
Exact Bayesian Inference on Discrete Models via
Probability Generating Functions:

A Probabilistic Programming Approach

Fabian Zaiser
Department of Computer Science

University of Oxford, UK
fabian.zaiser@cs.ox.ac.uk

Andrzej S. Murawski
Department of Computer Science

University of Oxford, UK
andrzej.murawski@cs.ox.ac.uk

C.-H. Luke Ong
School of Computer Science and Engineering
Nanyang Technological University, Singapore

luke.ong@ntu.edu.sg

Abstract

We present an exact Bayesian inference method for discrete statistical models, which
can find exact solutions to a large class of discrete inference problems, even with infinite
support and continuous priors. To express such models, we introduce a probabilistic pro-
gramming language that supports discrete and continuous sampling, discrete observations,
affine functions, (stochastic) branching, and conditioning on discrete events. Our key tool
is probability generating functions: they provide a compact closed-form representation
of distributions that are definable by programs, thus enabling the exact computation of
posterior probabilities, expectation, variance, and higher moments. Our inference method
is provably correct and fully automated in a tool called Genfer, which uses automatic
differentiation (specifically, Taylor polynomials), but does not require computer algebra.
Our experiments show that Genfer is often faster than the existing exact inference tools
PSI, Dice, and Prodigy. On a range of real-world inference problems that none of these
exact tools can solve, Genfer’s performance is competitive with approximate Monte Carlo
methods, while avoiding approximation errors.

1 Introduction

Bayesian statistics is a highly successful framework for reasoning under uncertainty that has found
widespread use in a variety of fields, such as AI/machine learning, medicine and healthcare, finance
and risk management, social sciences, climate science, astrophysics, and many other disciplines. At
its core is the idea of representing uncertainty as probability, and updating prior beliefs based on
observed data via Bayes’ law, to arrive at posterior beliefs. A key challenge in Bayesian statistics
is computing this posterior distribution: analytical solutions are usually impossible or intractable,
which necessitates the use of approximate methods, such as Markov-chain Monte Carlo (MCMC)
or variational inference. In this work, we identify a large class of discrete models for which exact
inference is in fact possible, in particular time series models of count data, such as autoregressive
models, hidden Markov models, switchpoint models. We achieve this by leveraging probability
generating functions (GFs) as a representation of distributions. The GF of a random variable X
is defined to be the function G(x) := E[xX]. In probability theory, it is a well-known tool to study
random variables and their distributions, related to the moment generating and the characteristic
functions [14, Chapter 4]. In computer science, GFs have previously been used for the analysis of
probabilistic programs [17, 4] and for exact inference on certain classes of graphical models [26, 27].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Here we apply them uniformly in a much more general context via probabilistic programming,
enabling exact inference on more expressive Bayesian models.

We characterize the class of supported models with the help of a probabilistic programming language.
Probabilistic programming [25] has recently emerged as a powerful tool in Bayesian inference.
Probabilistic programming systems allow users to specify complex statistical models as programs
in a precise yet intuitive way, and automate the Bayesian inference task. This allows practitioners
to focus on modelling, leaving the development of general-purpose inference algorithms to experts.
Consequently, probabilistic programming systems such as Stan [3] enjoy increasing popularity among
statisticians and data scientists. We describe a programming language, called SGCL (statistical
guarded command language), that extends pGCL (probabilistic GCL) [17]. This language is carefully
designed to be simple yet expressive, and just restrictive enough to enable exact Bayesian inference
on all programs that can be written in it.

Contributions We provide a new framework for exact inference on discrete Bayesian models.

(a) Our method is applicable to a large class of discrete models with infinite support, in particular time
series models of count data, such as autoregressive models for population dynamics, Bayesian
switchpoint models, mixture models, and hidden Markov models. To our knowledge, no exact
inference method for all but the simplest population models was known before.

(b) The models are specified in a probabilistic programming language (PPL), which provides
flexibility in model definition, thus facilitating model construction. Our PPL supports stochastic
branching, continuous and discrete priors, discrete observations, and conditioning on events
involving discrete variables.

(c) Every program written in the language can be translated to a generating function that represents
the posterior distribution in an automatic and provably correct way. From this generating function,
one can extract posterior mean, variance, and higher moments, as well as the posterior probability
masses (for a discrete distribution).

(d) We have built an optimized tool, called Genfer (“GENerating Functions for inFERence”), that
takes a probabilistic program as input and automatically computes the aforementioned set of
descriptive statistics about the posterior distribution.

(e) We demonstrate that (1) on benchmarks with finite support, Genfer’s performance is often
better than existing exact inference tools, and (2) on a range of real-world examples that no
existing exact tool supports, Genfer is competitive with approximate Monte Carlo methods, while
achieving zero approximation error.

Related Work Computing the exact posterior distribution of probabilistic programs is intractable
in general as it requires analytical solutions to integrals [9]. For this reason, existing systems either
restrict the programming language to allow only tractable constructs (this is our approach) or cannot
guarantee successful inference. In the former category are Dice [16], which only supports finite
discrete distributions, and SPPL [22], which supports some infinite-support distributions but requires
finite discrete priors. Both are based on probabilistic circuits [5] or extensions thereof, which allow
for efficient and exact inference. In the latter category are the systems PSI [9] and Hakaru [21], which
do not impose syntactic restrictions. They rely on computer algebra techniques to find a closed-form
solution for the posterior. Such a form need not exist in general and, even if it does, the system may
fail to find it and the running time is unpredictable and unscalable [22]. None of the case studies
featured in our evaluation (Section 5.2) can be handled by the aforementioned tools.

Probability generating functions are a useful tool in probability theory to study random variables with
infinite support, e.g. in the context of branching processes [7, Chapter 12]. In the context of Bayesian
inference, probabilistic generating circuits (PGCs) leverage them to boost the expressiveness of
probabilistic circuits [28] and enable efficient inference [15]. However, PGCs cannot handle random
variables with infinite support, which is the focus of our approach. Generating functions have also been
applied to probabilistic graphical models: Winner and Sheldon [26] find a symbolic representation
of the generating function for a Poisson autoregressive model and extract posterior probabilities
from it. Subsequently, Winner et al. [27] extend this model to latent variable distributions other
than the Poisson distribution, where symbolic manipulation is no longer tractable. Instead they
evaluate generating functions and their derivatives using automatic differentiation, which enables
exact inference for graphical models. Probabilistic programming is an elegant way of generalizing
graphical models, allowing a much richer representation of models [10, 25, 12]. Our contribution
here is a new framework for exact inference on Bayesian models via probabilistic programming.

2

In the context of discrete probabilistic programs without conditioning, Klinkenberg et al. [17] use
generating functions to (manually) analyze loop invariants and determine termination probabilities.
In follow-up work, Chen et al. [4] extend these techniques to automatically check (under certain
restrictions) whether a looping program generates a specified distribution. Their analysis tool Prodigy
recently gained the ability to perform Bayesian inference as well [18]. It supports discrete distributions
with infinite support (but no continuous priors) and is less scalable than our automatic-differentiation
approach (see Section 5) since it relies on computer algebra.

Limitations Exact posterior inference is already PSPACE-hard for probabilistic programs involv-
ing only finite discrete distributions [16, Section 6]. It follows that our method cannot always be
performant and has to restrict the supported class of probabilistic programs. Indeed, our programming
language forbids certain constructs, such as nonlinear transformations and observations of continuous
variables, in order to preserve a closed-form representation of the generating functions (Section 2).
For the same reason, our method cannot compute probability density functions for continuous param-
eters (but probability masses for discrete parameters and exact moments for all parameters are fine).
Regarding performance, the running time of inference is polynomial in the numbers observed in the
program and exponential in the number of program variables (Section 4). Despite these limitations,
our approach shows that exact inference is possible in the first place, and our evaluation (Section 5)
demonstrates support for many real-world models and efficient exact inference in practice.

2 Bayesian Probabilistic Programming

Probabilistic programming languages extend ordinary programming languages with two additional
constructs: one for sampling from probability distributions and one for conditioning on observed
values. We first discuss a simple program that can be written in our language using a simplified
example based on population ecology (cf. [26]).

Suppose you’re a biologist trying to estimate the size of an animal population migrating into a new
habitat. The immigration of animals is often modeled using a Poisson distribution. You cannot count
the animals exhaustively (otherwise we wouldn’t need estimation techniques), so we assume that each
individual is observed independently with a certain probability; in other words, the count is binomially
distributed. For simplicity, we assume that the rate of the Poisson and the probability of the binomial
distribution are known, say 20 and 0.1. (For more realistic population models, see Section 5.) As a
generative model, this would be written as X ∼ Poisson(20);Y ∼ Binomial(X, 0.1).

Suppose you observe Y = 2 animals. The Bayesian inference problem is to compute the posterior
distribution P(X = x | Y = 2) given by Bayes’ rule as P(X = x | Y = 2) = P(X=x) P(Y=2|X=x)

P(Y=2) ,
where P(X = x) is called the prior probability, P(Y = 2 | X = x) the likelihood and P(Y = 2)
the evidence or normalization constant.
Example 2.1. In our probabilistic programming language, this simplified population model would
be expressed as:

X ∼ Poisson(20);Y ∼ Binomial(X, 0.1); observeY = 2;

The syntax looks similar to generative model notation except that the observations are expressible
as a command. Such a program denotes a joint probability distribution of its program variables,
which are viewed as random variables. The program statements manipulate this joint distribution.
After the first two sampling statements, the distribution has the probability mass function (PMF)
p1(x, y) = P[X = x, Y = y] = Poisson(x; 20) ·Binomial(y;x, 0.1). Observing Y = 2 restricts this
to the PMF p2(x, y) = P[X = x, Y = y = 2], which equals P[X = x, Y = 2] = p1(x, 2) if y = 2
and 0 otherwise. Note that this is not a probability, but a subprobability, distribution because the
total mass is less than 1. So, as a final step, we need to normalize, i.e. rescale the subprobability
distribution back to a probability distribution. This corresponds to the division by the evidence in
Bayes’ rule, yielding the PMF p3(x, y) =

p2(x,y)∑
x,y p2(x,y)

. To obtain the posterior P[X = x | Y = 2],
which is a distribution of the single variable X , not the joint of X and Y , we need to marginalize p3

and find
∑

y p3(x, y) =
∑

y p2(x,y)∑
x,y p2(x,y)

= p1(x,2)∑
x p1(x,2)

= P[X=x,Y=2]
P[Y=2] = P[X = x | Y = 2], as desired.

Programming constructs Next we describe our probabilistic programming language more for-
mally. It is based on the probabilistic guarded command language (pGCL) from [17] but augments

3

it with statistical features like conditioning on events and normalization, which is why we call it
Statistical GCL (SGCL). Each program operates on a fixed set of variables X = {X1, . . . , Xn} tak-
ing values in R≥0. A program consists of a list of statements P1;P2; . . . ;Pm. The simplest statement
is skip, which does nothing and is useful in conditionals (like pass in Python). Variables can be
transformed using affine maps, e.g. X2 := 2X1 + 7X3 + 2 (note that the coefficients must be non-
negative to preserve nonnegativity of the variables). Programs can branch on the value of a (discrete)
variable (e.g. ifXk ∈ {1, 3, 7} {. . .} else {. . .}), and sample new values for variables from distribu-
tions (e.g. Xk ∼ Binomial(10, 0.5) or Xk ∼ Binomial(Xj , 0.5)). The supported distributions are
Bernoulli, Categorical, Binomial, Uniform (both discrete and continuous), NegBinomial, Geometric,
Poisson, Exponential, and Gamma. They need to have constant parameters except for the compound
distributions Binomial(X, p), NegBinomial(X, p), Poisson(λ ·X), and Bernoulli(X), where X can
be a variable. One can observe events involving discrete variables (e.g. observeXk ∈ {3, 5})
and values from (discrete) distributions directly (e.g. observe 3 ∼ Binomial(Xj , 0.5)). Note that
observem ∼ D can be seen as a convenient abbreviation of Y ∼ D; observeY = m with a fresh
variable Y . After an observation, the variable distribution is usually not a probability distribution
anymore, but a subprobability distribution (“the numerator of Bayes’ rule”).

Syntax In summary, the syntax of programs P has the following BNF grammar:

P ::= skip | P1;P2 | Xk := a1X1 + · · ·+ anXn + c | ifXk ∈ A {P1} else {P2}
| Xk ∼ D | Xk ∼ D(Xj) | observeXk ∈ A | observem ∼ D | observem ∼ D(Xj)

where P , P1 and P2 are subprograms; a1, . . . , an, c ∈ R≥0; m ∈ N; A is a finite subset of the naturals;
and D is a supported distribution. To reduce the need for temporary variables, the abbreviations +∼,
+=, and ifm ∼ D {. . .} else {. . .} are available (see Section 4). A fully formal description of the
language constructs can be found in Appendix A.

Restrictions Our language imposes several syntactic restrictions to guarantee that the generating
function of any program admits a closed form, which enables exact inference (see Section 3.1):
(a) only affine functions are supported (e.g. no X2 or exp(X)), (b) only comparisons between
variables and constants are supported (e.g. no test for equality X = Y), (c) only observations
from discrete distributions on N and only comparisons of such random variables are supported
(e.g. no observe 1.5 ∼ Normal(0, 1)), (d) a particular choice of distributions and their composites is
supported, (e) loops or recursion are not supported. A discussion of possible language extensions and
relaxations of these restrictions can be found in Appendix B.3.

3 Generating Functions

Consider Example 2.1. Even though the example is an elementary exercise in probability, it is
challenging to compute the normalizing constant, because one needs to evaluate an infinite sum:
P[Y = 2] =

∑
x∈N P[Y = 2 | X = x] P[X = x] =

∑
x∈N

(
x
2

)
0.12 0.9x−2 · 20xe−20

x! . It turns out to
be 2e−2 (see Example 3.1), but it is unclear how to arrive at this result in an automated way. If X had
been a continuous variable, we would even have to evaluate an integral. We will present a technique to
compute such posteriors mechanically. It relies on probability generating functions, whose definition
includes an infinite sum or integral, but which often admit a closed form, thus enabling the exact
computation of posteriors.

Definition Probability generating functions are a well-known tool in probability theory to study
random variables and their distributions, especially discrete ones. The probability generating function
of a random variable X is defined to be the function G(x) := E[xX]. For a discrete random variable
supported on N, this can also be written as a power series G(x) =

∑
n∈N P[X = n] · xn. Since

we often deal with subprobability distributions, we omit “probability” from the name and refer to
G(x) := EX∼µ[x

X], where µ is a subprobability measure, simply as a generating function (GF). For
continuous variables, it is often called factorial moment generating function, but we stick with the
former name in all contexts. We will use the notation gf(µ) or gf(X) for the GF of µ or X . Note that
for discrete random variables supported on N, the GF is always defined on [−1, 1], and for continuous
ones at x = 1, but it need not be defined at other x.

Probability masses and moments Many common distributions admit a closed form for their GF
(see Table 1). In such cases, GFs are a compact representation of a distribution, even if it has infinite
or continuous support like the Poisson or Exponential distributions, respectively. Crucially, one can

4

Table 1: GFs for common distributions with constant (left) and random variable parameters (right)

Distribution D gf(X ∼ D)(x)

Binomial(n, p) (px+ 1− p)n

Geometric(p) p
1−(1−p)x

Poisson(λ) eλ(x−1)

Exponential(λ) λ
λ−log x

Distribution D(Y) gf(X ∼ D(Y))(x)

Binomial(Y, p) gf(Y)(1− p+ px)

NegBinomial(Y, p) gf(Y)
(

p
1−(1−p)x

)
Poisson(λ · Y) gf(Y)(eλ(x−1))
Bernoulli(Y) 1 + (x− 1) · (gf(Y))′(1)

extract probability masses and moments of a distribution from its generating function. For discrete
random variables X , P [X = n] is the n-th coefficient in the power series representation of G, so
can be computed as the Taylor coefficient at 0: 1

n!G
(n)(0) (hence the name “probability generating

function”). For a discrete or continuous random variable X , its expected value is E[X] = G′(1),
and more generally, its n-th factorial moment is E[X(X − 1) · · · (X − n+ 1)] = E[dn

dxnx
X]|x=1 =

G(n)(1) (hence the name “factorial moment generating function”). The raw and central moments can
easily be computed from the factorial moments. For instance, the variance is V[X] = G′′(1)+G′(1)−
G′(1)2. We will exploit these properties of generating functions through automatic differentiation.

Multivariate case The definition of GFs is extended to multidimensional distributions in a
straightforward way: for random variables X = (X1, . . . , Xn), their GF is the function G(x) :=

E[xX] where we write x := (x1, . . . , xn) and xX := xX1
1 · · ·xXn

n . We generally follow the
convention of using uppercase letters for random and program variables, and lowercase letters for
the corresponding parameters of the generating function. Marginalization can also be expressed in
terms of generating functions: to obtain the GF G̃ of the joint distribution of (X1, . . . , Xn−1), i.e. to
marginalize out Xn, one simply substitutes 1 for xn in G: G̃(x1, . . . , xn−1) = G(x1, . . . , xn−1, 1).
This allows us to compute probability masses and moments of a random variable in a joint distribution:
we marginalize out all the other variables and then use the previous properties of the derivatives.

3.1 Translating programs to generating functions

The standard way of describing the meaning of probabilistic programs is assigning (sub-)probability
distributions to them. An influential example is Kozen’s distribution transformer semantics
[19], where each program statement transforms the joint distribution of all the variables X =
(X1, . . . , Xn). Since Kozen’s language does not include observations, we present the full semantics
in Appendix A. We call this the standard semantics of a probabilistic program and write JP Kstd(µ)
for the transformation of µ by the program P . As a last step, the subprobability distribution µ has to be
normalized, which we write normalize(µ) := µ∫

dµ
. This reduces the Bayesian inference problem for

a given program to computing its semantics, starting from the joint distribution Dirac(0n) in which
all n variables are initialized to 0 with probability 1. While mathematically useful, the distribution
transformer semantics is hardly amenable to computation as it involves integrals and infinite sums.

Instead, we shall compute the generating function of the posterior distribution represented by the
probabilistic program. Then we can extract posterior probability masses and moments using automatic
differentiation. Each statement in the programming language transforms the generating function
of the distribution of program states, i.e. the joint distribution of the values of the variables X =
(X1, . . . , Xn). Initially, we start with the constant function G = 1, which corresponds to all variables
being initialized with 0 since E[x0] = 1.

The generating function semantics of a program JP Kgf describes how to transform G to the generating
function JP Kgf(G) for the distribution at the end. It is defined in Table 2, where the update notation
x[i 7→ a] denotes (x1, . . . , xi−1, a, xi+1, . . . , xn) and 1n means the n-tuple (1, . . . , 1). The first five
rules were already described in [4], so we only explain them briefly: skip leaves everything unchanged
and P1;P2 chains two statements by transforming with JP1Kgf and then JP2Kgf . To explain linear
assignments, consider the case of only two variables: X1 := 2X1 + 3X2 + 5. Then

JP Kgf(G)(x) = E[x2X1+3X2+5
1 xX2

2] = x5
1E[(x2

1)
X1(x3

1x2)
X2] = x5

1 ·G(x2
1, x

3
1x2).

For conditionals ifXk ∈ A {P1} else {P2}, we split the generating function G into two parts: one
where the condition is satisfied (GXk∈A) and its complement (G−GXk∈A). The former is transformed

5

Table 2: Generating function semantics of programming constructs
Language construct P JP Kgf(G)(x)

skip G(x)
P1;P2 JP2Kgf(JP1Kgf(G))(x)

Xk := a⊤X + c xc
k ·G(x′) where x′

k := x
ak
k and x′

i := xix
ai
k for i ̸= k

ifXk ∈ A {P1} else {P2} JP1Kgf(GXk∈A) + JP2Kgf(G−GXk∈A)

where GXk∈A(x) =
∑

i∈A

∂i
kG(x[k 7→0])

i!
xi
k

Xk ∼ D G(x[k 7→ 1]) · gf(D)(xk)
Xk ∼ D(Xj) G(x[k 7→ 1, j 7→ xj · gf(D(1))(xk)])

for D ∈ {Binomial(−, p), NegBinomial(−, p), Poisson(λ · −) }
G(x[k 7→ 1]) + xj(xk − 1) · ∂jG(x[k 7→ 1]) for D = Bernoulli(−)

observeXk ∈ A GXk∈A(x) =
∑

i∈A

∂i
kG(x[k 7→0])

i!
xi
k

Normalization normalize(G) := G
G(1n)

by the then-branch JP1Kgf , the latter by the else-branch JP2Kgf . The computation of GXk∈A is best
understood by thinking of G as a power series where we keep only the terms where the exponent of xk

is in A. Sampling Xk ∼ D from a distribution with constant parameters works by first marginalizing
out Xk and then multiplying by the generating function of D with parameter xk.

The first new construct is sampling Xk ∼ D(Xj) from compound distributions (see Appendix B for a
detailed explanation). Observing events Xk ∈ A uses GXk∈A like in conditionals, as explained above.
Just like the subprobability distribution defined by a program has to be normalized as a last step, we
have to normalize the generating function. The normalizing constant is calculated by marginalizing
out all variables: G(1, . . . , 1). So we obtain the generating function representing the normalized
posterior distribution by rescaling with the inverse: normalize(G) := G

G(1n)
. These intuitions can be

made rigorous in the form of the following theorem, which is proven in Appendix B.2.

Theorem 3.1. The GF semantics is correct w.r.t. the standard semantics: for any SGCL program P
and subprobability distribution µ on Rn

≥0, we have JP Kgf(gf(µ)) = gf(JP Kstd(µ)). In particular, it
correctly computes the GF of the posterior distribution of P as normalize(JP Kgf(1)). Furthermore,
there is some R > 1 such that JP Kgf(1) and normalize(JP Kgf(1)) are defined on {x ∈ Rn | Qi <
xi < R} where Qi = −R if the variable Xi is supported on N and Qi = 0 otherwise.

Novelty The semantics builds upon [17, 4]. To our knowledge, the GF semantics of the compound
distributions Poisson(λ ·Xj) and Bernoulli(Xj) is novel, and the former is required to support most
models in Section 5. While the GF of observations has been considered in the context of a specific
model [26], this has not been done in the general context of a probabilistic programming language
before. More generally, previous works involving GFs only considered discrete distributions, whereas
we also allow sampling from continuous distributions. This is a major generalization and requires
different proof techniques because the power series representation

∑
i∈N P[X = i]xi, on which the

proofs in [26, 17, 4] rely, is not valid for continuous distributions.

Example 3.1 (GF translation). Consider Example 2.1. We can find the posterior distribution mechan-
ically by applying the rules from the GF semantics. We start with the GF A(x, y) = E[x0y0] = 1
corresponding to X and Y being initialized to 0. Sampling X changes this to GF B(x, y) =
A(1, y)e20(x−1) = e20(x−1). Sampling Y yields C(x, y) = B(x(0.1y + 0.9), 1) = e2x(y+9)−20.
Observing Y = 2 yields D(x, y) = 1

2!y
2 ∂2

∂y2C(x, 0) = 2x2y2e18x−20. To normalize, we divide by

D(1, 1) = 2e−2, obtaining E(x, y) = D(x,y)
D(1,1) = x2y2e18(x−1) since A(x, y) = 1.

As described above, we can extract from this GF the posterior probability of, for example, exactly
10 individuals P[X = 10] = 1

10!
∂10

∂x10E(0, 1) = 991796451840e−18 and the expected value of the
posterior E[X] = ∂

∂xE(1, 1) = 20.

4 Implementation & Optimizations

The main difficulty in implementing the GF semantics is the computation of the partial derivatives. A
natural approach (as followed by [4, 18]) is to manipulate symbolic representations of the generating

6

functions and to use computer algebra for the derivatives. However this usually scales badly, as
demonstrated by Winner et al. [27], because the size of the generating functions usually grows
quickly with the data conditioned on. To see why, note that every observeXk = d statement in the
program is translated to a d-th partial derivative. Since probabilistic programs tend to contain many
data points, it is common for the total order of derivatives to be in the hundreds. The size of the
symbolic representation of a function can (and typically does) grow exponentially in the order of the
derivative: the derivative of the product of two functions f · g is the sum of two products f ′ · g+ f · g′,
so the representation doubles in size. Hence the running time would be Ω(2d) where d is the sum of
all observed values, which is clearly unacceptable.

Instead, we exploit the fact that we do not need to generate the full representation of a GF, but merely
to evaluate it and its derivatives. We implement our own automatic differentiation framework for
this because existing ones are not designed for computing derivatives of order greater than, say, 4 or
5. In fact, it is more efficient to work with Taylor polynomials instead of higher derivatives directly.
Winner et al. [27] already do this for the population model (with only one variable), and we extend
this to our more general setting with multiple variables, requiring multivariate Taylor polynomials.
In this approach, derivatives are the easy part as they can be read off the Taylor coefficients, but the
composition of Taylor polynomials is the bottleneck. Winner et al. [27] use a naive O(d3) approach,
which is fast enough for their single-variable use case.

Running time For n variables, naive composition of Taylor polynomials takes O(d3n) time, where
d is the sum of all observations in the program, i.e. the total order of differentiation, i.e. the degree of
the polynomial. Note that this is polynomial in d, contrary to the symbolic approach, but exponential
in the number of variables n. This is not as bad as it seems because in many cases, the number of
variables can be kept to one or two, as opposed to the values of data points (such as the models
from Section 5). In fact, we exploit the specific composition structure of generating functions to
achieve O(d3) for n = 1 and O(dn+3) for n ≥ 2 in the worst case, while often being faster in
practice. Overall, our implementation takes O(sdn+3) time in the worst case, where s is the number
of statements in the program, d is the sum of all observed values, and n is the number of program
variables (see Appendix C.3).

Reducing the number of variables Given the exponential running time in n, it is crucial to reduce
the number of variables when writing probabilistic programs. For one thing, program variables that
are no longer needed can often be reused for a different purpose later. Furthermore, assignment and
sampling can be combined with addition: Xk+=. . . stands for Xn+1 := . . . ;Xk := Xk+Xn+1 and
Xk +∼D for Xn+1 ∼ D;Xk := Xk +Xn+1. The GFs for these statements can easily be computed
without introducing the temporary variable Xn+1. Similarly, in observe statements and if-conditions,
we use the shorthand m ∼ D with m ∈ N for the event Xn+1 = m where Xn+1 ∼ D. Probabilistic
programs typically contain many such observations, in particular from compound distributions. Hence
it is worthwhile to optimize the generating function to avoid this extra variable Xn+1. Winner and
Sheldon [26] can avoid an extra variable for a compound binomial distribution in the context of a
specific model. We extend this to our more general setting with continuous variables, and also present
optimized semantics for compound Poisson, negative binomial, and Bernoulli distributions. In fact,
this optimization is essential to achieving good performance for many of the examples in Section 5.
The optimized translation and its correctness proof can be found in Appendix C.2.

Implementation Our tool Genfer reads a program file and outputs the posterior mean, variance,
skewness, and kurtosis of a specified variable. For discrete variables supported on N, it also computes
the posterior probability masses up to a configurable threshold. To have tight control over perfor-
mance, especially for the multivariate Taylor polynomials, Genfer is written in Rust [20], a safe sys-
tems programming language. Our implementation is available on GitHub: github.com/fzaiser/genfer

Numerical issues Genfer can use several number formats for its computations: 64-bit floating
point (the default and fastest), floating point with a user-specified precision, and rational numbers
(if no irrational numbers occur). To ensure that the floating-point results are numerically stable, we
also implemented interval arithmetic to bound the rounding errors. Initially, we found that programs
with continuous distributions led to catastrophic cancellation errors, due to the logarithmic term in
their GFs, whose Taylor expansion is badly behaved. We fixed this problem with a slightly modified
representation of the GFs, avoiding the logarithms (details in Appendix C). For all the examples in
Section 5.2, our results are accurate up to at least 5 significant digits.

7

https://github.com/fzaiser/genfer/

Table 3: Comparison of inference times of tools for exact inference on PSI’s benchmarks [9]
Tool Genfer (FP) Dice (FP) Genfer (Q) Dice (Q) Prodigy PSI
alarm (F) 0.0005s 0.0067s 0.0012s 0.0066s 0.011s 0.0053s
clickGraph (C) 0.11s unsupported 3.4s unsupported unsupported 46s
clinicalTrial (C) 150s unsupported 1117s unsupported unsupported timeout
clinicalTrial2 (C) 0.0024s unsupported 0.031s unsupported unsupported 0.46s
digitRecognition (F) 0.021s 0.83s 0.11s 2.7s 31s 146s
evidence1 (F) 0.0002s 0.0057s 0.0003s 0.0056s 0.0030s 0.0016s
evidence2 (F) 0.0002s 0.0056s 0.0004s 0.0057s 0.0032s 0.0018s
grass (F) 0.0008s 0.0067s 0.0044s 0.0067s 0.019s 0.014s
murderMystery (F) 0.0002s 0.0055s 0.0003s 0.0057s 0.0028s 0.0021s
noisyOr (F) 0.0016s 0.0085s 0.019s 0.0088s 0.21s 0.055s
twoCoins (F) 0.0002s 0.0054s 0.0003s 0.0057s 0.0032s 0.0017s

5 Empirical Evaluation

5.1 Comparison with exact inference methods

We compare our tool Genfer with the following tools for exact Bayesian inference: Dice [16], which
uses weighted model counting, PSI [9], which manipulates density functions using computer algebra,
and Prodigy [18], which is based on generating functions like Genfer, but uses computer algebra
instead of automatic differentiation.1 We evaluate them on the PSI benchmarks [9], excluding those
that only PSI supports, e.g. due to observations from continuous distributions. Most benchmarks only
use finite discrete distributions (labeled “F”), but three feature continuous priors (labeled “C”).

We measured the wall-clock inference time for each tool, excluding startup time and input file parsing,
and recorded the minimum from 5 consecutive runs with a one-hour timeout.2 Dice and Genfer
default to floating-point (FP) numbers, whereas Prodigy and PSI use rational numbers, which is
slower but prevents rounding errors. For a fair comparison, we evaluated all tools in rational mode
and separately compared Dice with Genfer in FP mode. The results (Table 3) demonstrate Genfer’s
speed even on finite discrete models, despite our primary focus on models with infinite support.

5.2 Comparison with approximate inference methods

It is impossible to compare our approach with other exact inference methods on realistic models with
infinite support (Section 5.3): the scalable systems Dice [16] and SPPL [22] don’t support such priors
and the symbolic solvers PSI [9] and Prodigy [18] run out of memory or time out after an hour.

Truncation As an alternative, we considered approximating the posterior by truncating discrete
distributions with infinite support. This reduces the problem to finite discrete inference, which is more
amenable to exact techniques. We decided against this approach because Winner and Sheldon [26]
already demonstrated its inferiority to GF-based exact inference on their graphical model. Moreover,
it is harder to truncate general probabilistic programs, and even impossible for continuous priors.

Monte-Carlo inference Hence, we compare our approach with Monte Carlo inference methods.
Specifically, we choose the Anglican [24] probabilistic programming system because it offers the best
built-in support for discrete models with many state-of-the-art inference algorithms. Other popular
systems are less suitable: Gen [6] specializes in programmable inference; Stan [3], Turing [8], and
Pyro [1] mainly target continuous models; and WebPPL’s [11] discrete inference algorithms are less
extensive than Anglican’s (e.g. no support for interacting particle MCMC).

Methodology The approximation error of a Monte Carlo inference algorithm depends on its
settings3 (e.g. the number of particles for SMC) and decreases with the number of samples the longer
it is run. To ensure a fair comparison, we use the following setup: for each inference problem, we
run several inference algorithms with various configurations (settings and sampling budgets) and

1We were not able to run Hakaru [21], which uses the computer algebra system Maple as a backend, but we
do not expect it to produce better results than the other systems, given that PSI is generally more performant [9].

2PSI was run with the experimental flag --dp on finite discrete benchmarks for improved performance.
3See https://probprog.github.io/anglican/inference/ for a full list of Anglican’s options.

8

https://probprog.github.io/anglican/inference/

0.0 0.5 1.0 1.5 2.0 2.5
Time (in s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Er
ro

r (
TV

D)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(a) Original model

0 1 2 3
Time (in s)

0.0

0.1

0.2

0.3

0.4

Er
ro

r (
TV

D)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(b) Modified arrival rate

0 1 2 3 4 5
Time (in s)

0.0

0.1

0.2

0.3

0.4

Er
ro

r (
TV

D)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(c) Two-type branching process

Figure 1: Comparison of the population model and its modifications with approximate inference:
mean and standard error of the computation time and TVD over 20 repeated runs.

report the approximation error and the elapsed time. To measure the quality of the approximation, we
report the total variation distance (TVD) between the exact solution and the approximate posterior
distribution, as well as the approximation errors of the posterior mean µ, standard deviation σ,
skewness (third standardized moment) S, and kurtosis K. To ensure invariance of our error metrics
under translation and scaling of the distribution, we compute the error of the mean as |µ̂−µ|

σ , where
µ is the true posterior mean, µ̂ its approximation, and σ the true posterior standard deviation; the
relative error of the standard deviation σ (because σ is invariant under translation but not scaling),
and the absolute error of skewness and kurtosis (because they are invariant under both translation and
scaling). To reduce noise, we average all these error measures and the computation times over 20
runs and report the standard error as error bars. We run several well-known inference algorithms
implemented in Anglican: importance sampling (IS), Lightweight Metropolis-Hastings (LMH),
Random Walk Metropolis-Hastings (RMH), Sequential Monte Carlo (SMC), Particle Gibbs (PGibbs),
and interacting particle MCMC (IPMCMC). For comparability, in all experiments, each algorithm is
run with two sampling budgets and, if possible, two different settings (one being the defaults) for a
total of four configurations. The sampling budgets were 1000 or 10000, because significantly lower
sample sizes gave unusable results and significantly higher sample sizes took much more time than
our exact method. We discard the first 20% of the samples, a standard procedure called “burn-in”.

Note that this setup is generous to the approximate methods because we only report the average time
for one run of each configuration. However, in practice, one does not know the best configuration, so
the algorithms need to be run several times with different settings. By contrast, our method requires
only one run because the result is exact.

5.3 Benchmarks with infinite-support distributions

Population ecology Our first benchmark comes from [26, 27] and models animal populations.
We have seen a simplified version in Example 2.1. Here we model a population Nk at time steps
k = 0, . . . ,m. At each time step, there is a Poisson-distributed number of new arrivals, which are
added to the binomially distributed number of survivors from the previous time step. Each individual
is observed with a fixed probability δ, so the number of observed individuals is binomially distributed:

Newk ∼ Poisson(λk); Survivorsk ∼ Binomial(Nk−1, δ);
Nk := Newk + Survivorsk; observe yk ∼ Binomial(Nk, ρ);

where the model parameters λk ∈ R, δ ∈ [0, 1] are taken from [26]; the detection probability ρ is set
to 0.2 ([26] considers a range of values, but we pick one for space reasons); and the observed number
yk ∈ N of individuals in the population at time step k is simulated from the same ground truth as [26].
The goal is to infer the final number Nm of individuals in the population. We set the population size
model parameter and hence the observed values which influence the running time to be 4 times larger
than the largest in [26] (see details in Appendix D.3). The results (Fig. 1a) show that our method is
superior to MCMC methods in both computation time and accuracy since it is exact.

Modifications While this model was already solved exactly in [26], our probabilistic programming
approach makes it trivial to modify the model, since the whole inference is automated and one only
needs to change a few lines of the program: (a) we can model the possibility of natural disasters af-
fecting the offspring rate with a conditional: Disaster ∼ Bernoulli(0.1); if Disaster = 1 {Newk ∼
Poisson(λ′)} else {Newk ∼ Poisson(λ)}, or (b) instead of a single population, we can model popu-
lations of two kinds of individuals that interact, i.e. a multitype branching process (see Fig. 1c). None

9

0 5 10 15 20 25
Time (in s)

0.0

0.2

0.4

0.6

0.8

Er
ro

r (
TV

D)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(a) Switchpoint: TVD error

0 10 20 30 40
Time (in s)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r (
TV

D)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(b) Mixture: TVD error

0 20 40 60
result

0.000

0.025

0.050

0.075

0.100

0.125

0.150

pr
ob

ab
ilit

y

PGibbs (10000 samples)
ours (exact)

(c) Mixture: histogram

0 2 4 6 8 10 12
Time (in s)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r (
TV

D)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(d) HMM: TVD error

Figure 2: Plots for the switchpoint, mixture, and hidden Markov model.

0 5 10 15 20 25
Time (in s)

0.0

0.5

1.0

1.5

2.0

Er
ro

r o
f m

ea
n

(in
 σ

s)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(a) Error of the mean

0 5 10 15 20 25
Time (in s)

0.0

0.5

1.0

1.5

2.0

Re
l.

er
ro

r o
f s

ta
nd

ar
d

de
vi

at
io

n ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(b) Error of the std. dev.

0 5 10 15 20 25
Time (in s)

0.0

0.5

1.0

1.5

2.0

Ab
s.

er
ro

r o
f s

ke
wn

es
s

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(c) Error of the skewness

0 5 10 15 20 25
Time (in s)

0.0

0.5

1.0

1.5

2.0

Ab
s.

er
ro

r o
f k

ur
to

sis

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(d) Error of the kurtosis

Figure 3: Comparison of moments for the switchpoint model: approximate inference vs our method.

of these modifications can be handled by [26] or [27]. The results of the first modification (Fig. 1b)
are very similar. The more complex second modification takes longer to solve exactly, but less time
than approximate inference with 10000 samples, and achieves zero error.

Switchpoint model Our second benchmark is Bayesian switchpoint analysis, which is about
detecting a change in the frequency of certain events over time. We use the model from [23] with
continuous priors and its 111 real-world data points about the frequency of coal-mining accidents.
We compare both the moment errors (Fig. 3) and the TVD errors (Fig. 2a). In both cases, the
approximations are less accurate and take longer than our exact method.

Mixture model We consider a binary mixture model on the same data set, with equal mixture
weights and a geometric prior for the rates: each data point is observed from a mixture of two Poisson
distributions with different rates and the task is to infer these rates. Due to their multimodality, mixture
models are notoriously hard for approximate inference methods, which is confirmed in Fig. 2b. Even
the runs with the lowest error cover only one of the two modes (cf. the sample histogram in Fig. 2c).

Hidden Markov model We use a hidden Markov model based on [22, Section 2.2], but involving
infinite (geometric) priors. It is a two-state system with known transition probabilities and the rate for
the observed data depends on the hidden state. We run this model on 30 simulated data points. For
this model as well, our method clearly outperforms approximate methods (Fig. 2d).

To our knowledge, our approach is the first to find an exact solution to these problems, except the
very first problem without the modifications, which appeared in [26]. For brevity, we only presented
the most important aspects of these benchmarks, relegating their encoding as probabilistic programs
to Appendix D.3. Code and reproduction instructions are provided in the supplementary material.

6 Conclusion

By leveraging generating functions, we have developed and proven correct a framework for exact
Bayesian inference on discrete models, even with infinite support and continuous priors. We have
demonstrated competitive performance on a range of models specified in an expressive probabilistic
programming language, which our tool Genfer processes automatically.

Future work It is a natural question how our method could be integrated with a more general
probabilistic programming system. For example, in a sampling-based inference algorithm, one could
imagine using generating functions to solve subprograms exactly if this is possible. More generally,
it would be desirable to explore how the compositionality of the GF translation can be improved.
As it stands, our GF translation describes the joint distribution of all program variables – we never
reason “locally” about a subset of the variables. A compositional approach would likely facilitate the
application of the GF method to functional probabilistic languages like Anglican.

10

Acknowledgments and Disclosure of Funding

We would like to thank Maria Craciun, Hugo Paquet, Tim Reichelt, and Dominik Wagner for providing
valuable input on this work. We are especially grateful to Mathieu Huot for insightful discussions and
very helpful feedback on a draft of this paper.

This research was supported by the Engineering and Physical Sciences Research Council (studentship
2285273, grant EP/T006579) and the National Research Foundation, Singapore, under its RSS
Scheme (NRF-RSS2022-009). For the purpose of Open Access, the authors have applied a CC BY
public copyright license to any Author Accepted Manuscript version arising from this submission.

References
[1] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh,

P. A. Szerlip, P. Horsfall, and N. D. Goodman. Pyro: Deep universal probabilistic programming.
J. Mach. Learn. Res., 20:28:1–28:6, 2019. URL http://jmlr.org/papers/v20/18-403.
html.

[2] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J. ACM, 25(4):
581–595, 1978. doi: 10.1145/322092.322099. URL https://doi.org/10.1145/322092.
322099.

[3] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker,
J. Guo, P. Li, and A. Riddell. Stan : A probabilistic programming language. Journal of
Statistical Software, 76(1), 1 2017. ISSN 1548-7660. doi: 10.18637/jss.v076.i01. URL
https://www.osti.gov/biblio/1430202.

[4] M. Chen, J. Katoen, L. Klinkenberg, and T. Winkler. Does a program yield the right distribution?
- verifying probabilistic programs via generating functions. In S. Shoham and Y. Vizel, editors,
Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August
7-10, 2022, Proceedings, Part I, volume 13371 of Lecture Notes in Computer Science, pages
79–101. Springer, 2022. doi: 10.1007/978-3-031-13185-1_5. URL https://doi.org/10.
1007/978-3-031-13185-1_5.

[5] Y. Choi, A. Vergari, and G. Van den Broeck. Probabilistic circuits: A unifying framework
for tractable probabilistic models, 2020. URL http://starai.cs.ucla.edu/papers/
ProbCirc20.pdf. Accessed: 2023-10-22.

[6] M. F. Cusumano-Towner, F. A. Saad, A. K. Lew, and V. K. Mansinghka. Gen: a general-
purpose probabilistic programming system with programmable inference. In ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI 2019.
ACM, 2019. doi: 10.1145/3314221.3314642.

[7] W. Feller. An introduction to probability theory and its applications, volume 1. Wiley Series in
Probability and Statistics. John Wiley & Sons, Nashville, TN, 3 edition, jan 1968.

[8] H. Ge, K. Xu, and Z. Ghahramani. Turing: A language for flexible probabilistic infer-
ence. In A. Storkey and F. Perez-Cruz, editors, Proceedings of the Twenty-First Interna-
tional Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of
Machine Learning Research, pages 1682–1690. PMLR, 09–11 Apr 2018. URL https:
//proceedings.mlr.press/v84/ge18b.html.

[9] T. Gehr, S. Misailovic, and M. T. Vechev. PSI: exact symbolic inference for probabilistic
programs. In S. Chaudhuri and A. Farzan, editors, Computer Aided Verification - 28th Inter-
national Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part
I, volume 9779 of Lecture Notes in Computer Science, pages 62–83. Springer, 2016. doi: 10.
1007/978-3-319-41528-4_4. URL https://doi.org/10.1007/978-3-319-41528-4_4.

[10] Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nat., 521(7553):452–
459, 2015. doi: 10.1038/nature14541. URL https://doi.org/10.1038/nature14541.

[11] N. D. Goodman and A. Stuhlmüller. The Design and Implementation of Probabilistic Program-
ming Languages. http://dippl.org, 2014. Accessed: 2023-4-6.

11

http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v20/18-403.html
https://doi.org/10.1145/322092.322099
https://doi.org/10.1145/322092.322099
https://www.osti.gov/biblio/1430202
https://doi.org/10.1007/978-3-031-13185-1_5
https://doi.org/10.1007/978-3-031-13185-1_5
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
https://proceedings.mlr.press/v84/ge18b.html
https://proceedings.mlr.press/v84/ge18b.html
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1038/nature14541
http://dippl.org

[12] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Probabilistic programming. In
J. D. Herbsleb and M. B. Dwyer, editors, Proceedings of the on Future of Software Engineering,
FOSE 2014, Hyderabad, India, May 31 - June 7, 2014, pages 167–181. ACM, 2014. doi:
10.1145/2593882.2593900. URL https://doi.org/10.1145/2593882.2593900.

[13] A. Griewank and A. Walther. Evaluating derivatives - principles and techniques of algorithmic
differentiation, Second Edition. SIAM, 2008. ISBN 978-0-89871-659-7. doi: 10.1137/1.
9780898717761. URL https://doi.org/10.1137/1.9780898717761.

[14] A. Gut. Probability: A Graduate Course. Springer Texts in Statistics. Springer, New
York, second edition, 2013. ISBN 978-1-4614-4707-8; 978-1-4614-4708-5. doi: 10.1007/
978-1-4614-4708-5. URL https://doi.org/10.1007/978-1-4614-4708-5.

[15] J. Harviainen, V. P. Ramaswamy, and M. Koivisto. On inference and learning with probabilistic
generating circuits. In R. J. Evans and I. Shpitser, editors, Uncertainty in Artificial Intelligence,
UAI 2023, July 31 - 4 August 2023, Pittsburgh, PA, USA, volume 216 of Proceedings of Machine
Learning Research, pages 829–838. PMLR, 2023. URL https://proceedings.mlr.press/
v216/harviainen23b.html.

[16] S. Holtzen, G. V. den Broeck, and T. D. Millstein. Scaling exact inference for discrete
probabilistic programs. Proc. ACM Program. Lang., 4(OOPSLA):140:1–140:31, 2020. doi:
10.1145/3428208. URL https://doi.org/10.1145/3428208.

[17] L. Klinkenberg, K. Batz, B. L. Kaminski, J. Katoen, J. Moerman, and T. Winkler. Generating
functions for probabilistic programs. In M. Fernández, editor, Logic-Based Program Synthesis
and Transformation - 30th International Symposium, LOPSTR 2020, Bologna, Italy, September
7-9, 2020, Proceedings, volume 12561 of Lecture Notes in Computer Science, pages 231–248.
Springer, 2020. doi: 10.1007/978-3-030-68446-4_12. URL https://doi.org/10.1007/
978-3-030-68446-4_12.

[18] L. Klinkenberg, C. Blumenthal, M. Chen, and J. Katoen. Exact bayesian inference for loopy
probabilistic programs. CoRR, abs/2307.07314, 2023. doi: 10.48550/arXiv.2307.07314. URL
https://doi.org/10.48550/arXiv.2307.07314.

[19] D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–350, 1981.
doi: 10.1016/0022-0000(81)90036-2. URL https://doi.org/10.1016/0022-0000(81)
90036-2.

[20] N. D. Matsakis and F. S. K. II. The rust language. In M. Feldman and S. T. Taft, editors,
Proceedings of the 2014 ACM SIGAda annual conference on High integrity language technology,
HILT 2014, Portland, Oregon, USA, October 18-21, 2014, pages 103–104. ACM, 2014. doi:
10.1145/2663171.2663188. URL https://doi.org/10.1145/2663171.2663188.

[21] P. Narayanan, J. Carette, W. Romano, C. Shan, and R. Zinkov. Probabilistic inference by
program transformation in hakaru (system description). In O. Kiselyov and A. King, editors,
Functional and Logic Programming - 13th International Symposium, FLOPS 2016, Kochi,
Japan, March 4-6, 2016, Proceedings, volume 9613 of Lecture Notes in Computer Science,
pages 62–79. Springer, 2016. doi: 10.1007/978-3-319-29604-3_5. URL https://doi.org/
10.1007/978-3-319-29604-3_5.

[22] F. A. Saad, M. C. Rinard, and V. K. Mansinghka. SPPL: probabilistic programming with fast
exact symbolic inference. In S. N. Freund and E. Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 2021, pages 804–819. ACM, 2021. doi: 10.1145/3453483.3454078. URL
https://doi.org/10.1145/3453483.3454078.

[23] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in python using
pymc3. PeerJ Comput. Sci., 2:e55, 2016. doi: 10.7717/peerj-cs.55. URL https://doi.org/
10.7717/peerj-cs.55.

[24] D. Tolpin, J. van de Meent, and F. D. Wood. Probabilistic programming in anglican. In European
Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015,
volume 9286 of LNCS. Springer, 2015. doi: 10.1007/978-3-319-23461-8_36.

12

https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1007/978-1-4614-4708-5
https://proceedings.mlr.press/v216/harviainen23b.html
https://proceedings.mlr.press/v216/harviainen23b.html
https://doi.org/10.1145/3428208
https://doi.org/10.1007/978-3-030-68446-4_12
https://doi.org/10.1007/978-3-030-68446-4_12
https://doi.org/10.48550/arXiv.2307.07314
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1145/3453483.3454078
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55

[25] J. van de Meent, B. Paige, H. Yang, and F. Wood. An introduction to probabilistic programming.
CoRR, abs/1809.10756, 2018. URL http://arxiv.org/abs/1809.10756.

[26] K. Winner and D. Sheldon. Probabilistic inference with generating functions for poisson
latent variable models. In D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 2640–2648, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
6c1da886822c67822bcf3679d04369fa-Abstract.html.

[27] K. Winner, D. Sujono, and D. Sheldon. Exact inference for integer latent-variable models.
In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 3761–3770. PMLR, 2017. URL http:
//proceedings.mlr.press/v70/winner17a.html.

[28] H. Zhang, B. Juba, and G. V. den Broeck. Probabilistic generating circuits. In M. Meila and
T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learn-
ing Research, pages 12447–12457. PMLR, 2021. URL http://proceedings.mlr.press/
v139/zhang21i.html.

13

http://arxiv.org/abs/1809.10756
https://proceedings.neurips.cc/paper/2016/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
http://proceedings.mlr.press/v70/winner17a.html
http://proceedings.mlr.press/v70/winner17a.html
http://proceedings.mlr.press/v139/zhang21i.html
http://proceedings.mlr.press/v139/zhang21i.html

A Details on the Probabilistic Programming Language SGCL

A.1 A minimal grammar

A minimal grammar of SGCL looks like this:

P ::= skip | P1;P2 | Xk := a1X1 + · · ·+ anXn + c | ifXk ∈ A {P1} else {P2}
| fail | Xk ∼ D | Xk ∼ D(Xj)

where a1, . . . , an, c ∈ R≥0, p ∈ [0, 1] are literals, and A is a finite subset of N. The Xk for
k = 1, . . . , n are variables that can take on values in R≥0. To explain, skip leaves everything
unchanged, P1;P2 runs P1 and then P2, and Xk := a⊤X + c performs an affine transformation
where a ∈ Rn

≥0 and c ∈ R≥0 (to ensure that the support of Xk is a subset of R≥0). The if construct
allows branching based on comparisons of a variable Xk with constant natural numbers, with
the requirement that Xk be a discrete variable on N, and Xk ∼ D samples Xk from a primitive
distribution (with constant parameters)

D = {Bernoulli(p),Categorical(p0, . . . , pm),Binomial(m, p),Uniform{l..m},
NegBinomial(m, p),Geometric(p),Poisson(λ),

Exponential(α),Gamma(α, β),Uniform[a, b]

| p ∈ [0, 1], α, β ∈ R≥0, l,m ∈ N, a, b ∈ R≥0, a ≤ b}

whereas Xk ∼ D(Xj) samples Xk from a compound distribution (with a parameter that is again a
variable)

D(Xj) = {Binomial(Xj , p),NegBinomial(Xj , p),Poisson(λ ·Xj),Bernoulli(Xj)

| p ∈ [0, 1], j ∈ {1, . . . , n}, λ ∈ R≥0}.

A.2 Syntactic sugar

For convenience, we add some syntactic sugar, which is expanded as follows:

Xk += a⊤X + c⇝Xk := (a[k 7→ ak + 1])⊤X + c

Xk +∼D ⇝ Xn+1 ∼ D;Xk +=Xn+1 (Xn+1 fresh)
observeϕ⇝ if ϕ {skip} else {fail}

ifm ∼ D {P1} else {P2}⇝ Xn+1 ∼ D; ifXn+1 = m {P1} else {P2} (Xn+1 fresh)
ifXk = m {P1} else {P2}⇝ ifXk ∈ {m} {P1} else {P2}

if ¬ϕ {P1} else {P2}⇝ if ϕ {P2} else {P1}
if ϕ1 ∧ ϕ2 {P1} else {P2}⇝ if ϕ1 {if ϕ2 {P1} else {P2}} else {P2}
if ϕ1 ∨ ϕ2 {P1} else {P2}⇝ if ϕ1 {P1} else {if ϕ2 {P1} else {P2}}

A.3 Standard measure semantics

Notation and Conventions Throughout the text, we always assume that N carries the discrete σ-
algebra P(N) and R the Borel σ-algebra B(R). Products of these spaces (e.g. N×R) are endowed with
the product σ-algebra. In the following, we write x for (x1, . . . , xn) and use the update notation x[i 7→
a] to denote (x1, . . . , xi−1, a, xi+1, . . . , xn). In fact, we even write updates x[i1 7→ a1, . . . , ik 7→ ak],
which stands for x[i1 7→ a1] · · · [ik 7→ ak]. Finally, we write 1k for the k-tuple (1, . . . , 1) and
similarly for 0k. We write 0 for the zero measure or the constant zero function. We also use Iverson
brackets [ϕ] for a logical condition ϕ: [ϕ] is 1 if ϕ is satisfied and 0 otherwise. For example, the
indicator function 1S of a set S can be defined using Iverson brackets: 1S(x) = [x ∈ S]. For a
measure µ on Rn, we define µXk∈A(S) = µ({X ∈ S | Xk ∈ A}).

Standard transformer semantics The standard semantics for such a probabilistic program uses
distribution transformers [19]. Since our language includes conditioning, the distribution of program
states will not always be a probability distribution, but a subprobability distribution µ on Rn

≥0 for n
variables, i.e. a function µ : B(Rn

≥0) → [0, 1] with µ(Rn
≥0) ≤ 1. The semantics of a program P is

thus a measure transformer JP Kstd : Meas(Rk
≥0) → Meas(Rk

≥0). We assume that the initial measure

14

JskipKstd(µ) = µ

JP1;P2Kstd(µ) = JP2Kstd(JP1Kstd(µ))

JXk := a⊤X + cKstd(µ)(S) = µ({X ∈ Rn | X[k 7→ a⊤X + c] ∈ S})
JifXk ∈ A {P1} else {P2}Kstd(µ) = JP1Kstd(µXk∈A) + JP2Kstd(µ− µXk∈A)

where µXk∈A(S) = µ({X ∈ S | Xk ∈ A})

JXk ∼ DKstd(µ)(S) =
∫ ∫

[X[k 7→ Y] ∈ S] dD(Y) dµ(X)

JXk ∼ D(Xj)Kstd(µ)(S) =
∫ ∫

[X[k 7→ Y] ∈ S] dD(Xj)(Y) dµ(X)

JfailKstd(µ) = 0

normalize(µ) =
µ∫

dµ(X)

Figure 4: The standard measure semantics J−Kstd.

is the probability distribution where every variable Xk is 0 with probability 1, i.e. X ∼ Dirac(0n).
The semantics is shown in Fig. 4 where X is a vector of length n.

The first 5 rules were essentially given by [19], with slightly different notation and presentation.
Kozen defines some of the measures on rectangles (S = S1× · · ·×Sn) only, which uniquely extends
to a measure on all sets in the product σ-algebra. By contrast, we directly define the measure on all
sets in the σ-algebra using integrals.

We quickly explain the rules. The skip command does nothing, so the distribution µ of the program
is unchanged. Chaining commands P1;P2 has the effect of composing the corresponding trans-
formations of µ. Affine transformations of program variables yield a measure of S that is given
by the original measure of the preimage of the event S under the affine map. For conditionals
ifXk ∈ A {P1} else {P2}, we consider only outcomes satisfying Xk ∈ A in the first branch and
the complement in the second branch and then sum both possibilities. Sampling from distributions
Xk ∼ D is a bit more complicated. Note that µ(S) =

∫
[X ∈ S] dµ(X). To obtain the measure after

sampling Xk ∼ D, we care about the new state X[k 7→ Y] being in S, where Y has distribution D.
This is exactly expressed by the double integral. The rule for compound distributions Xk ∼ D(Xj)
is essentially the same as the one for distributions with constant parameters Xk ∼ D, except the
dependency on Xj needs to be respected.

The two new rules (not derivable from Kozen’s work) are for fail and the implicit normalization
normalize(µ) as a final step at the end of a program. The rule for fail departs from Kozen’s semantics
in the sense that it yields a subprobability distribution (i.e. the total mass can be less than 1).
Intuitively, fail “cuts off” or assigns the probability 0 to certain branches in the program. This is called
hard conditioning in the PPL literature. For example, ifX1 = 5 {skip} else {fail} has the effect of
conditioning on the event that X1 = 5 because all other scenarios are assigned probability 0.

The normalization construct corresponds to the division by the evidence in Bayes’ rule and scales
the subprobability distribution of a subprogram P back to a probability distribution. The semantics
is µ∫

dµ(X)
, so the distribution µ is scaled by the inverse of the total probability mass of µ, thus

normalizing it.

B Details on Generating Functions

An exhaustive list of the supported distributions and their generating functions can be found in
Tables 4a and 4b.

15

(a) GFs for common distributions

Distribution D gf(X ∼ D)(x)

Dirac(a) xa

Bernoulli(p) px+ 1− p
Categorical(p0, . . . , pn)

∑n
i=0 pix

i

Binomial(n, p) (px+ 1− p)n

Uniform{a..b} xa−xb+1

(b−a+1)(1−x)

NegBinomial(r, p)
(

p
1−(1−p)x

)r

Geometric(p) p
1−(1−p)x

Poisson(λ) eλ(x−1)

Exponential(λ) λ
λ−log x

Gamma(α, β)
(

β
β−log x

)α

Uniform[a, b]

{
xb−xa

(b−a) log x
x ̸= 1

1 x = 1

(b) GFs for common compound distributions

Distribution D(Y) gf(X ∼ D(Y))(x)

Binomial(Y, p) gf(Y)(1− p+ px)

NegBinomial(Y, p) gf(Y)
(

p
1−(1−p)x

)
Poisson(λ · Y) gf(Y)(eλ(x−1))
Bernoulli(Y) 1 + (x− 1) · (gf(Y))′(1)

JskipKgf(G) = G

JP1;P2Kgf(G) = JP2Kgf(JP1Kgf(G))

JXk := a⊤X + cKgf(G)(x) = xc
k ·G(x′)

where x′
k := xak

k and x′
i := xix

ai

k for i ̸= k

JifXk ∈ A {P1} else {P2}Kgf(G) = JP1Kgf(GXk∈A) + JP2Kgf(G−GXk∈A)

where GXk∈A(x) =
∑
i∈A

∂i
kG(x[k 7→ 0])

i!
xi
k and A ⊂ N finite

ifXk has support in N
JXk ∼ DKgf(G)(x) = G(x[k 7→ 1])gf(D)(xk)

JXk ∼ D(Xj)Kgf(G)(x) = G(x[k 7→ 1, j 7→ xj · gf(D(1))(xk)])

for D ∈ {Binomial(−, p),NegBinomial(−, p),Poisson(λ · −)}
JXk ∼ Bernoulli(Xj)Kgf(G)(x) = G(x[k 7→ 1]) + xj(xk − 1) · ∂jG(x[k 7→ 1])

if Xj has support in [0, 1]

JfailKgf(G) = 0

normalize(G) =
G

G(1n)

Figure 5: The generating function (GF) semantics J−Kgf .

16

B.1 Generating function semantics

The full generating function semantics can be found in Fig. 5. The first five rules in Fig. 5 were
presented in [17, 4]. The GF for sampling from Binomial(Xj , p) was first given in [26]. Chen et al. [4]
also implicitly describe the GF semantics of sampling from Binomial(Xj , p) and NegBinomial(Xj , p)
by expressing it as summing Xj iid samples from Bernoulli(p) and Geometric(p), respectively.

Let us discuss each rule in detail. The skip command leaves the distribution and hence the generating
function unchanged. Chaining commands P1;P2 is again achieved by composing the individual
transformers for each command. To obtain some intuition for the affine transformation case Xk :=
a⊤X+ c, suppose we only have 2 variables: X1 := 2X1+3X2+5. The idea is that the transformed
generating function is given by JX1 := 2X1 + 3X2 + 5Kgf(G)(x) = E[x2X1+3X2+5

1 xX2
2] =

x5
1E[(x2

1)
X1(x3

1x2)
X2] = x5

1 ·G(x2
1, x

3
1x2).

The semantics of ifXk ∈ A {P1} else {P2} uses GXk∈A. If G is the generating function for a mea-
sure µ then GXk∈A is the generating function for the measure µXk∈A(S) := µ({x ∈ S | xk ∈ A}).
To get intuition for this, remember that for discrete variables X1, X2, we have G(x1, x2) =∑

X1,X2
µ({(X1, X2)}) ·xX1

1 xX2
2 . If we want to obtain the generating function for X1 = 5, we want

to keep only terms where x1 has exponent 5. In other words, we need the Taylor coefficient ∂5
1G(0,x2)

5! .
This should give some intuition for GXk∈A. The semantics of ifXk ∈ A {P1} else {P2} transforms
GXk∈A in the then-branch and the complement G−GXk∈A in the else branch, summing the two
possibilities.

For sampling, say X1 ∼ D, we first marginalize out the old X1 by substituting 1 for x1 in G:
E[xX2

2] = E[1X1xX2
2] = G(1, x2). Then we multiply with the GF of the new distribution D. The

rules for compound distributions D(Xj) are more involved, so we offer the following intuition.

For the compound distributions D(n) = Binomial(n, p),NegBinomial(n, p),Poisson(λ·n), we make
essential use of their property that gf(D(n))(x) = (gf(D(1))(x))n. So if G(x) := E[xX] is the
GF of X and Y ∼ D(X), then EX,Y [x

XyY] = EX [xXEY∼D(X)[y
Y]] = EX [xXgf(D(X))(y)] =

EX [xX(gf(D(1))(y))X] = E[(x · gf(D(1))(y))X] = G(x · gf(D(1))(y)). This is not a fully formal
argument, but it should give some intuition for the rule.

For D(p) = Bernoulli(p), the intuition is that if G(x) := E[xX] is the GF of X and if Y ∼
Bernoulli(X), then H(x, y) = E[xXyY] = E[xX((1−X)y0 +Xy1)] = E[xX − (y − 1)XxX] =
G(x)− (y − 1)xG′(x).

The GF semantics of fail is the zero function because its distribution is zero everywhere. For
normalization, note that substituting 1n in the generating function computes the marginal probabilities,
similarly to the substitution of 1 in the semantics of sampling. It scales the GF of the subprogram P
by the inverse of the normalizing constant obtained by that substitution.

We hope these explanations give some intuition for the GF semantics, but of course, proof is required.

B.2 Correctness proof

For the correctness proof, we need to describe the set of x ∈ Rn where the generating function is
defined. For R > 0 and a measure µ on Rn

≥0, define it to be the product of open intervals

T (R,µ) := (Q1, R)× · · · × (Qn, R)

where Qi = −R if the i-th component of µ is supported on N (i.e. µ(S) = µ({X ∈ S | Xi ∈ N})
for any measurable S) and Qi = 0 otherwise. The case split is necessary because the generating
functions are better-behaved, and thus have a larger domain, if the measure is supported on N. In fact,
it is important that xi = 0 is possible in the N-case because otherwise we would not be able to extract
probability masses from the GF.
Theorem B.1 (Correctness). The GF semantics is correct w.r.t. the standard semantics J−Kstd: for any
SGCL program P and subprobability distribution µ on Rn

≥0, we have JP Kgf(gf(µ)) = gf(JP Kstd(µ)).
In particular, it correctly computes the GF of the posterior distribution of P as normalize(JP Kgf(1)).

If gf(µ) is defined on T (R,µ) for some R > 1 then JP Kgf(gf(µ)) is defined on T (R′, JP Kstd(µ))
for some R′ > 1. In particular, the GFs JP Kgf(1) and thus normalize(JP Kgf(1)) are defined on
T (R, JP Kstd(µ)) for some R > 1.

17

Proof. As usual for such statements, we prove this by induction on the structure of the program. The
program P can take one of the following forms:

Skip. For the trivial program, we have JP Kgf(G) = G and JP Kstd(µ) = µ, so the claim is trivial.

Chaining. If P is P1;P2, we know by the inductive hypothesis that JP1Kgf(gf(µ)) = gf(JP1Kstd(µ))
and similarly for P2. Taking this together, we find by the definitions of the semantics:

JP1;P2Kgf(gf(µ)) = JP2Kgf(JP1Kgf(gf(µ))) = JP2Kgf(gf(JP1Kstd(µ)))
= gf(JP2Kstd(JP1Kstd(µ))) = gf(JP1;P2Kstd(µ)).

The claim about the domain of JP Kgf(G) follows directly from the inductive hypotheses.

Affine assignments. If P is Xk := a⊤X + c, we have JP Kstd(µ)(S) = µ({X ∈ Rn | X[k 7→
a⊤X + c] ∈ S}) and thus

gf(JP Kstd(µ))(x) =
∫

xX d(JP Kstd(µ))(X)

=

∫
xX1
1 · · ·xXk−1

k−1 xa1X1+···+anXn+c
k x

Xk+1

k+1 · · ·xXn
n dµ(X1, . . . , Xn)

= xc
k ·
∫
(x1x

a1

k)X1 · · · (xk−1x
ak−1

k)Xk−1(xak

k)Xk ·

(xk+1x
ak+1

k)Xk+1 · · · (xnx
an

k)Xn dµ(X)

= xc
k · gf(µ)(x1x

a1

k , . . . , xk−1x
ak−1

k , xak

k , xk+1x
ak+1

k , . . . , xnx
an

k)

= JP Kgf(gf(µ))(x)

The claim that it is defined on some T (R′, JP Kstd(µ)) holds if we choose R′ =

min(
√
R,minni=1

2ai
√
R) > 1 because then |xix

ai

k | <
√
R(2ai

√
R)ai ≤ R for i ̸= k and

|xak

k | < (2ak
√
R)ak ≤

√
R ≤ R.

Conditionals. If P is ifXk ∈ A {P1} else {P2}, the GF semantics defines (gf(µ))Xk∈A, which is
the same as gf(µXk∈A) by Lemma B.2. Using this fact, the linearity of gf(−), and the induction
hypothesis, we find

gf(JP Kstd(µ)) = gf(JP1Kstd(µXk∈A)) + gf(JP2Kstd(µ− µXk∈A))

= JP1Kgf(gf(µXk∈A)) + JP2Kgf(gf(µ)− gf(µXk∈A))

= JP1Kgf((gf(µ))Xk∈A) + JP2Kgf(gf(µ)− (gf(µ))Xk∈A)

= JP Kgf(gf(µ))

Also by Lemma B.2, we know that (gf(µ))Xk∈A (and thus (gf(µ) − (gf(µ))Xk∈A)) is defined on
T (R,µ), so by the induction hypothesis, both JP1Kgf((gf(µ))Xk∈A) and JP2Kgf(gf(µ)−gf(µXk∈A))
are defined on some T (R′). Hence the same holds for JP Kgf(gf(µ)).

Sampling. If P is Xk ∼ D, we find:

gf(JP Kstd(µ))(x) =
∫

xX d(JP Kstd(µ))(X)

=

∫ ∫
xX[k 7→Y] dD(Y) dµ(X)

=

∫
(x[k 7→ 1])X

∫
xY
k dD(Y) dµ(X)

=

∫
(x[k 7→ 1])X dµ(X) ·

∫
xY
k dD(Y)

= gf(µ)(x[k 7→ 1])gf(D)(xk)

= JP Kgf(gf(µ))(x)

Regarding the domain of JP Kgf(gf(µ)), note that gf(D) is defined on all of R for any finite distri-
bution and for the Poisson distribution (cf. Table 4a). For D ∈ {Geometric(p),NegBinomial(n, p)},
the GF gf(D) is defined on (− 1

1−p ,
1

1−p), so we can pick R′ := min(R, 1
1−p) > 1. The GF of

18

Exponential(λ) is defined for log x < λ, i.e. x < exp(λ), so we can pick R′ := min(R, eλ) > 1. The
GF of Gamma(α, β) is defined for log x < β, i.e. x < exp(β), so we can pick R′ := min(R, eβ) > 1.
The GF of Uniform[a, b] is defined on R, so R′ := R works.

Compound distributions. If P is Xk ∼ D(Xj), we use the fact that gf(D(n))(x) =
(gf(D(1))(x))n for D(n) ∈ {Binomial(n, p),NegBinomial(n, p),Poisson(λ · n)}, which can easily
be checked by looking at their generating functions (cf. Table 4b).

gf(JP Kstd(µ))(x) =
∫

xX d(JP Kstd(µ))(X)

=

∫ ∫
xX[k 7→Y] dD(Xj)(Y) dµ(X)

=

∫
(x[k 7→ 1])X

∫
xY
k dD(Xj)(Y) dµ(X)

=

∫
(x[k 7→ 1])Xgf(D(Xj))(xk) dµ(X)

=

∫
(x[k 7→ 1])X(gf(D(1))(xk))

Xj dµ(X)

=

∫
(x[k 7→ 1, j 7→ xj · gf(D(1))(xk)])

X dµ(X)

= gf(µ)(x[k 7→ 1, j 7→ xj · gf(D(1))(xk)])

= JP Kgf(gf(µ))(x)

Regarding the domain of JP Kgf(gf(µ)), we have to ensure that |xj · gf(D(1))(xk)| < R. For the
Binomial(1, p) distribution, we choose R′ =

√
R > 1 such that |xj ||1 − p + pxk| <

√
R(1 −

p + p
√
R) ≤

√
R((1 − p)

√
R + p

√
R) < R. For the NegBinomial(1) distribution, we choose

R′ = min(
√
R,

√
R−p√

R(1−p)
) = min(

√
R, 1 + p(

√
R−1)√

R−p
√
R
) > 1 because for any x ∈ (−R′, R), we have∣∣∣∣ p

1− (1− p)xj

∣∣∣∣ < p

1− (1− p)R′ ≤
p

1−
√
R−p√
R

=
p
√
R

p
=

√
R

and thus
∣∣∣xj

p
1−(1−p)xk

∣∣∣ < R. For the Poisson(λ) distribution, we choose R′ = min(
√
R, 1 +

log(R)
2λ) > 1 because then |xj · exp(λ(xk − 1))| <

√
R exp(λ log(R)

2λ) = R.

For the Bernoulli distribution D(Xj) = Bernoulli(Xj), we reason as follows:

gf(JP Kstd(µ))(x) = · · · =
∫
(x[k 7→ 1])Xgf(D(Xj))(xk) dµ(X)

=

∫
(x[k 7→ 1])X(1 +Xj(xk − 1)) dµ(X)

=

∫
(x[k 7→ 1])X dµ(X) + (xk − 1) ·

∫
Xj(x[k 7→ 1])X dµ(X)

= gf(µ)(x[k 7→ 1]) + (xk − 1) ·
∫

xj · ∂j(x[k 7→ 1])X dµ(X)

= gf(µ)(x[k 7→ 1]) + xj(xk − 1) · ∂j
∫

(x[k 7→ 1])X dµ(X)

= gf(µ)(x[k 7→ 1]) + xj(xk − 1) · ∂jgf(µ)(x[k 7→ 1])

= JP Kgf(gf(µ))(x)

Note that the interchange of integral and differentiation is allowed by Lemma B.3. It also implies that
JP Kgf(gf(µ))(x) is defined for xj ∈ (0, R) by Lemma B.3.

Fail. If P is fail, then JP Kstd(µ) is the zero measure and JP Kgf(gf(µ)) is the zero function, so the
claim holds trivially. This GF is clearly defined everywhere.

19

Normalization. For normalization, we make use of the linearity of gf(−).

gf(normalize(µ)) = gf

(
µ∫

dµ(X)

)
=

gf(µ)∫
dµ(X)

=
gf(µ)∫

1X1 · · · 1Xn dµ(X)

=
gf(µ)

gf(µ)(1n)

= normalize(gf(µ))

Furthermore, if gf(µ) is defined on T (R,µ), then so is normalize(gf(µ)) on T (R, normalize(µ)) =
T (R,µ).

This finishes the induction and proves the claim.

Lemma B.2. Let A ⊂ N be a finite set. Let µ be a measure on Rn such that its k-th component
is supported on N, i.e. µ(S) = µ({X ∈ S | Xk ∈ N}) for all measurable S ⊆ R≥0. Define
µXk∈A(S) := µ({X ∈ S | Xk ∈ A}). Let G := gf(µ). Then

gf(µXk∈A)(x) = GXk∈A(x) :=
∑
i∈A

∂i
kG(x[k 7→ 0])

i!
· xi

k

Furthermore, if G is defined on T (R,µ) then so is GXk∈A on T (R,µXk∈A) = T (R,µ).

Proof. Since µXk∈A =
∑

i∈A µXk=i where we write µXk=i := µXk∈{i}, we have:

gf(µXk=i)(x) =

∫
xX dµXk=i(X)

=

∫
xX1
1 · · ·xXk−1

k−1 · xXk

k · xXk+1

k+1 · · ·xXn
n · [Xk = i] dµ(X)

= xi
k

∫
xX1
1 · · ·xXk−1

k−1 · xXk+1

k+1 · · ·xXn
n ·

(
1

i!

∂ixXk

k

∂xi
k

∣∣∣∣∣
xk=0

)
dµ(X)

The reason for the last step is that for the function f(x) = xl, we have

f (i)(x) =

{
0 if l < i

xl−i ·
∏l

j=l−i+1 j if l ≥ i

Since 0l−i is 0 for l > i and 1 for l = i, we find that f (i)(0) = [i = l] · i!. Above, we used this fact
with l = Xk and x = xk. We continue:

· · · = xi
k

∫
1

i!

(
xX1
1 · · ·xXk−1

k−1 ·
∂ixXk

k

∂xi
k

· xXk+1

k+1 · · ·xXn
n

)∣∣∣∣∣
xk=0

dµ(X)

=

∫
∂i

∂xi
k

xX dµ(X)

∣∣∣∣
xk=0

· x
i
k

i!

=
∂i

∂xi
k

∫
xX dµ(X)

∣∣∣∣
xk=0

· x
i
k

i!

= ∂i
kG(x[k 7→ 0]) · x

i
k

i!

as desired. Note that the integral and differentiation operators can be interchanged by Lemma B.3.

20

Lemma B.3. If the integral
∫
xX dµ(X) for a measure µ on Rn

≥0 is defined for all x ∈ T (R,µ),
we have

∂i1 · · · ∂im
∫

xX dµ(X) =

∫
∂i1 · · · ∂imxX dµ(X)

and both sides are defined for all x ∈ T (R,µ).

Furthermore, the right-hand side has the form
∫
p(X)xX−w dµ(X) for a polynomial p in n vari-

ables and w ∈ Nn, with the property that p(X) = 0 whenever Xj < wj for some j, in which case
we define p(X)xX−w := 0, even if xX−w is undefined.

Proof. The proof is by induction on m. If m = 0 then the statement is trivial. For the induction step
m > 0, we may assume that

∂i2 · · · ∂im
∫

xX dµ(X) =

∫
∂i2 · · · ∂imxX dµ(X) =

∫
p(X)xX−w dµ(X)

By Lemma B.4, we reason

∂i1 · · · ∂im
∫

xX dµ(X) = ∂i1

∫
p(X)xX−w dµ(X)

=

∫
(Xi1 − wi1)p(X)xX−w[i1 7→wi1+1] dµ(X)

=

∫
∂i1 · · · ∂imxX dµ(X)

which establishes the induction goal with the polynomial p̃(X) := (Xi1 − wi1)p(X) and w̃ :=
w[i1 7→ wi1 +1]. The property p̃(X) = 0 whenever Xj < w̃j for some j still holds due to the added
factor (Xi1 − wi1) taking care of the case Xi1 = wi1 = w̃i1 − 1.

Lemma B.4. Let w ∈ Nn, p be a polynomial in n variables, and µ a measure on Rn
≥0. We define

p(X)xX−w := 0 whenever p(X) = 0, even if xj ≤ 0 and Xj < wj for some j. Suppose
p(X)xX−w is defined µ-almost everywhere and µ-integrable for all x ∈ T (R,µ). Then

∂

∂xi

∫
p(X)xX−w dµ(X) =

∫
∂

∂xi
p(X)xX−w dµ(X)

=

∫
(Xi − wi)p(X)xX−w[i 7→wi+1] dµ(X)

holds and is defined for all x ∈ T (R,µ).

Proof. The proof is about verifying the conditions of the Leibniz integral rule. The nontrivial
condition is the boundedness of the derivative by an integrable function. The proof splits into two
parts, depending on whether the i-th component of µ is supported on N. If it is, then xi ∈ (−R,R) by
the definition of T (R,µ) and can be nonpositive, but Xi − wi < 0 and p(X) ̸= 0 happens µ-almost
never. Otherwise, we have x ∈ (0, R) and it is thus guaranteed to be positive, but Xi − wi may be
negative. Hence the two cases need slightly different treatment.

We first deal with the case that the i-th component is not supported on N. Let 0 < ϵ < R′ < R′′ < R.
We first prove ∂

∂xi

∫
p(X)xX dµ(X) =

∫
∂

∂xi
p(X)xX dµ(X) for any xi ∈ (ϵ, R′), using the

Leibniz integral rule. For this purpose, we need to bound the derivative:∣∣∣∣ ∂

∂xi
p(X)xX−w

∣∣∣∣ ≤ |(Xi − wi)p(X)|xX−w[i 7→wi+1] ≤ 1

xi
|Xi − wi||p(X)|xX−w

≤ 1

ϵ
|Xi − wi||p(X)|xX−w

If Xi > wi, we can choose M > 1 sufficiently large such that |Xi − wi|xXi−wi
i ≤ (Xi −

wi)R
′Xi−wi ≤ R′′Xi−wi whenever |Xi −wi| > M . (Such an M can be found because the exponen-

tial function y 7→
(

R′′

R′

)y
grows more quickly than the linear function y 7→ y.) If Xi − wi ≤ M

21

then we also have |Xi − wi|xXi−wi
i ≤ M · R′′Xi−wi . So the derivative is thus bounded on the set

{X | Xi > wi} by M
ϵ · |p(X)|(x[i 7→ R′′])X−w, which is integrable by assumption.

On the complement set {X | 0 ≤ Xi ≤ wi}, we find |Xi − wi|xXi−wi
i ≤ |Xi − wi|ϵXi−wi ≤

wiϵ
Xi−wi . Hence the derivative is bounded by wi

ϵ · |p(X)|(x[i 7→ ϵ])X−w, which is again integrable
by assumption. So the derivative is bounded by an integrable function and thus, by the Leibniz
integral rule, interchanging differentiation and the integral is valid for all xi ∈ (ϵ, R′) and thus for all
xi ∈ (0, R).

Next, consider the case that the i-th component of µ is supported on N. Let 0 < R′ < R′′ < R.
Note that the set {X | Xi < wi ∧ p(X) ̸= 0} has measure zero because otherwise the integrand
p(X)xX−w would not be defined for xi ≤ 0 due to the negative exponent Xi − wi. Hence, for
µ-almost all X , we have p(X) = [X ≥ w]p(X) and can bound the partial derivative for |xi| < R′:∣∣∣∣ ∂

∂xi
p(X)xX−w

∣∣∣∣ ≤ |(Xi − wi)p(X)||x|X−w[i 7→wi+1]

≤ [X ≥ w]|Xi − wi||p(X)||x|X−w[i 7→wi+1]

≤ [X ≥ w[i 7→ wi + 1]]|Xi − wi||p(X)||x|X−w[i 7→wi+1]

≤ [X ≥ w[i 7→ wi + 1]]|Xi − wi||p(X)||x[i 7→ R′]|X−w[i 7→wi+1]

≤ [X ≥ w]|Xi − wi||p(X)||x[i 7→ R′]|X−w

because the factor |Xi − wi| vanishes for Xi = wi and thus ensures that negative values for the
exponent X −w[i 7→ wi + 1] don’t matter, so that we can use the monotonicity of |x|X−w[i7→wi+1]

in |x|.
Similarly to the first case, for a sufficiently large M > max(1, wi), we have |Xi − wi|R′Xi−wi ≤
R′′Xi−wi whenever Xi − wi > M . If Xi − wi ≤ M then [X ≥ w]|Xi − wi| ≤ M and
we also have [X ≥ w]|Xi − wi|R′Xi−wi ≤ M · R′′Xi−wi . The derivative is thus bounded by
M · |p(X)||x[i 7→ R′′]|X−w, which is integrable by assumption. By the Leibniz integral rule,
interchanging differentiation and the integral is valid for all xi ∈ (−R′, R′) and thus for all
xi ∈ (−R,R).

Remark B.1. As an example of what can go wrong with derivatives at zero if the measure is
not supported on N, consider the Dirac measure µ = Dirac(12). It has the generating function
G(x) := gf(µ)(x) =

√
x defined for x ∈ R≥0. Its derivative is G′(x) := 1

2
√
x

, which is not defined
for x = 0.

B.3 Possible extensions to the probabilistic programming language

The syntax of our language guarantees that the generating function of the distribution of any proba-
bilistic program admits a closed form. But are the syntactic restrictions necessary or are there other
useful programming constructs that can be supported? We believe the following constructs preserve
closed forms of the generating function and could thus be supported:

• Additional distributions with constant parameters: any such distribution could be supported as
long as its GF is defined on [0, 1 + ϵ) for some ϵ > 0 and its derivatives can be evaluated.

• Additional compound distributions: we spent a lot of time trying to find additional compound dis-
tributions with a closed-form GF since this would be the most useful for probabilistic models, but
we were largely unsuccessful. The only such distributions we found are Binomial(m,Xk), which
could just be written as a sum of m iid Bernoulli(Xk)-variables, and Gamma(Xk, β) with shape
parameter Xk, which could be translated to a GF with the same idea as for Binomial(Xk, p),
NegBinomial(Xk, p), and Poisson(λ ·Xk).

• Modulo, subtraction, iid sums: The event Xk mod 2 = 0, and the statements Xk := max(Xk−
m, 0) (a form of subtraction that ensures nonnegativity), and Xk := sum_iid(D,Xl) (i.e. Xk is
assigned the sum of Xl independent random variables with distribution D) can also be supported
as shown in [4, 18].

• Nonlinear functions on variables with finite support: if a variable has finite support, arbitrary
functions on it could be performed by exhaustively testing all values in its domain.

22

• Soft conditioning: another supportable construct could be score aXk for a ∈ [0, 1], which
multiplies the likelihood of the current path by aXk . We think score q(Xk) where q(t) :=∑m

i=0 qit
i is a polynomial with coefficients qi ∈ [0, 1] and with q ≤ 1 on the domain of Xk

could also be supportable using similar techniques as for observations from Bernoulli(Xk).

None of these extensions seemed very useful for real-world models, in particular, they are not needed
for our benchmarks. For this reason we did not formalize, implement, or prove them.

Support for loops is another big question. Bounded loops are easy enough to deal with by fully
unrolling them. However exact inference for programs with unbounded loops seems extremely
difficult, unless the inference algorithm is given additional information, e.g. a probabilistic loop
invariant as in [4] or at least a loop invariant template with a few holes to be filled with real constants
[18]. However, finding such a loop invariant for nontrivial programs seems exceedingly difficult.
Furthermore, the variables of looping programs may have infinite expected values, so the generating
function may not be definable at the point 1. But in our semantics, evaluating at 1 is very important for
marginalization. For these reasons, we consider exact inference in the presence of loops an interesting
but very hard research problem.

C Details on implementation and optimizations

Overview Our tool takes an SGCL program P with n variables as input, and a variable Xi

whose posterior distribution is to be computed. It translates it to the GF JP Kgf(1) according to
the GF semantics and normalizes it: G := normalize(JP Kgf(1)). This G is the GF of the posterior
distribution of the program, from which it extracts the posterior moments of Xi and its probability
masses (if Xi is discrete).

Computation of moments First, it computes the first four (raw) posterior moments from the
factorial moments, which are obtained by differentiation of G:

M1 := E[Xi] = ∂iG(1n)

M2 := E[X2
i] = E[(Xi)(Xi − 1)] + E[Xi] = ∂2

i G(1n) + ∂iG(1n)

M3 := E[X3
i] = E[Xi(Xi − 1)(Xi − 2)] + 3E[Xi(Xi − 1)] + E[Xi]

= ∂3
i G(1n) + 3∂2

i G(1n) + ∂iG(1n)

M4 := E[X4
i] = E[Xi(Xi − 1)(Xi − 2)(Xi − 3)] + 6E[Xi(Xi − 1)(Xi − 2)]

+ 7E[Xi(Xi − 1)] + E[Xi]

= ∂4
i G(1n) + 6∂3

i G(1n) + 7∂2
i G(1n) + ∂iG(1n)

From the raw moments, it computes the first four (centered/standardized) moments, i.e. the expected
value (µ := E[Xi]), the variance (σ2 := V[Xi]), the skewness (E[(Xi − µ)3]/σ3) and the kurtosis
(E[(Xi − µ)4]/σ4):

µ := E[Xi] = M1

σ2 := V[Xi] = E[(Xi − µ)2] = E[X2
i]− 2µE[Xi] + µ2 = M2 − µ2

Skew[Xi] =
E[(Xi − µ)3]

σ3
=

E[X3
i]− 3µE[X2

i] + 3µ2E[Xi]− µ3

σ3

=
M3 − 3µM2 + 2µ3

σ3

Kurt[Xi] =
E[(Xi − µ)4]

σ4
=

E[X4
i]− 4µE[X3

i] + 6µ2E[X2
i]− 4µ3E[Xi] + µ4

σ4

=
M4 − 4µM3 + 6µ2M2 − 3µ4

σ4

Computation of probability masses If Xi is a discrete variable, the tool computes all the prob-
ability masses P[Xi = m] until the value of m such that the tail probabilities are guaranteed
to be below a certain threshold, which is set to P[Xi ≥ m] ≤ 1

256 . This is achieved by setting

23

m := µ+ 4 4
√
E[(Xi − µ)4] where µ := E[Xi]. Then we find

P[Xi ≥ m] ≤ P
[
|Xi − µ| ≥ 4 4

√
E[(Xi − µ)4]

]
= P

[
(X − µ)4 ≥ 256E[(Xi − µ)4]

]
≤ 1

256

by Markov’s inequality. Note that in practice, the tail probabilities are typically much smaller than
1

256 , usually in the order of 10−5. For all k ∈ {0, . . . ,m}, the tool computes the posterior probability
P[Xi = k] by marginalizing out all the other variables (substituting 1 for them) and computing the
Taylor coefficient at xi = 0:

P[Xi = k] =
1

k!
∂k
i G(1n[i 7→ 0]).

It would be desirable to compute posterior densities for continuous distributions as well. In fact, there
are mathematical ways of recovering the probability density function from a generating function
via an inverse Laplace transform. However, this cannot be automated in practice because it requires
solving integrals, which is intractable.

Implementation details Our tool Genfer is implemented in Rust [20], a safe systems programming
language. The main reasons were low-level control and performance: the operations on the Taylor
polynomials to evaluate derivatives of the generating function need to be fast and are optimized to
exploit the structure of GFs arising from probabilistic programs (see Appendix C.3). C or C++ would
have satisfied the performance criterion as well, but Rust’s language features like memory safety,
enums (tagged unions), and pattern matching made the implementation a lot more pleasant, robust,
and easier to maintain. The first author’s experience with Rust was another contributing factor.

The coefficients of the Taylor polynomials are stored in a multidimensional array provided by the
ndarray library4. Arbitrary-precision floating-point numbers and unbounded rational numbers are
provided by the rug library5, which is an interface to the GNU libraries GMP (for rationals) and
MPFR (for floats). Our implementation is available on GitHub: github.com/fzaiser/genfer

C.1 Automatic differentiation and Taylor polynomials

The main difficulty in implementing the GF semantics is the computation of the (partial) derivatives.
This seems to be a unique situation where we want to compute d-th derivatives where d is in the
order of hundreds. The reason is that the observeXk = d construct is translated into a d-th (partial)
derivative and if d is a real-world observation, it can be large. We have not come across another
application of automatic differentiation that required derivatives of a total order of more than 10.

As a consequence, when we tried PyTorch, a mature machine learning library implementing automatic
differentiation, the performance for derivatives of high order was very poor. Therefore, we decided
to implement our own automatic differentiation framework. Our approach is to compute the Taylor
expansion in all variables up to some order d of the generating function instead of a symbolic expres-
sion of the d-th derivative. This has the advantage of growing polynomially in d, not exponentially.
Contrary to [27], it is advantageous to use Taylor coefficients instead of the partial derivatives because
the additional factorial factors are can easily lead to overflows.

Taylor polynomials More formally, we define the Taylor polynomial Taylordw(G) of a function
G : Rn → R at w ∈ Rn of order d as the polynomial

Taylordw(G) :=
∑

α∈Nn:|α|≤d

1

α!
∂αG(w) · (x−w)α

where we used multi-index notation: |α| stands for α1 + · · · + αn; α! for α1! · · ·αn!; and ∂α for
∂α1
1 . . . ∂αn

n . The coefficients cα := 1
α!∂

αG(w) are the Taylor coefficients of G at w and are stored
in a multidimensional array in our implementation.

4https://crates.io/crates/ndarray
5https://crates.io/crates/rug

24

https://github.com/fzaiser/genfer/
https://crates.io/crates/ndarray
https://crates.io/crates/rug

Operations The operations on generating functions (Appendix B) are implemented in terms of
their effect on the Taylor expansions. Let G,H : Rn → R be two functions with Taylor expansions
Taylordw(G) =

∑
|α|≤d gα(x − w)α and Taylordw(H) =

∑
|α|≤d hα(x − w)α. Addition F =

G+H of two generating functions is implemented by adding the coefficients: Taylordw(G+H) =∑
|α|≤d(gα + hα)(x −w)α. Scalar multiplication F = c · G is implemented by multiplying the

coefficients: Taylordw(c ·G) =
∑

|α|≤d(c ·gα)(x−w)α. Multiplication F = G ·H of two generating
functions is implemented by the Cauchy product:

Taylordw(G ·H) =
∑
|α|≤d

(∑
α1+α2=α

gα1hα2

)
(x−w)α.

Division, exponentiation, logarithms, and powers can be implemented as well (see [13, Chapter 13]
for details). Partial derivatives essentially correspond to shifting the index and a multiplication:

Taylord−1
w (∂kG) =

∑
|α|≤d−1

(αk + 1)gα[k 7→αk+1]x
α

The most complicated case is composition/substitution, i.e. F (x) = G(x[k 7→ H(x)]). For this,
we let w′ := w[k 7→ h0] where Taylordw(H) =

∑
|β|≤d hβ(x − w)β and we let Taylordw′(G) =∑

|α|≤d gα(x−w′)α. Then we have (where “h.o.t.” stands for “higher order terms”)

G(x[k 7→ H(x)]) = G
(
x
[
k 7→

∑
|β|≤d hβ(x−w)β + h.o.t.

])
=
∑
|α|≤d

gα

(
x
[
k 7→ h0 +

∑
1≤|β|≤d hα(x−w)β + h.o.t.

]
−w′

)α
+ h.o.t.

=
∑
|α|≤d

gα

(
(x−w)

[
k 7→

∑
1≤|β|≤d hα(x−w)β

])α
+ h.o.t.

because by definition x[k 7→ h0]−w′ = (x−w)[k 7→ 0]. This means that we can obtain Taylordw(F)

by substituting
∑

1≤|β|≤d hα(x−w)β for xk − w′
k in Taylordw′(G).

Example C.1 (Calculations with Taylor polynomials). Here we show how the expectation for
Example 2.1 can be computed using Taylor polynomials. We use the same naming as in Example 3.1.
Recall that to compute E[X], we need to evaluate ∂1E(1, 1), so we compute the Taylor expansion
of E at (1, 1) of order 1, i.e. Taylor1(1,1)(E). To compute E(x, y) = D(x,y)

D(1,1) , we need D(x, y), so

we need Taylor1(1,1)(D). For D(x, y) = 1
2!y

2∂2
yC(x, 0), we need the Taylor expansion of C at (1, 0)

of order 1 + 2 = 3. For C(x, y) = B(x(0.1y + 0.9), 1), we need the Taylor expansion of B at
(1(0.1 · 0 + 0.9), 1) = (0.9, 1) of order 3. Since B(x, y) = exp(20(x− 1)) = exp(20((x− 0.9)−
0.1)) = exp(20(x− 0.9)− 2), this Taylor expansion is

Taylor3(0.9,1)(B) = e−2 + 20e−2 · (x− 0.9) + 200e−2 · (x− 0.9)2 +
4000

3
e−2(x− 0.9)3.

Since C(1 + (x − 1), 0 + y) = B((1 + (x − 1))(0.1y + 0.9), 1) = B(0.9 + 0.9(x − 1) + 0.1y +
0.1(x− 1)y, 1), the Taylor expansion of C at (1, 0) is given by replacing (x− 0.9) with 0.9(x− 1)+
0.1y + 0.1(x− 1)y and we get

Taylor3(1,0)(C) = e−2
(
1 + 2y + 2y2 +

4

3
y3 + 18(x− 1) + 38(x− 1)y + 40(x− 1)y2

+ 162(x− 1)2 + 360(x− 1)2y + 972(x− 1)3
)

For D(x, y) = 1
2!y

2∂2
yC(x, 0), we compute the second partial derivative wrt. y, substitute y = 0 and

then multiply by y2 = (1 + (y − 1))2, yielding

D(x, y) =
1

2!
y2e−2 (4 + 8y + 80(x− 1) + higher order terms)|y=0

= e−2(4 + 80(x− 1) + higher order terms)(1 + (y − 1))2

= e−2(4 + 80(x− 1) + 8(y − 1) + higher order terms)

As a consequence, we find that D(1, 1) = 4e−2, so Taylor1(1,1)(E) = 1 + 20(x− 1) + 2(y − 1). So
E[X] = ∂xE(1, 1) = 20, as desired.

25

Memoizing intermediate results When computing the Taylor expansion of a function G, it is
important to memoize the intermediate Taylor expansions of subexpressions of G if they occur
more than once. For example, conditionals are translated to a generating function that uses the
previous generating function twice. Evaluating it repeatedly would double the running time for each
conditional. With memoization, it is possible to handle programs with lots of branching (e.g. > 2100

paths in the mixture model, cf. Table 5) in a reasonable amount of time.

C.2 Optimizing Observations from Compound Distributions

Observations from compound distributions are generally the bottleneck for the running time because
the construct observe d ∼ D(Xk) is syntactic sugar for Xn+1 ∼ D(Xk); observeXn+1 = d, which
introduces a new variable, which is immediately discarded after the observation. This expansion has
the semantics

Jobserve d ∼ D(Xk)Kgf(G)(x) = JobserveXn+1 = dKgf(JXn+1 ∼ D(Xk)Kgf(G))(x1, . . . , xn+1)

=
1

d!

∂d

∂xd
n+1

JXn+1 ∼ D(Xk)Kgf(G)(x1, . . . , xn+1)

∣∣∣∣
xn+1=0

containing an extra variable xn+1, which worsens the running time of the Taylor approach signifi-
cantly. We can find more efficient ways of computing this semantics.

Theorem C.1. Observing from compound binomial distributions can be implemented without intro-
ducing a new variable:

Jobserve d ∼ Binomial(Xk, p)Kgf(G) =
1

d!
(pxk)

d · ∂d
kG(x[k 7→ (1− p)xk])

Proof. A proof for the discrete setting was given in [27]. In our setting, which allows continuous
distributions, we cannot use the usual argument about power series anymore. Instead, we reason as
follows:

Jobserve d ∼ Binomial(Xk, p)Kgf(G)

=
1

d!

∂d

∂xd
n+1

JXn+1 ∼ Binomial(Xk)Kgf(G)(x1, . . . , xn+1)

∣∣∣∣
xn+1=0

=
1

d!

∂d

∂xd
n+1

G(x[k 7→ xk · (pxn+1 + 1− p)])

∣∣∣∣
xn+1=0

∗
=

1

d!
∂d
kG(x[k 7→ xk · (pxn+1 + 1− p)]) · (pxk)

d

∣∣∣∣
xn+1=0

=
1

d!
(pxk)

d∂d
kG(x[k 7→ (1− p)xk])

where ∗ follows by iterating the following argument:

∂

∂xn+1
G(x[k 7→ xk · (pxn+1 + 1− p)])

= ∂kG(x[k 7→ xk · (pxn+1 + 1− p)]) · ∂(xk · (pxn+1 + 1− p))

∂xn+1

= ∂kG(x[k 7→ xk · (pxn+1 + 1− p)]) · pxk

which holds by the chain rule.

Theorem C.2. Observing from compound Poisson distributions can be implemented without intro-
ducing a new variable:

Jobserve d ∼ Poisson(λXk)Kgf(G) =
1

d!
Dd

k,λ(G)(x[k 7→ e−λxk])

where
Dk,λ(G)(x) := λxk · ∂kG(x).

26

Proof. Let F : Rn → R be a smooth function. Then

∂

∂xn+1
F (x[k 7→ xk · eλ(xn+1−1)])

= ∂kF (x[k 7→ xk · eλ(xn+1−1)]) · xke
λ(xn+1−1) · λ

= Dk,λ(F)(x[k 7→ xk · eλ(xn+1−1)]).

Inductively, we get

∂d

∂xd
n+1

G(x[k 7→ xk · eλ(xn+1−1)]) = Dd
k,λ(G)(x[k 7→ xk · eλ(xn+1−1)]).

Substituting xn+1 7→ 0 in the final expression and dividing by d! yields:

Jobserve d ∼ Poisson(λXk)Kgf(G)

=
1

d!

∂d

∂xd
n+1

JXn+1 ∼ Poisson(λXk)Kgf(G)(x1, . . . , xn+1)

∣∣∣∣
xn+1=0

=
1

d!

∂d

∂xd
n+1

G(x[k 7→ xk · eλ(xn+1−1)])

∣∣∣∣
xn+1=0

=
1

d!
Dd

k,λ(G)(x[k 7→ e−λxk])

Theorem C.3. Observing from compound negative binomial distributions can be implemented
without introducing a new variable:

Jobserve d ∼ NegBinomial(Xk, p)Kgf(G) =
1

d!

d∑
i=0

∂i
kF (x[k 7→ p · xk]) · pixi

k · (1− p)dLd,i

where the numbers Ld,i are known as Lah numbers and defined recursively as follows:

L0,0 := 1

Ld,i := 0 for i < 0 or d < i

Ld+1,i := (d+ i)Ld,i + Ld,i−1 for 0 ≤ i ≤ d+ 1

Proof. Let F : Rn → R be a smooth function and y : R → R given by y(z) := 1
1−(1−p)z . Then

y′(x) = − 1
(1−(1−p)x)2 · (−(1− p)) = (1− p)y(x)2 and

∂

∂xn+1
F (x[k 7→ xk · p

1− (1− p)xn+1
])

= ∂kF (x[k 7→ xkp · y(xn+1)]) · pxk · (1− p)y(xn+1)
2

We claim that we can write

∂d

∂xd
n+1

F (x[k 7→ pxk

1− (1− p)xn+1
])

=

d∑
i=0

∂i
kF (x[k 7→ xk · y(xn+1)]) · pixi

k · (1− p)dLd,i · y(xn+1)
d+i.

The claim is proved by induction. First the case d = 0:

F (x[k 7→ pxk

1− (1− p)xn+1
]) = F (x[k 7→ pxk

1− (1− p)xn+1
]) · (1− p)0x0

kL0,0 · y(xn+1)
0

Next, the induction step:

∂d+1

∂xd+1
n+1

F (x[k 7→ pxk

1− (1− p)xn+1
])

27

=
∂

∂xn+1

(
d∑

i=0

∂i
kF (x[k 7→ pxk · y(xn+1)]) · pixi

k · (1− p)dLd,i · y(xn+1)
d+i

)

=

d∑
i=0

∂i+1
k F (x[k 7→ pxk · y(xn+1)]) · pxky

′(xn+1) · pixi
k(1− p)dLd,iy(xn+1)

d+i

+

d∑
i=0

∂i
kF (x[k 7→ pxk · y(xn+1)]) · pixi

k(1− p)d · Ld,i(d+ i)y(xn+1)
d+i−1 · y′(xn+1)

=

d∑
i=0

∂i+1
k F (x[k 7→ pxk · y(xn+1)]) · pi+1xi+1

k · (1− p)d+1y(xn+1)
2 · Ld,iy(xn+1)

d+i

+

d∑
i=0

∂i
kF (x[k 7→ pxk · y(xn+1)]) · pixi

k · (1− p)d+1y(xn+1)
2 · (d+ i)Ld,iy(xn+1)

d+i−1

=

d+1∑
i=0

∂i
kF (x[k 7→ pxk · y(xn+1)]) · pixi

k · (1− p)d+1Ld,i−1y(xn+1)
d+i+1

+

d+1∑
i=0

∂i
kF (x[k 7→ pxk · y(xn+1)]) · pixi

k · (1− p)d+1(d+ i)Ld,iy(xn+1)
d+i+1

=

d+1∑
i=0

∂i
kF (x[k 7→ pxk · y(xn+1)]) · pixi

k · (1− p)d+1((d+ i)Ld,i + Ld,i−1)y(xn+1)
d+i+1

=

d+1∑
i=0

∂i
kF (x[k 7→ pxk · y(xn+1)]) · pixi

k · (1− p)d+1Ld+1,iy(xn+1)
d+i+1

Substituting xn+1 7→ 0 in the final expression and dividing by d! yields:

Jobserve d ∼ NegBinomial(Xk, p)Kgf(G)

=
1

d!

∂d

∂xd
n+1

JXn+1 ∼ NegBinomial(Xk, p)Kgf(G)(x1, . . . , xn+1)

∣∣∣∣
xn+1=0

=
1

d!

∂d

∂xd
n+1

G(x[k 7→ xk · p
1− (1− p)xn+1

])

∣∣∣∣
xn+1=0

=
1

d!

d∑
i=0

∂i
kF (x[k 7→ p · xk]) · pixi

k · (1− p)dLd,i

Theorem C.4. Observing from compound Bernoulli distributions can be implemented without
introducing a new variable:

Jobserve d ∼ Bernoulli(Xk)Kgf(G) =


G(x)− xk∂jG(x) d = 0

xk · ∂jG(x) d = 1

0 otherwise

Proof. We argue as follows:

Jobserve d ∼ Bernoulli(Xk)Kgf(G)(x)

=
1

d!

∂d

∂xd
n+1

JXn+1 ∼ Bernoulli(Xk)Kgf(G)(x1, . . . , xn+1)

∣∣∣∣
xn+1=0

=
1

d!

∂d

∂xd
n+1

(G(x) + xk(xn+1 − 1) · ∂kG(x))

∣∣∣∣
xn+1=0

28

If d = 0, the right-hand side is G(x)− xk∂kG(x). If d = 1, the right-hand side is xk∂kG(x). For
larger d ≥ 2, the d-th derivative vanishes, which completes the proof.

C.3 Analysis of the running time

If the program makes observations (or compares variables with constants) d1, . . . , dm, the running
time of the program will depend on these constants. Indeed, each observation of (or comparison of a
variable with) di requires the computation of the di-th partial derivative of the generating function. In
our Taylor polynomial approach, this means that the highest order of Taylor polynomials computed
will be d :=

∑m
i=1 di. If the program has n variables, storing the coefficients of this polynomial alone

requires O(dn) space. This can be reduced if the generating function is a low-degree polynomial, in
which case we do not store the zero coefficients of the terms of higher order.

Naively, the time complexity of multiplying two such Taylor polynomials is O(d2n) and that of
composing them is O(d3n). However, we can do better by exploiting the fact that the polynomials
are sparse. In the generating function semantics, we never multiply two polynomials with n variables.
One of them will have at most two variables. This brings the running time for multiplications down
to O(dn+2). Furthermore, the GF semantics has the property that when composing two generating
functions, we can substitute variables one by one instead of simultaneously, bringing the running
time down to O(n · d2n+1). Even more, at most one variable is substituted and the substituted terms
have at most two variables, which brings the running time down to O(dn+3).
Theorem C.5. Our exact inference method can evaluate the k-th derivative of a generating function
in O(s · dn+3), and O(sd3) for n = 1, where s is the number of statements, d (for data) is k plus
the sum of all values that are observed or compared against in the program, and n is the number of
variables of the program.

Proof. The above arguments already analyze the bottlenecks of the algorithm. But for completeness’
sake, we consider all operations being performed on generating functions and their Taylor expansions
(cf. Appendix C.1).

The maximum order of differentiation needed is d and since there are n variables, the maximum num-
ber of Taylor coefficients that need to be stored is O(dn). Addition of two such Taylor polynomials
and scalar multiplications trivially take O(dn) time. Since in the GF semantics, a GF is only ever
multiplied by one with at most two variables, the multiplications take O(dn+2) time. Division only
happens with a divisor of degree at most 1, which can also be implemented in O(dn+1) time [13,
Chapter 13]. Exponentiation exp(. . .), logarithms log(. . .), and powers (. . .)m are only performed
on polynomials with one variable, where they can be implemented in O(d2) time [13, Table 13.2].
Finally, the only substitutions that are required are ones where a term with at most two variables is
substituted for a variable, i.e. of the form p(x[k 7→ q(x1, x2)]) where p(x) =

∑
|α|≤d pαx

α. Then

p(x[k 7→ q(x1, x2)]) = p0(x) + q(x1, x2) · (p1(x) + q(x1, x2) · (p2(x) + · · ·))

where pi(x) =
∑

α:αk=i pαx
α[k 7→0]. This needs d multiplications of q(x1, x2) in 2 variables and

a polynomial in n variables, each of which takes O(dn+2) time. In total, the substitution can be
performed in O(dn+3) time. Finally, if there is only one variable, the substitution can be performed
in O(d3) time because q can only have one variable.

In summary, the input SGCL program has s statements, and each of them is translated to a bounded
number of operations on generating functions. These operations are performed using Taylor expan-
sions of degree at most d, each of which takes at most O(dn+3) time (and at most O(d3) time for
n = 1). So overall, the running time is O(s · dn+3) (and O(sd3) for n = 1).

Potential improvements of the running time Using various tricks, such as FFT, the running
time of the composition of Taylor polynomials, i.e. substitution of polynomials, can be improved to
O((d log d)3n/2) [2]. This is still exponential in the number of variables n, but would improve our
asymptotic running time for n < 6 program variables. In fact, we experimented with an implementa-
tion of multiplication and composition based on the fast Fourier transform (FFT), but discarded this
option because it led to much greater numerical instabilities. It is possible that the running time could
instead be improved with the first algorithm in [2], which relies on fast matrix multiplication instead

29

of FFT. In addition, it should often be possible to exploit independence structure in programs, so the
GF can be factored into independent GFs for subsets of the variables. This is not implemented yet
because it was not relevant for our benchmarks.

Performance in practice Note that, for many programs, the running time will be better than the
worst case. Indeed, substitutions are the most expensive operation, if the substitute expression is
of high degree. For some models, like the population model, the substitutions take the form of
Theorem C.1, i.e. G(x[k 7→ (1− p)xk]), which is of degree 1. Such a substitution can be performed
in O(dn) time, because one simply needs to multiply each coefficient by a power of (1− p). This
explains why the population model is so fast in the experimental section (Section 5). In other cases as
well, we can often make use of the fact that the polynomials have low degree to reduce the space
needed to store the coefficients and to speed up the operations.

C.4 Numerical issues

If our implementation is used in floating-point mode, there is the possibility of rounding errors
and numerical instabilities, which could invalidate the results. To enable users to detect this, we
implemented an option in our tool to use interval arithmetic in the computation: instead of a single
(rounded) number, it keeps track of a lower and upper bound on the correctly rounded result. If this
interval is very wide, it indicates numerical instabilities.

Initially, we observed large numerical errors (caused by catastrophic cancellation) for probabilistic
programs involving continuous distributions. The reason for this turned out to be the term log(x)
that occurs in the GF of the continuous distributions. The Taylor coefficients of log(x) at points
0 < z < 1 are not well-behaved:

log(x) = log(z) +

∞∑
n=1

(−1)nz−n

n
(x− z)n

because the coefficients grow exponentially for z < 1 (due to the term z−n) and the alternating sign
exacerbates this problem by increasing the likelihood of catastrophic cancellations.

To fix this problem, we adopted a slightly modified representation. Instead of computing the Taylor
coefficients of the GF G directly, we compute those of the function H(x) := G(x′) where x′

i := xi

if Xi is discrete and x′
i := exp(xi) if Xi is continuous, thus canceling the logarithm.6 (The reason

we don’t use x′ := exp(x) for all variables is that for discrete variables, we may need to evaluate
at x′

i = 0, corresponding to xi = −∞, which is impossible.) It is straightforward to adapt the GF
semantics to this modified representation. Due to the technical nature of the adjustment (case analysis
on whether an index corresponds to a discrete variable or not), we do not describe it in detail. With
this modified representation, we avoid the catastrophic cancellations and obtain numerically stable
results for programs using continuous distributions as well.

D Details on the Empirical Evaluation

All experiments were run on a laptop computer with a Intel® Core™ i5-8250U CPU @ 1.60GHz × 8
processor and 16 GiB of RAM, running Ubuntu 22.04.2 and took a few hours to complete overall.
The code to run the benchmarks and instructions on how to reproduce our experiments are available
in the supplementary material.

D.1 Comparison with exact inference

We manually patched the tools Dice, Prodigy, and PSI to measure and output the time taken exclusively
for inference to ensure a fairer comparison and because the time a tool takes to startup and parsing
times are not very interesting from a research perspective. We ran each tool 5 times in a row and took
the minimum running time to reduce the effect of noise (garbage collection, background activity on

6Note that this boils down to using the moment generating function (MGF) E[exp(xiXi)] for continuous
variables Xi and the probability generating function (PGF) E[xXi

i] for discrete variables Xi. In mathematics,
the MGF is more often used for continuous distributions and the PGF more commonly for discrete ones. It is
interesting to see that from a numerical perspective, this preference is confirmed.

30

Table 5: Summary of the benchmarks: n is the number of variables, o is the number of observations,
d is the sum of all the observed values, i.e. the total order of derivatives that needs to be computed, s
is the number of statements, and p the number of program paths.

Benchmark n o d s p continuous priors?
population model (Fig. 1a) 1 4 254 13 1 no
population (modified, Fig. 1b) 1 4 254 21 16 no
population (two types, Fig. 1c) 2 8 277 30 1 no
switchpoint (Fig. 2a) 2 109 188 12433 111 yes
mixture model (Figs. 2b and 2c) 2 218 188 329 2109 ≈ 6 · 1032 no
HMM (Fig. 2d) 3 60 51 152 230 ≈ 109 no

the computer). In rational mode, we ran Genfer with the option --rational and Dice with the option
-wmc-type 1. For the “clinicalTrial” benchmark, Genfer required 400-bit floating-point numbers via
--precision 400 because 64-bit numbers did not provide enough accuracy. For better performance,
PSI was run with the flag --dp on finite discrete benchmarks.

The benchmarks were taken from the PSI paper [9, Table 1], excluding “HIV”, “LinearRegression1”,
“TrueSkill”, “AddFun/max”, “AddFun/sum”, and “LearningGaussian”. While Genfer supports continu-
ous priors, the excluded benchmarks use continuous distributions in other ways that are not supported
(e.g. in observations). Note that Dice and Prodigy have no support for continuous distributions at all.
These benchmarks were translated mostly manually to the tools’ respective formats, and we checked
that the outputs of the tools are consistent with each other.

D.2 Comparison with approximate inference

Experimental setup As explained in Section 5, we ran several of Anglican’s inference algorithms.
Each algorithm was run with a sampling budget of 1000 and 10000. The precise settings we used are
the following:

• Importance Sampling (IS): has no settings
• Lightweight Metropolis Hastings (LMH): has no settings
• Random-Walk Metropolis Hastings (RMH): has two settings: the probability α of using a local

MCMC move and the spread σ of the local move. We used the default α = 0.5, σ = 1 and
another setting facilitating local moves with α = 0.8, σ = 2.

• Sequential Monte Carlo (SMC): number of particles ∈ {1, 1000}. The default is 1 and we also
picked 1000 to see the effect of a larger number of particles while not increasing the running
time too much.

• Particle Gibbs (PGibbs): number of particles ∈ {2, 1000}. The default is 2 and we also picked
1000 as the other setting for the same reason as for SMC.

• Interacting Particle MCMC (IPMCMC): it has the settings “number of particles per sweep”,
“number of nodes running SMC and CSMC”, “number of nodes running CSMC”, and “whether
to return all particles (or just one)”. We left the last three settings at their defaults (32 nodes, 16
nodes running CSMC, return all particles). For the number of nodes and the number of nodes
we chose the default setting (2) and a higher one (1000) for the same reason as SMC.

A full list of Anglican’s inference algorithms and their settings can be found at https://probprog.
github.io/anglican/inference. Each inference algorithm was run 20 times on each benchmark
and the running times were averaged to reduce noise. This took around an hour per benchmark.

D.3 Benchmarks with infinite support

A summary with important information on each benchmark can be found in Table 5, including
some statistics about the probabilistic programs. We describe each benchmark in more detail in the
following.

Population models The probabilistic program for the original population model from [26] is shown
in Fig. 6a. This program can also be written without the extra variable New by writing the two

31

https://probprog.github.io/anglican/inference
https://probprog.github.io/anglican/inference

N := Poisson(λ0);

N ∼ Binomial(N, δ);

New ∼ Poisson(λ1);

N := New +N ;

observe y1 ∼ Binomial(N, ρ);

...

(a) Original model from [26].

N := Poisson(λ0);

N ∼ Binomial(N, δ);

Disaster ∼ Bernoulli(0.1);

if Disaster = 1 {
N +∼ Poisson(λ′

1)

} else {
N +∼ Poisson(λ1)

}
observe y1 ∼ Binomial(N, ρ);

...

(b) Randomly modified arrival rate.

N1 ∼ Poisson(λ
(1)
0);

N2 ∼ Poisson(λ
(2)
0);

N2 +∼ Binomial(N1, γ);

N1 ∼ Binomial(N1, δ1);

N2 ∼ Binomial(N2, δ2);

N1 +∼ Poisson(λ1
1);

N2 +∼ Poisson(λ2
1);

observe y
(1)
1 ∼ Binomial(N1, ρ);

observe y
(2)
1 ∼ Binomial(N2, ρ);

...

(c) Two interacting populations.

Figure 6: The program code for the population model variations.

statements involving it as N +∼ Poisson(λ1). Here we used the same parameter values as [26]:
δ = 0.2636, λ = Λ · (0.0257, 0.1163, 0.2104, 0.1504, 0.0428), and Λ = 2000 is the population size
parameter. Note that the largest population size considered by [26] is Λ = 500. For the observation
rate ρ, Winner and Sheldon [26] consider values from 0.05 to 0.95. For simplicity, we set it to ρ = 0.2.
The yk are k = 4 simulated data points: (45, 98, 73, 38) for Λ = 2000.

The modified population example is shown in Fig. 6b, where the arrival rate is reduced to λ′ := 0.1λ
in the case of a natural disaster, which happens with probability 0.1. The rest of the model is the
same.

The model of two interacting populations (multitype branching process) is programmed as shown in
Fig. 6c, where λ(1) := 0.9λ, λ(2) := 0.1λ, γ := 0.1. In this model, some individuals of the first kind
(i.e. in N1) can turn into individuals of the second kind and are added to N2. The other parameters of
this model are the same as before. The data points are y(1) = (35, 83, 78, 58) and y(2) = (3, 6, 10, 4).

Bayesian switchpoint analysis Bayesian switchpoint analysis is about detecting a change in the
frequency of certain events over time. An example is the frequency of coal mining disasters in the
United States from 1851 to 1962, as discussed in the PyMC3 tutorial [23]. We use the same model as
in [23], and its probabilistic program is shown in Fig. 7a. This situation can be modeled with two
Poisson distributions with parameters Λ1 (before the change) and Λ2 (after the change). Suppose we
have observations y1, . . . , yn, with yt ∼ Poisson(Λ1) if t < T and yt ∼ Poisson(Λ2) if t ≥ T . The
parameters Λ1,Λ2 are given exponential priors Exponential(1). The change point T itself is assumed
to be uniformly distributed: T ∼ Uniform{1..n}. The probabilistic program code is shown in Fig. 7a,
where n = 111 and y = (4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6, 3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4,
2, 5, 2, 2, 3, 4, 2, 1, 3, n/a, 2, 1, 1, 1, 1, 3, 0, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0,
0, 2, 1, 0, 0, 0, 1, 1, 0, 2, 3, 3, 1, n/a, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
1) where “n/a” indicates missing data (which is omitted in the program).

In fact, this program can be rewritten to the more efficient form shown in Fig. 7b, to minimize the
number of variables needed.

Mixture model In the binary mixture model, the frequency events are observed from an equal-
weight mixture of two Poisson distributions with different parameters Λ1,Λ2, which are in discrete
steps of 0.1. This is implemented by imposing a geometric prior and multiplying the rate by 0.1 in
the Poisson distribution: Poisson(0.1 · Λ1). The data is the same as for the switchpoint model. The
task is to infer the first rate Λ1. The probabilistic program is shown in Fig. 8a.

32

T ∼ Uniform{1..n};
Λ1 ∼ Exponential(1);

Λ2 ∼ Exponential(1);

if 1 < T {
observe y1 ∼ Poisson(Λ1);

} else {
observe y1 ∼ Poisson(Λ2);

}
...
if n < T {

observe yn ∼ Poisson(Λ1);

} else {
observe yn ∼ Poisson(Λ2);

}

(a) Switchpoint model from [23].

T ∼ Uniform{1..n};
Λ ∼ Exponential(1);

if 1 ∼ Bernoulli(1/n) {
observe y1 ∼ Poisson(Λ);

Λ ∼ Exponential(1);

observe y2 ∼ Poisson(Λ);

...
observe yn ∼ Poisson(Λ);

T := 1;

} else {if 1 ∼ Bernoulli(1/(n− 1)) {
observe y1 ∼ Poisson(Λ);

observe y2 ∼ Poisson(Λ);

Λ ∼ Exponential(1);

observe y3 ∼ Poisson(Λ);

...
observe yn ∼ Poisson(Λ);

T := 2;

} else {
. . .

}}

(b) More efficient version of the switchpoint model.

Figure 7: The program code for the Bayesian switchpoint analysis.

Λ1 ∼ Geometric(0.1);

Λ2 ∼ Geometric(0.1);

if 1 ∼ Bernoulli(0.5) {
observe y1 ∼ Poisson(0.1 · Λ1)

} else {
observe y1 ∼ Poisson(0.1 · Λ2)

}
...
if 1 ∼ Bernoulli(0.5) {

observe ym ∼ Poisson(0.1 · Λ1)

} else {
observe ym ∼ Poisson(0.1 · Λ2)

}

(a) Program code for the mixture model.

Z := 1;

Λ1 ∼ Geometric(0.1);

Λ2 ∼ Geometric(0.1);

if Z = 0 {
observe y1 ∼ Poisson(0.1 · Λ1);

Z ∼ Bernoulli(0.2);

} else {
observe y1 ∼ Poisson(0.1 · Λ2);

Z ∼ Bernoulli(0.8); }
...
if Z = 0 {

observe ym ∼ Poisson(0.1 · Λ1);

Z ∼ Bernoulli(0.2);

} else {
observe ym ∼ Poisson(0.1 · Λ2);

Z ∼ Bernoulli(0.8); }

(b) Program code for the HMM.

Figure 8: The program code for the mixture and HMM model.

33

0.0 0.5 1.0 1.5 2.0 2.5
Time (in s)

0.00

0.05

0.10

0.15

0.20

Er
ro

r o
f m

ea
n

(in
 σ

s)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(a) Error of the mean

0.0 0.5 1.0 1.5 2.0 2.5
Time (in s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
l.

er
ro

r o
f s

ta
nd

ar
d

de
vi

at
io

n ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(b) Error of the standard de-
viation

0.0 0.5 1.0 1.5 2.0 2.5
Time (in s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ab
s.

er
ro

r o
f s

ke
wn

es
s

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(c) Error of the skewness

0.0 0.5 1.0 1.5 2.0 2.5
Time (in s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ab
s.

er
ro

r o
f k

ur
to

sis

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(d) Error of the kurtosis

Figure 9: Comparison of moments for the original population model.

0 1 2 3
Time (in s)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r o
f m

ea
n

(in
 σ

s)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(a) Error of the mean

0 1 2 3
Time (in s)

0.00

0.05

0.10

0.15

0.20

Re
l.

er
ro

r o
f s

ta
nd

ar
d

de
vi

at
io

n ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(b) Error of the standard de-
viation

0 1 2 3
Time (in s)

0.0

0.1

0.2

0.3

0.4

0.5

Ab
s.

er
ro

r o
f s

ke
wn

es
s

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(c) Error of the skewness

0 1 2 3
Time (in s)

0.0

0.5

1.0

1.5

2.0

Ab
s.

er
ro

r o
f k

ur
to

sis

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(d) Error of the kurtosis

Figure 10: Comparison of moments for the modified population model.

Hidden Markov model The hidden Markov example is based on [22, Section 2.2]. The hidden
state Z can be 0 or 1 and transitions to the other state with probability 0.2. The rate of the Poisson-
distributed number of observed events depends on the state Z and is 0.1 · Λ1 or 0.1 · Λ2, where we
impose a geometric prior on Λ1 and Λ2. As for the mixture model, this discretizes the rates in steps of
0.1. The inference problem is to infer the first rate Λ1. The probabilistic program is shown in Fig. 8b,
where yk are m = 30 simulated data points from the true rates λ1 := 0.5 and λ2 := 2.5. Concretely,
we have y = (2, 2, 4, 0, 0, 0, 0, 0, 1, 1, 0, 2, 4, 3, 3, 5, 1, 2, 3, 1, 3, 3, 0, 0, 2, 0, 0, 2, 6, 1).

D.4 Additional results

In the main text, the data we presented was mainly in form of the total variation distance (TVD)
between the true posterior (computed by our method) and the approximated posterior (computed by
Anglican’s inference algorithms). In this section, we present additional evidence in two forms:

• errors of the posterior moments (mean, standard deviation, skewness, and kurtosis) in Figs. 9
to 14, and

• histograms (Fig. 15) of the sampled distribution produced by the best MCMC algorithm, where
the sampling budget is picked such that the running time is close to that of our method (e.g.
1000 for the (fast) population model and 10000 for the (slower) mixture model).

The additional plots confirm the conclusions from Section 5.

0 1 2 3 4 5
Time (in s)

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r o
f m

ea
n

(in
 σ

s)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(a) Error of the mean

0 1 2 3 4 5
Time (in s)

0.00

0.05

0.10

0.15

0.20

0.25

Re
l.

er
ro

r o
f s

ta
nd

ar
d

de
vi

at
io

n ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(b) Error of the standard de-
viation

0 1 2 3 4 5
Time (in s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ab
s.

er
ro

r o
f s

ke
wn

es
s

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(c) Error of the skewness

0 1 2 3 4 5
Time (in s)

0.0

0.2

0.4

0.6

0.8

1.0

Ab
s.

er
ro

r o
f k

ur
to

sis

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(d) Error of the kurtosis

Figure 11: Comparison of moments for the two-type population model.

34

0 5 10 15 20 25
Time (in s)

0.0

0.5

1.0

1.5

2.0

Er
ro

r o
f m

ea
n

(in
 σ

s)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(a) Error of the mean

0 5 10 15 20 25
Time (in s)

0.0

0.5

1.0

1.5

2.0

Re
l.

er
ro

r o
f s

ta
nd

ar
d

de
vi

at
io

n ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(b) Error of the standard de-
viation

0 5 10 15 20 25
Time (in s)

0.0

0.5

1.0

1.5

2.0

Ab
s.

er
ro

r o
f s

ke
wn

es
s

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(c) Error of the skewness

0 5 10 15 20 25
Time (in s)

0.0

0.5

1.0

1.5

2.0

Ab
s.

er
ro

r o
f k

ur
to

sis

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(d) Error of the kurtosis

Figure 12: Comparison of moments for the switchpoint model.

0 10 20 30 40
Time (in s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Er
ro

r o
f m

ea
n

(in
 σ

s)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(a) Error of the mean

0 10 20 30 40
Time (in s)

0.0

0.2

0.4

0.6

0.8

1.0
Re

l.
er

ro
r o

f s
ta

nd
ar

d
de

vi
at

io
n ours

IS
IPMCMC
LMH
PGibbs
RMH
SMC

(b) Error of the standard de-
viation

0 10 20 30 40
Time (in s)

0.0

0.5

1.0

1.5

2.0

Ab
s.

er
ro

r o
f s

ke
wn

es
s

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(c) Error of the skewness

0 10 20 30 40
Time (in s)

0.0

0.5

1.0

1.5

2.0

Ab
s.

er
ro

r o
f k

ur
to

sis

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(d) Error of the kurtosis

Figure 13: Comparison of moments for the mixture model.

0 2 4 6 8 10 12
Time (in s)

0.0

0.5

1.0

1.5

2.0

Er
ro

r o
f m

ea
n

(in
 σ

s)

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(a) Error of the mean

0 2 4 6 8 10 12
Time (in s)

0.0

0.2

0.4

0.6

0.8

1.0

Re
l.

er
ro

r o
f s

ta
nd

ar
d

de
vi

at
io

n ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(b) Error of the standard de-
viation

0 2 4 6 8 10 12
Time (in s)

0.0

0.5

1.0

1.5

2.0

Ab
s.

er
ro

r o
f s

ke
wn

es
s

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(c) Error of the skewness

0 2 4 6 8 10 12
Time (in s)

0.0

0.5

1.0

1.5

2.0

Ab
s.

er
ro

r o
f k

ur
to

sis

ours
IS
IPMCMC
LMH
PGibbs
RMH
SMC

(d) Error of the kurtosis

Figure 14: Comparison of moments for the HMM.

0 50 100 150 200 250
result

0.00

0.01

0.02

0.03

0.04

pr
ob

ab
ilit

y

SMC (1000 samples)
ours (exact)

(a) Original population model.

0 50 100 150 200 250
result

0.00

0.01

0.02

0.03

0.04

0.05

pr
ob

ab
ilit

y

SMC (1000 samples)
ours (exact)

(b) Modified population model.

0 10 20 30 40 50 60
result

0.00

0.02

0.04

0.06

0.08

pr
ob

ab
ilit

y

PGibbs (10000 samples)
ours (exact)

(c) Two-type population model.

0 20 40 60 80 100
result

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ilit

y

LMH (10000 samples)
ours (exact)

(d) Switchpoint model.

0 20 40 60
result

0.000

0.025

0.050

0.075

0.100

0.125

0.150

pr
ob

ab
ilit

y

PGibbs (10000 samples)
ours (exact)

(e) Mixture model.

0 20 40 60
result

0.00

0.02

0.04

0.06

0.08

0.10

0.12

pr
ob

ab
ilit

y

SMC (10000 samples)
ours (exact)

(f) Hidden Markov model.

Figure 15: Histograms of the exact distribution and the MCMC samples with the lowest TVD and
similar running time to our exact method.

35

Contents

1 Introduction 1

2 Bayesian Probabilistic Programming 3

3 Generating Functions 4

3.1 Translating programs to generating functions . 5

4 Implementation & Optimizations 6

5 Empirical Evaluation 8

5.1 Comparison with exact inference methods . 8

5.2 Comparison with approximate inference methods 8

5.3 Benchmarks with infinite-support distributions . 9

6 Conclusion 10

A Details on the Probabilistic Programming Language SGCL 14

A.1 A minimal grammar . 14

A.2 Syntactic sugar . 14

A.3 Standard measure semantics . 14

B Details on Generating Functions 15

B.1 Generating function semantics . 17

B.2 Correctness proof . 17

B.3 Possible extensions to the probabilistic programming language 22

C Details on implementation and optimizations 23

C.1 Automatic differentiation and Taylor polynomials 24

C.2 Optimizing Observations from Compound Distributions 26

C.3 Analysis of the running time . 29

C.4 Numerical issues . 30

D Details on the Empirical Evaluation 30

D.1 Comparison with exact inference . 30

D.2 Comparison with approximate inference . 31

D.3 Benchmarks with infinite support . 31

D.4 Additional results . 34

36

	Introduction
	Bayesian Probabilistic Programming
	Generating Functions
	Translating programs to generating functions

	Implementation & Optimizations
	Empirical Evaluation
	Comparison with exact inference methods
	Comparison with approximate inference methods
	Benchmarks with infinite-support distributions

	Conclusion
	Details on the Probabilistic Programming Language SGCL
	A minimal grammar
	Syntactic sugar
	Standard measure semantics

	Details on Generating Functions
	Generating function semantics
	Correctness proof
	Possible extensions to the probabilistic programming language

	Details on implementation and optimizations
	Automatic differentiation and Taylor polynomials
	Optimizing Observations from Compound Distributions
	Analysis of the running time
	Numerical issues

	Details on the Empirical Evaluation
	Comparison with exact inference
	Comparison with approximate inference
	Benchmarks with infinite support
	Additional results

