
Which Words Matter? Understanding How Large Language Models
Comprehend Arguments

Anonymous ACL submission

Abstract
Pioneering developments in large-scale lan-001
guage models (LLMs) have marked a substan-002
tial stride in their ability to comprehend mul-003
tifaceted debate topics and to construct argu-004
mentative narratives. Despite this progress,005
there remains a notable lack of scholarly un-006
derstanding of the processes by which LLMs007
engage with and analyze computational argu-008
ments. Classical studies have delved into the009
linguistic frameworks of arguments, encapsulat-010
ing their essence within the realms of structural011
organization and logical coherence. Yet, it re-012
mains unclear whether LLMs utilize these rec-013
ognized frameworks in addressing argument-014
related tasks. In an effort to illuminate this015
research void, our study introduces three hy-016
potheses centered on the dynamics of claim,017
evidence and stance identification in argument018
mining tasks: 1) Omitting specific logical con-019
nectors in an argument does not change the im-020
plicit logical relationship, and LLMs can learn021
it from the modified context. 2) The impor-022
tance of words or phrases in an argument is de-023
termined by the extent of implicit information024
they encapsulate, regardless of their individual025
components within the structure of the argu-026
ment. 3) Removing crucial words or phrases027
from an argument alters the implicit logical028
relationship, making it impossible for LLMs029
to learn the original logic from the modified030
text.Through comprehensive assessments on031
the standard IAM dataset, it is revealed that032
information contained in the phrases within the033
argument has a greater impact on the under-034
standing of the argument by large models, and035
the experiment results validate our hypothesis.036

1 Introduction037

Argumentation is a fundamental aspect of com-038

munication, pervading diverse facets of daily039

life (Wachsmuth et al., 2016; El Baff et al., 2020).040

It manifests in everyday discourse (Swanson et al.,041

2015; Misra et al., 2016; Lugini and Litman, 2018),042

legal deliberations (Rinott et al., 2015; Šavelka and043

Ashley, 2016; Poudyal et al., 2020), and scientific 044

inquiry (Lauscher et al., 2018b,a; Al Khatib et al., 045

2021). Argumentation not only enhances mutual 046

understanding by revealing varied perspectives and 047

rationales but also strengthens the articulation and 048

persuasiveness of opinions. With the increasing 049

interest in computational argumentation within nat- 050

ural language processing, scholars have embarked 051

on exploring various argument mining tasks. These 052

include identifying argument components (Levy 053

et al., 2014; Rinott et al., 2015; Lippi and Torroni, 054

2016), extracting argument pairs (Cabrio and Vil- 055

lata, 2012; Cheng et al., 2021, 2020), and assessing 056

argument quality (Wachsmuth et al., 2017; Toledo 057

et al., 2019; Lauscher et al., 2020). Meanwhile, 058

large language models (LLMs) have exhibited a 059

sophisticated understanding of language seman- 060

tics, capably navigating complex text comprehen- 061

sion and generation tasks (Maynez et al., 2023; 062

Cheng et al., 2023a; Yuan et al., 2023; Cheng et al., 063

2023b; Wu et al., 2023), while also functioning as 064

adept social agents in human and artificial interac- 065

tions (Park et al., 2023; Andreas, 2022). 066

Current research on computational argument 067

largely falls into two categories: The first focuses 068

on extracting argument components based on struc- 069

ture, such as claims and evidence (Sardianos et al., 070

2015; Goudas et al., 2014; Li et al., 2021, 2019), 071

while the second is centered on argument genera- 072

tion, including counter-arguments (Schiller et al., 073

2021; Hua et al., 2019; Lin et al., 2023; Alshomary 074

and Wachsmuth, 2023). Studies like (Chen et al., 075

2023) evaluate LLMs in computational argument 076

tasks, revealing their strengths and highlighting 077

evaluation challenges within this domain. As a 078

crucial direction of computational argumentation, 079

argument mining is centered on comprehending 080

unstructured texts and automatically extracting di- 081

verse argumentative elements which require mod- 082

els to discern logical relationships between sen- 083

tences, a capability we aim to assess in LLMs 084
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through various tasks. This enables us to objec-085

tively quantify the language model’s ability to un-086

derstand arguments through argument mining tasks.087

Drawing on insights from psychology and cogni-088

tive science, which suggest humans can compre-089

hend texts even with missing words or disrupted090

word order (Grainger and Whitney, 2004; Perfetti091

and Bolger, 2018), similar phenomena have been092

observed in LLMs. For instance, (Li et al., 2023)093

demonstrate prompt compression by eliminating094

less informative words or phrases, thus reducing095

computational costs.096

This study undertakes a novel examination of097

LLMs’ argument comprehension across three argu-098

ment mining tasks: claim extraction, evidence ex-099

traction, and stance classification. We test LLMs in100

various settings, including fine-tuned and zero-shot101

configurations, to validate their logical comprehen-102

sion abilities in the claim-evidence context. We103

hypothesize that: 1) Omitting logical connectors104

does not obscure implicit logical relationships, with105

LLMs capable of inferring them from the modified106

context. 2) The relevance of words or phrases in107

an argument is constrained to the implicit informa-108

tion they hold, independent of their structural role.109

Eliminating words or phrases with critical informa-110

tion distorts the implicit logic, preventing LLMs111

from grasping the original reasoning. These hy-112

potheses are tested using the IAM dataset (Cheng113

et al., 2022).114

The major contributions are threefold: 1) It is115

the inaugural study to utilize LLMs to perform116

claim extraction, evidence extraction, and stance117

classification on a large-scale dataset, employing118

both zero-shot and fine-tuning approaches. 2) We119

demonstrate that the omission of certain logical120

connectors does not necessarily change the underly-121

ing logical relationship, which can still be inferred122

by LLMs from the altered context. 3) We establish123

that removing words or phrases that contain critical124

information disrupts the implicit logical relation-125

ship, challenging the LLM’s ability to derive the126

original logical connections.127

2 Background128

2.1 Argument mining tasks129

Argument mining focuses on extracting compo-130

nents of an argument from text. In tasks like claim131

and evidence extraction, the aim is to automatically132

retrieve relevant claims or supporting/opposing evi-133

dence based on a given topic or claim. Unlike other134

NLP tasks, argument mining not only requires rele- 135

vance to the query but also emphasizes identifying 136

persuasive elements in the text. This distinctive fea- 137

ture sets argument mining apart from tasks concen- 138

trating on different patterns or information types. 139

For a long time, it has been believed that argu- 140

ment structure plays a crucial role in the process 141

of understanding arguments. For instance, many 142

efforts have focused on leveraging structural infor- 143

mation such as syntactic and discourse structures to 144

solve argument mining tasks (Ye and Teufel, 2021; 145

Peldszus and Stede, 2015; Huber et al., 2019). Nev- 146

ertheless, in everyday spoken language and online 147

forums, some expressions are considered to deviate 148

from the strict paradigm of argumentation yet still 149

possess persuasive power. Many studies also posit 150

that implicit reasoning plays a significant role in 151

understanding arguments (Habernal et al., 2018; 152

Singh et al., 2021). This implicit reasoning lies be- 153

hind specific vocabulary, aiding us in comprehend- 154

ing and establishing logical connections between 155

different argument components. Based on this phe- 156

nomenon, we propose our first hypothesis: Omit- 157

ting certain logical connectors in an argument does 158

not alter the implicit logical relationship within the 159

context. 160

2.2 Prompt compression 161

While LLMs demonstrate remarkable comprehen- 162

sion and generation capabilities across various nat- 163

ural language processing tasks, their demanding 164

computational resource requirements remain a sig- 165

nificant obstacle. The cost of the API service is also 166

a factor to consider when utilizing closed-source 167

LLMs, which is often associated with the input se- 168

quence length. Recently, many efforts have been fo- 169

cused on compressing prompts while attempting to 170

maintain the performance of the model (Chevalier 171

et al., 2023; Jiang et al., 2023a,b). (Li et al., 2023) 172

achieve prompt compression by retaining high- 173

entropy words and eliminating other low-entropy 174

words to preserve model performance. Although 175

the compressed prompt ensures the performance 176

of large model inference, the compressed prompt 177

becomes unreadable for humans. This compression 178

disrupts the original prompt text’s argumentative 179

structure but is still comprehensible to large mod- 180

els. We posit that the reason high-entropy words 181

can ensure model performance is that these words 182

contain crucial clues for implicit reasoning. Large 183

models can leverage these clues to comprehend the 184
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text. Therefore, we propose our second and third185

hypothesis: The importance of words or phrases186

in an argument may be unrelated to their specific187

components within the structure of the argument,188

and is determined by the extent of implicit infor-189

mation they convey. Removing words or phrases190

containing crucial information from the argument191

alters the implicit logical relationship within the192

context.193

3 Methodology194

To examine the comprehension abilities of large-195

scale language models (LLMs), we conduct experi-196

ments on three different tasks, namely claim extrac-197

tion, evidence extraction, and stance classification.198

The claim extraction and evidence extraction tasks199

assess the model’s understanding of logical aspects.200

Stance classification evaluates the model’s ability201

to recognize emotional differences.202

3.1 Word Removal203

In general, we attempt to disrupt the implicit rea-204

soning of arguments through two means. The first205

involves removing specific conjunctions such as206

"because,", "and," and so on. The second opts for207

the removal of informative words, specifically high-208

information entropy words. As seen in Table 1, it209

provides examples of both removal ways, and the210

resulting texts become unreadable for humans af-211

ter applying either removal to the argument text,212

especially the removal of informative words.213

3.1.1 Removal of Connectives214

In the initial works solving tasks related to iden-215

tifying and extracting various parts of arguments,216

many previous methods rely on structural informa-217

tion (Nguyen and Litman, 2015; Aker et al., 2017;218

Morio and Fujita, 2019). Connectives are often219

considered key cues for revealing the logical rela-220

tionships for discourses within a sentence, aiding221

our understanding of contextual relationships dur-222

ing reading.223

Specifically, PDTB-2.0 (Prasad et al., 2008) is224

leveraged to find out the connectives, wherein225

discourse relations are annotated on the one mil-226

lion Wall Street Journal (WSJ) corpus. As seen227

in Table A.1, we choose phrases (or words) like228

“instead" or subordinating conjunctions like “be-229

cause," which are considered to have logical mean-230

ings to form our connective library C.231

S = {P1, P2, · · · , Pn} (1)232

233
S = {Pi}Pi /∈C (2) 234

Given a sentence S, which is derived from a 235

claim, evidence or topic text, we check all phrases 236

Pi within it, if Pi is found in our connective library 237

C, we remove it. This results in a modified sentence 238

S devoid of these connectives. 239

3.1.2 Removal of Informative Words 240

(Li et al., 2023) remove phrases with low informa- 241

tion entropy to compress the prompt while main- 242

taining performance. In this work, to test if remov- 243

ing crucial phrases alters the logical relationship 244

between sentences, we take a different approach 245

to eliminate the top-N high information entropy 246

tokens, where the information entropy is denoted 247

as I. 248

Specifically, we choose GPT-2 (Radford et al., 249

2019) as our base model to compute the informa- 250

tion entropy of each token wi within sentence S. 251

As shown in Eq. 4, we obtain the entropy values by 252

applying a softmax function to the logits of each 253

token wi derived from encoding sentence S with 254

GPT-2, namely, the generation probability of each 255

token is used as the information entropy of this 256

token. 257

S = {w1, w2, · · · , wn} (3) 258
259

I(wi) = softmax(logitsV)wi (4) 260

wherein V is the vocabulary. 261

After obtaining the information entropy of all to- 262

kens, we remove the top three tokens in sentences. 263

For sentences with a length of less than three to- 264

kens, we only discard one token with the most 265

information entropy from the argument. 266

3.2 LLMs for Argument Mining 267

All experiments are conducted in two settings: zero- 268

shot and fine-tuning settings. Our prompt design is 269

shown in figure 1, we use the evidence extraction 270

task as an example: initially, we provide a brief text 271

describing the task requirements and introducing, 272

followed by an evidence candidate sentence S and 273

target claim sentence T. Considering the different 274

formatting requirements for the T5 model and the 275

Llama model, there are slight differences in the 276

prompt format design for both models. For the 277

Llama model, we prefix each component with ### 278

to indicate differentiation. For the training data re- 279

quired for fine-tuning, we directly append a ground 280

truth label to the response. 281
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Setting Text

Original Sentence Not only is saving confined to money but also to time.
Removal of Connectives is saving confined to money to time.
Removal of Informative Words Not only is saving to but also to .

Table 1: The remove by connectives method eliminated the connective phrase "not only ... but also," while the
remove by entropy method removed the three words: "confined," "money," and "time."

For label selection, we prefer choosing meaning-282

ful labels such as we have opted to use "evidence"283

and "not evidence" as our labels for experimenta-284

tion in evidence extraction task, rather than simple285

"yes" or "no." In a zero-shot setting, we assess the286

inherent ability of the LLMs to comprehend argu-287

ments. Under the conditions of fine-tuning, we288

examine whether the LLMs can acquire the capa-289

bility to understand arguments across datasets with290

different word removal configurations.291

4 Experiments292

4.1 Experimental Setup293

Tasks and datasets We experiment on the claim294

extraction, evidence extraction, and stance classifi-295

cation tasks from the IAM dataset, where the train-296

ing, validation, and test sets are directly adopted297

from the original splits with a ratio of 8:1:1 (Cheng298

et al., 2022). The claim extraction and evidence299

extraction processes can assess the logical com-300

prehension capabilities of LLMs under different301

scenarios, while stance classification can evaluate302

the emotional recognition abilities of LLMs. IAM303

Datasets (Cheng et al., 2022) contains 123 debating304

topics with a diverse range sourced from online fo-305

rums, containing 69,666 sentences extracted from306

these articles.307

The goal of claim extraction is to automatically308

identify and extract the claims from articles associ-309

ated with a particular debating topic. This task is310

crucial in the field of argument mining, as claims311

play a pivotal role in constructing and supporting312

arguments. On the other hand, evidence extraction313

involves the automatic identification of relevant ev-314

idence within documents associated with a specific315

topic and its related claim. The model is tasked316

with extracting pertinent evidence to support or317

refute the given claim. Stance classification is de-318

fined as the process of determining, for each claim319

associated with a given topic, whether it aligns with320

or contradicts the overall stance on the topic. This321

task involves evaluating the relationship between322

claims and the overarching theme to understand the 323

position they take in relation to the given topic. 324

Large language models We conduct experi- 325

ments using two open-source LLMs, LLama2- 326

7b (Touvron et al., 2023) and Flan-T5-XL (Chung 327

et al., 2022), as well as a nonopen-source LLM, 328

ChatGPT-3.5-Turbo (OpenAI). For the open-source 329

LLMs LLama2-7b and Flan-T5-XL, we conducted 330

zero-shot and fine-tuning experiments under three 331

settings: original text, text with removed conjunc- 332

tions, and text with removed informative words. 333

For the two settings involving the removal of con- 334

junctions and informative words, we applied the 335

removal to both training and testing data. During 336

the fine-tuning process, we employed the LORA 337

fine-tuning method (Hu et al., 2021). During the 338

fine-tuning stage, we uniformly set the number of 339

training epochs to 5. 340

For the zero-shot setting experiments, we incor- 341

porate the corresponding S and T from the respec- 342

tive tasks of the IAM test datasets into the prompt, 343

requesting the LLM to provide answers. In the 344

fine-tuning configuration, the training is based on 345

two different LLMs, Flan-T5-XL and Llama2-7b, 346

on the training sets of the three argument mining 347

tasks. For the word removal, we apply the same 348

word removal process to both the training and test 349

sets of data. 350

Metrics In order to assess the impact of removing 351

different words from argument context in argument 352

mining tasks, we employ both accuracy and Macro 353

F1 score as performance metrics. These metrics 354

remain consistent with previous work (Cheng et al., 355

2022; Chen et al., 2023). 356

At the same time, we observed that the occur- 357

rence of hallucinations in LLMs changes when 358

certain words are removed using different methods. 359

We define instances where the labels returned by 360

the LLMs are inconsistent with the labels provided 361

in the prompt as hallucination. The presence of 362

hallucinated responses significantly affects the per- 363
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(a) Prompt for flan-T5 model (b) Prompt for llama models

Figure 1: The evidence extraction prompts for Flan-T5 model and Llama model, where S represents the evidence
candidate sentence, T represents the target claim sentence

formance of the LLMs in argument mining tasks.364

Therefore, we also record the frequency of hal-365

lucinated responses in the model under different366

conditions.367

4.2 Results and Discussions368

Tables 2 & 3 present the results obtained for the369

argument mining task and the hallucination fre-370

quency of flan-T5-xl model on claim extraction371

task and evidence extraction task, respectively. For372

cases where the response results from LLMs do not373

match the labels provided in the instructions, such374

as responses like ’not enough information’, we con-375

sider them uniformly as instances of hallucination.376

Due to our fine-tuning and testing on the all data377

of three tasks in the IAM dataset, the final results378

show some discrepancies compared to the findings379

in the (Chen et al., 2023).380

4.2.1 Overall Results381

Overall, Flan-T5-xl demonstrates the best perfor-382

mance in claim extraction, evidence extraction, and383

stance classification. Additionally, we observe that384

for all models, there is a decrease in performance385

across these three tasks when connectives and infor-386

mative words are removed from the argument text.387

Among these, the removal of informative words388

leads to the most significant performance drop.389

We will further analyze the impact of word re-390

moval on ChatGPT-3.5, Flan-T5-xl, and LLama2-391

7b in claim extraction, evidence extraction, and392

stance classification tasks in the following para-393

graphs.394

In the claim extraction task, after word re-395

moval, all models have a significant performance396

drop under zero-shot setting or fine-tuning setting,397

with the impact of removing informative words sur-398

passing that of removing connectives. We observe399

that fine-tuned Flan-T5-xl achieves the best per-400

formance with an accuracy of 0.923 and a macro401

F1 of 0.811. Following closely in zero-shot set-402

tings, Chat-GPT3.5 demonstrates a performance of 403

0.673 accuracy and 0.672 macro F1. LLama2-7b 404

performs the least favorably, even after fine-tuning, 405

with the best accuracy and macro F1 reaching only 406

0.659 and 0.712, respectively. Meanwhile, we ob- 407

serve a significant reduction in the frequency of 408

hallucination in LLMs after fine-tuning, as shown 409

in Table 3. 410

The Flan-T5-xl model, after fine-tuning, demon- 411

strates a noticeable decrease in the occurrence of 412

hallucination in responses, regardless of whether 413

word removal is applied or not. 414

After implementing word removal, the perfor- 415

mance of Chat-GPT-3.5, Flan-T5-xl, and Llama2- 416

7b in claim extraction shows a decrease, with 417

the impact of removing informative words being 418

greater than that of removing connectives. In the 419

case of removing connectives, ChatGPT-3.5-turbo 420

and Flan-T5-xl experience approximately a 0.005 421

drop in accuracy and a decrease of 0.025 and 0.038 422

in macro F1, respectively, under zero-shot settings. 423

Llama2-7b, on the other hand, exhibits a decrease 424

of 0.025 in accuracy and 0.047 in macro F1. In con- 425

trast, when removing informative words, ChatGPT- 426

3.5-turbo and Flan-T5-xl, under zero-shot settings, 427

witness a decrease in accuracy ranging from 0.1 to 428

0.2, with macro F1 decreasing by approximately 429

0.2 and nearly 0.15, respectively. The impact of 430

removing informative words is more substantial on 431

the already poorly performing Llama2-7b model, 432

with a decrease of nearly 0.11 in accuracy and 0.3 433

in macro F1. 434

After fine-tuning, both Flan-T5-xl and Llama2- 435

7b show improvements in performance on claim 436

extraction. Flan-T5-xl exhibits an increase of 0.03 437

in accuracy and 0.06 in macro F1. Llama2-7b, on 438

the other hand, sees an improvement from an ac- 439

curacy below 0.5 and a macro F1 of 0.601 before 440

fine-tuning to an accuracy of 0.659 and a macro 441

F1 of 0.712 after fine-tuning. The performance im- 442

provement after fine-tuning is mainly attributed to 443
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Task Setting GPT-3.5-Turbo Flan-T5-XL LLama2-7b

Accuracy F1 Accuracy F1 Accuracy F1

Claim Detection

Zero-shot 0.673 0.672 0.893 0.759 0.477 0.601
- remove connectives 0.669 0.647 0.886 0.721 0.452 0.554
- remove info words 0.578 0.479 0.818 0.623 0.343 0.279

Fine-tune - - 0.923 0.811 0.659 0.712
- remove connectives - - 0.914 0.801 0.622 0.675
- remove info words - - 0.834 0.638 0.523 0.396

Evidence Detection

Zero-shot 0.477 0.475 0.793 0.747 0.341 0.387
- remove connectives 0.435 0.411 0.782 0.714 0.345 0.357
- remove info words 0.381 0.357 0.719 0.570 0.317 0.282

Fine-tune - - 0.864 0.795 0.585 0.618
- remove connectives - - 0.843 0.745 0.550 0.561
- remove info words - - 0.828 0.527 0.492 0.453

stance classification

Zero-shot 0.603 0.594 0.535 0.476 0.342 0.384
- remove connectives 0.598 0.592 0.537 0.478 0.361 0.333
- remove info words 0.421 0.403 0.482 0.379 0.312 0.322

Fine-tune - - 0.583 0.471 0.486 0.355
- remove connectives - - 0.569 0.466 0.481 0.341
- remove info words - - 0.517 0.413 0.447 0.325

Table 2: Results of GPT-3.5-Turbo, Flan-T5-XL and llama2-7b on claim detection, evidence detection and stance
classification tasks. For open source model Flan-T5-XL and llama2-7b, we test their performance under both
zero-shot and fine-tuning setting. For ChatGPT-3.5-Turbo, we only test their performance under zero shot setting.

a significant reduction in hallucination. As shown444

in Table 3, Flan-T5-xl experiences a decrease in445

the number of hallucinations from 223 to 54 after446

fine-tuning without word removal. This indicates447

that through LORA fine-tuning, LLMs can learn448

the content of instructions.449

For Flan-T5-xl, fine-tuning with connectives re-450

moved yields an accuracy and macro F1 of 0.914451

and 0.801. However, removing informative words452

results in a drop to an accuracy of 0.834 and a453

macro F1 of 0.638. In the case of Llama2-7b,454

fine-tuning with connectives removed leads to a455

decrease in accuracy and macro F1 from 0.659 to456

0.622 and 0.712 to 0.675, respectively. Removing457

informative words has a more substantial impact458

on performance, with Flan-T5-xl dropping to an459

accuracy of 0.834 and a macro F1 of 0.638, and460

Llama2-7b declining to an accuracy of 0.523 and461

a macro F1 of 0.396. Interestingly, fine-tuning af-462

ter removing informative words does not enhance463

macro F1 compared to models without fine-tuning,464

indicating the challenge LLMs face in capturing im-465

plicit logical relationships when informative words466

are excluded.467

In the claim extraction experiments under the468

zero-shot setting, we observed that ChatGPT-3.5- 469

turbo experienced the least impact after removing 470

connectives. The Llama2-7b model consistently 471

performed the worst across various settings, with 472

its performance being particularly affected by word 473

removal, especially the removal of informative 474

words. After fine-tuning, there was a significant 475

reduction in hallucination instances, and the large 476

models were able to essentially return the labels as 477

required by the prompt, contributing to the overall 478

performance improvement. However, in the case 479

of removal of informative words, hallucinations 480

stemming from refusal to answer still persisted. 481

For evidence extraction, the effect of elimi- 482

nating informative words is more pronounced 483

compared to the impact of removing connectives. 484

Similar to claim extraction, both in zero-shot and 485

fine-tuning settings, all models experience a no- 486

table decline in performance. Under zero-shot set- 487

tings, Flan-T5-xl achieves an accuracy of 0.782 and 488

a macro F1 of 0.747, outperforming ChatGPT3.5- 489

turbo with an accuracy of 0.477 and a macro F1 490

of 0.475, as well as LLama2-7b with an accuracy 491

of 0.341 and a macro F1 of 0.387. Due to the 492

increased demand for logical understanding in evi- 493
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Setting Hallucination Frequency

Claim Extraction Evidence Extraction

Zero-shot Flan-T5-XL 223 302
w/ remove connectives 298 371
w/ remove info words 772 1148

Fine-tuned Flan-T5-XL 54 88
w/ remove connectives 81 96
w/ remove info words 516 705

Table 3: The hallucination frequency of Flan-T5-XL model under different settings.

dence extraction tasks for LLMs, the overall perfor-494

mance decreases compared to the claim extraction495

task.496

After applying word removal, evidence extrac-497

tion performance diminishes for Chat-GPT-3.5,498

Flan-T5-xl, and LLama2-7b, with the removal of in-499

formative words having a more substantial impact500

than removing connectives. LLama2-7b, surpris-501

ingly, shows a 0.04 improvement in accuracy after502

removing connectives. Specifically, under zero-503

shot settings, ChatGPT-3.5-turbo and Flan-T5-xl504

witness a decline in accuracy from 0.477 and 0.793505

to 0.435 and 0.782, respectively. Their macro F1506

values also decrease from 0.475 and 0.747 to 0.411507

and 0.714. When removing informative words,508

ChatGPT-3.5-turbo and Flan-T5-xl experience a509

decrease in accuracy to 0.381 and 0.719. LLama2-510

7b, after removing informative words, sees a drop511

in accuracy and macro F1 to 0.317 and 0.282, re-512

spectively. Similar to the claim extraction task,513

evidence extraction in zero-shot settings demon-514

strates an increase in hallucination after word re-515

moval. Results in Table 3 show that removing con-516

nectives leads to a 69 hallucination increase, while517

removing informative words results in a substantial518

increase of 777 hallucinations.519

After fine-tuning, both Flan-T5-xl and LLama2-520

7b show a significant improvement in performance521

in evidence extraction. Flan-T5-xl exhibits an in-522

crease of around 0.07 in accuracy and 0.05 in macro523

F1. LLama2-7b, similarly, sees an improvement to524

an accuracy of 0.585 and a macro F1 of 0.618 after525

fine-tuning. Similar to the claim extraction task,526

the performance improvement after fine-tuning is527

mainly contributed to a significant reduction in hal-528

lucination.529

The Flan-T5-xl model, following fine-tuning530

with connectives excluded, achieves an accuracy531

of 0.864 and a macro F1 of 0.795. However, when532

informative words are omitted, its performance de- 533

clines to an accuracy of 0.828 and a macro F1 of 534

0.527. As for the Llama2-7b model, fine-tuning 535

with connectives removed results in a decrease in 536

accuracy from 0.550 to 0.492 and a decrease in 537

macro F1 from 0.561 to 0.453 compared to fine- 538

tuning without word removal. It’s noteworthy that 539

the impact of word removal on model performance 540

varies between Flan-T5-xl and Llama2-7b. 541

For stance classification Removing words sig- 542

nificantly affects performance, aligning with 543

findings from previous tasks. The impact of 544

eliminating informative words surpasses that of 545

removing connectives.Unlike the claim extraction 546

and evidence extraction tasks, the stance classifica- 547

tion task places more emphasis on emotion recog- 548

nition and understanding capabilities rather than 549

logical reasoning.The performance of ChatGPT- 550

3.5-turbo excels in a zero-shot setting, contrasting 551

with the optimal performance of Flan-t5-xl in the 552

previous two tasks achieved under fine-tuning set- 553

tings. In this task, ChatGPT-3.5-turbo achieved the 554

best performance under zero-shot settings, reach- 555

ing an accuracy of 0.603 and a macro F1 of 0.594. 556

Meanwhile, Flan-T5-xl achieved an accuracy of 557

0.535 and a macro F1 of 0.476. On the other hand, 558

LLama2-7b performed the poorest, with only 0.342 559

accuracy and 0.384 macro F1. 560

For ChatGPT3.5-turbo, after removing connec- 561

tives, the accuracy and macro F1 are 0.598 and 562

0.592, respectively. However, when informative 563

words are removed, ChatGPT3.5-turbo’s perfor- 564

mance drops to an accuracy of 0.421 and a macro 565

F1 of 0.403. The performance of ChatGPT-3.5- 566

turbo experiences a significant decline when infor- 567

mative words are removed, compared to the perfor- 568

mance in the first two tasks A.2. For the LLama2- 569

7b model and Flan-T5-xl, their performance in the 570

stance classification task is relatively poor. When 571
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informative words are removed, their accuracy and572

macro F1 reach the lowest levels.573

4.3 Discussions574

Statistics of word removal We employ the575

method outlined in the previous section 3 to remove576

words from arguments. To ensure the fairness of577

the experiment, we aim to maintain consistent argu-578

ment lengths across different methods after word579

removal. Therefore, we choose to eliminate the top-580

3 words with the highest information entropy in581

the "remove by information entropy" method3.1.2,582

ultimately achieving a comparable length for argu-583

ments in both methods. Table 4 shows the average584

length after word removal.585

Original Remove Connector Remove Info

All sentences 21.05 18.97 18.57
Claim 23.44 20.81 20.62
Evidence 25.09 22.73 22.16

Table 4: The average length after word removal

Analysis of hallucination In this study, we clas-586

sify instances where the LLMs provide a label dif-587

ferent from those specified in the prompt as hal-588

lucination. Any deviation from the required label589

in the prompt by the LLMs’ output is considered590

as contributing to the hallucination frequency. We591

observed that the occurrence of hallucination in592

LLMs after word removal is different from the sit-593

uation before word removal. Especially after word594

removal, particularly when informative words are595

removed, as shown in Table 3, the frequency of hal-596

lucination significantly increases. Moreover, most597

hallucinations after removing informative words598

consist of sentences such as ’I don’t know what599

you are talking about’ and ’not enough proof.’ In600

contrast, when informative words are not removed,601

most hallucinations involve repeating prompts or602

labels that do not strictly adhere to the prompt re-603

quirements. These occurrences are substantially604

reduced after fine-tuning, while the former type605

does not decrease significantly. This also demon-606

strates that after removing informative words and607

undergoing fine-tuning, LLMs cannot learn the in-608

trinsic meaning of arguments.609

Analysis of removed words As shown in Figure610

2, we create a word cloud for the informative words611

removed from the training sets of claim extraction,612

evidence extraction, and stance classification.613

Figure 2: The word cloud of removed informative
words.

From Figure 2, we can observe that the removed 614

informative words mainly consist of nouns com- 615

monly used as subjects or objects in sentences, such 616

as ’student,’ ’system,’ and ’education,’ among oth- 617

ers. Additionally, there are adverbs like ’many’ 618

that can imply the potential emotional meaning of 619

a sentence. Some connectives, such as ’accord- 620

ing’ and ’although,’ also appear in the word cloud. 621

These words can help us identify the key parts of 622

sentences. This also indicates the reasons for the 623

success of past methods, indeed, some conjunc- 624

tions contain rich information. 625

We observe that these words, in the stance classi- 626

fication task, assist in understanding the emotional 627

inclination of arguments. In claim extraction and 628

evidence extraction tasks, they help us establish the 629

underlying connections between different argument 630

components 631

5 Conclusion 632

Our experiments on claim extraction, evidence ex- 633

traction, and stance classification affirm three initial 634

hypotheses: 1. The absence of specific logical con- 635

nectors in an argument doesn’t alter the implicit 636

logical relationship; language models can learn it 637

from the modified context. 2. The importance of 638

words or phrases in an argument is tied to the im- 639

plicit information they convey, unrelated to their 640

structural components. 3. Removing words or 641

phrases with crucial information from an argument 642

changes the implicit logical relationship, making it 643

challenging for language models to learn the origi- 644

nal relationship from the modified text. 645

This work, through testing the importance of dif- 646

ferent types of words in the argument context, helps 647

us understand which words carry more crucial ar- 648

gumentative information in the comprehension pro- 649

cess of LLMs. It will aid LLMs in understanding 650

and reconstructing implicit meanings in the future. 651
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Limitations652

Our study conducted experiments on three argu-653

ment mining tasks: claim extraction, evidence ex-654

traction, and stance classification, validating three655

hypotheses. However, experiments were not con-656

ducted on more complex tasks such as argument657

generation. Additionally, due to limitations in658

computational resources, fine-tuning experiments659

were only performed on flan-t5-xl and llama2-7b,660

without conducting global fine-tuning experiments.661

Challenges still exist in researching the effective-662

ness of LLMs in the field of argumentation.663
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A Appendix993

A.1 Connectives word and phrase994

Connective Words
"once","although","though","but","because",
"nevertheless","before","until","if",
"previously","when","and","so","then",
"while","however","also","after",
"separately","still","or","moreover",
"instead","as","nonetheless","unless",
"meanwhile","yet","since","rather",
"indeed","later","ultimately",
"therefore","thus","further",
"afterward","next","similarly",
"besides","nor","alternatively",
"whereas","overall","till",
"finally","otherwise","thereby",
"additionally","meantime","likewise",
"regardless","thereafter","earlier",
"except","furthermore","lest","specifically",
"conversely","consequently","plus","And",
"hence","accordingly","simultaneously",
"for","else"

Connective Phrase
"as long as", "so that", "in addition",
"on the other hand", "for instance",
"in fact", "as a result","either or",
"in turn","in particular","not only",
"if and when","by comparison","in contrast",
"as if","now that","before and after",
"by contrast","as though",
"on the one hand on the other hand",
"insofar as", "as an alternative",
"in the end","if then","in other words",
"but also","as soon as","in short",
"neither nor","as well","much as",
"by then","on the contrary","in sum",
"when and if","for example"

Table 5: The connectives library

A.2 Performance figure995

(a) Performance of claim extraction

(b) Performance of evidence extraction

(c) Performance of stance classification

Figure 3: The performance of claim extraction, evidence
extraction and stance classification
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