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Abstract

Self attention, the kernel of transformer mod-
els, is computationally intensive, and hence
a major focus for accelerating large language
model (LLM) inference. Existing methods
on transformer inference acceleration often re-
quire modifying transformer architectures or
using specialized hardware accelerators, which
limits their broad applicability. In this paper,
we introduce an innovative method, called At-
tnCache, to accelerate self attention inference
in LLM prefill phase without the above limi-
tations. AttnCache draws inspiration from the
intriguing observation of recurring and rich sim-
ilarities in attention computations across differ-
ent inference sequences. Based on a memo-
rization database that leverages emerging big
memory systems, we propose embedding and
efficient caching techniques to identify inputs
that produce similar attention maps, thereby
reducing computation overhead. Experimen-
tal results show that AttnCache achieves 1.2X
speedup on average on Semantic Textual Simi-
larity (STS) benchmarks, with only 2% perfor-
mance loss.

1 Introduction

Transformer-based Large Language Models
(LLMs) provide superior inference accuracy and
throughput. Central to this success is the highly
parallelized self-attention mechanism, which
enables Transformer to capture dependencies and
relationships across different positions within
a sequence. Attention maps, generated in the
self-attention mechanism, represent the relevance
and importance of each position to other positions.
However, computational intensity of this mecha-
nism poses a significant bottleneck, especially as
model sizes and input sequences grow.

Various techniques have been proposed to accel-
erate self-attention inference through computation
reduction. Token pruning (Ham et al., 2020; Wang
et al., 2021) reduces computation by excluding less

important tokens from the input, while layer-wise
reuse (Ying et al., 2021; Xiao et al., 2019; Bhojana-
palli et al., 2021) reduces computation by sharing
attention maps calculated in prior layers in multiple
subsequent layers. Despite their effectiveness in ac-
celerating self-attention inference, these techniques
often cause significant loss in model accuracy, espe-
cially in complex tasks that require full-contextual
information. Other acceleration techniques, such
as introducing sparsity into self-attention (Lu et al.,
2022; Kitaev et al., 2020) or removing the attention
or transformer layer (He et al., 2024; Men et al.,
2024; Song et al., 2024; Zhang et al., 2024b), re-
quire specialized hardware accelerators (Yang et al.,
2020) or model architecture changes, restricting
their general applicability.

In this paper, we find that semantically different
input sentences can have high similarity in their
attention maps at different layers or different heads
during the inference computation. By pre-storing
(or caching) these similar attention maps into a
database utilizing the emerging big memory sys-
tem (called attention maps database), we can save
self-attention computation using the attention cache
to retrieve similar attention maps. For example,
as shown in Figure 1, there are two different sen-
tences. The sentence 1 is “This sentence: ‘you
should never do it means in one word:”. The sen-
tence 2 is “This sentence: ‘how do you do that?’
means in one word:”. Although the two sentences
have different semantics, their attention maps at
different layers and different heads are very similar,
which indicate they have similar relevance at each
token position. Thus, we can reuse the attention
maps of all layers computed by the sentence 1 for
the sentence 2.

Our study is driven by the recent development
of memory technologies (e.g., Compute Express
Link (Sharma et al., 2023) or persistent mem-
ory (Izraelevitz et al., 2019)) that enable big
memory systems at large scales (e.g., terabyte or
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Figure 1: Visualization of the attention maps in Llama-3.2-3B over two sentences, each with a length of 32. The
plots reveals that although Sentence 1 and Sentence 2 have different meanings, their attention maps at different

layers and different heads are similar.

petabyte scale) (Mellor; MemVerge). The big mem-
ory system not only supports memory-intensive ap-
plications but also opens up possibilities for new
programming and computational paradigms (Xie
et al., 2021; Mansi and Swift, 2020). Specifi-
cally, we leverage increased memory capacity to
accelerate self-attention inference through caching
(or memoization). Memoization brings speedup
unattainable by traditional system-level optimiza-
tions (e.g., vectorization and tiling (Dao et al.,
2022; Dao, 2023)). We introduce a framework
to accelerate self attention on big memory systems
using memoization, called AttnCache.

The implementation of AttnCache poses several
challenges. The first challenge lies in finding a
proper data representation. Both the representation
of input sentence and attention maps in transformer
are high-dimensional tensors. It is challenging to
find similar attention maps by directly comparing
the representation of the input sentences. To iden-
tify similar attention maps, we design a proper data
representation by embedding network. To reduce
time in self attention, the embedding network must
be lightweight such that its overhead plus the search
in the attention maps database (a key-value store) is
smaller than the cost of self-attention computation.

The second challenge is expensive memory ac-
cesses for storing and fetching pre-populated at-
tention maps. To improve the search hit rate and
use memory capacity offered by the big memory
system, the attention maps database must be big
and pre-populated with attention maps. However,

the large key-value search in the database leads
to highly sparse memory accesses. Besides, mod-
ern deep learning frameworks like PyTorch require
the tensors to be placed in consecutive memory
addresses for SIMD operations. Therefore, once
the tensors are fetched from the pre-populated
database, the tensors must be copied to a consecu-
tive memory space and then loaded to the processor
registers to be used by the attention function. As
a result, one tensor fetch generates two memory
reads and one write, which deter the time benefit
of using caching. To reduce memory access over-
head, we store the attention maps of a layer as a
file object, and the file objects of the neighboring
layers are stored continuously in the database, so as
to utilize spatial and temporal locality of memory
accesses. Moreover, we use a contiguous virtual
memory space to store the references or pointers
to the file objects. As a result, retrieving attention
maps from the cache is a matter of pointer manipu-
lation rather than of causing a real memory copy.

We use CPU for evaluation, because some sce-
narios make LLM embeddings of large text corpus,
and GPU cannot bring enough memory capacity.
For example, the recommendation/RAG systems
get representations of billions of text pieces. Such
scenarios do not need to get LLM embeddings on
a single instance fast, but must compute on a lot
of instances fast. In these scenarios, using CPU
machines to compute is both time and energy effi-
cient than GPU machines. We use CPU machines
to demonstrate our idea in AttnCache. Extensive



experiments show that AttnCache with transformer-
based LLM, such as Llama-3-8B, Llama-2-7B,
and Mistral-7B, on seven STS tasks enables 1.2 x
speedup on average with 2% loss in the Spearman
correlation score.

2 Related Work

Reuse mechanism in Neural Networks. The
reuse mechanism is based on the wide existence
of redundancy in neural networks. Some efforts
(Ning et al., 2019; Ning and Shen, 2019; Wu et al.,
2022; Kopiiklii et al., 2019) reuse the similar data
results and computation processes to improve per-
formance. Silfa et al. (2019) accelerates RNN
training by reusing the output of neurons. Pre-
vious works (Bhojanapalli et al., 2021; Xiao et al.,
2019) have shown that attention maps of trans-
former (Vaswani et al., 2017) exhibit similar dis-
tributions across adjacent layers. Many previous
efforts (Hunter et al., 2023; Xiao et al., 2019; Bho-
janapalli et al., 2021; Ying et al., 2021; Liao and
Vargas, 2024) focus on sharing the computed at-
tention weights across multiple layers for the same
input sequence, which may introduce dissimilar
attention maps, thereby degrading performance. In
this work, we concentrate on efficiently reusing
similar attention maps across different sequences.

Sentence Embedding. Sentence embeddings en-
codes the semantic information of sentences into
high-dimensional vector representations that are
broadly applicable to language processing tasks.
Prior works (Li and Zhou, 2024; Muennighoff et al.,
2024; Ni et al., 2021) have demonstrated the poten-
tial of LLMs to generate high-quality sentence em-
bedding. For example, Sentence-BERT (Reimers,
2019) employs contrastive learning to create em-
beddings by leveraging natural language inference
datasets to construct positive and negative pairs.
Recent studies (Zhuang et al., 2024; Qin et al.,
2023; Zhang et al., 2024a) have focused on con-
verting an LL.M directly into a sentence encoder
without training. To enhance the quality of em-
beddings, prompt-based techniques have become
increasingly popular. MetaEOL (Lei et al., 2024)
uses multitask prompts to generate general-purpose
embeddings. The research by (Jiang et al., 2023)
illustrates how to extract a sentence embedding by
prompting the LLMs with the instruction “This sen-
tence: ‘[text]” means in one word:”. In this paper,
we use the LLMs to generate sentence embeddings
without the need for LLMs fine-tuning.

3 Methodology

Figure 2 draws an overview of AttnCache. Given
an input sentence, AttnCache embeds it into a fea-
ture vector using a neural network (feature projec-
tor). The feature vector is used to retrieve the index
of the attention maps that have the highest similar-
ity to the input sentence. Then, the search engine
uses the index to fetch the corresponding atten-
tion maps from the attention maps database. The
fetched attention maps are used in the self-attention
computation during online inference, while the
prefill stage (the initial processing of the input se-
quence) in LLMs inference is utilized to generate
the sentence embedding.

3.1 Search Engine

As illustrated in Figure 1, two sentences with very
different semantics and meaning could have simi-
lar attention maps. The input sentences are repre-
sented by high-dimensional hidden states, and it is
difficult to determine whether their corresponding
attention maps are similar by comparing the input
hidden states. Rather than directly using the input
embedding as a key to find an attention map, At-
tnCache uses its feature vector, which is embedded
by the feature projector and has a lower dimen-
sion. We collect the input embeddings of input
sequences and their corresponding attention maps
at each layer, which are used for training of the
feature projector.

Feature Projector. To quantify the similarity
of input embeddings, we use a feature projector,
which is an embedding network. Two input embed-
dings are matched during a search if their feature
vectors are similar (in terms of the similarity score
defined later). The feature vector is essentially an
internal representation of the input embedding to
capture similarity, and the feature projector learns
this representation through training such that the
input embeddings with similar attention maps have
similar feature vectors. By searching for similar
feature vectors, we are able to find input embed-
dings producing similar attention maps. Besides,
the feature projector allows us to map input em-
beddings into a lower-dimensional representation,
thus reducing the search space and computation
complexity of measuring the similarity.

We use two layers of Multi-Layer Perceptron
(MLP) as the feature projector, which maps the
input embedding to a feature vector with lower di-
mension size. Compared with other embedding



Sentence

}

Input
Embedding
Search Engine

(a) Online Inference

P Addition

® Matrix Multiplication

Input
Embedding
Feature

E] Feature Vector
D Embedding of the last token

A.M.N | Attention Maps of layer N

Y
Feedforward
Network

‘ N
Y
Feedforward

v
A.M.3

E -E —
= o 2 oEs —
o 3o S0
E D-8 2 P18 2
5 %" Y 88 28 [
z o )

A.M.1
. == Velz::t?)trl;reDB A-M.2
g ST
9 — index A.M.3
o
- A.M.N
Attention —
Maps DB

(c) Attention

(b) Search Engine Cache

Figure 2: AttnCache overview. The search engine will identify the index of the sentence that produces the most
similar attention maps based on the feature vector of the current input sentence and fetch attention maps for each
layer from the attention maps database using the index. These fetched attention maps are stored in the attention
cache and reused for the matrix multiplication calculation with value projection of the current input sentence.
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Figure 3: The training of the feature projector. The
feature projector maps input embedding of a sentence S
into a feature vector. Then we train the feature projector
using the attention maps-based loss.

models, such as convolutional neural network or
transformer, MLP is lightweight with less compu-
tational complexity and shorter inference time.
Training the feature projector is challenging due
to a lack of labeled data. Deciding the similarity
between input embeddings and labeling them as
similar or not is prohibitively expensive. We use
the Siamese network (Koch et al., 2015), which
contains two identical embedding networks and
shares the same weights, as shown in Figure 3.
Once the Siamese network finishes training, it is

used as a feature projector. The Siamese network
is trained to minimize the distance between feature
vectors whose attention maps have high similarity.

During each training iteration, two input embed-
dings are used as input to the two identical feature
projectors in the Siamese network. After getting
the feature vectors, the Euclidean distance (i.e. L2-
norm) is calculated as follows.

7= [lfwX1) — fw(X2))ll2 €8]

where X is the input embedding, fyw is the feature
projector, and ||.||2 is the L2 norm. Besides, we
measure the similarity score using the attention
maps and the sequence length of tokens, which
associate with the two input embeddings. We use a
metric as the labels for training the feature projector
based on the average distance of heads, which is
defined as follows.

1 "1
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where A denotes the attention map, n indicates
the number of head, A[p, :] is the p'" row of the
attention map, ||.||1 is the L1 norm, s denotes the
length of input token sequence, and « is the hy-
perparameter to control the relative importance of
the similarity of the attention maps and the token
length.



In addition to the inherent similarity of the atten-
tion maps, the sentence token sequence also plays
an important role in determining whether two atten-
tion maps are similar. When the token sequences
of two attention maps are very different in length,
even if the attention maps are similar, they cannot
be used directly in AttnCache for subsequent reuse,
because that causes a large inference error. The fi-
nal loss function of the feature projector is defined
as follows.
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We use Smooth L1 Loss as the loss function, which
is able to balance the effects of outliers. The train-
ing process iteratively updates the parameters of
the feature projector to minimize the loss function.
Using the training process described above elim-
inate the need for labeling input embeddings and
attention maps manually.

Database. To minimize the costly search for at-
tention maps, we construct an indexed database,
where feature vectors are stored and indexed for
fast search. In essence, the feature vector database
is a key-value store where the key and value are the
feature vector and its index, respectively. The atten-
tion maps associated with feature vectors are stored
in the attention maps database. The feature vector
and associated attention maps have the same index
in the two databases. The attention maps database
is also a key-value store where the key is the index
retrieved from the feature vector database, and the
value is the attention map.

Given an input (i.e., the hidden state of the input
query to LLM), the feature vector database uses
an approximate nearest-neighbor search algorithm
to find “similar” feature vectors. The similarity
metric is defined in Equation 1. Only when the
similarity between the input feature vector and a
stored feature vector is larger than a pre-specified
threshold 6, the index of the stored feature vector
is returned.

Algorithm 1 depicts the search engine. The input
sentence is embedded by input embedding (Line 2).
The input embedding includes tokenization of the
sentence, position encoding, and layer normaliza-
tion. Then the result is mapped into a feature vector
with lower dimension (Line 3). The feature vector
is used for querying the feature vector database.
After the query, the indices that have the closest
similarity to the feature vectors are returned (Line

Attention Maps @ Attention
Maps DB

@ Feature
Projector

Input
Embedding

Figure 4: Database building includes three steps. 1.
Train the feature projector with input embedding and
attention maps; 2. Embed the input embeddings to
feature vectors; 3. Store the feature vectors and attention
maps to their respective databases. Both databases share
the same index.

Algorithm 1: Search Engine
Input: Sentence S, Threshold 6;
Output: Attention Cache attn_cache,
Input embedding h;
1 Function search_engine(S, 6)
h < input_embedding(.S);
f «feature_projector(h);
idx, sims <VecDB.search(f);
attn_cache «+ [;
if sims > 6 then
n < num_layers;
ams < AttnMapsDB.get(idz,n));
attn_cache.append(ams);

C-IN--EEEEN B Y N e

10 end

11 return attn_cache, h

4). When the similarity is not less than the thresh-
old 6, the corresponding index ¢dx is used to fetch
attention maps from the attention maps database.
The index idx corresponds to a sentence S that
produces similar attention maps to the input sen-
tence. The fetched attention maps are used from the
first to the last layer of the LLM, and are stored into
contiguous memory space called attention cache.
Specifically, these attention maps are used in the
matrix multiplication calculation with value pro-
jection in online_inference. All layers of the
attention maps are fetched for the computation of
self-attention before the LLM inference starts.

3.2 Online Inference

Algorithm 2 illustrates online inference with At-
tnCache. In the attention block of each layer, the
value projection is computed. If the similar atten-
tion maps are found, the attention output can be
obtained by multiplying attention maps with value
v. Thus finding similar attention maps and reusing
them in the self-attention calculation lead to perfor-



Algorithm 2: Online Inference

Input: Attention Cache atin_cache, Input
embedding h;
Output: Hidden state of last layer h;
1 Function online_inference(attn_cache,
h)

2 for [ in range(num_layers) do

3 residual < h ;

4 v < v_projection(h) ;

5 if attn_cache is not NULL then

6 attn_map < attn_cachell];
7 h < mat_mul(attn_map, v);
8 end

9 else

10 q < q_projection(h) ;

1 k < k_projection(h) ;

12 q, k < rotary_pos_emb(q, k) ;
13 attn_map < softmax(q, k) ;
14 h < mat_mul(attn_map, v) ;
15 end

16 h < residual + h ;

17 h < h + feed_forward(h) ;

18 end
19 return h;

mance benefits.

However, AttnCache cannot always find similar
attention maps. For those hidden states with low
similarities, the attention maps must be calculated
at each layer during the inference, which means
the query, key, rotary positional embedding, and
softmax normalization must be computed. In this
regard, AttnCache does not bring benefit in infer-
ence speed, and instead degrades performance due
to its search overhead. However, given a batch
of inferences, as long as the success rate during
the search for all inferences is high, the overall
inference is still accelerated.

4 Experiments

4.1 Setting

We evaluate AttnCache on a server equipped with
two sockets, each with 24 cores Intel(R) Xeon(R)
Silver 4410Y processors. The platform provides
512 GB DRAM and 14 TB Hard Disk Drive (HDD).
We use the DRAM to store the attention maps
database and feature vector database. To build
the feature vector database, we use Faiss (John-
son et al., 2019), a vector database enabling effi-
cient similarity search by the Hierarchical Naviga-

ble Small Worlds algorithm (Malkov and Yashunin,
2018). Faiss is highly efficient for similarity search.
For example, our evaluation shows that searching
100K vectors with a dimension size of 128 takes
less than 0.5 ms on the DRAM. As a result, the
search process does not create a performance bot-
tleneck for AttnCache. In addition, we save atten-
tion maps in a layer as a file object in the attention
database, and assume that both the attention maps
database and feature vector database are held in
the DRAM. For the case that the two databases are
larger than the real DRAM in our platform, we eval-
uate the model performance using both the DRAM
and HDD, which does not impact the model qual-
ity. In this case, to evaluate the model inference
time on a “virtual” big DRAM system with enough
capacity, we use our limited DRAM assuming that
the needed attention maps are in the DRAM. In
such a case, the search overhead (not including the
feature projector overhead) is ignored, because the
search time on the DRAM is only a small portion
(at most 2%) of total inference time due to highly
optimized Faiss. We implement AttnCache with
PyTorch 2.5.1. In the evaluation, all 48 CPU cores
are fully utilized for maximum thread-level par-
allelism to minimize inference time. We use the
original transformer model as the baseline, named
Sfull model.

4.2 Datasets and Models

We evaluate AttnCache with Llama-2-7B, Llama-3-
8B and Mistral-7B on seven semantic textual simi-
larity (STS) datasets, utilizing the SentEval toolkit
(Conneau and Kiela, 2018). The STS datasets in-
clude STS 12-16, STS-B and SICK-R (Lei et al.,
2024). The semantic similarity of each sentence
pair in each dataset is annotated with a score of 0-5.
For each sentence pair, we employ cosine similarity
to measure the similarity between sentence embed-
dings (i.e., the LLM outputs). We use the Spearman
correlation between the human annotated similarity
score and the cosine similarity score, as the evalua-
tion metric. The Spearman correlation is computed
under the “all” setting.

4.3 Baselines

We use three baselines for evaluation.
LazyFormer (Ying et al., 2021) divides all lay-
ers of the transformer to multiple subblocks. In
each subblock, the attention maps are only com-
puted in the first layer and then used by the remain-
ing layers in the same subblock. Like LazyFormer,



we set the number of layers in each sub-block to 2.

SAN (Xiao et al., 2019), like LazyFormer, shares
attention maps across multiple adjacent layers. But
different from Lazyformer, SAN does not use a
uniform subblock size (i.e., the number of trans-
former layers in a subblock). The subblock size
is dynamically determined based on the similarity
of layers in terms of the JS divergence (Menéndez
etal., 1997).

AttnCache-f is a variant of AttnCache.
AttnCache-f applies memoization at the trans-
former layer level instead of the whole model
level as AttnCache. In particular, at each layer,
AttnCache-f searches the attention maps database
for similar attention maps, hence applying a fine-
grained memoization. Moreover, AttnCache-f does
not consider sequence length when training the fea-
ture projector, which means that the y in Equation
2 does not take the computation of ||s; — s2||; into
account.

4.4 Implementation Details

We use test samples in STS datasets to evaluate
AttnCache. We apply 8-bit (int8) quantization to
LLM weights in order to save memory space. For
each task, we collect attention maps and input em-
beddings from 1K sentences to train feature projec-
tor and build databases; we use 1000 samples to
measure the inference time of self-attention; we use
the remaining samples for testing. Across the seven
datasets, we build the attention maps database us-
ing 7K sentences and use 7K test samples for speed
measurement. To maintain high inference accuracy,
we set the similarity threshold 6 to 0.99, and set
a, which is used to train the feature projectors (see
Equation 2), to 0.2. We use the Speedup Degrada-
tion Ratio (He et al., 2024)  to quantify trade-off
between speed and performance degradation.

B AVE i1 — AVE,ethod
’)/ =
Speedup,,,1oq — Speedup s,y

where Avgg,,; and Avg, ..., are the average
performance of LLM and each method across
the seven tasks respectively, and Speedupg,;
and Speedup,,, ;.4 represent the corresponding
speedup respectively. A smaller « indicates that
the method is more efficient.

4.5 Main Results

Table 1 summarizes the results. Across various
models (Llama2-7B, Llama3-8B and Mistral-7B),

SAN and LazyFormer both lead to notable perfor-
mance declines, despite achieving higher speedups.
For instance, LazyFormer results in an average
25.39% performance decline (from 71.88% to
46.49%) for Llama-3-8B, with a speedup of 1.42x,
corresponding to a v of 0.60. We also notice that
the inter-sentence methods (i.e. AttnCache-f and
AttnCache) exhibit higher performance but lower
speedup compared to intra-sentence methods (i.e.
SAN and LazyFormer) because they only reuse at-
tention maps with high similarity. For example, for
Llama-2-7B, AttnCache-f and AttnCache achieve
50.39% and 67.75% average performance with
1.14x and 1.19x speedup, while SAN and Lazy-
Former have 30.34% and 34.48% performance with
1.39x and 1.45x speedup separately. Moreover,
AttnCache maintains near full model performance
on various datasets and strikes a better balance be-
tween speed and performance, with v values of
0.04, 0.11 and 0.09 for three LLMs, making it a su-
perior method for the acceleration of self attention.

S Analysis

5.1 Impacts of Model Quantinization and
Pruning

The model quantization represents weights and ac-
tivations with lower-precision data type, and can
improve efficiency in memory usage and inference
speed. We integrate AttnCache with quantization,
and study whether AttnCache can maintain the per-
formance. Specifically, we apply Quanto (Opti-
mum, 2024) to all weights, and use 4-bit quanti-
zation. We also combine AttnCache with recent
LLM pruning methods, AttnDrop and BlockDrop
(He et al., 2024), which remove redundant atten-
tions and layers by measuring the similarity be-
tween input and output of each layer. Table 2
shows the results. The integration of model quanti-
zation and pruning with AttnCache maintains per-
formance: the difference between AttnCache and
Quanto/BlockDrop is only 1%, and the difference
between AttnCache and AttnDrop is only 2%, on
average.

5.2 Impact of Similarity Thresholds

Assume that there are /N input sentences for an
LLM to generate sentence embeddings, we count
how many times AttnCache is successfully applied
(indicating similar attention maps are found), de-
noted as M. We use the ratio M /N as the hit rate.

We randomly select 100 sentences from STS15,



Table 1: Spearman correlation score (in %) across 7 STS tasks

Llama-2-7B
Method | STSI12 STS13 STS14 STSI5 STS16 STS-B SICK-R | Avg. (1) SpeedUp (1) 7 (1)
Full Model ‘ 60.88 7393 5830 7027 7546  73.89 67.44 ‘ 68.60 1.00x -
SAN 5.02 42.63 1984 4349 4470 18.01 38.71 30.34 1.45% 0.85
LazyFormer | 23.79 3488 27.80 3593 44.04 3250 42.45 34.48 1.39x 0.87
AttnCache-f | 22.06 67.75 31.52 61.15 5389 5397 62.40 50.39 1.14x 1.30
AttnCache | 60.59 7346 5797 69.01 7538 72.02 65.85 67.75 1.19x% 0.04
Llama-3-8B
Method ‘ STS12 STS13 STS14 STS15 STS16 STS-B  SICK-R ‘ Avg. (1) SpeedUp (1) ~ ()
FullModel | 61.57 7641 6323 7527 80.41 7584 7045 | 71.88 1.00x -
SAN 27.61 53.81 37.18 5720 5743 39.46 54.98 46.81 1.49x 0.51
LazyFormer | 27.25 6037 3621 53.85 59.21 40.30 48.24 46.49 1.42x 0.60
AttnCache-f | 24.89  51.15 36.19 67.81 6139 48.05 63.77 50.46 1.16x 1.34
AttnCache | 60.82 7249 60.59 74.67 7952 72.61 66.68 69.63 1.21x 0.11
Mistral-7B
Method | STS12 STSI3 STS14 STSI5 STSI6 STS-B SICK-R | Avg. (1) SpeedUp (1) v (1)
Full Model ‘ 63.28 7489 6157 7564 81.89 7826 69.39 ‘ 72.13 1.00x -
SAN 25.04 54.66 3530 53.11 61.55 39.59 55.45 46.39 1.44x 0.58
LazyFormer | 38.90 5441 38.71 37.18 57.61 4223 50.66 45.67 1.38x 0.70
AttnCache-f | 35.03  55.07 4028 5451 5022 54.75 64.52 50.63 1.15% 1.43
AttnCache | 62.66 7223 6185 7332 81.59 74.66 65.89 70.31 1.20x 0.09
Table 2: Integration with model Quantization and 100 Spearman Conetation Lo 100
Pruning. “w/Quant” denotes integration with 4-bit 50w it Rote - a0
quantized model. "w/AttnDrop" and "w/BlockDrop"

represents integration with attention pruning and layer
pruning repectively.

Llama-3.2-3B
Method ‘ STS13 STS14 STS15 STS16 Avg.
Full Model 76.56  60.05 7476  79.30 72.67
AttnCache 7474 5995 7419 77.38 71.57
Quanto 7527 5755 7441 7696 71.05
w/Quanto 7425 5475 7449 7692 70.10
AttnDrop 7533  59.04 69.92 7837 70.67
w/AttnDrop 7321 56.01 6948 7549 68.55
BlockDrop 6798 5044 7242 7552 66.59
w/BlockDrop | 67.18 5049 7044 73.67 65.45

and change the similarity threshold 8 from 0.995 to
0.85. We measure the hit rate and loss in the Spear-
man correlation score. Figure 5 shows the results.
When we reduce 6, the hit rate increases, which
means that more attention maps are found and At-
tnCache leads to higher acceleration. However,
this might lead to replacement with less similar-
ity, decreasing the Spearman correlation score. By
setting 0 to 0.99, our results show that AttnCache
provides 30% hit rate with only 2% reduction in
the Spearman correlation score.

60 r60

Hit Rate (%)

40 r4o

20 r20

Spearman Correlation Loss (%)

0.995 0.99

0.95
Similarity Threshold

0.9 0.85

Figure 5: Impact of Threshold on Spearman Correlation

6 Conclusions

The emerging big memory system brings new op-
timization opportunities for the acceleration of
LLMs. In this paper, we propose AttnCache to
accelerate self attention on big memory systems.
Our work is based on the observation that semanti-
cally different input sentences can have high similar
attention maps at different layers or different heads
during inference computation. By pre-storing sim-
ilar attention maps into a database, we save self
attention computation using a memory cache to
retrieve similar attention maps, which are reused in
the computation of self attention. AttnCache brings
1.2x speedup on average with negligible perfor-
mance loss in the Spearman correlation score.



Limitations

AttnCache requires preloading attention maps
datasets into the big memory systems. When new
reusable attention maps need to be added, the fea-
ture projector needs to be retrained. Therefore, to
improve the hit rate of attention maps reuse, in-
cremental training is essential while expanding the
attention maps database.

Emerging CXL memory expansion and mem-
ory pooling easily provide memory capacity at
TB scale (Mellor; Petrucci et al.) (or even PB
scale (MemVerge)), and meet the needs of build-
ing the databases. In addition, the performance
of NVMe ultra-low latency (ULL) SSD (Jo, 2024)
(e.g., Optane SSD 800p and Z-SSD) is close to that
of existing big memory solutions, while providing
TB-scale (or PB-scale (Samsung)) capacity.

Ethics Statement

In this paper, we rigorously follow ethical guide-
lines by solely relying on open-source datasets
and leveraging models that are either open-source
or widely accepted within the scientific commu-
nity. Our approach underscores a commitment to
maintaining ethical standards, emphasizing trans-
parency, and fostering the responsible application
of technology to benefit society.
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