

000 EDITBENCH: EVALUATING LLM ABILITIES TO PERFORM 001 002 REAL-WORLD INSTRUCTED CODE EDITS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Instructed code editing, where LLMs directly modify a developer’s existing code based
011 on a user instruction, is becoming a widely used interaction mode in AI coding assistants.
012 However, few benchmarks directly evaluate this capability and current datasets often rely
013 on artificial sources. We introduce EditBench, a benchmark for evaluating LLM code
014 editing capabilities grounded in real-world usage, i.e., user instructions and code contexts
015 collected in the wild. EditBench comprises of 545 problems, multiple natural and
016 programming languages, and a diverse set of real-world use cases, ranging from resolving
017 errors to adding features. EditBench introduces context-dependent problems that require
018 the model to understand code context, highlighted code, and cursor position in addition
019 to the user instruction. We evaluate 40 diverse LLMs and observe that EditBench is
020 a challenging set of problems where only 3 models score over 60%. We find that model
021 performance varies across different categories of user instructions. Further, we find that
022 varying levels of contextual information greatly affect task success rate, with performance
023 varying up to 11%, indicating the importance of evaluating with realistic context.
024

025 026 1 INTRODUCTION 027

028 Software developers increasingly write code with AI assistants such as Github Copilot (Github, 2022),
029 Cursor (Cursor, 2023), and Continue (Continue Dev, 2025) using a variety of modes of interaction. *Instructed*
030 *code editing*, where developers use natural language to request the assistant to edit a highlighted section
031 of code, has emerged as a prominent interaction mode alongside autocomplete suggestions and chat (Nam
032 et al., 2025). Due to the flexibility provided through natural language instructions, use cases for edits are
033 diverse and range from code improvements given detailed user instructions to bug fixes provided only an
034 error trace (Cassano et al., 2023b). Because of this, instructed code edits pose a challenging set of problems
035 that existing LLMs must tackle to support developers.
036

037 Despite the emergence of this new interaction modality, we lack benchmarks to capture real-world edit behavior.
038 Code generation benchmarks typically evaluate LLM capabilities on generating code from scratch (Chen
039 et al., 2021; Austin et al., 2021; Jain et al., 2024; White et al., 2024). While there are a few edit-related
040 datasets (e.g., CanItEdit (Cassano et al., 2023b), Aider polyglot (Gauthier, 2025)), the sources of data are
041 not reflective of most real-world software development, relying on either simple, annotator-written problems
042 or Leetcode and educational style problems that do not capture diverse, real-world software development
043 challenges. Recent work has begun collecting human preferences to interactively evaluate models—Chatbot
044 Arena (Chiang et al., 2024) evaluates LLM capabilities for chat and contains a coding subset, while Copilot
045 Arena (Chi et al., 2025) evaluates LLM capabilities to perform code completions—highlighting a growing
046 awareness of the need for grounding evaluations with in-the-wild data. However, “arena-style” evaluations
are costly, requiring a significant number of human votes to rank a new model.

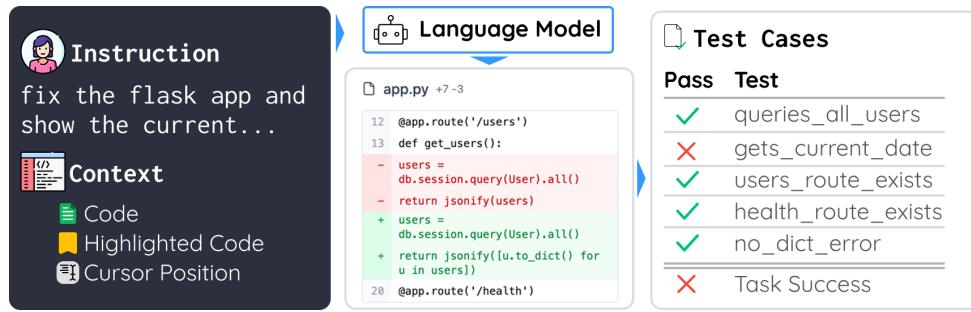


Figure 1: **EditBench** tests LLMs’ real-world editing capabilities. We propose EditBench, an evaluation on real user instructions and code snippets collected in-the-wild. It is the first benchmark for instructed code edits that requires models to ingest the user instruction, current code, highlighted code, and cursor position to solve problems.

We introduce EditBench, a benchmark for evaluating LLM code editing capabilities built on real-world edit contexts and instructions (Figure 1). We source our problems by developing a VS Code extension that mimics existing instructed code editing tools from GitHub Copilot and Cursor. As developers use the extension, we gather a live, in-the-wild dataset containing user-written instructions, associated code context, and user votes between pairs of model responses. We recruited nearly 500 users to provide these data points. EditBench differentiates from previous edit-related benchmarks in several ways:

Diverse user instructions and context. Since EditBench is constructed from data collected from programmers performing day-to-day coding tasks, users specify user goals with diverse content and formats. For example, a bug fix can be requested as “fix this” accompanied with highlighted code, a direct dump of the error trace, or a natural language description of the erroneous behavior. EditBench tests for these varied user instructions instead of the more templated approaches (e.g., fix a specific function in a well-defined way) in previous benchmarks.

Context dependent problems. Real instructed code edits often feature ambiguous user instructions that require contextual clues to parse the underlying user intent. In addition to the user instruction, in EditBench we also capture the code file to edit, the highlighted region of code, and the user’s current cursor position. Code context length can be significant (e.g., $\geq 10k$ characters), requiring the model to properly use the comments, highlighted code, and other contextual clues to determine the correct solution. We are the first benchmark to include this combination of features for instructed code edits.

Multiple natural and programming languages. While most previous coding benchmarks consist of only English problems, EditBench consists of 5 natural languages (English, Spanish, Russian, Chinese, Portuguese) and 2 programming languages (Python and Javascript). Since our code is gathered in-the-wild, any natural language variations occur in both the user instruction and code itself.

We evaluate 40 open-weight and closed models on EditBench and find that the best model, `claude-sonnet-4` (Anthropic, 2023), achieves a $\text{pass}@1$ of 66.67%. Closed-source models tend to outperform open-weight models, with `deepseek-chat-v3.1` and `kimi-k2-0905` being the only two open-weight models in the top 10. We observe that both the inclusion of additional context (e.g., highlighted code and cursor position) and the type of edit category (e.g., optimization versus bug fixing tasks) drastically affects performance. Finally, we find that EditBench is only weakly correlated with existing edit benchmarks like Aider Polyglot (Gauthier, 2025), suggesting that our real-world data captures a unique set of difficult edit tasks. Our results show that EditBench is challenging even for state-of-the-art models and reveals new insights into model capabilities, emphasizing the importance of benchmarking LLMs on realistic data.

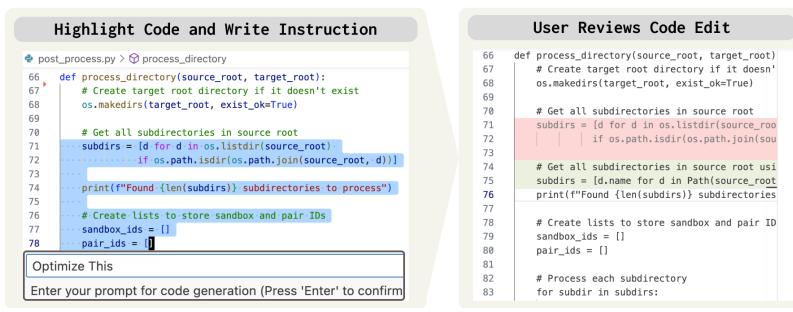


Figure 2: We develop an open-source VSCode extension to collect real-world edits.

2 RELATED WORK

Coding Benchmarks. Static benchmarks, e.g., HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021), largely focusing on interview-style programming problems have been the most commonly used to evaluate coding capabilities (Lu et al., 2021; Nijkamp et al., 2023; Zhu et al., 2022; Wang et al., 2023; Liu et al., 2023; Jimenez et al., 2023b; Khan et al., 2023; Yan et al., 2023; Cassano et al., 2023a; Muennighoff et al., 2023; Dinh et al., 2023; Yang et al., 2024b), measured using `pass@k`. Additionally, some recent work focuses on creating live benchmarks that reduce contamination risks (Jain et al., 2024; White et al., 2024). Increasingly, people are interested in code editing with LLMs, focusing on bug fixing (Zhang et al., 2023b; Moon et al., 2023; Shinn et al., 2023; Chen et al., 2023; Olausson et al., 2023; Jin et al., 2023; Joshi et al., 2023; Wei et al., 2023; Li et al., 2022), a specific subset of code editing; fill-in-the-middle code completion (Bavarian et al., 2022; Fried et al., 2023; Yee & Guha, 2023; Roziere et al., 2023; Guo et al., 2024a; Zhang et al., 2023a), an inference strategy that requires specific insert locations; and intrinsic code editing (Li et al., 2023; Gupta et al., 2023), which involves editing code without a specified instruction, exerting the model’s ability to intrinsically ascertain the desired code changes. CodeEditorBench (Guo et al., 2024b) evaluates code editing using competitive programming problems and CanItEdit (Cassano et al., 2023b) expands on this to create varied prompts and diverse topics.

Grounding Evaluation in Real-World Data. A limitation of the aforementioned benchmarks is that the source of their tasks is not from real-world user data. Copilot Arena (Chi et al., 2025) evaluates code completions with real-world data and highlights how the distribution of data from benchmarks differs from real-world data in terms of the type of task, context length, and more. However, these in-the-wild evaluations require immense scale to build a leaderboard and evaluate new models (e.g., Chatbot Arena (Chiang et al., 2024) has millions of votes). The primary benchmark that creates problems from real-world sources is SWE-Bench (Jimenez et al., 2023a) and related extensions including SWE-Bench Multimodal (Yang et al., 2024a) and Multi-SWE-Bench (Zan et al., 2025). However, these benchmarks focus on fixing issues that require agentic workflows (e.g., editing multiple files) and are limited to a handful of repositories or problems written in one natural language. Our work, EditBench, complements this growing set of benchmarks by providing a benchmark for instructed code edits that is *realistic* (i.e., collected from real users in real workflows) and *diverse* (i.e., contains many different natural languages and task categories).

3 BENCHMARK CONSTRUCTION

3.1 DATA COLLECTION.

We develop an open-source VSCode extension with instructed code editing as a core feature to support the collection of code edit data. Gathering data via a real coding extension (Izadi et al., 2024; Chi et al., 2025)

141 allows for more realistic instructions and tasks when compared to coding competition platforms. For each
 142 code edit, the user highlights a code-snippet and writes a short task description (Figure 2). Participants are
 143 not compensated for using the extension, as in a traditional user study, but instead receive free access to
 144 state-of-the-art models. Given the sensitive nature of programming, we established clear privacy controls to
 145 give users the ability to restrict our access to their data. Depending on privacy settings, we collect the user’s
 146 instruction, code context (including the highlighted code segment, the cursor location, prefix, and suffix) at
 147 the time of the request, and model responses. Additionally, we log whether the user accepted the edit. Our
 148 data collection process was reviewed and approved by our institution’s IRB. Additional details about our data
 149 collection policy are provided in Appendix A.

150

151 3.2 PROBLEM CURATION.

152

153 Across 458 users, we collected 2672 responses (i.e., the user accepted an edit). However, not all of these
 154 responses were interesting, challenging, or even feasible to turn into testable problems. We narrow our
 155 problem set in the following ways. First, we focus on questions written in Python and Javascript, which
 156 combined comprise of the majority of our responses at just over 1700 problems. Second, we exclude problems
 157 that are too similar to one another—sometimes a user might try similar prompts on the same code context to
 158 see how different models edit. Lastly, we remove any trivial (e.g., add a single parameter), stylistic (e.g., add a
 159 comment), or ambiguous problems. We provide concrete examples of removed problems in Appendix C. This
 160 filtering process left us with around 470 problems which we found both interesting and challenging. Given
 161 that not all problems are feasible to create test harnesses for, we succeeded in creating 109 unique problems
 162 for EditBench-core. There are five languages—English, Russian, Chinese, Polish, and Spanish—in
 163 EditBench. In order to equally distribute the natural languages in the problem set, we also translate each
 164 problem to the other languages found in our problem set to form EditBench-complete. To do so, we
 165 followed a similar method prescribed by HumanEval-XL (Peng et al., 2024) and translate the comments in
 166 each problem using GPT-4o to create a total of 545 problems. To validate the translations, we had native
 167 speakers evaluate a subset of the translated tasks, primarily in Chinese and Spanish. In addition to GPT-4o,
 168 we experimented with several other models (GPT-4o-nano, GPT-4o-mini) and Google Translate, but found
 169 GPT-4o to provide the best quality with no noticeable concerns with any of the translations.

170

171 3.3 TEST HARNESS CREATION.

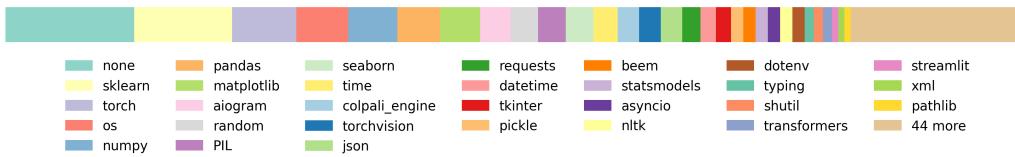
172

173 The data from our extension provides us with realistic human instructions and code, but does not contain test
 174 cases, making the raw data ill-suited for a benchmark. We create test harnesses composed of the *environment*
 175 *setup*, which includes preparing configurations, virtual environments, or mock files, and *test cases* that define
 176 expected inputs and outputs.

177 To write our tests, we assemble a team of five experienced programmers who have expertise in both natural
 178 and programming languages present in the real-world edit data. The team, recruited through academic
 179 networks, included researchers and students from various fields who write code extensively. The annotators
 180 were instructed to create test harnesses that adhere to the user’s intent and are generalizable to different
 181 potential implementations. While the user instruction and code file are perhaps the most important pieces
 182 of information, they by themselves can often be too ambiguous. The highlighted code segment and cursor
 183 locations provide crucial contextual clues to prescribe user intent. Annotators were asked to design problems
 184 given all of this information, and if a problem was still too ambiguous, we asked the annotators to remove the
 185 problem. To support the annotation process, we generated some example solutions using GPT-4o and Sonnet
 186 3.7 (chosen to balance cost and quality) to give insight into possible solutions. Additionally, annotators were
 187 also asked to screen for and remove any Personal Identifiable Information (PII). Finally, all refined test cases
 were assigned to a second annotator in the team to do a second review with the same procedure.

188 Table 1: **Comparing EditBench to other edit-related benchmarks.** We compare EditBench with
 189 similar benchmarks (CanItEdit (Cassano et al., 2023b), EditEval (Hu et al., 2023), Aider Polyglot) in terms of
 190 the problem source, user instruction (# NL refers to the number of natural languages), code context (# PL
 191 refers to the number of programming languages, HL refers to whether users can highlight a subset of code),
 192 and associated test cases. Standard deviation is indicated by \pm . EditBench is the only benchmark built
 193 from in-the-wild problems and exhibits considerable variation in both instruction and code context length.

Benchmark	Problem		Instruction		Code Context		
	# Problems	Source	# NL	Length	# PL	Length	HL
CanItEdit (Cassano et al., 2023b)	105	Annotator	1	140 ± 105	3	1309 ± 1116	No
EditEval (Hu et al., 2023)	194	Annotator	1	99.9 ± 49.3	1	258 ± 185	No
Aider Polyglot (Gauthier, 2025)	225	Coding Exercises	1	606 ± 885	5	6184 ± 6452	No
EditBench	545	In-the-wild	5	238 ± 738	2	5642 ± 7567	Yes



202 Figure 3: **Distribution of libraries in EditBench for Python problems.** EditBench contains 74 unique
 203 imports compared to 25 (CanItEdit), 15 (Polyglot), and 16 (EditEval) from other benchmarks. See Appendix C
 204 for other languages and other benchmarks.

205 Originally, we attempted to use a coding agent (e.g., Claude Code) to construct test cases, but found that the
 206 agent often struggled with test case generation itself, frequently resorting to undesirable tests such as directly
 207 pattern-matching with the source code, despite explicit instructions to avoid this behavior. However, despite
 208 the complexities involved in environment setup, especially for languages such as Javascript, we found the
 209 agent was consistently able to set up the correct packages and environments. As a result, we used the agent
 210 to setup the test harness environment. We provided setup files (e.g., a `conftest.py` file in Python and a
 211 `jest-config.js` file for Javascript) to help support the agent and standardize outputs.

212 4 BENCHMARK STATISTICS

213 EditBench consists of 545 problems that span 5 natural languages (English, Spanish, Russian, Chinese, Portuguese) and 2 programming languages (Python and Javascript). EditBench features a diverse set of
 214 problems with considerable variation in instruction and code context lengths (Table 1). Based on the import
 215 library usage (Figure 3), we can see that EditBench captures 74 different unique imports, demonstrating
 216 much more diversity (at least three times) than existing benchmarks. From our analysis on EditBench
 217 problems, we find the following characteristics:

218 **Real user instructions are diverse and messy.** When inspecting real-world data, we find that users write
 219 varied instructions across many problem categories. While many of these categories are similar to existing
 220 benchmarks, we find that user instructions are much more informal and less well-specified compared to the
 221 annotator-written instructions in existing benchmarks (Table 5). Interestingly, even the way a user would
 222 write an instruction within a category varies in terms of descriptiveness. For example, to resolve errors, users
 223 may briefly describe the erroneous behavior using natural language or directly paste in the terminal error
 224 traces. Further, unlike prior benchmarks where user instructions are only written in English, we find users
 225

235 **Table 2: Comparing user instructions written in IDE to the instructions written by human annotators.**
 236 We provide examples across different task categories, comparing with two edit-related datasets (CanItE-
 237 dit (Cassano et al., 2023b) and EditEval (Hu et al., 2023)). We truncate some instructions for brevity and
 238 provide full examples in Appendix B. In general, we find that real-world prompts are much less specified and
 239 require models to leverage the provided context, compared to existing benchmark prompts.

241 EditBench (proposed)	242 CanItEdit (Cassano et al., 2023b)	243 EditEval (Hu et al., 2023)
Feature Addition		
244 take the globe countries layer from below `// this' and add it to the existing globe	245 Add a method 'estimate_location' that returns the estimated the appropriate location for this house, calculated by...	246 Add a function 'filter_odd_numbers' to filter odd numbers using lambda function.
Feature Modification		
247 do not use R style, use python style	248 Flip the correlation function given to calculate the covariance instead using the Corr(X, Y), Var(X) and Var(Y). The new function should...	249 Modify the function to correctly determine the season based on month and day, considering edge cases for season changes. Raise error when...
Resolve Errors		
250 RuntimeError: Cannot close a running event loop sys:1: RuntimeWarning: coroutine 'Application.shutdown' was never...	251 Fix combination_unlimited.rep() so that it returns the right result. The function combination_unlimited.rep should...	252 Fix the bug in 'sum_even_and_even_index' to make it return the sum of even numbers at even indices.
Optimize Code		
253 optimize the computation by better batching the latter part	254 Optimize the bm25 algorithm by avoiding frequency calculations.	255 Optimize the function to find the longest common subsequence for the given two sequences using dynamic programming

262
 263
 264
 265
 266 write instructions in multiple languages, including Russian, Chinese, and Spanish (see Table 1 for additional
 267 comparison of user instructions).

268 **Real-world code contexts span many applications and context lengths.** We observe that users work on a
 269 variety of applications, including frontend/backend, machine learning, and algorithmic problems. Additionally,
 270 the context lengths are much longer than those evaluated in prior benchmarks (Table 12). We also look at the
 271 distribution of code-to-edit token lengths, as computed by the number of highlighted tokens, and find that
 272 most people are highlighting targeted portions of code for edits. The median is 138 tokens, while the full file
 273 is typically closer to 4.5k tokens. The code contexts that we collect are primarily in Python (43%), with the
 274 next most common programming languages being Javascript/Typescript (21%), PHP (18%), and HTML (7%).
 275 We focus on problems written in Python and Javascript, which together comprise the majority of in-the-wild
 276 instructed edits collected.

277 **We identify four common clusters of functional edits.** By analyzing in-the-wild user instructions in
 278 EditBench, we derive four different categories that describe functional real-world edits: *feature addition*,
 279 *feature modification*, *bug fixing*, and *optimization*. We find the distribution across these categories as 43%
 280 additions, 27% modifications, 22% fixes, and 8% optimizations. Table 2 provides examples of each category.
 281 In our later analysis, we compare how well models are able to perform these different problem categories.

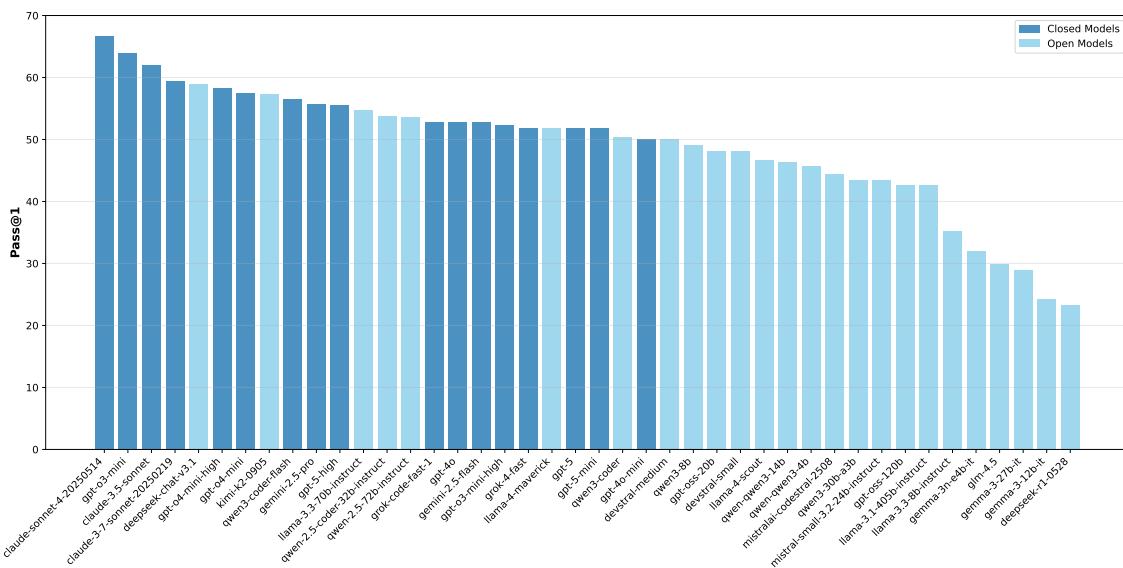


Figure 4: We evaluate 40 LLMs on **EditBench**. We report the `pass@1` of each model; only 3 out of 40 models have a `pass@1` greater than 60%. In general, closed-source models outperform open models.

5 EVALUATION

We now use EditBench to evaluate models and identify trends in code editing capabilities across models. We also compare EditBench results to existing benchmarks. We overview our choice of LLMs, evaluation metrics, and prompts to perform code edits, with additional details in Appendix D.

Model choices. We select 40 LLM spanning multiple model families, sizes, and training schemes (e.g., reasoning and non-reasoning models). We use 9 models from the GPT family (OpenAI, 2025), 8 models from Qwen (Hui et al., 2024), 5 models from Llama (Meta, 2025), 4 models from Mistral (Mistral, 2025), 3 models from Sonnet (Anthropic, 2023), 3 models from Gemma (Team, 2025b), 2 models from Grok (Grok, 2025), 2 models from Deepseek (DeepSeek-AI et al., 2024), 2 models from Gemini (Google DeepMind, 2025), 1 model from Kimi (Team, 2025c), and 1 model from the GLM family (Team, 2025a). For a full list of models, see Table 6. For GPT reasoning models (`gpt-o3-mini`, `gpt-o4-mini`, `gpt-5`), we also vary reasoning effort. We set temperature to 0 when possible to reduce non-deterministic outputs.

Evaluation Metrics. Following prior work (Kulal et al., 2019; Chen et al., 2021), we report `pass@1`, where 1 code sample is generated per problem and a problem is considered solved if it passes all unit tests. To facilitate analysis on the types of problems that current models excel or struggle with, we also partitioned our dataset into two subsets of Easy and Hard difficulty, in addition to reporting the Full results. We categorized problems that were solved by k or fewer models as Hard and the remainder as Easy (Gauthier, 2025). To obtain a roughly even split between problems, we selected $k = 20$. We find that easy versus hard problems are roughly evenly distributed across problem categories.

Code Editing Methods. In all our prompts, the model is given the user instruction and main code context and requested to edit the entire file by regenerating the entire code context. We also evaluate models when given varying levels of contextual information (e.g., highlighted code and cursor position). We find that models perform best when given highlighted code, but not cursor position; hence, we run all of our main experiments with highlighted code given only. All prompts are provided in Appendix D.

329 5.1 DISCUSSION OF RESULTS
330331 We present our primary results in Figure 4 and highlight the key takeaways below. Appendix E provides
332 additional results and discussions.
333334 **EditBench is a challenging benchmark, even for current state-of-the-art models.** Only 3 out of 40
335 models achieve more than a 60% pass@1 on the core benchmark: `claude-sonnet-4` at the first rank and
336 two models that are close behind (`o3-mini-high`, and `claude-3.5-sonnet`). Further, EditBench
337 captures questions of varying difficulty, reflecting the diversity of challenges in real-world code edits. As
338 such, we find a sharp contrast between the `easy` and `hard` questions, where the average gap across models
339 is 59.3% (standard deviation of 10.6%). Given the large gap between `easy` and `hard` problems, we explore
340 what types of prompts are present in `hard` problems compared to the general dataset. Overall, we see that
341 `hard` instructions tend to have *shorter* instructions (by nearly 5 times) but slightly *longer* highlighted code.
342 This means that the model cannot simply rely on following the user’s instructions alone but rather needs to
343 reason about multiple pieces of information. We provide an example in Appendix E.
344345 Table 3: **Additional context affects performance.** Highlighted code is crucial to performance, improving
346 task success rate across all models when included in the prompt. Surprisingly, adding cursor position on top
347 of that degrades performance instead. Models chosen are the best model in the top 5 model families.
348

Model Name	Task Success Rate (%)			
	Code Only	+Highlight	+Highlight +Cursor	+Cursor
<code>claude-sonnet-4</code>	60.19	66.67 (+6.48)	64.81 (-1.86)	
<code>gpt-o3-mini</code>	56.48	63.89 (+7.41)	52.78 (-11.11)	
<code>gemini-2.5-pro</code>	49.53	55.66 (+6.13)	55.56 (-0.10)	
<code>deepseek-chat-v3.1</code>	53.70	58.88 (+5.18)	51.85 (-7.03)	
<code>qwen3-coder-flash</code>	55.14	56.48 (+1.34)	50.93 (-5.55)	

356 **Model performance is heavily affected by additional contextual information.** To evaluate how additional
357 contextual information (highlighted code and cursor position) affects model performance, we run an ablation
358 with the 5 top models in different model families (Table 3). When adding highlighted code to the prompt,
359 the task success rate increases for all 5 models. On the other hand, adding the cursor position decreases
360 performance instead. We notice that while the overall trends are consistent, the degree to which each model’s
361 performance varies. `gpt-o3-mini` seems to be the most affected with a swing of +7.41% with highlighted
362 code and then -11.11% with the addition of cursor position. These findings show the importance of evaluating
363 models on editing tasks that require integrating multiple pieces of information.
364365 **Gap between closed and open models.** Comparing the colors in Figure 4 very readily shows that open models
366 significantly lag behind closed models. Out of the 40 models we evaluate, only 2 out of the top 11 are open
367 models, and the bottom 15 are all open models. Of the open models, we find that `deepseek-chat-v3.1`
368 performs the best with a pass@1 of 58.88%, with `kimi-k2` and `llama-3.3-70b-instruct` not
369 far behind. Surprisingly, `gpt-5` with default reasoning (medium effort) is similar to `gpt-5-mini` and
370 `gpt-4o-mini`. When inspecting test cases where `gpt-5` failed, we find that it struggles with simple tasks
371 like formatting code indentation properly and catching edge cases, despite being a strong reasoning model.
372373 **Models excel in different problem categories.** When we divide questions into categories that test different
374 editing-related skills, we find that performance varies. Overall, we find that models perform best on bug
375 fixing problems (average of 52.2%), which may be most akin to tasks found in prior benchmarks like SWE-
Bench (Jimenez et al., 2023a). In contrast, models tend to struggle with optimization and feature addition
(44.6% and 39.6%, respectively). Still, we find that `claude-sonnet-4` ranks first in every category except

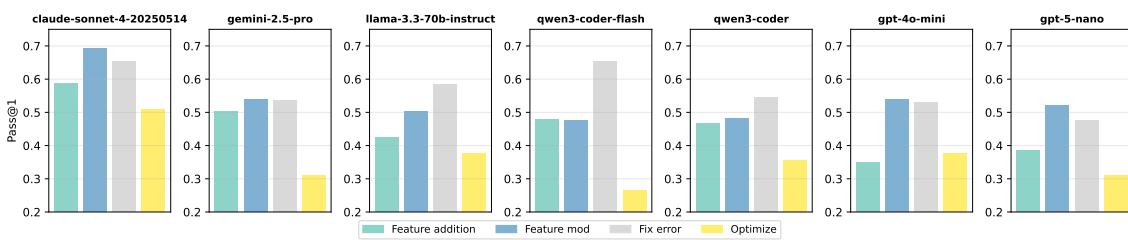


Figure 5: **Comparing top-performing open-weight and closed models.** To illustrate individual LLM differences, we compare 7 models and find $\text{pass}@1$ varies greatly depending on the problem category. Additionally, different models perform best at different categories.

optimization. Furthermore, we find that some models have particularly large gaps between categories (Figure 5). For example, *qwen3-coder-flash*'s top category is fixing bugs while *claude-sonnet-4*'s is making feature modifications.

5.2 COMPARISON TO EXISTING BENCHMARKS

We compare our results with two maintained leaderboards: performance on Aider Polyglot (Gauthier, 2025), which has been used in prior model releases as a metric of model editing capabilities, and ranking on the coding subset of Chatbot Arena (Chiang et al., 2024), which has been widely used to capture human preferences. We have 17 and 30 shared models, respectively. We observe a weak, positive correlation with both Polyglot (Pearson correlation coefficient $r = 0.24, p = 0.06$) and Chatbot Arena ($r = 0.11, p = 0.01$).

We believe our observations are due to the following factors. The first is **code-centric input and output**. Input/outputs in Chatbot Arena are often written purely in natural language, so the *majority* of coding-related questions in Chatbot Arena do not contain code (Chi et al., 2025); this is unlike EditBench and Polyglot, both of which require code for every problem. Second, there is a difference in **interaction modality**. EditBench and Polyglot test a model's ability to perform *instructed code edits*, where there is a freeform input (the user instruction) and structured output (the resulting code), while Chatbot Arena evaluates a model's ability to *chat*, where there is both freeform inputs and outputs. Also, the inclusion of additional code context (e.g., highlighted code) may affect correlation to Polyglot. Finally, correlation may be affected by the inclusion of **real-world user intent**. Polyglot's problems are entirely based on coding exercises from educational-style problems that lack the organic user intent present in Chatbot Arena and EditBench.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

As instructed code edits become more widely adopted in real-world IDEs, there is a need to benchmark LLM capabilities on these types of problems. We develop a VSCode extension to collect real-world instructed code edits, which include user instructions and code contexts. We transform this in-the-wild edit data into EditBench, a set of high-quality test harnesses that evaluate LLM's ability to perform diverse tasks. Evaluations on 40 models show that EditBench is challenging even for current state-of-the-art models and provides insights into how performance varies when considering different code context information and types of edits. Overall, to adequately support developers using LLM-powered tools, our findings demonstrate the need for future models to be trained on real-world interaction modes and evaluated across a broad spectrum of problem categories, languages, code contexts, and user intents.

Limitations and Future Work. While we attempted to make EditBench as diverse as possible, there are still additions from which it would benefit. For example, as we collect more data using our extension,

423 we will increase the number of examples we have for the existing languages and expand to other common
 424 programming languages. Additionally, despite improvements over existing benchmarks, it is unclear to what
 425 extent our problems encapsulate all real-world use cases. We plan to continue updating the EditBench
 426 leaderboard as new models are released and exploring automatic workflows to more seamlessly translate
 427 real-world data to benchmark problems.

429 REFERENCES

431 Anthropic. Meet claude, 2023. URL <https://www.anthropic.com/claude>.

432 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
 433 Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. *arXiv*
 434 preprint arXiv:2108.07732, 2021.

435 Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry Tworek, and
 436 Mark Chen. Efficient training of language models to fill in the middle. *arXiv preprint arXiv:2207.14255*,
 437 2022.

438 Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald Pinckney,
 439 Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e: a scalable and
 440 polyglot approach to benchmarking neural code generation. *IEEE Transactions on Software Engineering*,
 441 2023a.

442 Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward Berman,
 443 George Chakhnashvili, Anton Lozhkov, Carolyn Jane Anderson, et al. Can it edit? evaluating the ability of
 444 large language models to follow code editing instructions. *arXiv preprint arXiv:2312.12450*, 2023b.

445 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
 446 Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained
 447 on code. *arXiv preprint arXiv:2107.03374*, 2021.

448 Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
 449 self-debug. *arXiv preprint arXiv:2304.05128*, 2023.

450 Wayne Chi, Valerie Chen, Anastasios Nikolas Angelopoulos, Wei-Lin Chiang, Aditya Mittal, Naman Jain,
 451 Tianjun Zhang, Ion Stoica, Chris Donahue, and Ameet Talwalkar. Copilot arena: A platform for code llm
 452 evaluation in the wild. *arXiv preprint arXiv:2502.09328*, 2025.

453 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Hao
 454 Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open platform for
 455 evaluating llms by human preference. *arXiv preprint arXiv:2403.04132*, 2024.

456 Inc. Continue Dev. Continue: Open-source ai code assistant. <https://github.com/continuedev/continue>, 2025. Accessed: 2025-05-08.

457 Cursor. Cursor: The ai-first code editor, 2023. URL <https://cursor.sh/features>. Accessed:
 458 2023-12-03.

459 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, and Chengda Lu et al. Deepseek-
 460 v3 technical report. *ArXiv preprint*, abs/2412.19437, 2024. URL <https://arxiv.org/abs/2412.19437>.

461 Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, Leonard Lausen, Sheng Zha, and George Karypis.
 462 Large language models of code fail at completing code with potential bugs. *Advances in Neural Information
 463 Processing Systems*, 36, 2023.

470 Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
 471 Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and synthesis. In *The*
 472 *Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=hQwb-1bM6EL>.

473

474 Paul Gauthier. Aider polyglot coding benchmark. <https://aider.chat/docs/leaderboards/>,
 475 2025. Accessed: 2025-05-08.

476

477 Github. Github copilot - your ai pair programmer, 2022. URL <https://github.com/features/copilot>.

478

479 Google DeepMind. Gemini 2.5: Our newest gemini model with thinking. <https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/>,
 480 March 2025.

481

482 Grok. Grok code fast 1 model card. <https://data.x.ai/2025-08-26-grok-code-fast-1-model-card.pdf>, August 2025.

483

484

485 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu,
 486 Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the large language model
 487 meets programming – the rise of code intelligence, 2024a.

488

489 Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma, Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi LI,
 490 Ruibo Liu, Yue Wang, Shuyue Guo, Xingwei Qu, Xiang Yue, Ge Zhang, Wenhui Chen, and Jie Fu.
 491 Codeeditorbench: Evaluating code editing capability of large language models, 2024b. URL <https://arxiv.org/abs/2404.03543>.

492

493

494 Priyanshu Gupta, Avishree Khare, Yasharth Bajpai, Saikat Chakraborty, Sumit Gulwani, Aditya Kanade,
 495 Arjun Radhakrishna, Gustavo Soares, and Ashish Tiwari. Grace: Language models meet code edits.
 496 In *Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on*
 497 *the Foundations of Software Engineering*, 2023. URL <https://doi.org/10.1145/3611643.3616253>.

498

499 Qisheng Hu, Kaixin Li, Xu Zhao, Yuxi Xie, Tiedong Liu, Hui Chen, Qizhe Xie, and Junxian He. Instructcoder:
 500 Empowering language models for code editing. *arXiv preprint arXiv:2310.20329*, 2023.

501

502 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen
 503 Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang, Bo Zheng,
 504 Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and
 505 Junyang Lin. Qwen2.5-coder technical report. *ArXiv preprint*, abs/2409.12186, 2024. URL <https://arxiv.org/abs/2409.12186>.

506

507 Maliheh Izadi, Jonathan Katzy, Tim van Dam, Marc Otten, Razvan Mihai Popescu, and Arie van Deursen.
 508 Language models for code completion: A practical evaluation, 2024. URL <https://arxiv.org/abs/2402.16197>.

509

510 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
 511 Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large
 512 language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

513

514 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan.
 515 Swe-bench: Can language models resolve real-world github issues? *arXiv preprint arXiv:2310.06770*,
 516 2023a.

517 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
 518 Narasimhan. Swe-bench: Can language models resolve real-world github issues? In *The Twelfth*
 519 *International Conference on Learning Representations*, 2023b.

520

521 Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey Svyatkovskiy.
 522 Inferfix: End-to-end program repair with llms. In *Proceedings of the 31st ACM Joint European Software*
 523 *Engineering Conference and Symposium on the Foundations of Software Engineering*, 2023. URL
 524 <https://doi.org/10.1145/3611643.3613892>.

525 Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Ivan Radiček, and Gust Verbruggen. Repair
 526 is nearly generation: Multilingual program repair with llms. In *Proceedings of the Thirty-Seventh AAAI*
 527 *Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial*
 528 *Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence*, 2023. URL
 529 <https://doi.org/10.1609/aaai.v37i4.25642>.

530

531 Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan Parvez, and
 532 Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code understanding, generation,
 533 translation and retrieval. *arXiv preprint arXiv:2303.03004*, 2023.

534

535 Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S Liang.
 536 Spoc: Search-based pseudocode to code. *Advances in Neural Information Processing Systems*, 32, 2019.

537

538 Jia Li, Ge Li, Zhuo Li, Zhi Jin, Xing Hu, Kechi Zhang, and Zhiyi Fu. Codeeditor: Learning to edit source
 539 code with pre-trained models. *ACM Transactions on Software Engineering and Methodology*, 2023.

540

541 Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Majumder, Jared Green, Alexey
 542 Svyatkovskiy, Shengyu Fu, and Neel Sundaresan. Automating code review activities by large-scale pre-
 543 training. In *Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium*
 544 *on the Foundations of Software Engineering*, ESEC/FSE 2022, pp. 1035–1047, New York, NY, USA, 2022.
 545 Association for Computing Machinery. ISBN 9781450394130. doi: 10.1145/3540250.3549081. URL
 546 <https://doi.org/10.1145/3540250.3549081>.

547

548 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatgpt really
 549 correct? rigorous evaluation of large language models for code generation. *Advances in Neural Information*
 550 *Processing Systems*, 36, 2023.

551

552 Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement,
 553 Dawn Drain, Dixin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano,
 554 MING GONG, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie LIU.
 555 CodeXGLUE: A machine learning benchmark dataset for code understanding and generation. In *Thirty-fifth*
 556 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)*, 2021.
 557 URL <https://openreview.net/forum?id=61E4dQXaUcb>.

558

559 Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation. <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>, April 2025. Introducing Llama 4
 560 Scout, Llama 4 Maverick, and a preview of Llama 4 Behemoth, which represent Meta’s first open-weight
 561 natively multimodal models with unprecedented context length support built using a mixture-of-experts
 562 (MoE) architecture.

563

Mistral. Upgrading agentic coding capabilities with the new devstral models. <https://mistral.ai/news/devstral-2507>, June 2025. Introducing Devstral Medium, as well as an upgrade to Devstral
 Small.

564 Seungjun Moon, Yongho Song, Hyungjoo Chae, Dongjin Kang, Taeyoon Kwon, Kai Tzu-iunn Ong, Seung-
 565 won Hwang, and Jinyoung Yeo. Coffee: Boost your code llms by fixing bugs with feedback. *arXiv preprint*
 566 *arXiv:2311.07215*, 2023.

567

568 Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
 569 Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruction tuning code large
 570 language models. In *The Twelfth International Conference on Learning Representations*, 2023.

571

572 Niels Mündler, Mark Niklas Müller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and validating
 573 real-world bug-fixes with code agents, 2025. URL <https://arxiv.org/abs/2406.12952>.

574

575 Daye Nam, Ahmed Omran, Ambar Murillo, Saksham Thakur, Abner Araujo, Marcel Blistein, Alexander
 576 Frömmgen, Vincent Hellendoorn, and Satish Chandra. Prompting llms for code editing: Struggles and
 577 remedies. *arXiv preprint arXiv:2504.20196*, 2025.

578

579 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming
 580 Xiong. Codegen: An open large language model for code with multi-turn program synthesis. In *The*
 581 *Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=iaYcJKpY2B_.

582

583 Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
 584 Demystifying gpt self-repair for code generation. *arXiv preprint arXiv:2306.09896*, 2023.

585

586 OpenAI. Introducing openai o3 and o4-mini, April 2025. URL <https://openai.com/index/introducing-o3-and-o4-mini/>. Accessed: 2025-05-15.

587

588 Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation benchmark for
 589 cross-lingual natural language generalization. *arXiv preprint arXiv:2402.16694*, 2024.

590

591 Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
 592 Jingyu Liu, Tal Remez, Jérémie Rapin, et al. Code llama: Open foundation models for code. *arXiv preprint*
 593 *arXiv:2308.12950*, 2023.

594

595 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
 596 language agents with verbal reinforcement learning. In *Thirty-seventh Conference on Neural Information*
 597 *Processing Systems*, 2023. URL <https://openreview.net/forum?id=vAE1hFckW6>.

598

599 5 Team. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models, 2025a. URL <https://arxiv.org/abs/2508.06471>.

600

601 Gemma Team. Gemma 3 technical report, 2025b. URL <https://arxiv.org/abs/2503.19786>.

602

603 Kimi Team. Kimi k2: Open agentic intelligence, 2025c. URL <https://arxiv.org/abs/2507.20534>.

604

605 Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar, Samson
 606 Tan, Baishakhi Ray, Parminder Bhatia, et al. Recode: Robustness evaluation of code generation models. In
 607 *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 608 *Papers)*, pp. 13818–13843, 2023.

609

610 Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. Copiloting the copilots: Fusing large language
 611 models with completion engines for automated program repair. In *Proceedings of the 31st ACM Joint*
 612 *European Software Engineering Conference and Symposium on the Foundations of Software Engineering*,
 613 2023. URL <https://doi.org/10.1145/3611643.3616271>.

611 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv,
 612 Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-free llm
 613 benchmark. *arXiv preprint arXiv:2406.19314*, 2024.

614

615 Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan Zhao,
 616 Li Zhu, Shuiguang Deng, et al. Codescope: An execution-based multilingual multitask multidimensional
 617 benchmark for evaluating llms on code understanding and generation. *arXiv preprint arXiv:2311.08588*,
 618 2023.

619 John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press, Niklas
 620 Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal: Do ai systems
 621 generalize to visual software domains? *arXiv preprint arXiv:2410.03859*, 2024a.

622 John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing and
 623 benchmarking interactive coding with execution feedback. *Advances in Neural Information Processing
 624 Systems*, 36, 2024b.

625

626 Ming-Ho Yee and Arjun Guha. Do Machine Learning Models Produce TypeScript Types that Type Check?
 627 . In *Proceedings of the 37th European Conference on Object-Oriented Programming*, 2023. URL
 628 <https://doi.org/10.48550/arXiv.2302.12163>.

629

630 Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu, Xiaojian
 631 Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving. *arXiv preprint
 632 arXiv:2504.02605*, 2025.

633

634 Jiyang Zhang, Sheena Panthaplatzel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. Coditt5: Pretraining
 635 for source code and natural language editing. In *Proceedings of the 37th IEEE/ACM International
 636 Conference on Automated Software Engineering*, ASE '22, New York, NY, USA, 2023a. Association
 637 for Computing Machinery. ISBN 9781450394758. doi: 10.1145/3551349.3556955. URL <https://doi.org/10.1145/3551349.3556955>.

638

639 Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code generation. In
 640 *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 641 Papers)*, 2023b. URL <https://aclanthology.org/2023.acl-long.45>.

642

643 Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni, and Chandan K. Reddy. Xlcost:
 644 A benchmark dataset for cross-lingual code intelligence, 2022. URL <https://arxiv.org/abs/2206.08474>.

645

646

647

648

649

650

651

652

653

654

655

656

657

658 A DATA COLLECTION DETAILS
659660
661 A.1 SYSTEM DETAILS
662663
664 We adapt the prompt used in template from Continue (Continue Dev, 2025).
665

```

666 The user has requested a section of code in a file to be rewritten.
667
668 This is the prefix of the file:
669   ```{language}
670   {prefix}
671   ```

672 This is the suffix of the file:
673   ```{language}
674   {suffix}
675   ```

676 This is the code to rewrite:
677   ```{language}
678   {code_to_edit}
679   ```

680 You are an expert programmer. You will rewrite the above code to do
681   the following:
682
683 {user_input}

685 Keep in mind indentations. Output only a code block with the
686   rewritten code:

```

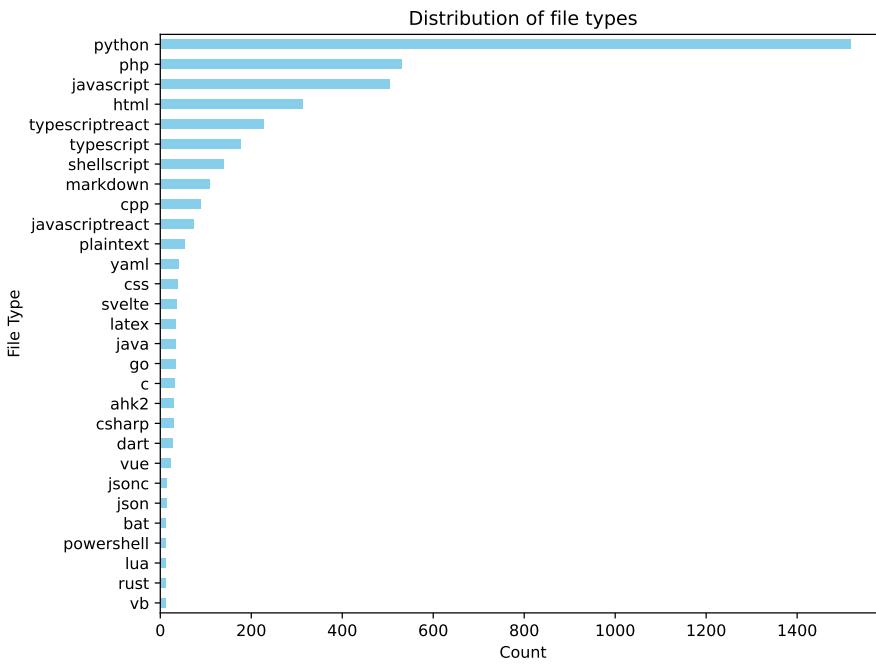
687
688
689
690 A.2 GENERAL INSTRUCTIONS
691692
693 Step 1: Install the extension and restart Visual Studio Code after installation. If installed successfully, you
694 will see EditBenchExt show up on the bottom right corner of your window and the check mark changes to a
695 spinning circle when a completion is being generated. Note, if you are using any other completion provider
696 (e.g. Github Copilot), you must disable them when using EditBenchExt.697 Step 2: EditBenchExt currently supports two main feature: read autocomplete and in-line editing (beta) below
698 to understand how to use each one. Since we show paired responses, the way you use them are slightly
699 different than your standard AI coding tools!700 Step 3: This step is optional. If applicable, you can change what data is saved by EditBenchExt by following
701 the instructions in "Privacy Settings".702 Step 4: Create a username by clicking the EditBenchExt icon on the sidebar; detailed instructions are also in
703 "Create an account". Your username will be used for a future leaderboard to compare individual preferences.

705 A.3 PRIVACY INSTRUCTIONS
706707 **Privacy Settings.** Your privacy is important to us. Please read carefully to determine which settings are most
708 appropriate for you. To generate completions, the code in your current file is sent to our servers and sent to
709 various API providers. This cannot be changed.710 **Data Collection.** By default, we collect your code for research purposes. You can opt-out of this. If you
711 are working on code containing sensitive information, we recommend that you opt out of data collection.
712 To opt-out of data collection, please change codePrivacySettings to Debug. We will only log your code for
713 debugging. To disable logging entirely, please change codePrivacySettings to Private. Opting-out means
714 any bugs you encounter will be non-reproducible on our end. You can find these settings by searching for
715 EditBenchExt in your vscode settings or clicking the gear button of the EditBenchExt extension -> Extension
716 Settings.717 **Removing your data.** If you would like to have the option in the future for us to delete any of your data, you
718 must create an account on EditBenchExt following instructions described in “Create an account.” To remove
719 your data, you can email any of the EditBenchExt maintainers with your username.720 **Data Release.** Prior to releasing any collected code snippets to enable future research efforts, we will run a
721 PII detector and remove any identified entities to further ensure no personal information is released.
722723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

752 B EDITBENCHEXT INSTRUCTED EDITS DATA ANALYSIS

753
 754 We analyze the in-the-wild data collected through EditBenchExt. We visualize the distribution of languages
 755 that users code in (Figure 6), natural languages that users write instructions in (Figure 7), length of instructions
 756 (Figure 9), length of highlighted code (Figure 8) and length of code context (Figure 10). We find that across
 757 user votes, 50.8% voted for the left response, 34.6% voted for the right response, and 14.6% voted for neither.
 758 This means that 85.4% of the time, at least one of the responses was accepted.

759 We also provide additional examples of user instructions across different task categories in Table 5 and the
 760 full instructions from Table 2 in Table 4. An example of highlighted user code is given in Figure 11.



784 Figure 6: Distribution of file types over instructed edit users in EditBenchExt. The majority of users are
 785 working on Python code.
 786

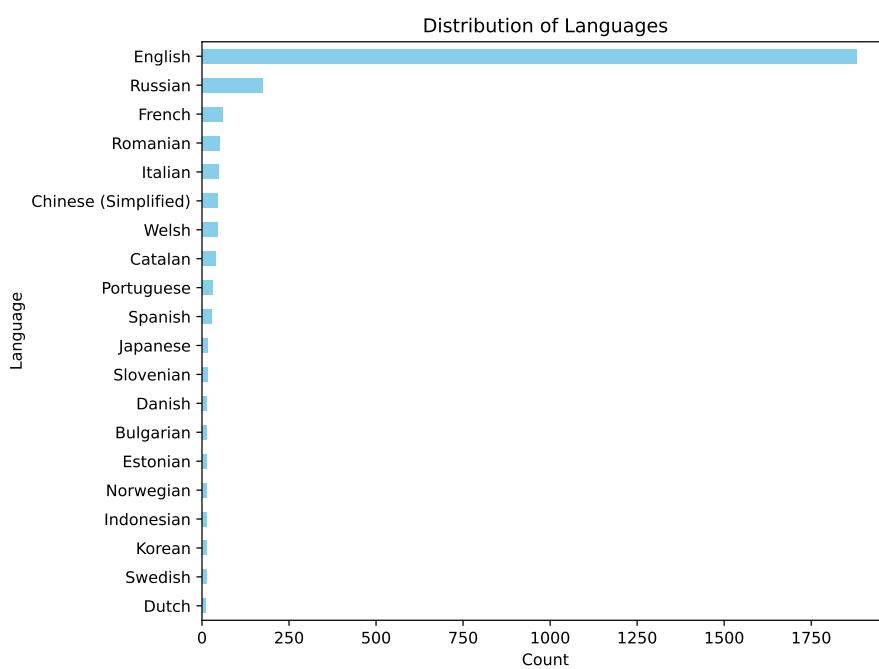
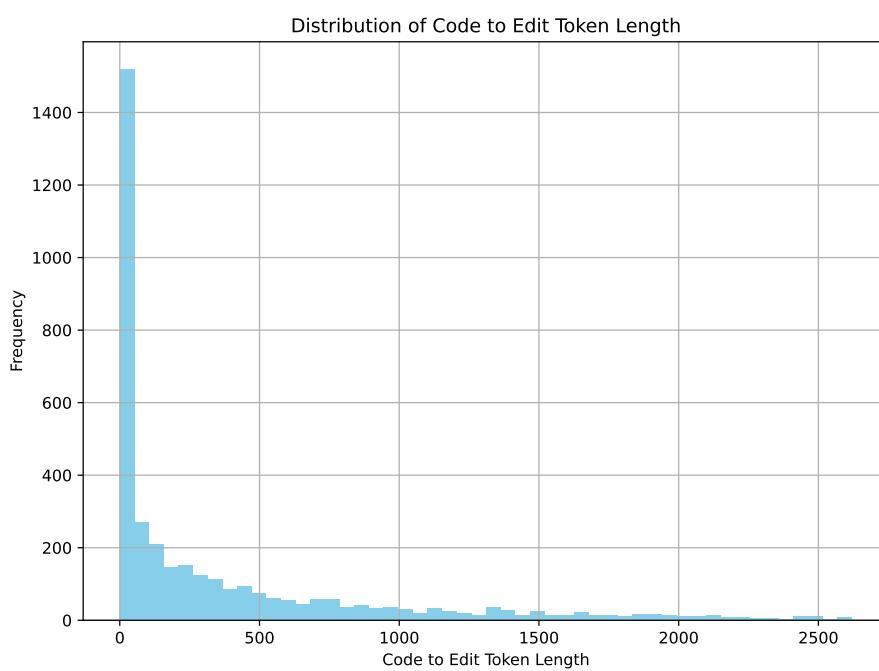


Figure 7: Distribution of natural languages in user instructions for instructed edits in EditBenchExt. The majority of users write instructions in English.



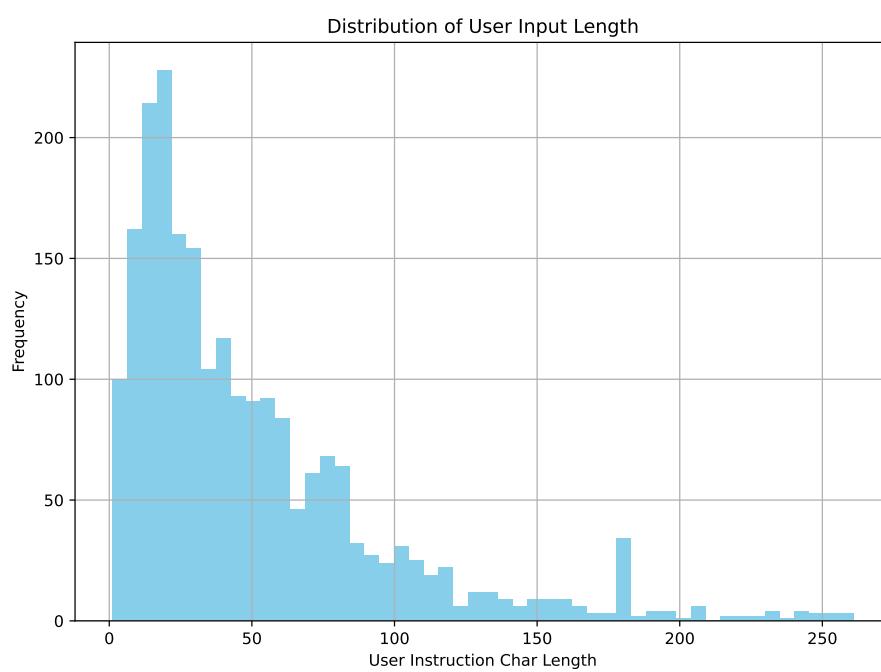


Figure 9: Distribution of the number of characters in user instructions.

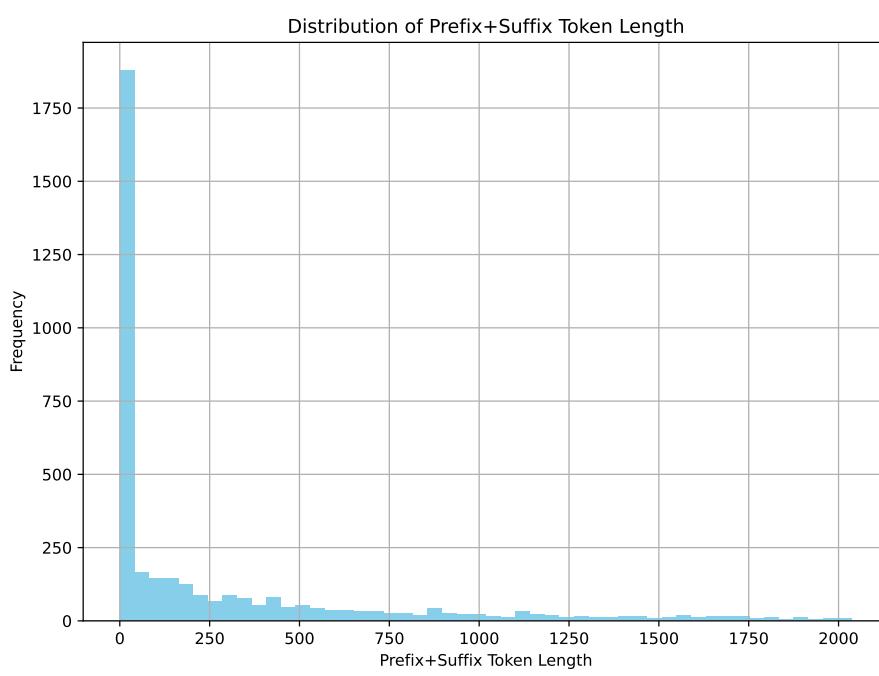


Figure 10: Distribution of context length (defined by the prefix and suffix token length) of code files.

987
988
989
990
991
992
993
994

995 Table 4: Full examples of user instructions across different task categories, comparing with two edit-related
996 datasets (CanItEdit (Cassano et al., 2023b) and EditEval (Hu et al., 2023)).
997

998	EditBench (proposed)	CanItEdit (Cassano et al., 2023b)	EditEval (Hu et al., 2023)
Feature Addition			
1000	take the globe countries layer 1001 from below '/// this' and add 1002 it to the existing globe	Add a method 'estimate_location' that returns the estimated the appropriate location for this house, calculated by getting the average location of the top 5 most similar houses in terms of estimated price.	Add a function 'filter_odd_numbers' to filter odd numbers using lambda function.
Feature Modification			
1006	do not use R style, use python style	Flip the correlation function given to calculate the covariance instead using the $\text{Corr}(X, Y)$, $\text{Var}(X)$ and $\text{Var}(Y)$. The new function should take in $\text{Corr}(X, Y)$, $\text{Var}(X)$ and $\text{Var}(Y)$ in that order.	Modify the function to correctly determine the season based on month and day, considering edge cases for season changes. Raise error when invalid month is provided.
Resolve Errors			
1013	RuntimeError: Cannot close a running event loop sys:1: RuntimeWarning: coroutine 'Application.shutdown' was never awaited sys:1: RuntimeWarning: coroutine 'Application.initialize' was never awaited	Fix combination.unlimited.rep() so that it returns the right result. The function combination.unlimited.rep should be returning the combination of $n-1$ and n by calling on combination() with those arguments.	Fix the given function to correctly identify whether a string represents a valid floating-point number or not, including handling edge cases such as scientific notation (e.g., '1e-4'), positive and negative signs, and leading/trailing whitespace. Ensure the function is robust and handles exceptions appropriately.
Optimize Code			
1022	optimize the computation by better batching the latter part	Optimize the bm25 algorithm by avoiding frequency calculations.	Optimize the function to find the longest common subsequence for the given two sequences using dynamic programming

1026
1027
1028
1029
1030
1031
1032
1033

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044 Table 5: Additional examples of user instructions across different task categories, comparing with two
1045 edit-related datasets (CanItEdit (Cassano et al., 2023b) and EditEval (Hu et al., 2023)).

1046

1047	EditBench (proposed)	CanItEdit (Cassano et al., 2023b)	EditEval (Hu et al., 2023)
1048 Feature Addition			
1049 add example usage	1050	Add a method called 'header' which returns the header of a csv file as a list.	1051 Add a check for None to prevent possible null reference exceptions in the 'editorial_reviews' function.
1052 Feature Modification			
1053 modify the cmap so the displayed values are the same as the text displayed on the raw map.	1054	1055 Modify the 'Quiz' class to allow the user to skip a question using 'self.skip_question()', and record the number of questions that were skipped in 'self.skipped'.	1056 1057 1058 Modify the function to return the word with the most number of occurrences in the given list of strings. If there are multiple words with the same maximum occurrences, return all of them in a list sorted alphabetically.
1059 Resolve Errors			
1060 theta -= alpha * gradient 1061 ValueError: non-broadcastable 1062 output operand with shape (2,1) 1063 doesn't match the broadcast 1064 shape (2,3)	1065	1066 Fix the methods in 'Course' so that they never throw errors. Even when 'len(self.students) == 0'. Instead they should return 'None'. Additionally, do not use the words 'for', 'while', or 'map' anywhere in the code. You should accomplish this using higher order functions.	1067 Fix the function to correctly find the single element in a sorted array where every other element appears exactly twice.
1068 Optimize Code			
1069 run these in parallel	1070	Optimize the AI to find the best move in less steps.	Optimize the given function to find the first position of an element in a sorted array.

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

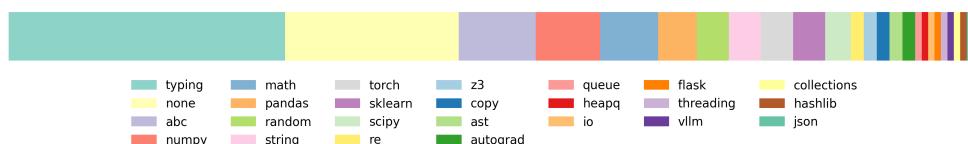
Example EditBench original_code.py

```
1081
1082
1083 from langchain_openai import ChatOpenAI
1084 from langchain.prompts import PromptTemplate
1085 from langchain.chains import LLMChain
1086 from langchain_community.retrievers import BM25Retriever
1087 from os import getenv
1088 # omit some imports for spacing
1089 load_dotenv()
1090 st.title("CardioRAG")
1091 # load in PDF for RAG
1092 if "retriever" not in st.session_state:
1093     st.text("Loading PDF...")
1094     prog_bar = st.progress(0)
1095     pdf_reader = PyPDF2.PdfReader(open("Moss and Adams 10e Vol 1 & 2.pdf", 'rb'))
1096
1097
1098     chunks = []
1099     for page_num in range(60, 600):
1100         prog_bar.progress((page_num-60)/(600-60))
1101         chunks.append(pdf_reader.pages[page_num].extract_text())
1102     # put chunks into vector store
1103     retriever = BM25Retriever.from_texts(chunks, metadatas=[{"page_num": p for p in range(60, 600)}], preprocess_func=word_tokenize)
1104     st.session_state["retriever"] = retriever
1105     st.text("Loaded PDF")
1106 if "messages" not in st.session_state:
1107     st.session_state["messages"] = [
1108         {"role": "assistant", "content": "Hi, I'm a chatbot who has read the Moss & Adams
1109         Cardiology textbook. How can I help you?"}
1110     ]
1111
1112
1113 with st.form("chat_input", clear_on_submit=True):
1114     a,b = st.columns([4,1])
1115     user_input = a.text_input(
1116         label="Question:",
1117         placeholder="What is the incidence of congenital heart disease?",
1118         label_visibility="collapsed",
1119     )
1120     b.form_submit_button("Send", use_container_width=True)
1121 for i, msg in enumerate(st.session_state.messages):
1122     message(msg["content"], is_user=msg["role"] == "user", key=str(i))
1123 if user_input and st.session_state["password"]:
1124     st.session_state.messages.append("role": "user", "content": user_input)
1125     message(user_input, is_user=True, key=str(len(st.session_state.messages) - 1))
1126     llm = ChatOpenAI(
1127         api_key=getenv("OPENROUTER_API_KEY"),
1128
1129
1130         base_url="https://openrouter.ai/api/v1",
1131         model_name="meta-llama/llama-3.2-3b-instruct",
1132         streaming=True)
1133     retriever = st.session_state["retriever"]
1134     docs = retriever.get_relevant_documents(user_input)
1135     DIVIDER = "-"*10
1136     context = DIVIDER.join([f"Page {d.metadata['page_num']}: {d.page_content}" for d in docs])
1137     prompt = PromptTemplate(
1138         input_variables=["context", "question"],
1139         template="""You are a helpful AI assistant who has read the Moss & Adams Cardiology
1140         textbook. Use the following context to answer the question. If you don't know the answer,
1141         just say you don't know.
1142         Context: {context}
1143         Question: {question}
1144         Answer: """
1145
1146
1147     )
1148     print(prompt)
1149     chain = LLMChain(llm=llm, prompt=prompt)
1150     response = chain.run(context=context, question=user_input)
1151     st.session_state['messages'].append("role": "assistant", "content": response)
1152     message(response, key=str(len(st.session_state.messages) - 1))
```

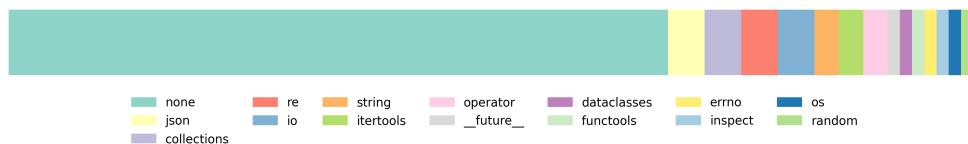
Figure 11: Example code file and highlighted section. The user instruction for this file: "Can you edit this to work with streaming responses?"

1128 **C EDITBENCH DETAILS**

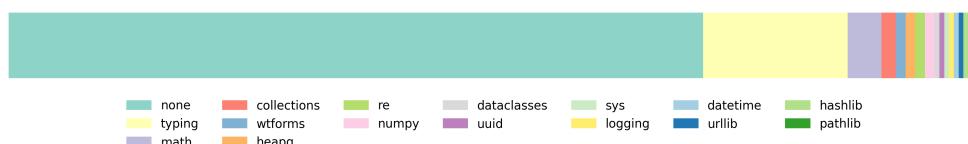
1130 **Data Curation and Programming Languages.** We started with 999 Python and 234 Javascript files. We
1131 curated (Phase 1) down to 370 Python and 100 Javascript files. We then successfully tested and annotated
1132 104 Python and 9 JavaScript problems. React represents its own ecosystem in Javascript; 5 out of 9 of our
1133 problems are based on React.

1134 **Library Distribution.** EditBench contains 74 unique imports for Python (Figure 3). We also calculated
1135 distributions for CanItEdit (25 unique imports), Polyglot (15 unique imports), and EditEval (16 unique
1136 imports) (Figure 12).


(a) CanItEdit library distribution



(b) Polyglot library distribution



(c) EditEval library distribution

1160 Figure 12: Library distributions for comparison benchmarks: CanItEdit (25 unique imports), Polyglot (15
1161 unique imports), and EditEval (16 unique imports).

1163 **Problem Filtering.** When filtering in-the-wild data, we discarded problems that were too easy and too
1164 ambiguous. Examples of problems that are too easy:

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

- Given the instruction “decrease the speed” and the highlighted code snippet that clearly includes `self.master.after(30, self.game.loop)`. Adjust speed here (milliseconds). It is obvious that the change is trivial, as it just involves increasing the value of the hard-coded value.
- Given the instruction “add api key” and the highlighted code snippet `chat_model = ChatOllama(model="llama3.2", base_url="http://localhost:11434")`. It is clear that the change would simply involve adding an api key parameter.

Examples of problems that are too ambiguous:

1175 • Given the instruction “find and solve problems” and code context consisting of dozens of lines of
1176 Python code to instantiate an ML training pipeline with no obvious issue. From the annotator’s
1177 perspective, it is unclear what problem the user was intending the LLM to fix.
1178
1179 • Given the instruction “The code does not seem to implement all the logic please extend it to make
1180 all logic work.” and a short highlighted snippet (e.g., `list_available_resolutions(yt)`).
1181 From the annotator’s perspective, it is unclear what “logic” needs to be implemented and the
1182 highlighted code provides insufficient context.

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

1222 D EVALUATION SET-UP
12231224 **Prompts.** We evaluated models using three prompting strategies. The Whole (i.e., +Highlight) prompt tasks
1225 the model with regenerating the entire code file (Figure 13). The Cursor Position (i.e., +Highlight,
1226 +Cursor) prompt is the same as the Whole prompt with the user’s cursor position added (Figure 14) (i.e.,
1227 Code Only). The No Highlight prompt is the same as the Whole prompt but information about user’s
1228 highlights are removed (Figure 15) [Note that the prompt in Section A is slightly different due to the settings](#)
1229 [\(e.g., cost, response time, etc.\)](#)1230
1231 **Model Access** We used the OpenAI API to query the GPT models, the Anthropic API for the Claude models,
1232 and OpenRouter for access to all other models. The full list of official model names and links to the providers
1233 is in Table 6.1234
1235 **Model Parameters.** For every model provider, the default settings were used. The gpt-o3-mini,
1236 gpt-o4-mini, and gpt-5 models used the default medium effort for reasoning while gpt-o3-mini
1237 (high), gpt-o4-mini (high), and gpt-5 (high) used the high reasoning effort setting.1238
1239 **Evaluation Environment.** To isolate our testing environment, we ran all our evaluations inside of a Docker
1240 container. We used the Ubuntu 22.04 image for our container. The Dockerfile for building our container will
1241 be provided with the release of our benchmark.1242
1243 Generate a new implementation of the following code based on the user instruction:1244
1245 The Original code (to be modified):1246
1247
1248
1249
1250
““{lang}
{original_code}
““1251
1252 The user instruction is:
1253 {instruction}1254
1255 And they highlighted this section to be changed:1256
1257
1258
““{lang}
{highlighted_code}
““

1259 Please only change the highlighted section and leave the rest of the code unchanged.

1260 Please output the entire code file.

1261 Respond only in a code block beginning with ““{lang}.

1262
1263 Figure 13: Whole prompt given to models
1264
1265
1266
1267
1268

1269
1270
1271
1272
1273
1274
1275
1276

Table 6: Each model in our experiments with their official names and provider links

1277

Model	Model Size	Proprietary	Link to Provider
gpt-4o-mini	Unknown	True	https://platform.openai.com/docs/models/gpt-4o-mini
gpt-4o	Unknown	True	https://platform.openai.com/docs/models/gpt-4o
gpt-5-nano	Unknown	True	https://platform.openai.com/docs/models/gpt-5-nano
gpt-5-mini	Unknown	True	https://platform.openai.com/docs/models/gpt-5-mini
gpt-5	Unknown	True	https://platform.openai.com/docs/models/gpt-5
gpt-o3-mini	Unknown	True	https://platform.openai.com/docs/models/o3-mini
gpt-o4-mini	Unknown	True	https://platform.openai.com/docs/models/gpt-4o-mini
gpt-oss-20b	20b	False	https://platform.openai.com/docs/models/gpt-oss-20b
gpt-oss-120b	120b	False	https://platform.openai.com/docs/models/gpt-oss-120b
sonnet-3.5	Unknown	True	https://docs.anthropic.com/en/docs/about-claude/models/overview
sonnet-3.7	Unknown	True	https://docs.anthropic.com/en/docs/about-claude/models/overview
sonnet-4	Unknown	True	https://docs.anthropic.com/en/docs/about-claude/models/overview
glm-4.5	355b	False	https://openrouter.ai/z-ai/glm-4.5
gemma-3n-e4b-it	8b	False	https://openrouter.ai/google/gemma-3n-e4b-it
gemma-3-12b-it	12b	False	https://openrouter.ai/google/gemma-3-12b-it
gemma-3-27b-it	27b	False	https://openrouter.ai/google/gemma-3-27b-it
gemini-2.5-flash	Unknown	True	https://openrouter.ai/google/gemini-2.5-flash
gemini-2.5-pro	Unknown	True	https://openrouter.ai/google/gemini-2.5-pro
grok-4-fast	Unknown	True	https://openrouter.ai/x-ai/grok-4-fast:free
grok-code-fast-1	Unknown	True	https://openrouter.ai/x-ai/grok-code-fast-1
kimi-k2	1T	False	https://openrouter.ai/moonshotai/kimi-k2-0905
qwen-2.5-coder-32b-instruct	32B	False	https://openrouter.ai/qwen/qwen-2.5-coder-32b-instruct
qwen-2.5-coder-72b-instruct	72B	False	https://openrouter.ai/qwen/qwen-2.5-72b-instruct
qwen-3-4b	4B	False	https://openrouter.ai/qwen/qwen3-4b:free
qwen-3-8b	8B	False	https://openrouter.ai/qwen/qwen3-8b
qwen-3-14b	14B	False	https://openrouter.ai/qwen/qwen3-14b
qwen-3-30b-a3b	30B	False	https://openrouter.ai/qwen/qwen3-30b-a3b
qwen-3-coder-flash	Unknown	True	https://openrouter.ai/qwen/qwen3-coder-flash
qwen-3-coder	405B	False	https://openrouter.ai/qwen/qwen3-coder
deepseek-v3-chat	671B	False	https://openrouter.ai/deepseek/deepseek-chat-v3.1
deepseek-r1	Unknown	False	https://openrouter.ai/deepseek/deepseek-r1-0528
llama-4-maverick	Unknown	False	https://openrouter.ai/meta-llama/llama-4-maverick
llama-4-scout	Unknown	False	https://openrouter.ai/meta-llama/llama-4-scout
llama-3.1-405B	405B	False	https://openrouter.ai/meta-llama/llama-3.1-405b
llama-3.3-70B	70B	False	https://openrouter.ai/meta-llama/llama-3.3-70b-instruct
llama-3.3-8b	8B	False	https://openrouter.ai/meta-llama/llama-3.3-8b-instruct:free
mistralai-devstral-small	24B	False	https://openrouter.ai/mistralai/devstral-small
mistralai-devstral-medium	Unknown	True	https://openrouter.ai/mistralai/devstral-medium
mistralai-codestral-2508	Unknown	True	https://openrouter.ai/mistralai/codestral-2508
mistral-small-3.2-24b-instruct	24b	False	https://openrouter.ai/mistralai/mistral-small-3.2-24b-instruct

1309
1310
1311
1312
1313
1314
1315

1316
1317
1318
1319 Generate a new implementation of the following code based on the user instruction:
1320
1321 The Original code (to be modified):
1322
1323 ““{lang}
1324 {original_code}
1325 ““
1326
1327 The user’s cursor position (line number: column number) is at {cursor_pos}
1328
1329 The user instruction is:
1330 {instruction}
1331
1332 And they highlighted this section to be changed:
1333 ““{lang}
1334 {highlighted_code}
1335 Please only change the highlighted section and leave the rest of the code unchanged.
1336 Please output the entire code file.
1337 Respond only in a code block beginning with ““{lang}.

Figure 14: Cursor Position prompt given to models

1338
1339
1340
1341
1342
1343
1344
1345
1346 Generate a new implementation of the following code based on the user instruction:
1347
1348 The Original code (to be modified):
1349
1350 ““{lang}
1351 {original_code}
1352 ““
1353
1354 The user instruction is:
1355 {instruction}
1356
1357 Please output the entire code file.
1358 Respond only in a code block beginning with ““{lang}.

Figure 15: No Highlight prompt given to models

1363 E ADDITIONAL EVALUATION RESULTS
1364

1365 **Effect of context length.** We also conduct additional analysis by binning performance into short, medium,
1366 and long. Perhaps unsurprisingly, we see that models tend to do better on shorter context length problems. In
1367 general, the worse a model is overall, we also see that it has a much larger gap between the best and worst bin
1368 (e.g., gemma-3n-e4b-it has a 34.2% gap and gpt-oss-120b a 33.6% gap).

1370 Table 7: Effect of context length on average pass@1.
1371

Context Bin	Average Pass@1
Short (i.e., < 1k chars)	71.03 ± 7.60
Medium (i.e., 1k–3k chars)	62.09 ± 8.56
Long (i.e., > 3k chars)	59.94 ± 10.43

1378 **Instruction and Highlight Length analysis.** Given the large gap between `easy` and `hard` problems, we
1379 explore what types of prompts are present in `hard` problems compared to the general dataset. As shown
1380 below, we see that `hard` instructions tend to have *shorter* instructions (by nearly 5 times) but slightly *longer*
1381 highlighted code.

1382 Table 8: Comparing instruction and highlight length for easy versus hard questions.
1383

	Instruction Length (chars)	Highlight Length (chars)
Easy Questions	351.21 ± 1018.87	942.30 ± 1275.35
Hard Questions	75.09 ± 107.20	881.45 ± 1275.23

1389 **Cursor Position Ablation** We see that “Cursor Only” is not as useful for models as “Highlight Only”,
1390 though both are still individually more useful than the combination.

1392 Table 9: Comparing ablations of context information.
1393

Model Name	Task Success Rate (%)			
	Code Only	Highlight Only	Cursor Only	Highlight and Cursor
claude-sonnet-4	60.19	66.67	62.96	64.81
gpt-o3-mini	56.48	63.89	59.26	52.78
gemini-2.5-pro	49.53	55.66	53.70	55.56
deepseek-chat-v3.1	53.70	58.88	57.41	51.85
qwen3-coder-flash	55.14	56.48	54.63	50.93

1403 **Code Context Dependent Example.** Additional code context is often crucial to understanding and solving
1404 a problem. This can be because the code context is simply too long or because the user instruction is too
1405 ambiguous. Let us take problem 45 in EditBench as an example.

1406 In this example, the user instruction is to ‘remove’, which could mean the removal of the class, the function,
1407 or the implementation of the remove functions. However, when observing the problem we can consider the
1408 following from the rest of the code context:

1410 1. There is no highlighted code segment. This means it is impossible for the user intent to be removal
1411 as the only available operation is to add code.
1412 2. The remove_vertex and remove_edge functions appear multiple times in the code. However, the
1413 function implementations are implemented incorrectly in the original code.
1414

1415 Thus, the other interpretations of ‘remove’ make little sense given the entire context of the problem. The
1416 correct answer can be inferred from the rest of the context, but would be difficult to understand from the
1417 instruction alone.

1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

1457 F FURTHER DISCUSSION
14581459 F.1 LIMITATIONS
1460

1461 In addition to the limitations in Section 6, we discuss several more below:

1462 **Limited Programming and Natural Languages.** Although EditBench contains problems in both Python and
1463 Javascript as well as several non-English languages, the amount of Javascript is limited. We aim to continue
1464 collecting more data and building test harnesses and problems for more programming and natural languages.
14651466 **Contamination.** One major challenge with releasing benchmarks is that future models may accidentally
1467 (or intentionally) be trained on the benchmark itself. We have taken pre-emptive measures to prevent this
1468 by ensuring the dataset documentation contains instructions to prevent any accidental scraping of our data.
1469 Following recent benchmarking efforts (White et al., 2024; Jain et al., 2024), we will also aim to make our
1470 pipeline more automatic. Combined with the continuous stream of data from EditBenchExt, new problems
1471 can be continuously released, preventing data contamination. We discuss this in more detail in Section F.2.
14721473 F.2 FUTURE WORK
14741475 In addition to increasing the number of examples for the existing languages and expanding to other common
1476 programming languages, we plan to continue updating the EditBench leaderboard as new models are
1477 released.1478 **Automatic Test Harness Generation** When we evaluated our fully-agentic pipeline on our model generations,
1479 all models achieved a pass@1 of 0%. This indicates that these test cases were either broken or too constrained
1480 to be usable in the benchmark. Given that prior research indicates models are at least somewhat capable
1481 of generating well-specified test cases (Mündler et al., 2025), we suspect that models are still unable to
1482 fully understand the intent behind in-the-wild user instructions. Given that we have a continuous stream of
1483 data from EditBenchExt, resolving this will be key to enabling fully automatic test harness generation for
1484 EditBench. In general, we also believe that improving an agent’s ability to generate test harnesses constitutes
1485 an interesting avenue for future research.1486 F.3 BROADER IMPACT.
14871488 This paper presents work whose goal is to advance the field of Machine Learning. Due to the ethical and user
1489 privacy considerations involved with storing and releasing user code data, we take a conservative approach to
1490 data release. Despite giving users full control over their privacy, we have at least two annotators who provide
1491 additional screening for Personally Identifiable Information (PII) on each problem during our data curation
1492 and release process. We will continue to screen for PII as we release more problems.
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503