
AttnCache: Accelerating Self-Attention Inference on Big Memory Systems
Using Attention Cache

Anonymous ACL submission

Abstract

Self attention, the kernel of transformer mod-001
els, is computationally intensive, and hence002
a major focus for accelerating large language003
model (LLM) inference. Existing methods004
on transformer inference acceleration often re-005
quire modifying transformer architectures or006
using specialized hardware accelerators, which007
limits their broad applicability. In this paper,008
we introduce an innovative method, called At-009
tnCache, to accelerate self attention inference010
in LLM prefill phase without the above limi-011
tations. AttnCache draws inspiration from the012
intriguing observation of recurring and rich sim-013
ilarities in attention computations across differ-014
ent inference sequences. Based on a memo-015
rization database that leverages emerging big016
memory systems, we propose embedding and017
efficient caching techniques to identify inputs018
that produce similar attention maps, thereby019
reducing computation overhead. Experimen-020
tal results show that AttnCache achieves 1.2X021
speedup on average on Semantic Textual Simi-022
larity (STS) benchmarks, with only 2% perfor-023
mance loss.024

1 Introduction025

Transformer-based Large Language Models026

(LLMs) provide superior inference accuracy and027

throughput. Central to this success is the highly028

parallelized self-attention mechanism, which029

enables Transformer to capture dependencies and030

relationships across different positions within031

a sequence. Attention maps, generated in the032

self-attention mechanism, represent the relevance033

and importance of each position to other positions.034

However, computational intensity of this mecha-035

nism poses a significant bottleneck, especially as036

model sizes and input sequences grow.037

Various techniques have been proposed to accel-038

erate self-attention inference through computation039

reduction. Token pruning (Ham et al., 2020; Wang040

et al., 2021) reduces computation by excluding less041

important tokens from the input, while layer-wise 042

reuse (Ying et al., 2021; Xiao et al., 2019; Bhojana- 043

palli et al., 2021) reduces computation by sharing 044

attention maps calculated in prior layers in multiple 045

subsequent layers. Despite their effectiveness in ac- 046

celerating self-attention inference, these techniques 047

often cause significant loss in model accuracy, espe- 048

cially in complex tasks that require full-contextual 049

information. Other acceleration techniques, such 050

as introducing sparsity into self-attention (Lu et al., 051

2022; Kitaev et al., 2020) or removing the attention 052

or transformer layer (He et al., 2024; Men et al., 053

2024; Song et al., 2024; Zhang et al., 2024b), re- 054

quire specialized hardware accelerators (Yang et al., 055

2020) or model architecture changes, restricting 056

their general applicability. 057

In this paper, we find that semantically different 058

input sentences can have high similarity in their 059

attention maps at different layers or different heads 060

during the inference computation. By pre-storing 061

(or caching) these similar attention maps into a 062

database utilizing the emerging big memory sys- 063

tem (called attention maps database), we can save 064

self-attention computation using the attention cache 065

to retrieve similar attention maps. For example, 066

as shown in Figure 1, there are two different sen- 067

tences. The sentence 1 is “This sentence: ‘you 068

should never do it.’ means in one word:”. The sen- 069

tence 2 is “This sentence: ‘how do you do that?’ 070

means in one word:”. Although the two sentences 071

have different semantics, their attention maps at 072

different layers and different heads are very similar, 073

which indicate they have similar relevance at each 074

token position. Thus, we can reuse the attention 075

maps of all layers computed by the sentence 1 for 076

the sentence 2. 077

Our study is driven by the recent development 078

of memory technologies (e.g., Compute Express 079

Link (Sharma et al., 2023) or persistent mem- 080

ory (Izraelevitz et al., 2019)) that enable big 081

memory systems at large scales (e.g., terabyte or 082

1

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Sentence 1 Layer 1 Head 15

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Sentence 1 Layer 0 Head 1

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Sentence 1 Layer 14 Head 0

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Sentence 1 Layer 27 Head 11

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Sentence 2 Layer 1 Head 15

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Sentence 2 Layer 0 Head 1

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Sentence 2 Layer 14 Head 0

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Sentence 2 Layer 27 Head 11

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Visualization of the attention maps in Llama-3.2-3B over two sentences, each with a length of 32. The
plots reveals that although Sentence 1 and Sentence 2 have different meanings, their attention maps at different
layers and different heads are similar.

petabyte scale) (Mellor; MemVerge). The big mem-083

ory system not only supports memory-intensive ap-084

plications but also opens up possibilities for new085

programming and computational paradigms (Xie086

et al., 2021; Mansi and Swift, 2020). Specifi-087

cally, we leverage increased memory capacity to088

accelerate self-attention inference through caching089

(or memoization). Memoization brings speedup090

unattainable by traditional system-level optimiza-091

tions (e.g., vectorization and tiling (Dao et al.,092

2022; Dao, 2023)). We introduce a framework093

to accelerate self attention on big memory systems094

using memoization, called AttnCache.095

The implementation of AttnCache poses several096

challenges. The first challenge lies in finding a097

proper data representation. Both the representation098

of input sentence and attention maps in transformer099

are high-dimensional tensors. It is challenging to100

find similar attention maps by directly comparing101

the representation of the input sentences. To iden-102

tify similar attention maps, we design a proper data103

representation by embedding network. To reduce104

time in self attention, the embedding network must105

be lightweight such that its overhead plus the search106

in the attention maps database (a key-value store) is107

smaller than the cost of self-attention computation.108

The second challenge is expensive memory ac-109

cesses for storing and fetching pre-populated at-110

tention maps. To improve the search hit rate and111

use memory capacity offered by the big memory112

system, the attention maps database must be big113

and pre-populated with attention maps. However,114

the large key-value search in the database leads 115

to highly sparse memory accesses. Besides, mod- 116

ern deep learning frameworks like PyTorch require 117

the tensors to be placed in consecutive memory 118

addresses for SIMD operations. Therefore, once 119

the tensors are fetched from the pre-populated 120

database, the tensors must be copied to a consecu- 121

tive memory space and then loaded to the processor 122

registers to be used by the attention function. As 123

a result, one tensor fetch generates two memory 124

reads and one write, which deter the time benefit 125

of using caching. To reduce memory access over- 126

head, we store the attention maps of a layer as a 127

file object, and the file objects of the neighboring 128

layers are stored continuously in the database, so as 129

to utilize spatial and temporal locality of memory 130

accesses. Moreover, we use a contiguous virtual 131

memory space to store the references or pointers 132

to the file objects. As a result, retrieving attention 133

maps from the cache is a matter of pointer manipu- 134

lation rather than of causing a real memory copy. 135

We use CPU for evaluation, because some sce- 136

narios make LLM embeddings of large text corpus, 137

and GPU cannot bring enough memory capacity. 138

For example, the recommendation/RAG systems 139

get representations of billions of text pieces. Such 140

scenarios do not need to get LLM embeddings on 141

a single instance fast, but must compute on a lot 142

of instances fast. In these scenarios, using CPU 143

machines to compute is both time and energy effi- 144

cient than GPU machines. We use CPU machines 145

to demonstrate our idea in AttnCache. Extensive 146

2

experiments show that AttnCache with transformer-147

based LLM, such as Llama-3-8B, Llama-2-7B,148

and Mistral-7B, on seven STS tasks enables 1.2×149

speedup on average with 2% loss in the Spearman150

correlation score.151

2 Related Work152

Reuse mechanism in Neural Networks. The153

reuse mechanism is based on the wide existence154

of redundancy in neural networks. Some efforts155

(Ning et al., 2019; Ning and Shen, 2019; Wu et al.,156

2022; Köpüklü et al., 2019) reuse the similar data157

results and computation processes to improve per-158

formance. Silfa et al. (2019) accelerates RNN159

training by reusing the output of neurons. Pre-160

vious works (Bhojanapalli et al., 2021; Xiao et al.,161

2019) have shown that attention maps of trans-162

former (Vaswani et al., 2017) exhibit similar dis-163

tributions across adjacent layers. Many previous164

efforts (Hunter et al., 2023; Xiao et al., 2019; Bho-165

janapalli et al., 2021; Ying et al., 2021; Liao and166

Vargas, 2024) focus on sharing the computed at-167

tention weights across multiple layers for the same168

input sequence, which may introduce dissimilar169

attention maps, thereby degrading performance. In170

this work, we concentrate on efficiently reusing171

similar attention maps across different sequences.172

Sentence Embedding. Sentence embeddings en-173

codes the semantic information of sentences into174

high-dimensional vector representations that are175

broadly applicable to language processing tasks.176

Prior works (Li and Zhou, 2024; Muennighoff et al.,177

2024; Ni et al., 2021) have demonstrated the poten-178

tial of LLMs to generate high-quality sentence em-179

bedding. For example, Sentence-BERT (Reimers,180

2019) employs contrastive learning to create em-181

beddings by leveraging natural language inference182

datasets to construct positive and negative pairs.183

Recent studies (Zhuang et al., 2024; Qin et al.,184

2023; Zhang et al., 2024a) have focused on con-185

verting an LLM directly into a sentence encoder186

without training. To enhance the quality of em-187

beddings, prompt-based techniques have become188

increasingly popular. MetaEOL (Lei et al., 2024)189

uses multitask prompts to generate general-purpose190

embeddings. The research by (Jiang et al., 2023)191

illustrates how to extract a sentence embedding by192

prompting the LLMs with the instruction “This sen-193

tence: ‘[text]’ means in one word:”. In this paper,194

we use the LLMs to generate sentence embeddings195

without the need for LLMs fine-tuning.196

3 Methodology 197

Figure 2 draws an overview of AttnCache. Given 198

an input sentence, AttnCache embeds it into a fea- 199

ture vector using a neural network (feature projec- 200

tor). The feature vector is used to retrieve the index 201

of the attention maps that have the highest similar- 202

ity to the input sentence. Then, the search engine 203

uses the index to fetch the corresponding atten- 204

tion maps from the attention maps database. The 205

fetched attention maps are used in the self-attention 206

computation during online inference, while the 207

prefill stage (the initial processing of the input se- 208

quence) in LLMs inference is utilized to generate 209

the sentence embedding. 210

3.1 Search Engine 211

As illustrated in Figure 1, two sentences with very 212

different semantics and meaning could have simi- 213

lar attention maps. The input sentences are repre- 214

sented by high-dimensional hidden states, and it is 215

difficult to determine whether their corresponding 216

attention maps are similar by comparing the input 217

hidden states. Rather than directly using the input 218

embedding as a key to find an attention map, At- 219

tnCache uses its feature vector, which is embedded 220

by the feature projector and has a lower dimen- 221

sion. We collect the input embeddings of input 222

sequences and their corresponding attention maps 223

at each layer, which are used for training of the 224

feature projector. 225

Feature Projector. To quantify the similarity 226

of input embeddings, we use a feature projector, 227

which is an embedding network. Two input embed- 228

dings are matched during a search if their feature 229

vectors are similar (in terms of the similarity score 230

defined later). The feature vector is essentially an 231

internal representation of the input embedding to 232

capture similarity, and the feature projector learns 233

this representation through training such that the 234

input embeddings with similar attention maps have 235

similar feature vectors. By searching for similar 236

feature vectors, we are able to find input embed- 237

dings producing similar attention maps. Besides, 238

the feature projector allows us to map input em- 239

beddings into a lower-dimensional representation, 240

thus reducing the search space and computation 241

complexity of measuring the similarity. 242

We use two layers of Multi-Layer Perceptron 243

(MLP) as the feature projector, which maps the 244

input embedding to a feature vector with lower di- 245

mension size. Compared with other embedding 246

3

Figure 2: AttnCache overview. The search engine will identify the index of the sentence that produces the most
similar attention maps based on the feature vector of the current input sentence and fetch attention maps for each
layer from the attention maps database using the index. These fetched attention maps are stored in the attention
cache and reused for the matrix multiplication calculation with value projection of the current input sentence.

Figure 3: The training of the feature projector. The
feature projector maps input embedding of a sentence S
into a feature vector. Then we train the feature projector
using the attention maps-based loss.

models, such as convolutional neural network or247

transformer, MLP is lightweight with less compu-248

tational complexity and shorter inference time.249

Training the feature projector is challenging due250

to a lack of labeled data. Deciding the similarity251

between input embeddings and labeling them as252

similar or not is prohibitively expensive. We use253

the Siamese network (Koch et al., 2015), which254

contains two identical embedding networks and255

shares the same weights, as shown in Figure 3.256

Once the Siamese network finishes training, it is257

used as a feature projector. The Siamese network 258

is trained to minimize the distance between feature 259

vectors whose attention maps have high similarity. 260

During each training iteration, two input embed- 261

dings are used as input to the two identical feature 262

projectors in the Siamese network. After getting 263

the feature vectors, the Euclidean distance (i.e. L2- 264

norm) is calculated as follows. 265

ŷ = ||fW(X1)− fW(X2))||2 (1) 266

where X is the input embedding, fW is the feature 267

projector, and ||.||2 is the L2 norm. Besides, we 268

measure the similarity score using the attention 269

maps and the sequence length of tokens, which 270

associate with the two input embeddings. We use a 271

metric as the labels for training the feature projector 272

based on the average distance of heads, which is 273

defined as follows. 274

y =
1

n
× α

n∑
p=1

1

2
||A1[p, :]− A2[p, :]||2 + ||s1 − s2||1 (2) 275

where A denotes the attention map, n indicates 276

the number of head, A[p, :] is the pth row of the 277

attention map, ||.||1 is the L1 norm, s denotes the 278

length of input token sequence, and α is the hy- 279

perparameter to control the relative importance of 280

the similarity of the attention maps and the token 281

length. 282

4

In addition to the inherent similarity of the atten-283

tion maps, the sentence token sequence also plays284

an important role in determining whether two atten-285

tion maps are similar. When the token sequences286

of two attention maps are very different in length,287

even if the attention maps are similar, they cannot288

be used directly in AttnCache for subsequent reuse,289

because that causes a large inference error. The fi-290

nal loss function of the feature projector is defined291

as follows.292

L =

{
0.5(ŷ − y)2 if |ŷ − y| < 1

|ŷ − y| − 0.5 if |ŷ − y| ≥ 1
(3)293

We use Smooth L1 Loss as the loss function, which294

is able to balance the effects of outliers. The train-295

ing process iteratively updates the parameters of296

the feature projector to minimize the loss function.297

Using the training process described above elim-298

inate the need for labeling input embeddings and299

attention maps manually.300

Database. To minimize the costly search for at-301

tention maps, we construct an indexed database,302

where feature vectors are stored and indexed for303

fast search. In essence, the feature vector database304

is a key-value store where the key and value are the305

feature vector and its index, respectively. The atten-306

tion maps associated with feature vectors are stored307

in the attention maps database. The feature vector308

and associated attention maps have the same index309

in the two databases. The attention maps database310

is also a key-value store where the key is the index311

retrieved from the feature vector database, and the312

value is the attention map.313

Given an input (i.e., the hidden state of the input314

query to LLM), the feature vector database uses315

an approximate nearest-neighbor search algorithm316

to find “similar” feature vectors. The similarity317

metric is defined in Equation 1. Only when the318

similarity between the input feature vector and a319

stored feature vector is larger than a pre-specified320

threshold θ, the index of the stored feature vector321

is returned.322

Algorithm 1 depicts the search engine. The input323

sentence is embedded by input embedding (Line 2).324

The input embedding includes tokenization of the325

sentence, position encoding, and layer normaliza-326

tion. Then the result is mapped into a feature vector327

with lower dimension (Line 3). The feature vector328

is used for querying the feature vector database.329

After the query, the indices that have the closest330

similarity to the feature vectors are returned (Line331

Figure 4: Database building includes three steps. 1.
Train the feature projector with input embedding and
attention maps; 2. Embed the input embeddings to
feature vectors; 3. Store the feature vectors and attention
maps to their respective databases. Both databases share
the same index.

Algorithm 1: Search Engine
Input: Sentence S, Threshold θ;
Output: Attention Cache attn_cache,

Input embedding h;
1 Function search_engine(S, θ)
2 h← input_embedding(S);
3 f ←feature_projector(h);
4 idx, sims←VecDB.search(f);
5 attn_cache← [];
6 if sims ≥ θ then
7 n← num_layers;
8 ams← AttnMapsDB.get(idx, n));
9 attn_cache.append(ams);

10 end
11 return attn_cache, h

4). When the similarity is not less than the thresh- 332

old θ, the corresponding index idx is used to fetch 333

attention maps from the attention maps database. 334

The index idx corresponds to a sentence S that 335

produces similar attention maps to the input sen- 336

tence. The fetched attention maps are used from the 337

first to the last layer of the LLM, and are stored into 338

contiguous memory space called attention cache. 339

Specifically, these attention maps are used in the 340

matrix multiplication calculation with value pro- 341

jection in online_inference. All layers of the 342

attention maps are fetched for the computation of 343

self-attention before the LLM inference starts. 344

3.2 Online Inference 345

Algorithm 2 illustrates online inference with At- 346

tnCache. In the attention block of each layer, the 347

value projection is computed. If the similar atten- 348

tion maps are found, the attention output can be 349

obtained by multiplying attention maps with value 350

v. Thus finding similar attention maps and reusing 351

them in the self-attention calculation lead to perfor- 352

5

Algorithm 2: Online Inference
Input: Attention Cache attn_cache, Input

embedding h;
Output: Hidden state of last layer h;

1 Function online_inference(attn_cache,
h)

2 for l in range(num_layers) do
3 residual← h ;
4 v ← v_projection(h) ;
5 if attn_cache is not NULL then
6 attn_map← attn_cache[l];
7 h← mat_mul(attn_map, v);
8 end
9 else

10 q ← q_projection(h) ;
11 k ← k_projection(h) ;
12 q, k ← rotary_pos_emb(q, k) ;
13 attn_map← softmax(q, k) ;
14 h← mat_mul(attn_map, v) ;
15 end
16 h← residual + h ;
17 h← h + feed_forward(h) ;
18 end
19 return h;

mance benefits.353

However, AttnCache cannot always find similar354

attention maps. For those hidden states with low355

similarities, the attention maps must be calculated356

at each layer during the inference, which means357

the query, key, rotary positional embedding, and358

softmax normalization must be computed. In this359

regard, AttnCache does not bring benefit in infer-360

ence speed, and instead degrades performance due361

to its search overhead. However, given a batch362

of inferences, as long as the success rate during363

the search for all inferences is high, the overall364

inference is still accelerated.365

4 Experiments366

4.1 Setting367

We evaluate AttnCache on a server equipped with368

two sockets, each with 24 cores Intel(R) Xeon(R)369

Silver 4410Y processors. The platform provides370

512 GB DRAM and 14 TB Hard Disk Drive (HDD).371

We use the DRAM to store the attention maps372

database and feature vector database. To build373

the feature vector database, we use Faiss (John-374

son et al., 2019), a vector database enabling effi-375

cient similarity search by the Hierarchical Naviga-376

ble Small Worlds algorithm (Malkov and Yashunin, 377

2018). Faiss is highly efficient for similarity search. 378

For example, our evaluation shows that searching 379

100K vectors with a dimension size of 128 takes 380

less than 0.5 ms on the DRAM. As a result, the 381

search process does not create a performance bot- 382

tleneck for AttnCache. In addition, we save atten- 383

tion maps in a layer as a file object in the attention 384

database, and assume that both the attention maps 385

database and feature vector database are held in 386

the DRAM. For the case that the two databases are 387

larger than the real DRAM in our platform, we eval- 388

uate the model performance using both the DRAM 389

and HDD, which does not impact the model qual- 390

ity. In this case, to evaluate the model inference 391

time on a “virtual” big DRAM system with enough 392

capacity, we use our limited DRAM assuming that 393

the needed attention maps are in the DRAM. In 394

such a case, the search overhead (not including the 395

feature projector overhead) is ignored, because the 396

search time on the DRAM is only a small portion 397

(at most 2%) of total inference time due to highly 398

optimized Faiss. We implement AttnCache with 399

PyTorch 2.5.1. In the evaluation, all 48 CPU cores 400

are fully utilized for maximum thread-level par- 401

allelism to minimize inference time. We use the 402

original transformer model as the baseline, named 403

full model. 404

4.2 Datasets and Models 405

We evaluate AttnCache with Llama-2-7B, Llama-3- 406

8B and Mistral-7B on seven semantic textual simi- 407

larity (STS) datasets, utilizing the SentEval toolkit 408

(Conneau and Kiela, 2018). The STS datasets in- 409

clude STS 12-16, STS-B and SICK-R (Lei et al., 410

2024). The semantic similarity of each sentence 411

pair in each dataset is annotated with a score of 0-5. 412

For each sentence pair, we employ cosine similarity 413

to measure the similarity between sentence embed- 414

dings (i.e., the LLM outputs). We use the Spearman 415

correlation between the human annotated similarity 416

score and the cosine similarity score, as the evalua- 417

tion metric. The Spearman correlation is computed 418

under the “all” setting. 419

4.3 Baselines 420

We use three baselines for evaluation. 421

LazyFormer (Ying et al., 2021) divides all lay- 422

ers of the transformer to multiple subblocks. In 423

each subblock, the attention maps are only com- 424

puted in the first layer and then used by the remain- 425

ing layers in the same subblock. Like LazyFormer, 426

6

we set the number of layers in each sub-block to 2.427

SAN (Xiao et al., 2019), like LazyFormer, shares428

attention maps across multiple adjacent layers. But429

different from Lazyformer, SAN does not use a430

uniform subblock size (i.e., the number of trans-431

former layers in a subblock). The subblock size432

is dynamically determined based on the similarity433

of layers in terms of the JS divergence (Menéndez434

et al., 1997).435

AttnCache-f is a variant of AttnCache.436

AttnCache-f applies memoization at the trans-437

former layer level instead of the whole model438

level as AttnCache. In particular, at each layer,439

AttnCache-f searches the attention maps database440

for similar attention maps, hence applying a f ine-441

grained memoization. Moreover, AttnCache-f does442

not consider sequence length when training the fea-443

ture projector, which means that the y in Equation444

2 does not take the computation of ||s1− s2||1 into445

account.446

4.4 Implementation Details447

We use test samples in STS datasets to evaluate448

AttnCache. We apply 8-bit (int8) quantization to449

LLM weights in order to save memory space. For450

each task, we collect attention maps and input em-451

beddings from 1K sentences to train feature projec-452

tor and build databases; we use 1000 samples to453

measure the inference time of self-attention; we use454

the remaining samples for testing. Across the seven455

datasets, we build the attention maps database us-456

ing 7K sentences and use 7K test samples for speed457

measurement. To maintain high inference accuracy,458

we set the similarity threshold θ to 0.99, and set459

α, which is used to train the feature projectors (see460

Equation 2), to 0.2. We use the Speedup Degrada-461

tion Ratio (He et al., 2024) γ to quantify trade-off462

between speed and performance degradation.463

γ =
Avgfull − Avgmethod

Speedupmethod − Speedupfull
464

where Avgfull and Avgmethod are the average465

performance of LLM and each method across466

the seven tasks respectively, and Speedupfull467

and Speedupmethod represent the corresponding468

speedup respectively. A smaller γ indicates that469

the method is more efficient.470

4.5 Main Results471

Table 1 summarizes the results. Across various472

models (Llama2-7B, Llama3-8B and Mistral-7B),473

SAN and LazyFormer both lead to notable perfor- 474

mance declines, despite achieving higher speedups. 475

For instance, LazyFormer results in an average 476

25.39% performance decline (from 71.88% to 477

46.49%) for Llama-3-8B, with a speedup of 1.42×, 478

corresponding to a γ of 0.60. We also notice that 479

the inter-sentence methods (i.e. AttnCache-f and 480

AttnCache) exhibit higher performance but lower 481

speedup compared to intra-sentence methods (i.e. 482

SAN and LazyFormer) because they only reuse at- 483

tention maps with high similarity. For example, for 484

Llama-2-7B, AttnCache-f and AttnCache achieve 485

50.39% and 67.75% average performance with 486

1.14× and 1.19× speedup, while SAN and Lazy- 487

Former have 30.34% and 34.48% performance with 488

1.39× and 1.45× speedup separately. Moreover, 489

AttnCache maintains near full model performance 490

on various datasets and strikes a better balance be- 491

tween speed and performance, with γ values of 492

0.04, 0.11 and 0.09 for three LLMs, making it a su- 493

perior method for the acceleration of self attention. 494

5 Analysis 495

5.1 Impacts of Model Quantinization and 496

Pruning 497

The model quantization represents weights and ac- 498

tivations with lower-precision data type, and can 499

improve efficiency in memory usage and inference 500

speed. We integrate AttnCache with quantization, 501

and study whether AttnCache can maintain the per- 502

formance. Specifically, we apply Quanto (Opti- 503

mum, 2024) to all weights, and use 4-bit quanti- 504

zation. We also combine AttnCache with recent 505

LLM pruning methods, AttnDrop and BlockDrop 506

(He et al., 2024), which remove redundant atten- 507

tions and layers by measuring the similarity be- 508

tween input and output of each layer. Table 2 509

shows the results. The integration of model quanti- 510

zation and pruning with AttnCache maintains per- 511

formance: the difference between AttnCache and 512

Quanto/BlockDrop is only 1%, and the difference 513

between AttnCache and AttnDrop is only 2%, on 514

average. 515

5.2 Impact of Similarity Thresholds 516

Assume that there are N input sentences for an 517

LLM to generate sentence embeddings, we count 518

how many times AttnCache is successfully applied 519

(indicating similar attention maps are found), de- 520

noted as M . We use the ratio M/N as the hit rate. 521

We randomly select 100 sentences from STS15, 522

7

Table 1: Spearman correlation score (in %) across 7 STS tasks

Llama-2-7B

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg. (↑) SpeedUp (↑) γ (↓)

Full Model 60.88 73.93 58.30 70.27 75.46 73.89 67.44 68.60 1.00× –

SAN 5.02 42.63 19.84 43.49 44.70 18.01 38.71 30.34 1.45× 0.85
LazyFormer 23.79 34.88 27.80 35.93 44.04 32.50 42.45 34.48 1.39× 0.87
AttnCache-f 22.06 67.75 31.52 61.15 53.89 53.97 62.40 50.39 1.14× 1.30
AttnCache 60.59 73.46 57.97 69.01 75.38 72.02 65.85 67.75 1.19× 0.04

Llama-3-8B

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg. (↑) SpeedUp (↑) γ (↓)

Full Model 61.57 76.41 63.23 75.27 80.41 75.84 70.45 71.88 1.00× –

SAN 27.61 53.81 37.18 57.20 57.43 39.46 54.98 46.81 1.49× 0.51
LazyFormer 27.25 60.37 36.21 53.85 59.21 40.30 48.24 46.49 1.42× 0.60
AttnCache-f 24.89 51.15 36.19 67.81 61.39 48.05 63.77 50.46 1.16× 1.34
AttnCache 60.82 72.49 60.59 74.67 79.52 72.61 66.68 69.63 1.21× 0.11

Mistral-7B

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg. (↑) SpeedUp (↑) γ (↓)

Full Model 63.28 74.89 61.57 75.64 81.89 78.26 69.39 72.13 1.00× –

SAN 25.04 54.66 35.30 53.11 61.55 39.59 55.45 46.39 1.44× 0.58
LazyFormer 38.90 54.41 38.71 37.18 57.61 42.23 50.66 45.67 1.38× 0.70
AttnCache-f 35.03 55.07 40.28 54.51 50.22 54.75 64.52 50.63 1.15× 1.43
AttnCache 62.66 72.23 61.85 73.32 81.59 74.66 65.89 70.31 1.20× 0.09

Table 2: Integration with model Quantization and
Pruning. “w/Quant” denotes integration with 4-bit
quantized model. "w/AttnDrop" and "w/BlockDrop"
represents integration with attention pruning and layer
pruning repectively.

Llama-3.2-3B

Method STS13 STS14 STS15 STS16 Avg.

Full Model 76.56 60.05 74.76 79.30 72.67
AttnCache 74.74 59.95 74.19 77.38 71.57

Quanto 75.27 57.55 74.41 76.96 71.05
w/Quanto 74.25 54.75 74.49 76.92 70.10
AttnDrop 75.33 59.04 69.92 78.37 70.67
w/AttnDrop 73.21 56.01 69.48 75.49 68.55
BlockDrop 67.98 50.44 72.42 75.52 66.59
w/BlockDrop 67.18 50.49 70.44 73.67 65.45

and change the similarity threshold θ from 0.995 to523

0.85. We measure the hit rate and loss in the Spear-524

man correlation score. Figure 5 shows the results.525

When we reduce θ, the hit rate increases, which526

means that more attention maps are found and At-527

tnCache leads to higher acceleration. However,528

this might lead to replacement with less similar-529

ity, decreasing the Spearman correlation score. By530

setting θ to 0.99, our results show that AttnCache531

provides 30% hit rate with only 2% reduction in532

the Spearman correlation score.533

0.995 0.99 0.95 0.9 0.85
Similarity Threshold

0

20

40

60

80

100

Hi
t R

at
e

(%
)

Hit Rate

0

20

40

60

80

100

Sp
ea

rm
an

 C
or

re
la

tio
n

Lo
ss

 (%
)

Spearman Correlation Loss

Figure 5: Impact of Threshold on Spearman Correlation

6 Conclusions 534

The emerging big memory system brings new op- 535

timization opportunities for the acceleration of 536

LLMs. In this paper, we propose AttnCache to 537

accelerate self attention on big memory systems. 538

Our work is based on the observation that semanti- 539

cally different input sentences can have high similar 540

attention maps at different layers or different heads 541

during inference computation. By pre-storing sim- 542

ilar attention maps into a database, we save self 543

attention computation using a memory cache to 544

retrieve similar attention maps, which are reused in 545

the computation of self attention. AttnCache brings 546

1.2× speedup on average with negligible perfor- 547

mance loss in the Spearman correlation score. 548

8

Limitations549

AttnCache requires preloading attention maps550

datasets into the big memory systems. When new551

reusable attention maps need to be added, the fea-552

ture projector needs to be retrained. Therefore, to553

improve the hit rate of attention maps reuse, in-554

cremental training is essential while expanding the555

attention maps database.556

Emerging CXL memory expansion and mem-557

ory pooling easily provide memory capacity at558

TB scale (Mellor; Petrucci et al.) (or even PB559

scale (MemVerge)), and meet the needs of build-560

ing the databases. In addition, the performance561

of NVMe ultra-low latency (ULL) SSD (Jo, 2024)562

(e.g., Optane SSD 800p and Z-SSD) is close to that563

of existing big memory solutions, while providing564

TB-scale (or PB-scale (Samsung)) capacity.565

Ethics Statement566

In this paper, we rigorously follow ethical guide-567

lines by solely relying on open-source datasets568

and leveraging models that are either open-source569

or widely accepted within the scientific commu-570

nity. Our approach underscores a commitment to571

maintaining ethical standards, emphasizing trans-572

parency, and fostering the responsible application573

of technology to benefit society.574

References575

Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit,576
Michal Lukasik, Himanshu Jain, Frederick Liu, Yin-577
Wen Chang, and Sanjiv Kumar. 2021. Leveraging re-578
dundancy in attention with reuse transformers. arXiv579
preprint arXiv:2110.06821.580

Alexis Conneau and Douwe Kiela. 2018. Senteval: An581
evaluation toolkit for universal sentence representa-582
tions. arXiv preprint arXiv:1803.05449.583

Tri Dao. 2023. Flashattention-2: Faster attention with584
better parallelism and work partitioning.585

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,586
and Christopher Ré. 2022. Flashattention: Fast and587
memory-efficient exact attention with io-awareness.588

Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H589
Oh, Yeonhong Park, Yoonho Song, Jung-Hun Park,590
Sanghee Lee, Kyoung Park, Jae W Lee, et al. 2020.591
Aˆ 3: Accelerating attention mechanisms in neural592
networks with approximation. In 2020 IEEE Interna-593
tional Symposium on High Performance Computer594
Architecture (HPCA), pages 328–341. IEEE.595

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li.596
2024. What matters in transformers? not all attention597
is needed. arXiv preprint arXiv:2406.15786.598

Rosco Hunter, Łukasz Dudziak, Mohamed S Abdelfat- 599
tah, Abhinav Mehrotra, Sourav Bhattacharya, and 600
Hongkai Wen. 2023. Fast inference through the reuse 601
of attention maps in diffusion models. arXiv preprint 602
arXiv:2401.01008. 603

Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, 604
Xiao Liu, Amirsaman Memaripour, Yun Joon Soh, 605
Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen 606
Zhao, and Steven Swanson. 2019. Basic performance 607
measurements of the intel optane DC persistent mem- 608
ory module. CoRR, abs/1903.05714. 609

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing 610
Wang, and Fuzhen Zhuang. 2023. Scaling sentence 611
embeddings with large language models. arXiv 612
preprint arXiv:2307.16645. 613

Insoon Jo. 2024. Toward Ultra-Low Latency SSDs: 614
Analyzing the Impact on Data-Intensive Workloads. 615
Electronics, 13(1). 616

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. 617
Billion-scale similarity search with gpus. IEEE 618
Transactions on Big Data, 7(3):535–547. 619

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 620
2020. Reformer: The efficient transformer. arXiv 621
preprint arXiv:2001.04451. 622

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, 623
et al. 2015. Siamese neural networks for one-shot 624
image recognition. In ICML deep learning workshop, 625
volume 2, pages 1–30. Lille. 626

Okan Köpüklü, Maryam Babaee, Stefan Hörmann, and 627
Gerhard Rigoll. 2019. Convolutional neural net- 628
works with layer reuse. In 2019 IEEE International 629
Conference on Image Processing (ICIP), pages 345– 630
349. IEEE. 631

Yibin Lei, Di Wu, Tianyi Zhou, Tao Shen, Yu Cao, 632
Chongyang Tao, and Andrew Yates. 2024. Meta-task 633
prompting elicits embedding from large language 634
models. arXiv preprint arXiv:2402.18458. 635

Ziyue Li and Tianyi Zhou. 2024. Your mixture-of- 636
experts llm is secretly an embedding model for free. 637
arXiv preprint arXiv:2410.10814. 638

Bingli Liao and Danilo Vasconcellos Vargas. 2024. Be- 639
yond kv caching: Shared attention for efficient llms. 640
arXiv preprint arXiv:2407.12866. 641

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, 642
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, 643
and Ashwin Kalyan. 2022. Dynamic prompt learning 644
via policy gradient for semi-structured mathematical 645
reasoning. arXiv preprint arXiv:2209.14610. 646

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient 647
and robust approximate nearest neighbor search us- 648
ing hierarchical navigable small world graphs. IEEE 649
transactions on pattern analysis and machine intelli- 650
gence, 42(4):824–836. 651

9

http://arxiv.org/abs/2307.08691
http://arxiv.org/abs/2307.08691
http://arxiv.org/abs/2307.08691
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714

Mark Mansi and Michael M Swift. 2020. sim: Prepar-652
ing system software for a world with terabyte-scale653
memories. In Proceedings of the Twenty-Fifth Inter-654
national Conference on Architectural Support for655
Programming Languages and Operating Systems,656
pages 267–282.657

Chris Mellor. CXL Memory Pools:658
Just How Big Can They Be?659
https://blocksandfiles.com/2022/07/07/cxl-memory-660
pools-size/.661

MemVerge. MemVerge Announces Memory Machine662
Cloud Edition and Memory Viewer to Usher in the663
Era of CXL. https://memverge.com/memverge-664
announces-memory-machine-cloud-edition-and-665
memory-viewer-to-usher-in-the-era-of-cxl/.666

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,667
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng668
Chen. 2024. Shortgpt: Layers in large language669
models are more redundant than you expect. arXiv670
preprint arXiv:2403.03853.671

María Luisa Menéndez, JA Pardo, L Pardo, and672
MC Pardo. 1997. The jensen-shannon divergence.673
Journal of the Franklin Institute, 334(2):307–318.674

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan675
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and676
Douwe Kiela. 2024. Generative representational in-677
struction tuning. arXiv preprint arXiv:2402.09906.678

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-679
stant, Ji Ma, Keith B Hall, Daniel Cer, and Yinfei680
Yang. 2021. Sentence-t5: Scalable sentence encoders681
from pre-trained text-to-text models. arXiv preprint682
arXiv:2108.08877.683

Lin Ning, Hui Guan, and Xipeng Shen. 2019. Adaptive684
deep reuse: Accelerating cnn training on the fly. In685
2019 IEEE 35th International Conference on Data686
Engineering (ICDE), pages 1538–1549. IEEE.687

Lin Ning and Xipeng Shen. 2019. Deep reuse: Stream-688
line cnn inference on the fly via coarse-grained com-689
putation reuse. In Proceedings of the ACM Interna-690
tional Conference on Supercomputing, pages 438–691
448.692

Optimum. 2024. Optimum-quanto.693

Vinicius Petrucci, Eishan Mirakhur, Nikesh Agar-694
wal, Su Wei Lim, Vishal Tanna, Rita Gupta,695
and Mahesh Wagh. CXL Memory Expan-696
sion: A Closer Look on Actual Platform.697
https://www.micron.com/content/dam/micron/global/public/698
products/white-paper/cxl-memory-expansion-a-699
close-look-on-actual-platform.pdf.700

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,701
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu702
Liu, Donald Metzler, et al. 2023. Large language703
models are effective text rankers with pairwise rank-704
ing prompting. arXiv preprint arXiv:2306.17563.705

N Reimers. 2019. Sentence-bert: Sentence embed- 706
dings using siamese bert-networks. arXiv preprint 707
arXiv:1908.10084. 708

Samsung. Samsung Announces 256TB SSDs 709
and Unveils Peta-Byte Scale PBSSDs. 710
https://www.tomshardware.com/news/samsung- 711
announces-256tb-ssds-and-unveils-peta-byte-scale- 712
pbssds. 713

Debendra Das Sharma, Robert Blankenship, and 714
Daniel S. Berger. 2023. An Introduction to the Com- 715
pute Express Link (CXL) Interconnect. 716

Franyell Silfa, Gem Dot, Jose-Maria Arnau, and An- 717
tonio Gonzàlez. 2019. Neuron-level fuzzy memo- 718
ization in rnns. In Proceedings of the 52nd Annual 719
IEEE/ACM International Symposium on Microarchi- 720
tecture, pages 782–793. 721

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun 722
Kim, Yulhwa Kim, and Jae-Joon Kim. 2024. Sleb: 723
Streamlining llms through redundancy verification 724
and elimination of transformer blocks. arXiv preprint 725
arXiv:2402.09025. 726

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 727
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 728
Kaiser, and Illia Polosukhin. 2017. Attention is all 729
you need. In NeurIPS. 730

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spat- 731
ten: Efficient sparse attention architecture with cas- 732
cade token and head pruning. In 2021 IEEE Interna- 733
tional Symposium on High-Performance Computer 734
Architecture (HPCA), pages 97–110. IEEE. 735

Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng, 736
Xiaoyong Du, and Xipeng Shen. 2022. Drew: Ef- 737
ficient winograd cnn inference with deep reuse. In 738
Proceedings of the ACM Web Conference 2022, pages 739
1807–1816. 740

Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and 741
Tongran Liu. 2019. Sharing attention weights for fast 742
transformer. arXiv preprint arXiv:1906.11024. 743

Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao 744
Ma, and Dong Li. 2021. Md-hm: memoization-based 745
molecular dynamics simulations on big memory sys- 746
tem. In Proceedings of the ACM International Con- 747
ference on Supercomputing, pages 215–226. 748

Xiaoxuan Yang, Bonan Yan, Hai Li, and Yiran Chen. 749
2020. Retransformer: Reram-based processing-in- 750
memory architecture for transformer acceleration. In 751
Proceedings of the 39th International Conference on 752
Computer-Aided Design, pages 1–9. 753

Chengxuan Ying, Guolin Ke, Di He, and Tie-Yan Liu. 754
2021. Lazyformer: Self attention with lazy update. 755
arXiv preprint arXiv:2102.12702. 756

Bowen Zhang, Kehua Chang, and Chunping Li. 2024a. 757
Simple techniques for enhancing sentence embed- 758
dings in generative language models. In Interna- 759
tional Conference on Intelligent Computing, pages 760
52–64. Springer. 761

10

https://huggingface.co/docs/transformers/main/quantization/quanto
http://arxiv.org/abs/2306.11227
http://arxiv.org/abs/2306.11227
http://arxiv.org/abs/2306.11227

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen,762
Barbara Plank, Bernd Bischl, Mina Rezaei, and Kenji763
Kawaguchi. 2024b. Finercut: Finer-grained inter-764
pretable layer pruning for large language models.765
arXiv preprint arXiv:2405.18218.766

Shengyao Zhuang, Xueguang Ma, Bevan Koopman,767
Jimmy Lin, and Guido Zuccon. 2024. Promptreps:768
Prompting large language models to generate dense769
and sparse representations for zero-shot document770
retrieval. arXiv preprint arXiv:2404.18424.771

	Introduction
	Related Work
	Methodology
	Search Engine
	Online Inference

	Experiments
	Setting
	Datasets and Models
	Baselines
	Implementation Details
	Main Results

	Analysis
	Impacts of Model Quantinization and Pruning
	Impact of Similarity Thresholds

	Conclusions

