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ABSTRACT

Instructed code editing, where LLMs directly modify a developer’s existing code based
on a user instruction, is becoming a widely used interaction mode in Al coding assistants.
However, few benchmarks directly evaluate this capability and current datasets often rely
on artificial sources. We introduce EditBench, a benchmark for evaluating LLM code
editing capabilities grounded in real-world usage, i.e., user instructions and code contexts
collected in the wild. EditBench comprises of 545 problems, multiple natural and
programming languages, and a diverse set of real-world use cases, ranging from resolving
errors to adding features. EditBench introduces context-dependent problems that require
the model to understand code context, highlighted code, and cursor position in addition
to the user instruction. We evaluate 40 diverse LLMs and observe that EditBench is
a challenging set of problems where only 3 models score over 60%. We find that model
performance varies across different categories of user instructions. Further, we find that
varying levels of contextual information greatly affect task success rate, with performance
varying up to 11%, indicating the importance of evaluating with realistic context.

1 INTRODUCTION

Software developers increasingly write code with Al assistants such as Github Copilot (Github) [2022),
Cursor (Cursor;, 2023)), and Continue (Continue Dev, |2025)) using a variety of modes of interaction. Instructed
code editing, where developers use natural language to request the assistant to edit a highlighted section
of code, has emerged as a prominent interaction mode alongside autocomplete suggestions and chat (Nam
et al.,[2025)). Due to the flexibility provided through natural language instructions, use cases for edits are
diverse and range from code improvements given detailed user instructions to bug fixes provided only an
error trace (Cassano et al.,|2023b)). Because of this, instructed code edits pose a challenging set of problems
that existing LLMs must tackle to support developers.

Despite the emergence of this new interaction modality, we lack benchmarks to capture real-world edit behav-
ior. Code generation benchmarks typically evaluate LLM capabilities on generating code from scratch (Chen
et al., 2021} [Austin et al., [2021}; Jain et al.| [2024; White et al., |2024). While there are a few edit-related
datasets (e.g., CanltEdit (Cassano et al., [2023b)), Aider polyglot (Gauthier, 2025)), the sources of data are
not reflective of most real-world software development, relying on either simple, annotator-written problems
or Leetcode and educational style problems that do not capture diverse, real-world software development
challenges. Recent work has begun collecting human preferences to interactively evaluate models—Chatbot
Arena (Chiang et al., [2024) evaluates LLM capabilities for chat and contains a coding subset, while Copilot
Arena (Chi et al.|[2025) evaluates LLM capabilities to perform code completions—highlighting a growing
awareness of the need for grounding evaluations with in-the-wild data. However, “arena-style” evaluations
are costly, requiring a significant number of human votes to rank a new model.
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Figure 1: EditBench tests LLMs’ real-world editing capabilities. We propose EditBench, an evalua-
tion on real user instructions and code snippets collected in-the-wild. It is the first benchmark for instructed
code edits that requires models to ingest the user instruction, current code, highlighted code, and cursor
position to solve problems.

We introduce EditBench, a benchmark for evaluating LLM code editing capabilities built on real-world edit
contexts and instructions (Figure[T). We source our problems by developing a VS Code extension that mimics
existing instructed code editing tools from GitHub Copilot and Cursor. As developers use the extension, we
gather a live, in-the-wild dataset containing user-written instructions, associated code context, and user votes
between pairs of model responses. We recruited nearly 500 users to provide these data points. EditBench
differentiates from previous edit-related benchmarks in several ways:

Diverse user instructions and context. Since EditBench is constructed from data collected from
programmers performing day-to-day coding tasks, users specify user goals with diverse content and
formats. For example, a bug fix can be requested as “fix this” accompanied with highlighted code, a
direct dump of the error trace, or a natural language description of the erroneous behavior. EditBench
tests for these varied user instructions instead of the more templated approaches (e.g., fix a specific
function in a well-defined way) in previous benchmarks.

Context dependent problems. Real instructed code edits often feature ambiguous user instructions
that require contextual clues to parse the underlying user intent. In addition to the user instruction, in
EditBench we also capture the code file to edit, the highlighted region of code, and the user’s current
cursor position. Code context length can be significant (e.g., >10k characters), requiring the model
to properly use the comments, highlighted code, and other contextual clues to determine the correct
solution. We are the first benchmark to include this combination of features for instructed code edits.

Multiple natural and programming languages. While most previous coding benchmarks consist
of only English problems, EditBench consists of 5 natural languages (English, Spanish, Russian,
Chinese, Portuguese) and 2 programming languages (Python and Javascript). Since our code is gathered
in-the-wild, any natural language variations occur in both the user instruction and code itself.

We evaluate 40 open-weight and closed models on EditBench and find that the best model,
claude-sonnet-4 (Anthropic, 2023), achieves a pass@1l of 66.67%. Closed-source models tend
to outperform open-weight models, with deepseek—chat-v3.1 and kimi-k2-0905 being the only
two open-weight models in the top 10. We observe that both the inclusion of additional context (e.g., high-
lighted code and cursor position) and the type of edit category (e.g., optimization versus bug fixing tasks)
drastically affects performance, Finally, we find that EditBench is only weakly correlated with existing
edit benchmarks like Aider Polyglot (Gauthier, [2025), suggesting that our real-world data captures a unique
set of difficult edit tasks. Our results show that EditBench is challenging even for state-of-the-art models
and reveals new insights into model capabilities, emphasizing the importance of benchmarking LLMs on
realistic data.
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Figure 2: We develop an open-source VSCode extension to collect real-world edits.

2 RELATED WORK

Coding Benchmarks. Static benchmarks, e.g., HumanEval (Chen et al.,2021) and MBPP (Austin et al.|
2021), largely focusing on interview-style programming problems have been the most commonly used to
evaluate coding capabilities (Lu et al., 2021} [Nijkamp et al., 2023} [Zhu et al.| 2022} [Wang et al.| 2023 [Liu!

et al [2023; [Jimenez et al | [2023b; Khan et al., 2023} |Yan et al.,[2023}; |Cassano et al.,2023a; [Muennighoff
et al., 2023} [Dinh et al., 2023} [Yang et al., [2024b)), measured using pass@k. Additionally, some recent

work focuses on creating live benchmarks that reduce contamination risks (Jain et al.| 2024} [White et al.
2024). Increasingly, people are interested in code editing with LLMs, focusing on bug fixing (Zhang et al.

2023b} Moon et al., 2023}, [Shinn et al., 2023} [Chen et al.| [2023}; [Olausson et al., 2023}, Jin et al., 2023}

[Joshi et al} 2023}, [Wei et al.,[2023}; [Li et al.,[2022), a specific subset of code editing; fill-in-the-middle code
completion (Bavarian et al.| 2022} [Fried et al., 2023}, [Yee & Guhal 2023} [Roziere et all 2023}, [Guo et al

2024a; Zhang et al., 2023a), an inference strategy that requires specific insert locations; and intrinsic code
editing (Li et al.l 2023}, |Gupta et al] [2023)), which involves editing code without a specified instruction,
exerting the model’s ability to intrinsically ascertain the desired code changes. CodeEditorBench
2024b) evaluates code editing using competitive programming problems and CanltEdit (Cassano et al., 2023b)
expands on this to create varied prompts and diverse topics.

Grounding Evaluation in Real-World Data. A limitation of the aforementioned benchmarks is that the
source of their tasks is not from real-world user data. Copilot Arena 2025)) evaluates code
completions with real-world data and highlights how the distribution of data from benchmarks differs from
real-world data in terms of the type of task, context length, and more. However, these in-the-wild evaluations
require immense scale to build a leaderboard and evaluate new models (e.g., Chatbot Arena
has millions of votes). The primary benchmark that creates problems from real-world sources is
SWE-Bench (Jimenez et al.} [2023a)) and related extensions including SWE-Bench Multimodal

and Multi-SWE-Bench 2025). However, these benchmarks focus on fixing issues that
require agentic workflows (e.g., editing multiple files) and are limited to a handful of repositories or problems

written in one natural language. Our work, EditBench, complements this growing set of benchmarks
by providing a benchmark for instructed code edits that is realistic (i.e., collected from real users in real
workflows) and diverse (i.e., contains many different natural languages and task categories).

3 BENCHMARK CONSTRUCTION

3.1 DATA COLLECTION.

We develop an open-source VSCode extension with instructed code editing as a core feature to support the
collection of code edit data. Gathering data via a real coding extension (Izadi et al.| 2024} [Chi et all, 2025))
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allows for more realistic instructions and tasks when compared to coding competition platforms. For each
code edit, the user highlights a code-snippet and writes a short task description (Figure [2). Participants are
not compensated for using the extension, as in a traditional user study, but instead receive free access to
state-of-the-art models. Given the sensitive nature of programming, we established clear privacy controls to
give users the ability to restrict our access to their data. Depending on privacy settings, we collect the user’s
instruction, code context (including the highlighted code segment, the cursor location, prefix, and suffix) at
the time of the request, and model responses. Additionally, we log whether the user accepted the edit. Our
data collection process was reviewed and approved by our institution’s IRB. Additional details about our data
collection policy are provided in Appendix [A]

3.2 PROBLEM CURATION.

Across 458 users, we collected 2672 responses (i.e., the user accepted an edit). However, not all of these
responses were interesting, challenging, or even feasible to turn into testable problems. We narrow our
problem set in the following ways. First, we focus on questions written in Python and Javascript, which
combined comprise of the majority of our responses at just over 1700 problems. Second, we exclude problems
that are too similar to one another—sometimes a user might try similar prompts on the same code context to
see how different models edit. Lastly, we remove any trivial (e.g., add a single parameter), stylistic (e.g., add a
comment), or ambiguous problems. We provide concrete examples of removed problems in Appendix [C] This
filtering process left us with around 470 problems which we found both interesting and challenging. Given
that not all problems are feasible to create test harnesses for, we succeeded in creating 109 unique problems
for EditBench-core. There are five languages—English, Russian, Chinese, Polish, and Spanish —in
EditBench. In order to equally distribute the natural languages in the problem set, we also translate each
problem to the other languages found in our problem set to form EditBench-complete. To do so, we
followed a similar method prescribed by HumanEval-XL (Peng et al.,[2024) and translate the comments in
each problem using GPT-40 to create a total of 545 problems. To validate the translations, we had native
speakers evaluate a subset of the translated tasks, primarily in Chinese and Spanish. In addition to GPT-4o,
we experimented with several other models (GPT-40-nano, GPT-40-mini) and Google Translate, but found
GPT-40 to provide the best quality with no noticeable concerns with any of the translations.

3.3 TEST HARNESS CREATION.

The data from our extension provides us with realistic human instructions and code, but does not contain test
cases, making the raw data ill-suited for a benchmark. We create test harnesses composed of the environment
setup, which includes preparing configurations, virtual environments, or mock files, and fest cases that define
expected inputs and outputs.

To write our tests, we assemble a team of five experienced programmers who have expertise in both natural
and programming languages present in the real-world edit data. The team, recruited through academic
networks, included researchers and students from various fields who write code extensively. The annotators
were instructed to create test harnesses that adhere to the user’s intent and are generalizable to different
potential implementations. While the user instruction and code file are perhaps the most important pieces
of information, they by themselves can often be too ambiguous. The highlighted code segment and cursor
locations provide crucial contextual clues to prescribe user intent. Annotators were asked to design problems
given all of this information, and if a problem was still too ambiguous, we asked the annotators to remove the
problem. To support the annotation process, we generated some example solutions using GPT-40 and Sonnet
3.7 (chosen to balance cost and quality) to give insight into possible solutions. Additionally, annotators were
also asked to screen for and remove any Personal Identifiable Information (PII). Finally, all refined test cases
were assigned to a second annotator in the team to do a second review with the same procedure.
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Table 1: Comparing EditBench to other edit-related benchmarks. We compare EditBench with
similar benchmarks (CanlItEdit (Cassano et al.| |2023b), EditEval (Hu et al.|[2023)), Aider Polyglot) in terms of
the problem source, user instruction (# NL refers to the number of natural languages), code context (# PL
refers to the number of programming languages, HL refers to whether users can highlight a subset of code),
and associated test cases. Standard deviation is indicated by £. EditBench is the only benchmark built
from in-the-wild problems and exhibits considerable variation in both instruction and code context length.

Benchmark | Problem | Instruction | Code Context
| # Problems Source | #NL Length | #PL Length HL

CanltEdit (Cassano et al.|[2023b) 105 Annotator 1 140 £+ 105 3 1309 +£1116 No
EditEval (Hu et al.|[2023) 194 Annotator 1 99.94493 1 258 £185 No
Aider Polyglot (Gauthier|[2025) 225 Coding Exercises 1 606 + 885 5 6184+6452 No
EditBench | 545 In-the-wild | 5 238+£738 | 2 5642+7567 Yes

none pandas seaborn B requests beem I dotenv streamlit

sklearn matplotlib time datetime statsmodels typing xml

torch aiogram colpali_engine WM tkinter I asyncio shutil pathlib

os random B torchvision pickle nltk transformers 44 more

numpy PIL json

Figure 3: Distribution of libraries in EditBench for Python problems. EditBench contains 74 unique
imports compared to 25 (CanItEdit), 15 (Polyglot), and 16 (EditEval) from other benchmarks. See Appendix|C|
for other languages and other benchmarks.

Originally, we attempted to use a coding agent (e.g., Claude Code) to construct test cases, but found that the
agent often struggled with test case generation itself, frequently resorting to undesirable tests such as directly
pattern-matching with the source code, despite explicit instructions to avoid this behavior. However, despite
the complexities involved in environment setup, especially for languages such as Javascript, we found the
agent was consistently able to set up the correct packages and environments. As a result, we used the agent
to setup the test harness environment. We provided setup files (e.g., a conftest . py file in Python and a
jest-config. js file for Javascript) to help support the agent and standardize outputs.

4 BENCHMARK STATISTICS

EditBench consists of 545 problems that span 5 natural languages (English, Spanish, Russian, Chinese,
Portuguese) and 2 programming languages (Python and Javascript). EditBench features a diverse set of
problems with considerable variation in instruction and code context lengths (Table[T). Based on the import
library usage (Figure[3), we can see that EditBench captures 74 different unique imports, demonstrating
much more diversity (at least three times) than existing benchmarks. From our analysis on EditBench
problems, we find the following characteristics:

Real user instructions are diverse and messy. When inspecting real-world data, we find that users write
varied instructions across many problem categories. While many of these categories are similar to existing
benchmarks, we find that user instructions are much more informal and less well-specified compared to the
annotator-written instructions in existing benchmarks (Table[3)). Interestingly, even the way a user would
write an instruction within a category varies in terms of descriptiveness. For example, to resolve errors, users
may briefly describe the erroneous behavior using natural language or directly paste in the terminal error
traces. Further, unlike prior benchmarks where user instructions are only written in English, we find users
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Table 2: Comparing user instructions written in IDE to the instructions written by human annotators.
We provide examples across different task categories, comparing with two edit-related datasets (CanltE-
dit (Cassano et al.} [2023b)) and EditEval (Hu et al., [2023))). We truncate some instructions for brevity and
provide full examples in Appendix [B] In general, we find that real-world prompts are much less specified and
require models to leverage the provided context, compared to existing benchmark prompts.

EditBench (proposed) \ CanlItEdit (Cassano et al.,[2023b) \ EditEval (Hu et al., 2023)

Feature Addition

take the globe countries layer |Add a method Add a function

from below ‘‘// this’’ and add |‘estimate_location’ that ‘filter_odd-numbers’ to filter

it to the existing globe returns the estimated the odd numbers using lambda
appropriate location for this function.

house, calculated by...

Feature Modification

do not use R style, use python |Flip the correlation function Modify the function to

style given to calculate the correctly determine the
covariance instead using the season based on month and day,
Corr (X, Y), Var(X) and Var(Y). |considering edge cases for
The new function should... season changes. Raise error
when...

Resolve Errors

RuntimeError: Cannot close Fix combination_unlimited.-rep() |Fix the bug in

a running event loop sys:1l: so that it returns the ’ sum_even_and-even_index’ to
RuntimeWarning: coroutine right result. The function make it return the sum of even
‘Application.shutdown’ was combination.unlimited.rep numbers at even indices.
never... should. ..

Optimize Code

optimize the computation by Optimize the bm25 algorithm Optimize the function to find
better batching the latter by avoiding frequency the longest common subsequence
part calculations. for the given two sequences

using dynamic programming

write instructions in multiple languages, including Russian, Chinese, and Spanish (see Table [I] for additional
comparison of user instructions).

Real-world code contexts span many applications and context lengths. We observe that users work on a
variety of applications, including frontend/backend, machine learning, and algorithmic problems. Additionally,
the context lengths are much longer than those evaluated in prior benchmarks (Table [T2). We also look at the
distribution of code-to-edit token lengths, as computed by the number of highlighted tokens, and find that
most people are highlighting targeted portions of code for edits. The median is 138 tokens, while the full file
is typically closer to 4.5k tokens. The code contexts that we collect are primarily in Python (43%), with the
next most common programming languages being Javascript/Typescript (21%), PHP (18%), and HTML (7%).
We focus on problems written in Python and Javascript, which together comprise the majority of in-the-wild
instructed edits collected.

We identify four common clusters of functional edits. By analyzing in-the-wild user instructions in
EditBench, we derive four different categories that describe functional real-world edits: feature addition,
feature modification, bug fixing, and optimization. We find the distribution across these categories as 43%
additions, 27% modifications, 22% fixes, and 8% optimizations. Table [2] provides examples of each category.
In our later analysis, we compare how well models are able to perform these different problem categories.
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Figure 4: We evaluate 40 LLMs on EditBench. We report the pass@1 of each model; only 3 out of 40
models have a pass@1 greater than 60%. In general, closed-source models outperform open models.

5 EVALUATION

We now use EditBench to evaluate models and identify trends in code editing capabilities across models.
We also compare EditBench results to existing benchmarks. We overview our choice of LLMs, evaluation
metrics, and prompts to perform code edits, with additional details in Appendix [D}

Model choices. We select 40 LLM spanning multiple model families, sizes, and training schemes (e.g.,
reasoning and non-reasoning models). We use 9 models from the GPT family 2025), 8 models
from Qwen (Hui et al.,[2024), 5 models from Llama 2025)), 4 models from Mistral (Mistral, 2025), 3
models from Sonnet (Anthropic, [2023)), 3 models from Gemma (Team| [2025b), 2 models from Grok (Grok
2025), 2 models from Deepseek (DeepSeek-Al et al.l[2024), 2 models from Gemini (Google DeepMind
2025), 1 model from Kimi 2025¢), and 1 model from the GLM family 2025a). For a full
list of models, see Table[6} For GPT reasoning models (gpt-03-mini, gpt-o4-mini, gpt-5), we also
vary reasoning effort. We set temperature to 0 when possible to reduce non-deterministic outputs.

Evaluation Metrics. Following prior work (Kulal et al, 2019} [Chen et al.} [202T)), we report pass@1, where
1 code sample is generated per problem and a problem is considered solved if it passes all unit tests. To

facilitate analysis on the types of problems that current models excel or struggle with, we also partitioned
our dataset into two subsets of Easy and Hard difficulty, in addition to reporting the Full results. We
categorized problems that were solved by k or fewer models as Hard and the remainder as Easy
2025). To obtain a roughly even split between problems, we selected k = 20. We find that easy versus
hard problems are roughly evenly distributed across problem categories.

Code Editing Methods. In all our prompts, the model is given the user instruction and main code context and
requested to edit the entire file by regenerating the entire code context. We also evaluate models when given
varying levels of contextual information (e.g., highlighted code and cursor position). We find that models
perform best when given highlighted code, but not cursor position; hence, we run all of our main experiments
with highlighted code given only. All prompts are provided in Appendix D]
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5.1 DISCUSSION OF RESULTS

We present our primary results in Figure [4| and highlight the key takeaways below. Appendix |[E| provides
additional results and discussions.

EditBench is a challenging benchmark, even for current state-of-the-art models. Only 3 out of 40
models achieve more than a 60% pass@1 on the core benchmark: claude—-sonnet—4 at the first rank and
two models that are close behind (03-mini-high, and claude-3.5-sonnet). Further, EditBench
captures questions of varying difficulty, reflecting the diversity of challenges in real-world code edits. As
such, we find a sharp contrast between the easy and hard questions, where the average gap across models
is 59.3% (standard deviation of 10.6%). Given the large gap between easy and hard problems, we explore
what types of prompts are present in hard problems compared to the general dataset. Overall, we see that
hard instructions tend to have shorter instructions (by nearly 5 times) but slightly longer highlighted code.
This means that the model cannot simply rely on following the user’s instructions alone but rather needs to
reason about multiple pieces of information. We provide an example in Appendix [E]

Table 3: Additional context affects performance. Highlighted code is crucial to performance, improving
task success rate across all models when included in the prompt. Surprisingly, adding cursor position on top
of that degrades performance instead. Models chosen are the best model in the top 5 model families.

Task Success Rate (%)
Model Name Code Only  +Highlight  +Highlight +Cursor
claude-sonnet-4 60.19 66.67 (+6.43) 64.81 (-1.86)
gpt-03-mini 56.48 63.89 (+7.41) 52.78 (11.11)
gemini-2.5-pro 49.53 55.66 (+6.13) 55.56 (-0.10)
deepseek-chat-v3.1 53.70 58.88 (+5.18) 51.85 (-7.03)
gwen3-coder-flash 55.14 56.48 (+1.34) 50.93 (555

Model performance is heavily affected by additional contextual information. To evaluate how additional
contextual information (highlighted code and cursor position) affects model performance, we run an ablation
with the 5 top models in different model families (Table[3). When adding highlighted code to the prompt,
the task success rate increases for all 5 models. On the other hand, adding the cursor position decreases
performance instead. We notice that while the overall trends are consistent, the degree to which each model’s
performance varies. gpt-o03-mini seems to be the most affected with a swing of +7.41% with highlighted
code and then -11.11% with the addition of cursor position. These findings show the importance of evaluating
models on editing tasks that require integrating multiple pieces of information.

Gap between closed and open models. Comparing the colors in Figure[d]very readily shows that open models
significantly lag behind closed models. Out of the 40 models we evaluate, only 2 out of the top 11 are open
models, and the bottom 15 are all open models. Of the open models, we find that deepseek—chat-v3.1
performs the best with a pass@1 of 58.88%, with kimi-k2 and 1lama-3.3-70b-instruct not
far behind. Surprisingly, gpt -5 with default reasoning (medium effort) is similar to gpt—5-mini and
gpt-4o-mini. When inspecting test cases where gpt -5 failed, we find that it struggles with simple tasks
like formatting code indentation properly and catching edge cases, despite being a strong reasoning model.

Models excel in different problem categories. When we divide questions into categories that test different
editing-related skills, we find that performance varies. Overall, we find that models perform best on bug
fixing problems (average of 52.2%), which may be most akin to tasks found in prior benchmarks like SWE-
Bench (Jimenez et al., [2023a). In contrast, models tend to struggle with optimization and feature addition
(44.6% and 39.6%, respectively). Still, we find that claude-sonnet -4 ranks first in every category except
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Figure 5: Comparing top-performing open-weight and closed models. To illustrate individual LLM
differences, we compare 7 models and find pass@1 varies greatly depending on the problem category.
Additionally, different models perform best at different categories.

optimization. Furthermore, we find that some models have particularly large gaps between categories (Fig-
ure[3). For example, qwen3-coder-flash’s top category is fixing bugs while claude-sonnet-4’s is
making feature modifications.

5.2 COMPARISON TO EXISTING BENCHMARKS

We compare our results with two maintained leaderboards: performance on Aider Polyglot (Gauthier, 2025)),
which has been used in prior model releases as a metric of model editing capabilities, and ranking on
the coding subset of Chatbot Arena (Chiang et al.,[2024), which has been widely used to capture human
preferences. We have 17 and 30 shared models, respectively. We observe a weak, positive correlation with
both Polyglot (Pearson correlation coefficient » = 0.24, p = 0.06) and Chatbot Arena (r = 0.11, p = 0.01).

We believe our observations are due to the following factors. The first is code-centric input and output.
Input/outputs in Chatbot Arena are often written purely in natural language, so the majority of coding-
related questions in Chatbot Arena do not contain code (Chi et al., 2025)); this is unlike EditBench and
Polyglot, both of which require code for every problem. Second, there is a difference in interaction modality.
EditBench and Polyglot test a model’s ability to perform instructed code edits, where there is a freeform
input (the user instruction) and structured output (the resulting code), while Chatbot Arena evaluates a
model’s ability to chat, where there is both freeform inputs and outputs. Also, the inclusion of additional
code context (e.g., highlighted code) may affect correlation to Polyglot. Finally, correlation may be affected
by the inclusion of real-world user intent. Polyglot’s problems are entirely based on coding exercises from
educational-style problems that lack the organic user intent present in Chatbot Arena and EditBench.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

As instructed code edits become more widely adopted in real-world IDEs, there is a need to benchmark LLM
capabilities on these types of problems. We develop a VSCode extension to collect real-world instructed
code edits, which include user instructions and code contexts. We transform this in-the-wild edit data
into EditBench, a set of high-quality test harnesses that evaluate LLM’s ability to perform diverse tasks.
Evaluations on 40 models show that EditBench is challenging even for current state-of-the-art models and
provides insights into how performance varies when considering different code context information and types
of edits. Overall, to adequately support developers using LLM-powered tools, our findings demonstrate the
need for future models to be trained on real-world interaction modes and evaluated across a broad spectrum
of problem categories, languages, code contexts, and user intents.

Limitations and Future Work. While we attempted to make EditBench as diverse as possible, there
are still additions from which it would benefit. For example, as we collect more data using our extension,
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we will increase the number of examples we have for the existing languages and expand to other common
programming languages. Additionally, despite improvements over existing benchmarks, it is unclear to what
extent our problems encapsulate all real-world use cases. We plan to continue updating the EditBench
leaderboard as new models are released and exploring automatic workflows to more seamlessly translate
real-world data to benchmark problems.
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A  DATA COLLECTION DETAILS

A.1 SYSTEM DETAILS

We adapt the prompt used in template from Continue (Continue Dev, [2025).

The user has requested a section of code in a file to be rewritten.

This is the prefix of the file:
""" {language}
{prefix}

This is the suffix of the file:
""" {language}
{suffix}

This is the code to rewrite:
""" {language}
{code_to_edit}

You are an expert programmer. You will rewrite the above code to do
the following:

{user_input}

Keep in mind indentations. Output only a code block with the
rewritten code:

A.2 GENERAL INSTRUCTIONS

Step 1: Install the extension and restart Visual Studio Code after installation. If installed successfully, you
will see EditBenchExt show up on the bottom right corner of your window and the check mark changes to a
spinning circle when a completion is being generated, Note, if you are using any other completion provider
(e.g. Github Copilot), you must disable them when using EditBenchExt.

Step 2: EditBenchExt currently supports two main feature: read autocomplete and in-line editing (beta) below
to understand how to use each one. Since we show paired responses, the way you use them are slightly
different than your standard Al coding tools!

Step 3: This step is optional. If applicable, you can change what data is saved by EditBenchExt by following
the instructions in “Privacy Settings”.

Step 4: Create a username by clicking the EditBenchExt icon on the sidebar; detailed instructions are also in
“Create an account”. Your username will be used for a future leaderboard to compare individual preferences.
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A.3 PRIVACY INSTRUCTIONS

Privacy Settings. Your privacy is important to us. Please read carefully to determine which settings are most
appropriate for you. To generate completions, the code in your current file is sent to our servers and sent to
various API providers. This cannot be changed.

Data Collection. By default, we collect your code for research purposes. You can opt-out of this. If you
are working on code containing sensitive information, we recommend that you opt out of data collection.
To opt-out of data collection, please change codePrivacySettings to Debug. We will only log your code for
debugging. To disable logging entirely, please change codePrivacySettings to Private. Opting-out means
any bugs you encounter will be non-reproducable on our end. You can find these settings by searching for
EditBenchExt in your vscode settings or clicking the gear button of the EditBenchExt extension -> Extension
Settings.

Removing your data. If you would like to have the option in the future for us to delete any of your data, you
must create an account on EditBenchExt following instructions described in “Create an account.” To remove
your data, you can email any of the EditBenchExt maintainers with your username.

Data Release. Prior to releasing any collected code snippets to enable future research efforts, we will run a
PII detector and remove any identified entities to further ensure no personal information is released.
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B EDITBENCHEXT INSTRUCTED EDITS DATA ANALYSIS

We analyze the in-the-wild data collected through EditBenchExt. We visualize the distribution of languages
that users code in (Figure[6), natural languages that users write instructions in (Figure[7), length of instructions
(Figure[9), length of highlighted code (Figure([8) and length of code context (Figure[10). We find that across
user votes, 50.8% voted for the left response, 34.6% voted for the right response, and 14.6% voted for neither.
This means that 85.4% of the time, at least one of the responses was accepted.

We also provide additional examples of user instructions across different task categories in Table|5{and the
full instructions from Table [2)in Table[] An example of highlighted user code is given in Figure

Distribution of file types
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Figure 6: Distribution of file types over instructed edit users in EditBenchExt. The majority of users are
working on Python code.
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Distribution of Languages
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Figure 7: Distribution of natural languages in user instructions for instructed edits in EditBenchExt. The
majority of users write instructions in English.
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Distribution of Code to Edit Token Length
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Figure 8: Distribution of highlighted code (also referred to as code to edit) token lengths. Users do not always
highlight code. However, we still know their cursor placement.
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Figure 9: Distribution of the number of characters in user instructions.
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Figure 10: Distribution of context length (defined by the prefix and suffix token length) of code files.
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Table 4: Full examples of user instructions across different task categories, comparing with two edit-related

datasets (CanltEdit (Cassano et al.,[2023b) and EditEval

2023).

EditBench (proposed)

| CanItEdit (Cassano et al.t 2023b)

| EditEval (Hu et al}} 2023)

Feature Addition

take the globe countries layer
from below ‘‘// this’’ and add
it to the existing globe

Add a method ‘estimate_location’
that returns the estimated the
appropriate location for this
house, calculated by getting
the average location of the top
5 most similar houses in terms
of estimated price.

Add a function
‘filter_odd-numbers’ to filter
odd numbers using lambda
function.

Feature Modification

do not use R style,
style

use python

Flip the correlation function
given to calculate the
covariance instead using the

Corr (X, Y), Var(X) and Var (Y).
The new function should take in
Corr (X, Y), Var(X) and Var (Y)
in that order.

Modify the function to
correctly determine the

season based on month and day,
considering edge cases for
season changes. Raise error
when invalid month is provided.

Resolve Errors

RuntimeError: Cannot close
a running event loop sys:1:
RuntimeWarning: coroutine

‘Application.shutdown’

was never awaited sys:1:
RuntimeWarning: coroutine
‘Application.initialize’ was
never awaited

Fix combination_unlimited-rep ()
so that it returns the

right result. The function
combination_unlimited-rep should
be returning the combination

of n-r+l and n by calling

on combination () with those
arguments.

Fix the given function to
correctly identify whether

a string represents a valid
floating-point number or not,
including handling edge cases
such as scientific notation
(e.g., ‘le-4’), positive

and negative signs, and
leading/trailing whitespace.
Ensure the function is

robust and handles exceptions
appropriately.

Optimize Code

optimize the computation by
better batching the latter part

Optimize the bm25 algorithm
by avoiding frequency
calculations.

Optimize the function to find
the longest common subsequence
for the given two sequences
using dynamic programming
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Table 5: Additional examples of user instructions across different task categories, comparing with two

edit-related datasets (CanltEdit (Cassano et al.[, 2023b)) and EditEval (Hu et al,

2023).

EditBench (proposed)

| CanItEdit (Cassano et al.t 2023b)

| EditEval (Hu et al.t 2023)

Feature Addition

add example usage

Add a method called ‘header‘
which returns the header of a
csv file as a list.

Add a check for None to
prevent possible null
reference exceptions in the
"editorial_reviews’ function.

Feature Modification

modify the cmap so the
displayed values are the same
as the text displayed on the
raw map.

Modify the ‘Quiz‘ class

to allow the user to

skip a question using
‘self.skip_question() ',

and record the number of
questions that were skipped
in ‘self.skipped’.

Modify the function to return
the word with the most number
of occurrences in the given
list of strings. If there are
multiple words with the same
maximum occurrences, return
all of them in a list sorted
alphabetically.

Resolve Errors

theta —-= alpha x gradient
ValueError: non-broadcastable
output operand with shape (2,1)
doesn’t match the broadcast
shape (2,3)

Fix the methods in ‘Course‘ so
that they never throw errors.
Even when ‘len(self.students)
Instead they should
return ‘None'. Additionally,
do not use the words ‘for?‘,
‘while‘, or ‘map‘ anywhere

in the code. You should
accomplish this using higher
order functions.

Fix the function to correctly
find the single element in a

sorted array where every other
element appears exactly twice.

Optimize Code

run these in parallel

Optimize the AI to find the
best move in less steps.

Optimize the given function to
find the first position of an
element in a sorted array.
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I_co

Example EditBench origir

y

from langchain_openai import ChatOpenAl
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_community.retrievers import BM25Retriever
from os import getenv
# omit some imports for spacing
load_dotenv ()
st.title ("CardioRAG")
# load in PDF for RAG
if "retriever" not in st.session_state:
st.text ("Loading PDF...")
prog_bar = st.progress(0)
pdf_reader = PyPDF2.PdfReader (open("Moss and Adams 10e Vol 1 & 2.pdf", 'rb'))

chunks = []
for page_num in range (60, 600):
prog_bar.progress ( (page_num-60) / (600-60))
chunks.append (pdf_reader.pages [page_num] .extract_text ())
# put chunks into vector store
retriever = BM25Retriever.from_texts (chunks, metadatas=["page_num": p for p in range (60,
— 600)], preprocess_func=word_tokenize)
st.session_state["retriever"] = retriever
st.text ("Loaded PDF")
if "messages" not in st.session_state:
st.session_state["messages"] = [
"role": "assistant", "content": "Hi, I'm a chatbot who has read the Moss & Adams
< Cardiology textbook. How can I help you?"
]

with st.form("chat_input", clear_on_submit=True) :
a,b = st.columns([4,1])
user_input = a.text_input (
label="Question:",
placeholder="What is the incidence of congenital heart disease?",
label_visibility="collapsed",
)
b.form_submit_button ("Send", use_container_width=True)
for i, msg in enumerate (st.session_state.messages):

message (msg["content"], is_user=msg["role"] == "user", key=str (i)

if user_input and st.session_state["password"]:
st.session_state.messages.append("role": "user", "content": user_input)
message (user_input, is_user=True, key=str(len(st.session_state.messages) - 1))

1lm = ChatOpenAI (
api_key=getenv ("OPENROUTER_API_KEY")

base_url="https://openrouter.ai/api/v1l",
model_name="meta-llama/llama-3.2-3b-instruct",
streaming=True)

retriever = st.session_state["retriever"]
docs = retriever.get_relevant_documents (user_input)
DIVIDER = "-"x%10
context = DIVIDER.join([f"Page d.metadatal['page_num']: d.page_content" for d in docs])
prompt = PromptTemplate (
input_variables=["context", "question"]
template="""You are a helpful AI assistant who has read the Moss & Adams Cardiology

< textbook. Use the following context to answer the question. If you don't know the answer,
<~ just say you don't know.

Context: context

Question: question

Answer:"""
)
print (prompt) 24
chain = LLMChain (llm=11lm, prompt=prompt)
response = chain.run(context=context, question=user_input)
st.session_state['messages'].append("role": "assistant", "content": response)
message (response, key=str (len(st.session_state.messages) - 1))

Figure 11: Example code file and highlighted section. The user instruction for this file: ”Can you edit this to
work with streaming responses?”
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C EDITBENCH DETAILS

Data Curation and Programming Languages. We started with 999 Python and 234 Javascript files. We
curated (Phase 1) down to 370 Python and 100 Javascript files. We then successfully tested and annotated
104 Python and 9 JavaScript problems. React represents its own ecosystem in Javascript; 5 out of 9 of our
problems are based on React.

Library Distribution. EditBench contains 74 unique imports for Python (Figure [3). We also calculated
distributions for CanltEdit (25 unique imports), Polyglot (15 unique imports), and EditEval (16 unique

imports) (Figure [I2).

typing math torch z3 queue flask collections

none pandas sklearn W copy B heapq threading WM hashlib
abc random scipy ast io - viim json
numpy string re BN autograd

(a) CanltEdit library distribution

none re string operator dataclasses errno . os

json io itertools _ future__ functools inspect random
collections

(b) Polyglot library distribution

none collections re dataclasses sys datetime hashlib
typing wtforms numpy B uuid logging WM urllib B pathlib
math heapq

(c) EditEval library distribution

Figure 12: Library distributions for comparison benchmarks: CanlItEdit (25 unique imports), Polyglot (15
unique imports), and EditEval (16 unique imports).

Problem Filtering. When filtering in-the-wild data, we discarded problems that were too easy and too
ambiguous. Examples of problems that are too easy:

e Given the instruction “decrease the speed” and the highlighted code snippet that clearly
includes self.master.after (30, self.game_loop) Adjust speed here
(milliseconds). Itis obvious that the change is trivial, as it just involves increasing the value
of the hard-coded value.

e Given the instruction “add api key” and the highlighted code snippet chat_model =
ChatOllama (model="1lama3.2", base_url="http://localhost:11434"). It
is clear that the change would simply involve adding an api key parameter.

Examples of problems that are too ambiguous:

25



Under review as a conference paper at ICLR 2026

 Given the instruction “find and solve problems” and code context consisting of dozens of lines of
Python code to instantiate an ML training pipeline with no obvious issue. From the annotator’s
perspective, it is unclear what problem the user was intending the LLM to fix.

* Given the instruction “The code does not seem to implement all the logic please extend it to make
all logic work.” and a short highlighted snippet (e.g., list_available_resolutions (yt)).
From the annotator’s perspective, it is unclear what “logic” needs to be implemented and the
highlighted code provides insufficient context.
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D EVALUATION SET-UP

Prompts. We evaluated models using three prompting strategies. The Whole (i.e., +Highlight) prompt tasks
the model with regenerating the entire code file (Figure[I3). The Cursor Position (i.e., +Highlight,
+Cursor) prompt is the same as the Whole prompt with the user’s cursor position added (Figure [T4) (i.e.,
Code Only). The No Highlight prompt is the same as the Whole prompt but information about user’s
highlights are removed (Figure[I5) Note that the prompt in Section[A]is slightly different due to the settings
(e.g., cost, response time, etc.)

Model Access We used the OpenAl API to query the GPT models, the Anthropic API for the Claude models,
and OpenRouter for access to all other models. The full list of official model names and links to the providers
is in Table

Model Parameters. For every model provider, the default settings were used. The gpt-o3-mini,
gpt—-o04-mini, and gpt—5 models used the default medium effort for reasoning while gpt -03-mini
(high),gpt—-04-mini (high),and gpt-5 (high) used the high reasoning effort setting.

Evaluation Environment. To isolate our testing environment, we ran all our evaluations inside of a Docker
container. We used the Ubuntu 22.04 image for our container. The Dockerfile for building our container will
be provided with the release of our benchmark.

Generate a new implementation of the following code based on the user instruction:

The Original code (to be modified):

e {1ang}
{original_code}

1113

The user instruction is:
{instruction}

And they highlighted this section to be changed:
353 {lang}
{highlighted_code}

113

Please only change the highlighted section and leave the rest of the code unchanged.
Please output the entire code file.
Respond only in a code block beginning with “‘{lang}.

Figure 13: Whole prompt given to models
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Table 6: Each model in our experiments with their official names and provider links

Model Model Size  Proprietary  Link to Provider

gpt-4o-mini Unknown True https://platform.openai.com/docs/models/gpt-40-mini
gpt-4o Unknown True https://platform.openai.com/docs/models/gpt-40
gpt-5-nano Unknown True https://platform.openai.com/docs/models/gpt-5-nano
gpt-5-mini Unknown True https://platform.openai.com/docs/models/gpt-5-mini
gpt-5 Unknown True https://platform.openai.com/docs/models/gpt-5
gpt-o3-mini Unknown True https://platform.openai.com/docs/models/03-mini
gpt-o4-mini Unknown True https://platform.openai.com/docs/models/gpt-4o-mini
gpt-o0ss-20b 20b False https://platform.openai.com/docs/models/gpt-oss-20b
gpt-0ss-120b 120b False https://platform.openai.com/docs/models/gpt-oss-120b
sonnet-3.5 Unknown True https://docs.anthropic.com/en/docs/about-claude/models/overview
sonnet-3.7 Unknown True https://docs.anthropic.com/en/docs/about-claude/models/overview
sonnet-4 Unknown True https://docs.anthropic.com/en/docs/about-claude/models/overview
glm-4.5 355b False https://openrouter.ai/z-ai/glm-4.5

gemma-3n-edb-it 8b False https://openrouter.ai/google/gemma-3n-e4b-it
gemma-3-12b-it 12b False https://openrouter.ai/google/gemma-3-12b-it
gemma-3-27b-it 27b False https://openrouter.ai/google/gemma-3-27b-it
gemini-2.5-flash Unknown True https://openrouter.ai/google/gemini-2.5-flash
gemini-2.5-pro Unknown True https://openrouter.ai/google/gemini-2.5-pro
grok-4-fast Unknown True https://openrouter.ai/x-ai/grok-4-fast:free
grok-code-fast-1 Unknown True https://openrouter.ai/x-ai/grok-code-fast-1

kimi-k2 1T False https://openrouter.ai/moonshotai/kimi-k2-0905
gwen-2.5-coder-32b-instruct 32B False https://openrouter.ai/qwen/qwen-2.5-coder-32b-instruct
gwen-2.5-coder-72b-instruct 72B False https://openrouter.ai/qwen/qwen-2.5-72b-instruct
gwen—-3-4b 4B False https://openrouter.ai/qwen/qwen3-4b:free

gwen-3-8b 8B False https://openrouter.ai/qwen/qwen3-8b

gwen-3-14b 14B False https://openrouter.ai/qwen/qwen3-14b
gwen-3-30b-a3b 30B False https://openrouter.ai/qwen/qwen3-30b-a3b
gwen-3-coder-flash Unknown True https://openrouter.ai/qwen/qwen3-coder-flash
gwen-3-coder 405B False https://openrouter.ai/qwen/qwen3-coder
deepseek-v3-chat 671B False https://openrouter.ai/deepseek/deepseek-chat-v3.1
deepseek-rl Unknown False https://openrouter.ai/deepseek/deepseek-r1-0528
llama-4-maverick Unknown False https://openrouter.ai/meta-1lama/llama-4-maverick
llama-4-scout Unknown False https://openrouter.ai/meta-llama/llama-4-scout
llama-3.1-405B 405B False https://openrouter.ai/meta-llama/llama-3.1-405b
llama-3.3-70B 70B False https://openrouter.ai/meta-1lama/llama-3.3-70b-instruct
llama-3.3-8b 8B False https://openrouter.ai/meta-llama/llama-3.3-8b-instruct:free
mistralai-devstral-small 24B False https://openrouter.ai/mistralai/devstral-small
mistralai-devstral-medium Unknown True https://openrouter.ai/mistralai/devstral-medium
mistralai-codestral-2508 Unknown True https://openrouter.ai/mistralai/codestral-2508
mistral-small-3.2-24b-instruct 24b False https://openrouter.ai/mistralai/mistral-small-3.2-24b-instruct
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Generate a new implementation of the following code based on the user instruction:

The Original code (to be modified):

““{lang}
{original _code}

113

The user’s cursor position (line number: column number) is at {cursor_pos}

The user instruction is:
{instruction}

And they highlighted this section to be changed:

e {1ang}
{highlighted_code}

Please only change the highlighted section and leave the rest of the code unchanged.
Please output the entire code file.
Respond only in a code block beginning with ““{lang}.

Figure 14: Cursor Position prompt given to models

Generate a new implementation of the following code based on the user instruction:

The Original code (to be modified):

13 {1ang}
{original_code}

1113

The user instruction is:
{instruction}

Please output the entire code file.
Respond only in a code block beginning with “‘{lang}.

Figure 15: No Highlight prompt given to models
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E ADDITIONAL EVALUATION RESULTS

Effect of context length. We also conduct additional analysis by binning performance into short, medium,
and long. Perhaps unsurprisingly, we see that models tend to do better on shorter context length problems. In
general, the worse a model is overall, we also see that it has a much larger gap between the best and worst bin
(e.g., gemma—-3n—e4b-it has a34.2% gap and gpt-oss—-120b a 33.6% gap).

Table 7: Effect of context length on average pass@ 1.

Context Bin Average Pass@1
Short (i.e., < 1k chars) 71.03 & 7.60
Medium (i.e., 1k—3k chars) 62.09 £ 8.56
Long (i.e., > 3k chars) 59.94 +£10.43

Instruction and Highlight Length analysis. Given the large gap between easy and hard problems, we
explore what types of prompts are present in hard problems compared to the general dataset. As shown
below, we see that hard instructions tend to have shorter instructions (by nearly 5 times) but slightly longer
highlighted code.

Table 8: Comparing instruction and highlight length for easy versus hard questions.

Instruction Length (chars)  Highlight Length (chars)

Easy Questions 351.21 +1018.87 942.30 £+ 1275.35
Hard Questions 75.09 £+ 107.20 881.45 + 1275.23

Cursor Position Ablation We see that “Cursor Only” is not as useful for models as “Highlight Only”,
though both are still individually more useful than the combination.

Table 9: Comparing ablations of context information.

Task Success Rate (%)
Model Name Code Only Highlight Only Cursor Only Highlight and Cursor
claude-sonnet-4 60.19 66.67 62.96 64.81
gpt-03-mini 56.48 63.89 59.26 52.78
gemini-2.5-pro 49.53 55.66 53.70 55.56
deepseek-chat-v3.1 53.70 58.88 57.41 51.85
gwen3-coder-flash 55.14 56.48 54.63 50.93

Code Context Dependent Example. Additional code context is often crucial to understanding and solving
a problem. This can be because the code context is simply too long or because the user instruction is too
ambiguous. Let us take problem 45 in EditBench as an example.

In this example, the user instruction is to ‘remove’, which could mean the removal of the class, the function,
or the implementation of the remove functions. However, when observing the problem we can consider the
following from the rest of the code context:
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1. There is no highlighted code segment. This means it is impossible for the user intent to be removal
as the only available operation is to add code.

2. The remove_vertex and remove_edge functions appear multiple times in the code. However, the
function implementations are implemented incorrectly in the original code.

Thus, the other interpretations of ‘remove’ make little sense given the entire context of the problem. The
correct answer can be inferred from the rest of the context, but would be difficult to understand from the
instruction alone.
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F FURTHER DISCUSSION

F.1 LIMITATIONS

In addition to the limitations in Section [6] we discuss several more below:

Limited Programming and Natural Languages. Although EditBench contains problems in both Python and
Javascript as well as several non-English languages, the amount of Javascript is limited. We aim to continue
collecting more data and building test harnesses and problems for more programming and natural languages.

Contamination. One major challenge with releasing benchmarks is that future models may accidentally
(or intentionally) be trained on the benchmark itself. We have taken pre-emptive measures to prevent this
by ensuring the dataset documentation contains instructions to prevent any accidental scraping of our data.
Following recent benchmarking efforts (White et al., 2024; Jain et al., 2024)), we will also aim to make our
pipeline more automatic. Combined with the continuous stream of data from EditBenchExt, new problems
can be continuously released, preventing data contamination. We discuss this in more detail in Section [F.2]

F.2 FUTURE WORK

In addition to increasing the number of examples for the existing languages and expanding to other common
programming languages, we plan to continue updating the EditBench leaderboard as new models are
released.

Automatic Test Harness Generation When we evaluated our fully-agentic pipeline on our model generations,
all models achieved a pass@1 of 0%. This indicates that these test cases were either broken or too constrained
to be usable in the benchmark. Given that prior research indicates models are at least somewhat capable
of generating well-specified test cases (Miindler et al.| [2025)), we suspect that models are still unable to
fully understand the intent behind in-the-wild user instructions. Given that we have a continuous stream of
data from EditBenchExt, resolving this will be key to enabling fully automatic test harness generation for
EditBench. In general, we also believe that improving an agent’s ability to generate test harnesses constitutes
an interesting avenue for future research.

F.3 BROADER IMPACT.

This paper presents work whose goal is to advance the field of Machine Learning. Due to the ethical and user
privacy considerations involved with storing and releasing user code data, we take a conservative approach to
data release. Despite giving users full control over their privacy, we have at least two annotators who provide
additional screening for Personally Identifiable Information (PII) on each problem during our data curation
and release process. We will continue to screen for PII as we release more problems.
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