To do this, we shall analyze the error propagation due to using the D2

δ distribution instead of the
D2 distribution on the way.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Bounding the Increments. Suppose t centers have been chosen. The next center ct+1 is chosen which belongs to some
optimal cluster Ci. We consider two cases : the first case is when i ∈ Ut i.e, a new cluster is covered and the the second case
is when i ∈ Ht i.e, the center is chosen from an already covered cluster. We shall denote all the set of all random variables
after the end of iteration t by Ft.

Lemma B.7. For any t ∈ {1, . . . , k − 1}, the following holds :

E[Ψt+1 −Ψt|Ft, χUt
(i)]

≤ 2δ

1− δ

t

max(1, k − t− 1)2
∆1(X)

Proof. When i ∈ Ut, we have Wt+1 = Wt, Ht+1 = Ht ∪ {i} and Ut+1 = Ut\{i}. Thus,

Ψt+1 =
Wt+1

|Ut+1|
∆t+1(Ut+1) ≤

Wt

|Ut| − 1

(
∆t(Ut)−∆t(Ci)

)
We can use item (ii) of Lemma B.4 for getting a lower bound on the second term :

E[∆t(Ci)|Ft, χUt
(i)]

≥
∑
j∈Ut

(
∆t(Cj)
∆t(Ut)

− δ

1− δ

|Cj |
|Ut|

∆t(Cj)∆t(X)
∆t(Ut)2

)
∆t(Cj)

≥
(
1− δ

1− δ

∆t(X)
∆t(Ut)

) ∑
j∈Ut

∆t(Cj)2

∆t(Ut)

Where in the second step we used the fact that |Cj | ≤ |Ut| for each j ∈ Ut. We can use the cauchy-schwarz 19 inequality to
simplify the last expression as follows :

|Ut|2
∑
j∈Ut

∆t(Cj)2 ≥ |Ut|
∑
j∈Ut

∆t(Cj) = |Ut|∆t(Ut)

This shows that

E[∆t(Ci)|Ft, χUt(i)] ≥
∆t(Ut)
|Ut|

− δ

1− δ

∆t(X)
|Ut|

Now,

E[Ψt+1|Ft, χUt
(i)]

≤ Wt

|Ut| − 1

(
∆t(Ut)− E[∆t(Ci)|Ft, χUt

(i)]
)

≤ Wt

|Ut| − 1

(
∆t(Ut)−

∆t(Ut)
|Ut|

+
δ

1− δ

∆t(X)
|Ut|

)
= Ψt +

δ

1− δ

Wt

|Ut| (|Ut| − 1)
∆t(X)

Recall that Wt ≤ t and |Ut| ≥ k − t. So for t ≤ k − 2, the following holds after taking expectation :

E[Ψt+1 −Ψt|Ft, χUt
(i)]

≤ δ

1− δ

t

(k − t− 1)2
E[∆t(X)|Ft, χUt

(i)]

≤ δ

1− δ

t

(k − t− 1)2
E[∆t(X)]

≤ 2δ

1− δ

t

(k − t− 1)2
∆1(X)

19for lists of numbers a1, . . . , am and b1, . . . , bm we have
(∑

i aibi
)2 ≤

(∑
i a

2
i

) (∑
i b

2
i

)
20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Now consider the case when t = k − 1. We cannot use the above argument directly because it may so happen that |Uk| = 0.
If this happens, the potential of the uncovered clusters is always 0 . This only happens when a new cluster is covered in each
iteration. Let this event be AC (for All Clusters being covered). Denoting E = Fk−1, χUk−1(i) we have the following :

E[Ψk −Ψk−1|E] = E[Ψk −Ψk−1|E , AC] Pr[AC|E]
+ E[Ψk −Ψk−1|E ,¬AC] Pr[¬AC|E]
≤ E[Ψk −Ψk−1|E ,¬AC] Pr[¬AC|E]
≤ E[Ψk −Ψk−1|E ,¬AC]

≤ 2δt

1− δ
∆1(X)

Where in the last line we used the fact that |Uk−1| > 1 if all clusters are not covered. Combining both cases completes the
proof.

Lemma B.8. For any t ∈ {1, . . . , k − 1}, the following holds :

E[Ψt+1 −Ψt|Ft, χHt(i)] ≤
∆t(Ut)
k − t

Proof. When i ∈ Ht, we have Ht+1 = Ht, Wt+1 = Wt + 1 and Ut+1 = Ut. Thus,

Ψt+1 −Ψt =
Wt+1

|Ut+1|
∆t+1(Ut+1)−

Wt

|Ut|
∆t(Ut)

≤ Wt + 1

|Ut|
∆t(Ut)−

Wt

|Ut|
∆t(Ut)

=
∆t(Ut)
|Ut|

≤ ∆t(Ut)
k − t

We can now combine the two cases to get :
Lemma B.9. For any t ∈ {1, . . . , k − 1}, the following holds :

E[Ψt+1 −Ψt|Ft] ≤ (1− δ)
E[∆t(Ht)]

k − t

+ δ

(
2

k − t
+

2t

max(1, k − t− 1)2

)
∆1(X)

Proof. To compute the overall expectation, we have :

E[Ψt+1 −Ψt|Ft] = E[Ψt+1 −Ψt|Ft, χUt
(i)] Pr[χUt

(i)]

+ E[Ψt+1 −Ψt|Ft, χHt
(i)] Pr[χHt

(i)]

We can bound the first term using Lemma B.7

E[Ψt+1 −Ψt|Ft, χUt
(i)] Pr[χUt

(i)]

≤ E[Ψt+1 −Ψt|Ft, χUt
(i)]

≤ 2δ

1− δ

t

max(1, k − t− 1)2
∆1(X)

and the second term using Lemma B.8

E[Ψt+1 −Ψt|Ft, χHt
(i)] Pr[χHt

(i)]

≤ ∆t(Ut)
k − t

(
(1− δ)

∆t(Ht)

∆t(X)
+ δ
|Ht|
|X |

)
≤ (1− δ)

∆t(Ht)

k − t
+ δ

∆t(X)
k − t

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Where in the last step we used ∆t(Ut) ≤ ∆t(X) and |Ht| ≤ |X |. Combining both the terms completes the proof.

We are now ready to provide a proof for Theorem B.1, which we state again :

Theorem B.10. Let X ⊂ Rd be any dataset which is to be partitioned into k clusters. Let S be the set of centers returned
by δ-k-means++(X , k, δ) for any δ ∈ (0, 0.5) . The following approximation guarantee holds :

E[∆(X , S)] ≤ 8(ln k + 2)∆k(X) +
6kδ

1− δ
∆1(X)

Proof. At the end of k iterations, we have ∆(X , S) = ∆t(Ht) + ∆t(Ut) = ∆t(Ht) + Ψk. The first term can be bound
using Lemma B.6. For the second term, we can express Ψk as a telescopic sum :

E[∆(X , S)] = E[∆k(Hk)] +

k−1∑
t=0

E[Ψt+1 −Ψt|Ft]

≤ E[∆k(Hk)] +

k−1∑
t=0

(1− δ)
E[∆t(Ht)]

k − t

+

k−1∑
t=0

δ

(
2

k − t
+

2t

(1− δ)max(1, k − t− 1)2

)
∆1(X)

≤ 8∆k(X)

(
1 + (1− δ)

k−1∑
t=0

1

k − t

)
+

2δ

1− δ
∆1(X)

(
k + 2 ln k +

k−2∑
t=0

t

(k − t− 1)2

)

To simplify this, note that
∑k−1

t=0
1

k−t ≤ 1 + ln k ,
∑k−2

t=0
t

(k−t−1)2 ≤ k
∑∞

n=1 n
−2 = π2

6 k and 4 ln k ≤
(
4− π2

3

)
k for

sufficiently large k. Using these above we get our final bound :

E[∆(X , S)] ≤ 8(ln k + 2)∆k(X) +
6kδ

1− δ
∆1(X)

This completes the proof of the theorem.

C. Experiments
SETUP

All the experiments were performed on a personal laptop with an Apple M3 Pro CPU chip, 11 cores and 18GB RAM. No
dimensionality reduction was done on the datasets. No multi - core parallelization was used during the experiments. We
have included the code for the experiments in the supplementary material.

DATASETS

The data sets used for the experiments were taken from the annual KDD competitions and the UCI Machine Learning
Repository. In the case that the data set consists of a train - test split, only the training data set without the corresponding
labels was used for perform clustering. We also provide rough estimates of the β parameters for the datasets used. These
are computed by taking the ratio of the variance of the dataset with the average clustering cost of the solution output by
RS-k-means++(·, ·,∞).

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Table 4. Description of datasets used for experiments

X n k d β̃k(X)
DIABETES (KELLY ET AL., 2021) 253, 680 50 21 ∼ 6.5

FOREST (BLACKARD, 1998) 581, 010 7 54 ∼ 3.3

PROTEIN (CARUANA & JOACHIMS, 2004) 145, 751 100 74 ∼ 9.7

POKER (CATTRAL & OPPACHER, 2002) 1, 025, 010 50 10 ∼ 2.4

CANCER (KRISHNAPURAM, 2008) 94, 730 100 117 ∼ 1.9

Table 5. Comparison of AF-k-MC2(·, ·, 200) with RS-k-means++(·, ·,∞)

NAME RS-k-means++
COST

AF-k-MC2

COST
RS-k-means++
STD. DEV.

AF-k-MC2 STD.
DEV.

RS-k-means++
TIME

AF-k-MC2

TIME

DIABETES 7.475 × 106 7.503 × 106 3.23 × 105 3.13 × 105 5.15 × 10−1 1.02 × 101

FOREST 7.707× 1011 7.748× 1011 1.31 × 1011 9.61 × 1010 1.48 × 10−1 3.51 × 100

PROTEIN 2.439× 1011 2.436× 1011 4.09 × 1010 4.44 × 1010 1.06 × 100 1.37 × 101

POKER 3.322 × 107 3.333 × 107 5.55 × 105 5.96 × 105 8.95 × 10−1 5.43 × 101

CANCER 6.067 × 106 6.086 × 106 1.19 × 105 7.18 × 104 3.75 × 10−1 9.69 × 100

ALGORITHMS

1. RS-k-means++ : Our approach takes as input the parameter m which is an upper bound on the number of iterations of
rejection sampling. This provides a trade-off between computational cost and solution quality. We can also set m =∞
to recover the O(log k) guarantee of k-means ++.

2. AF-k-MC2 : This is the Monte Carlo Markov Chain based approach of (Bachem et al., 2016a). It also takes as input a
parameter m which is the length of the markov chain used for sampling.

Remark C.1. We do not include comparisons with the algorithm of (Cohen-Addad et al., 2020) since their techniques are
algorithmically sophisticated including tree embeddings and LSH data structures for approximate nearest neighbor search.
This incurs additional poly-logarithmic dependence on the aspect ratio of the dataset and even nO(1) terms for performing
a single clustering. Moreover, a publicly available implementation is not available to the best of our knowledge. Similar
reasons are also mentioned in (Charikar et al., 2023) for not including this algorithm in their experiments as well. As for
the algorithm of (Charikar et al., 2023) called PRONE, it achieves an O(k4 log k) guarantee while running in expected time
O(n log n) after O(nnz(X)) pre-processing. Due to the large approximation factor, (Charikar et al., 2023) suggest to use
PRONE in a pipeline for constructing coresets instead of clustering the whole dataset. Moreover, the class of datasets targeted
by both (Cohen-Addad et al., 2020) and (Charikar et al., 2023) include the large k(∼ 5× 103) regime, while our approach
is more suitable for massive datasets where n ≫ k. This is because the time taken by our algorithm to perform a single
clustering is sublinear in n, much like the results of (Bachem et al., 2016a). Hence, we compare our approach with their
AF-k-MC2 algorithm.

Experiment 1

In this experiment, we compare the performance of the default AF-k-MC2 with m = 200 (as done by (Bachem et al., 2016a)
in their implementation) with the performance RS-k-means++ without setting any upper bound for the number of iterations
for the datasets given in Table 4. Recall that our algorithm does not require an estimate of β, thus making it free of any
extra parameters which require tuning. The algorithms were run for 20 iterations for computing the averages and standard
deviations. We also study the effect of varying the number of clusters k ∈ {5, 10, 20, 50, 100} for each dataset.

Experiment 2

In this experiment we study the convergence properties of RS-k-means++. We plot the average clustering cost of the solutions
output by RS-k-means++ vs the time taken to compute these solutions and compare these with the baseline k-means ++

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Table 6. Comparison of RS-k-means++ and AF-k-MC2 for different datasets.

DATASET k RS-k-means++
COST

AF-k-MC2 COST RS-k-means++
STD. DEV.

AF-k-MC2 STD.
DEV.

RS-k-means++
TIME

AF-k-MC2 TIME

DIABETES 5 2.847 × 107 3.089 × 107 3.59 × 106 4.92 × 106 2.32 × 10−2 8.71 × 10−1

10 1.768 × 107 1.740 × 107 1.33 × 106 2.23 × 106 4.78 × 10−2 1.99 × 100

20 1.174 × 107 1.195 × 107 5.03 × 105 9.98 × 105 1.32 × 10−1 4.15 × 100

50 7.401 × 106 7.446 × 106 3.26 × 105 2.29 × 105 5.08 × 10−1 1.03 × 101

100 5.515 × 106 5.476 × 106 1.39 × 105 1.25 × 105 1.59 × 100 2.14 × 101

FOREST 5 1.041 × 1012 1.062 × 1012 1.69 × 1011 1.78 × 1011 1.13 × 10−1 2.31 × 100

10 5.941 × 1011 5.853 × 1011 8.65 × 1010 6.37 × 1010 2.47 × 10−1 5.41 × 100

20 3.377 × 1011 3.373 × 1011 2.51 × 1010 2.02 × 1010 6.97 × 10−1 1.16 × 101

50 1.834 × 1011 1.846 × 1011 8.35 × 109 6.48 × 109 3.27 × 100 2.98 × 101

100 1.221 × 1011 1.221 × 1011 2.64 × 109 3.41 × 109 1.01 × 101 5.85 × 101

PROTEIN 5 1.048 × 1012 1.085 × 1012 2.88 × 1011 3.00 × 1011 2.48 × 10−2 6.21 × 10−1

10 6.394 × 1011 5.882 × 1011 9.71 × 1010 6.15 × 1010 4.59 × 10−2 1.40 × 100

20 4.388 × 1011 4.434 × 1011 2.83 × 1010 3.81 × 1010 1.26 × 10−1 2.93 × 100

50 3.029 × 1011 3.059 × 1011 1.20 × 1010 8.55 × 109 3.96 × 10−1 7.59 × 100

100 2.417 × 1011 2.456 × 1011 4.73 × 109 5.44 × 109 1.24 × 100 1.47 × 101

POKER 5 7.81 × 107 8.03 × 107 5.72 × 106 9.10 × 106 4.77 × 10−2 3.41 × 100

10 5.88 × 107 6.04 × 107 2.61 × 106 3.41 × 106 1.14 × 10−1 8.13 × 100

20 4.58 × 107 4.51 × 107 1.70 × 106 1.16 × 106 2.70 × 10−1 1.64 × 101

50 3.31 × 107 3.31 × 107 5.41 × 105 4.68 × 105 8.24 × 10−1 4.06 × 101

100 2.68 × 107 2.69 × 107 4.81 × 105 3.89 × 105 2.07 × 100 8.29 × 101

CANCER 5 1.21 × 107 1.23 × 107 1.03 × 106 1.17 × 106 1.96 × 10−2 3.75 × 10−1

10 1.07 × 107 1.06 × 107 5.96 × 105 7.44 × 105 2.46 × 10−2 8.40 × 10−1

20 8.83 × 106 8.75 × 106 4.02 × 105 4.05 × 105 3.89 × 10−2 1.84 × 100

50 7.02 × 106 7.06 × 106 1.46 × 105 1.96 × 105 8.84 × 10−2 4.77 × 100

100 6.08 × 106 6.06 × 106 1.06 × 105 7.22 × 104 3.69 × 10−1 9.49 × 100

solution. We also report 95% confidence intervals in the plots over 40 iterations of the algorithms. The plots are generated
by varying the upper bound on the number of rejection sampling iterations from m ∈ {5, 10, 20, 50, 75, 100, 125, 150}.

Observations

Based on the above experiments, we summarize our observations as follows :

• Observation 1. The data dependent parameter β does not take on prohibitively large values. Indeed, for the data sets
used in our experiments, these values are quite reasonable. This observation is in accordance with the experiments of
(Bachem et al., 2016b).

• Observation 2. RS-k-means++ provides solutions with comparable quality to AF-k-MC2, while generally being much
faster. On datasets like POKER where the data size is much larger than the number of clusters, we observe a speedup of
∼ 40 - 70×. Moreover, this version of RS-k-means++ does not require choosing any extra parameters as input.

• Observation 3. The solution quality of RS-k-means++ approaches that of k-means ++ rapidly with increase in the
upper bound for the number of rejection sampling rounds allowed. This can be seen from the plots in Figure 5

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Figure 3. Trade-off plots

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

A New Rejection Sampling Approach to k-means++ with Improved Tradeoffs

Table 7. Data points for the trade-off plots

DATASET m COST STD. DEV. TIME

DIABETES 5 8.235 × 106 4.39 × 105 2.14 × 10−1

10 7.804 × 106 3.87 × 105 3.70 × 10−1

20 7.593 × 106 3.04 × 105 5.46 × 10−1

50 7.443 × 106 3.10 × 105 6.53 × 10−1

75 7.495 × 106 2.35 × 105 6.93 × 10−1

100 7.386 × 106 2.11 × 105 6.79 × 10−1

125 7.493 × 106 2.42 × 105 7.09 × 10−1

150 7.437 × 106 2.76 × 105 6.96 × 10−1

FOREST 5 8.504 × 1011 1.32 × 1011 9.76 × 10−2

10 8.375 × 1011 1.55 × 1011 1.15 × 10−1

20 8.122 × 1011 1.46 × 1011 1.19 × 10−1

50 7.798 × 1011 1.15 × 1011 1.32 × 10−1

75 7.816 × 1011 9.64 × 1010 1.39 × 10−1

100 7.504 × 1011 9.85 × 1010 1.39 × 10−1

125 7.775 × 1011 1.03 × 1011 1.40 × 10−1

150 7.932 × 1011 9.67 × 1010 1.40 × 10−1

PROTEIN 5 3.356 × 1011 5.73 × 1010 1.70 × 10−1

10 3.114 × 1011 1.06 × 1010 2.78 × 10−1

20 3.071 × 1011 1.16 × 1010 4.04 × 10−1

50 3.070 × 1011 1.18 × 1010 5.33 × 10−1

75 3.029 × 1011 1.01 × 1010 5.44 × 10−1

100 3.076 × 1011 1.14 × 1010 5.58 × 10−1

125 3.054 × 1011 1.08 × 1010 5.44 × 10−1

150 3.050 × 1011 8.80 × 109 5.21 × 10−1

POKER 5 3.35 × 107 5.65 × 105 4.88 × 10−1

10 3.36 × 107 6.27 × 105 6.90 × 10−1

20 3.33 × 107 7.06 × 105 8.41 × 10−1

50 3.33 × 107 6.91 × 105 9.32 × 10−1

75 3.33 × 107 5.91 × 105 8.65 × 10−1

100 3.32 × 107 5.65 × 105 8.82 × 10−1

125 3.34 × 107 6.21 × 105 9.34 × 10−1

150 3.34 × 107 6.21 × 105 9.34 × 10−1

CANCER 5 7.17 × 106 2.60 × 105 7.80 × 10−2

10 7.06 × 106 1.68 × 105 7.68 × 10−2

20 7.05 × 106 1.95 × 105 8.58 × 10−2

50 7.05 × 106 1.85 × 105 9.53 × 10−2

75 7.13 × 106 2.41 × 105 9.02 × 10−2

100 7.10 × 106 1.71 × 105 9.15 × 10−2

125 7.09 × 106 2.24 × 105 7.99 × 10−2

150 7.10 × 106 2.04 × 105 8.97 × 10−2

26

